

America

Certification Test Report

**FCC ID: R7PNG0R1S4
IC: 5294A-NG0R1S4**

**FCC Rule Part: 15.247
ISED Canada Radio Standards Specification: RSS-247**

Report Number: AT72146310-1C6

Manufacturer: Landis+Gyr Technology, Inc.
Model: Series-6 RF Mesh mSBR Card

Test Begin Date: December 11, 2018
Test End Date: June 24, 2019

Report Issue Date: October 3, 2019

FOR THE SCOPE OF ACCREDITATION UNDER Certificate Number: 2955.09

This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Prepared By:

**Jeremy Pickens
Senior Wireless Engineer
TÜV SÜD America Inc.**

Reviewed by:

**Kirby Munroe
Technical Manager, US Wireless
TÜV SÜD America Inc.**

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of TÜV SÜD America Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 24 pages

TABLE OF CONTENTS

1	GENERAL.....	3
1.1	PURPOSE.....	3
1.2	PRODUCT DESCRIPTION	3
1.3	TEST METHODOLOGY AND CONSIDERATIONS.....	4
2	TEST FACILITIES	5
2.1	LOCATION	5
2.2	LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS	5
2.3	RADIATED EMISSIONS TEST SITE DESCRIPTION	6
2.3.1	<i>Semi-Anechoic Chamber Test Site – Chamber A.....</i>	6
2.3.2	<i>Semi-Anechoic Chamber Test Site – Chamber B.....</i>	7
2.4	CONDUCTED EMISSIONS TEST SITE DESCRIPTION	8
2.4.1	<i>Conducted Emissions Test Site</i>	8
3	APPLICABLE STANDARD REFERENCES	9
4	LIST OF TEST EQUIPMENT	10
5	SUPPORT EQUIPMENT.....	11
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	11
7	SUMMARY OF TESTS	12
7.1	ANTENNA REQUIREMENT – FCC 15.203	12
7.2	POWER LINE CONDUCTED EMISSIONS – FCC 15.207, ISED CANADA: RSS-GEN 8.8.....	12
7.2.1	<i>Measurement Procedure.....</i>	12
7.2.2	<i>Measurement Results.....</i>	12
7.3	6dB / 99% BANDWIDTH – FCC 15.247(A)(2), ISED CANADA: RSS-247 5.2(A).....	14
7.3.1	<i>Measurement Procedure.....</i>	14
7.3.2	<i>Measurement Results.....</i>	14
7.4	FUNDAMENTAL EMISSION OUTPUT POWER – FCC 15.247(B)(3), ISED CANADA: RSS-247 5.4(D).....	17
7.4.1	<i>Measurement Procedure.....</i>	17
7.4.2	<i>Measurement Results.....</i>	17
7.5	EMISSION LEVELS.....	18
7.5.1	<i>Emissions into Non-restricted Frequency Bands – FCC 15.247(d); ISED Canada: RSS-247 5.5.....</i>	18
7.5.1.1	Measurement Procedure.....	18
7.5.1.2	Measurement Results	18
7.5.2	<i>Emissions into Restricted Frequency Bands – FCC: 15.205, 15.209; ISED Canada: RSS-Gen 8.9 /</i>	
8.10	20	
7.5.2.1	Measurement Procedure	20
7.5.2.2	Measurement Results	20
7.5.2.3	Sample Calculation:	21
7.6	MAXIMUM POWER SPECTRAL DENSITY IN THE FUNDAMENTAL EMISSION – FCC 15.247(E) ISED CANADA: RSS-247 5.2(2)	22
7.6.1	<i>Measurement Procedure.....</i>	22
7.6.2	<i>Measurement Results.....</i>	22
7.7	DUTY CYCLE	23
7.7.1	<i>Measurement Procedure.....</i>	23
7.7.2	<i>Measurement Results.....</i>	23
8	ESTIMATION OF MEASUREMENT UNCERTAINTY	24
9	CONCLUSION.....	24

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Innovation, Science, and Economic Development Canada's Radio Standards Specification RSS-247 Certification for modular approval.

1.2 Product Description

The Landis & Gyr Series-6 RF Mesh mSBR Card radio is an electricity metering module which includes a 902.4 MHz to 927.6 MHz transmitter as well as a 2.4GHz OFDM transmitter.

This test report documents the compliance of the 2.4GHz Digital Transmission System transceiver mode of operation.

Technical Information:

Detail	Description
Frequency Range	2410.8 – 2461.2MHz
Number of Channels	43
Modulation Format	IEEE 802.15.4 SUN OFDM
Data Rates	Option 1: MCS0 - MCS6
Number of Inputs/Outputs	1T1R
Operating Voltage	3.3 Vdc
Antenna Type / Gain	Dual Band Dipole / 8dBi Max in 2.4GHz Band

Manufacturer Information:

Landis+Gyr Technology, Inc.
30000 Mill Creek Ave., Suite 100
Alpharetta, GA 30022

Test Sample Serial Number: LAN ID: 61293EB1

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.3 Test Methodology and Considerations

All modes of operation, including all data rates, were evaluated and the data presented in this report represents the worst case where applicable. The worst-case data rate was MCS0.

For radiated emissions, the EUT was evaluated in three orthogonal orientations. The worst-case orientation was Z-orientation for band edge measurements and the X-orientation for harmonic emissions. See test setup photos for more information.

For AC power line conducted emissions the EUT was evaluated with a commercially available wall wart power supply.

For RF Conducted Emissions, the EUT was modified with an u.fl antenna connector to facilitate connection to the test equipment.

Radiated inter-modulation testing was performed for all combinations of simultaneous transmission and found to be compliant.

Power setting during test: 26

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following addresses:

TÜV SÜD America, Inc.
5945 Cabot Pkwy, Suite 100
Alpharetta, GA 30005
Phone: (678) 341-5900

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America, Inc. is accredited to ISO/IEC 17025 by the American Association for Laboratory Accreditation/A2LA accreditation program and has been issued certificate number 2955.09 in recognition of this accreditation.

Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scopes of accreditation.

The Semi-Anechoic Chamber Test Sites and Conducted Emissions Sites have been fully described, submitted to, and accepted by the FCC, ISED Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Registration Number:	967699
ISED Canada Lab Code:	23932
VCCI Member Number:	1831
• VCCI Registration Number	A-0295

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site – Chamber A

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 5' in diameter and is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted EMCO Model 1060 installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chase from the turntable to the pit that allows for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

The chamber rear wall is covered with a mixture of Siepel pyramidal absorber. The side walls of the chamber are partially covered with Siepel pyramidal absorber.

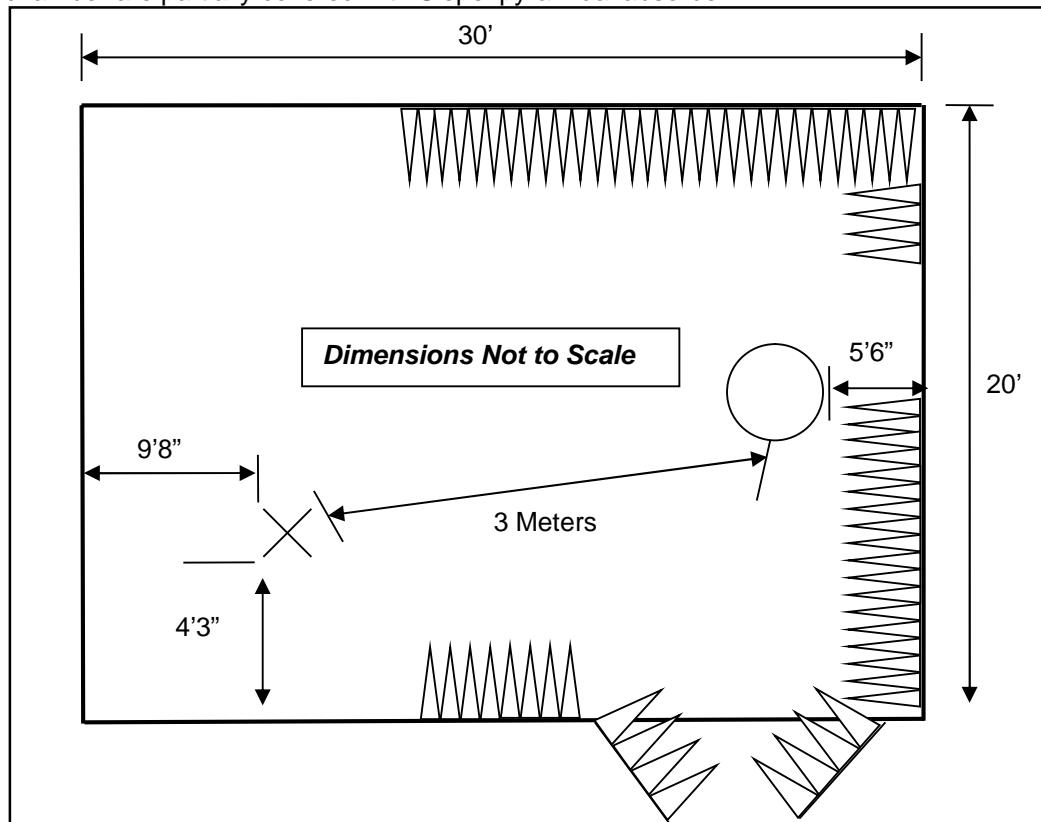


Figure 2.3.1-1: Semi-Anechoic Chamber Test Site – Chamber A

2.3.2 Semi-Anechoic Chamber Test Site – Chamber B

The Semi-Anechoic Chamber Test Site consists of a 20'W x 30'L x 20'H shielded enclosure. The chamber is lined with ETS-Lindgren Ferrite Absorber, model number FT-1500. The ferrite tile 600 mm x 600 mm (2.62 in x 23.62 in) panels and are mounted directly on the inner walls of the chamber shield.

The specular regions of the chamber are lined with additional ETS-Lindgren PS-600 hybrid absorber to extend its frequency range up to 18GHz and beyond.

The turntable is a 2m ETS-Lindgren Model 2170 and installed off the center axis is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the shield using #8 solid copper wire.

The antenna mast is an EMCO 1060 and is remotely controlled from the control room for both antenna height and polarization.

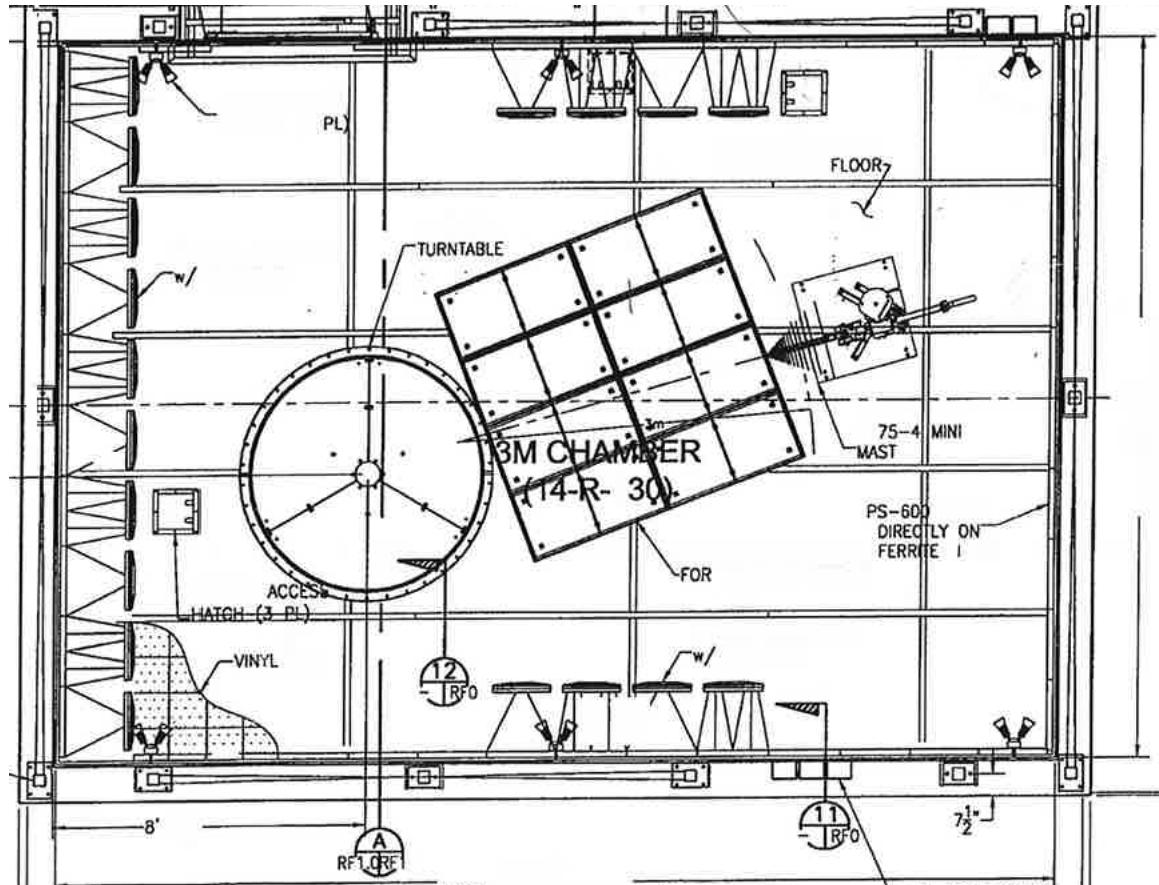


Figure 2.3.2-1: Semi-Anechoic Chamber Test Site – Chamber B

2.4 Conducted Emissions Test Site Description

2.4.1 Conducted Emissions Test Site

The AC mains conducted EMI site is located in the main EMC lab. It consists of a 12' x 10' horizontal coupling plane (HCP) as well as a 12'x8' vertical coupling plane(VCP). The HGP is constructed of 4' x 10' sheets of particle board sandwiched by galvanized steel sheets. These panels are bonded using 11AWG 1/8" x 2" by 10' galvanized sheet steel secured to the panels via screws. The VCP is constructed of three 4'x8' sheets of 11AWG solid aluminum.

The HCP and VCP are electrically bonded together using 1"x1" angled aluminum secured with screws.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.10.

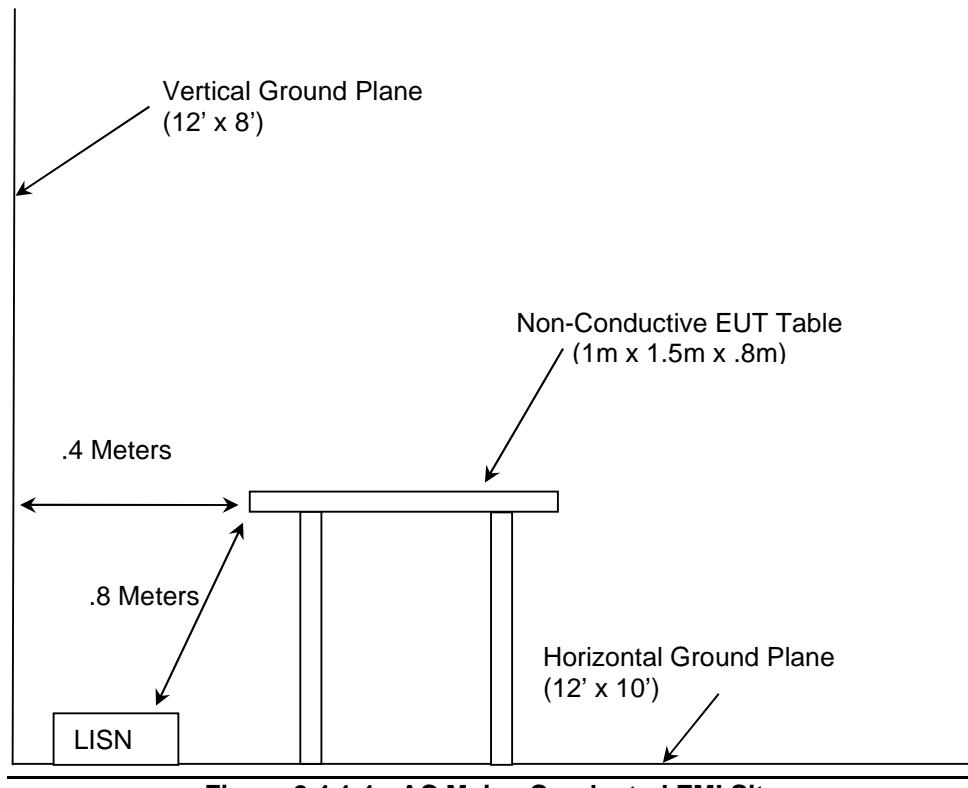


Figure 2.4.1-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2019
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2019
- ❖ FCC KDB 558074 D01 DTS Meas Guidance v05r02 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, April 2, 2019
- ❖ ISED Canada Radio Standards Specification: RSS-247 – Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices, Issue 2, February 2017.
- ❖ ISED Canada Radio Standards Specification: RSS-GEN – General Requirements for Compliance of Radio Apparatus, Issue 5, April 2018.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
22	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A00526	07/11/2018	07/11/2020
30	Spectrum Technologies	DRH-0118	1-18GHz Horn Antenna	970102	05/09/2017	05/09/2019
213	TEC	PA 102	Amplifier	44927	07/19/2018	07/19/2019
324	ACS	Belden	Conducted EMI Cable	8214	03/19/2019	03/19/2020
335	Suhner	SF-102A	Cable (40GHz)	882/2A	07/10/2018	07/10/2019
345	Suhner Sucoflex	102A	Cable 42(GHz)	1077/2A	07/10/2018	07/10/2019
432	Microwave Circuits	H3G020G4	Highpass Filter	264066	5/29/2019	5/29/2020
622	Rohde & Schwarz	FSV40 (v3.40)	FSV Signal Analyzer 10Hz to 40GHz	101338	07/30/2018	07/30/2020
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	02/11/2019	11/02/2021
638	Rohde & Schwarz	OSP 120	Open Switch and Control Unit	101229	04/28/2017	04/28/2020
651	Rohde & Schwarz	TS-PR26	18GHz to 26.5GHz Pre-Amplifier	100023	07/10/2018	07/10/2019
652	Rohde & Schwarz	3160-09	High Frequency Antenna 18GHz to 26.5GHz	060922-21894	NCR	NCR
813	PMM	9010	EMI Receiver; RF Input 50ohm; 10Hz-50MHz; 10Hz-30MHz	697WW30606	02/25/2019	02/25/2020
819	Rohde & Schwarz	ESR26	EMI Test Receiver	101345	11/06/2018	11/06/2019
827	(-)	TS8997 Rack Cable Set	TS8997 Rack Cable Set	N/A	08/13/2018	08/13/2019
836	ETS Lindgren	SAC Cable Set	SAC Cable Set includes 620, 837, 838	N/A	05/01/2019	5/1/2020
853	Teseq	CBL 6112D; 6804.17.A	Bilog Antenna; Attenuator	51616; 20181110A	10/15/2018	10/15/2019
3010	Rohde & Schwarz	ENV216	Two-Line V-Network	3010	07/11/2018	07/11/2019

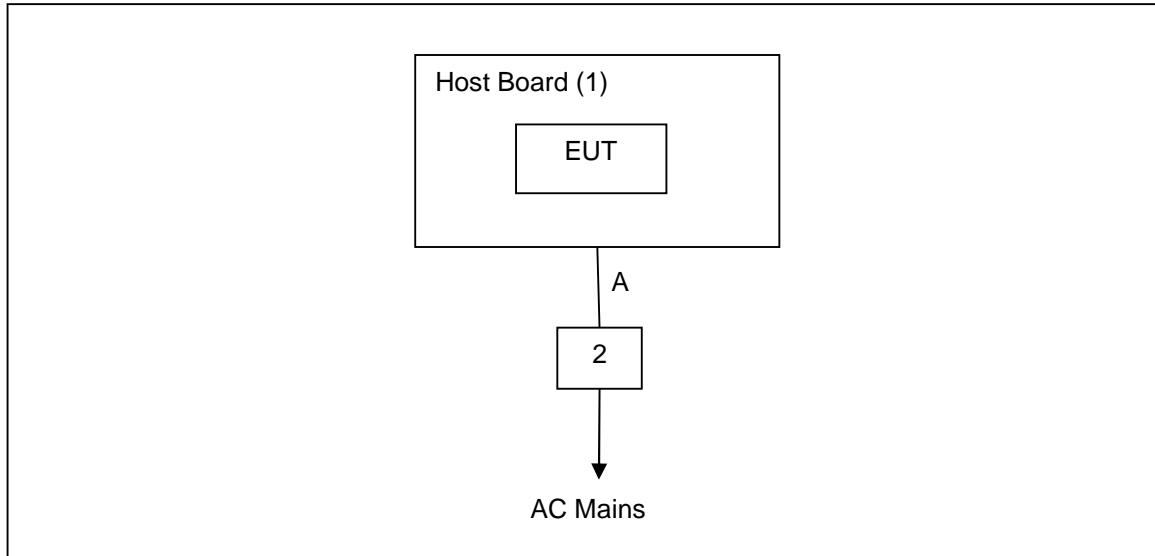
NOTE: All test equipment was used only during active calibration cycles.

NCR=No Calibration Required

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model/Part Number	Serial Number
1	Host Board	Landis & Gyr	ICB Host	Not Labeled
2	DC Power Supply ¹	Hewlett Packard	E3630A ¹	KR64308603
	AC Adapter ²	Unidentified	PS0538 ²	Not Labeled


1) Radiated emissions testing

2) Conducted emissions testing

Table 5-2: Cable Description

Cable	Cable Type	Length	Shield	Termination
A	DC Power Cable	1.75 m	No	EUT to Power Supply

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

Figure 6-1: Test Setup Block Diagram

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC 15.203

The EUT utilizes a dual band dipole antenna. Connection to the module is via a U.fl to SMA adapter cable which is a unique connection. The max gain of the antenna is 8dBi in the 2.4GHz band.

7.2 Power Line Conducted Emissions – FCC 15.207, ISED Canada: RSS-Gen 8.8

7.2.1 Measurement Procedure

Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss

Margin = Corrected Reading – Applicable Limit

7.2.2 Measurement Results

Performed by: Jeremy Pickens / Sean Vick

Table 7.2.2-1: Conducted EMI Results – Line 1

Frequency (MHz)	Corrected Reading		Limit		Margin		Correction (dB)
	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	
	(dB μ V)	(dB μ V)	(dB μ V)	(dB μ V)	(dB)	(dB)	
0.15	37.4	22.34	66	56	-28.6	-33.66	9.59
0.154	36.68	20.13	65.78	55.78	-29.1	-35.65	9.58
0.17	41.13	25.74	64.96	54.96	-23.83	-29.22	9.58
0.206	40.42	23.92	63.37	53.37	-22.95	-29.45	9.58
0.214	38.42	27.32	63.05	53.05	-24.63	-25.73	9.58
0.222	38.3	25.22	62.74	52.74	-24.44	-27.52	9.58
0.242	37.65	22.73	62.03	52.03	-24.38	-29.3	9.58
0.254	33.94	22.6	61.63	51.63	-27.69	-29.03	9.58
0.294	34.41	16.49	60.41	50.41	-26	-33.92	9.58
0.414	33.81	25.93	57.57	47.57	-23.76	-21.64	9.59

Table 7.2.2-2: Conducted EMI Results – Line 2

Frequency (MHz)	Corrected Reading		Limit		Margin		Correction (dB)
	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	
	(dB μ V)	(dB μ V)	(dB μ V)	(dB μ V)	(dB)	(dB)	
0.154	38.01	22.95	65.78	55.78	-27.77	-32.83	9.58
0.178	42.34	27.91	64.58	54.58	-22.24	-26.67	9.58
0.194	41.75	22.66	63.86	53.86	-22.11	-31.2	9.58
0.206	40.85	22.79	63.37	53.37	-22.52	-30.58	9.58
0.226	40.32	22.51	62.6	52.6	-22.28	-30.09	9.58
0.246	39.73	22.42	61.89	51.89	-22.16	-29.47	9.58
0.418	39.37	22.41	57.49	47.49	-18.12	-25.08	9.59
2.962	31.04	22.79	56	46	-24.96	-23.21	9.62
3.246	30.74	22.49	56	46	-25.26	-23.51	9.62
23.418	32.7	23.83	60	50	-27.3	-26.17	9.82

7.3 6dB / 99% Bandwidth – FCC 15.247(a)(2), ISED Canada: RSS-247 5.2(a)

7.3.1 Measurement Procedure

The 6dB bandwidth was measured in accordance with the FCC KDB 558074 D01 DTS Meas Guidance. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to ≥ 3 times the RBW. The trace was set to max hold with a peak detector active. The marker-delta function of the spectrum analyzer was utilized to determine the 6dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. A peak detector was used.

7.3.2 Measurement Results

Performed by: Jeremy Pickens

Table 7.3.2-1: 6dB / 99% Bandwidth

Modulation	Frequency [MHz]	6dB Bandwidth [MHz]	99% Bandwidth [MHz]
OFDM	2410.8	1.0931	1.120
	2439.6	1.1168	1.100
	2461.2	1.1168	1.080

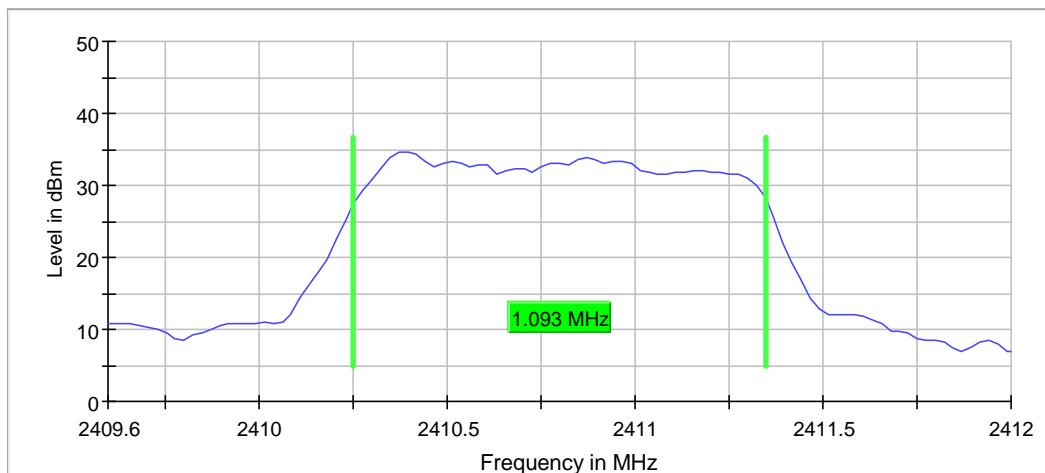


Figure 7.3.2-1: Sample Plot - 6dB BW

Table 7.3.2-2: Sample Measurement Settings (OBW)

Setting	Instrument Value	Target Value
Start Frequency	2.40960 GHz	2.40960 GHz
Stop Frequency	2.41200 GHz	2.41200 GHz
Span	2.400 MHz	2.400 MHz
RBW	100.000 kHz	~ 100.000 kHz
VBW	300.000 kHz	~ 300.000 kHz
SweepPoints	101	~ 24
Sweeptime	18.905 µs	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	28 / max. 150	max. 150
Stable	5 / 5	5
Max Stable Difference	0.00 dB	0.50 dB

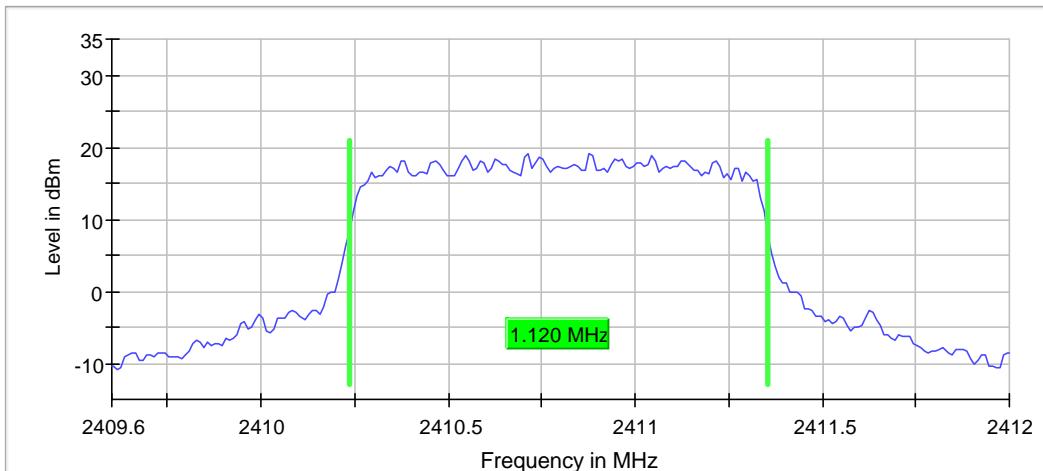


Figure 7.3.2-2: Sample Plot - 99% OBW

Table 7.3.2-3: Sample Measurement Settings (OBW)

Setting	Instrument Value	Target Value
Start Frequency	2.40960 GHz	2.40960 GHz
Stop Frequency	2.41200 GHz	2.41200 GHz
Span	2.400 MHz	2.400 MHz
RBW	20.000 kHz	>= 12.000 kHz
VBW	100.000 kHz	>= 60.000 kHz
SweepPoints	240	~ 240
Sweeptime	94.727 µs	AUTO
Reference Level	10.000 dBm	10.000 dBm
Attenuation	30.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.30 dB	0.30 dB
Run	49 / max. 150	max. 150
Stable	3 / 3	3
Max Stable Difference	0.00 dB	0.30 dB

**7.4 Fundamental Emission Output Power – FCC 15.247(b)(3), ISED Canada: RSS-247
5.4(d)****7.4.1 Measurement Procedure**

The maximum conducted output power was measured in accordance with FCC KDB 558074 D01 DTS Meas Guidance utilizing the AVGPM-G method. The RF output of the equipment under test was directly connected to the input of the power sensor applying suitable attenuation. Worst-case power across all data rates is reported.

7.4.2 Measurement Results

Performed by: Jeremy Pickens

Table 7.4.2-1: Conducted Output Power

Modulation	Frequency [MHz]	RMS Power [dBm]
OFDM	2410.8	26.9
	2439.6	26.9
	2461.2	26.0

7.5 Emission Levels

7.5.1 Emissions into Non-restricted Frequency Bands – FCC 15.247(d); ISED Canada: RSS-247 5.5

7.5.1.1 Measurement Procedure

The unwanted emissions into non-restricted bands were measured conducted in accordance with FCC KDB 558074 D01 DTS Meas Guidance. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 100 kHz. The Video Bandwidth (VBW) was set to \geq 300 kHz. The resulting spectrum analyzer peak level was used to determine the reference level with respect to the 30 dBc limit at the band edges. The spectrum span was then adjusted for the measurement of spurious emissions from 30MHz to 25GHz, 10 times the highest fundamental frequency.

7.5.1.2 Measurement Results

Performed by: Jeremy Pickens

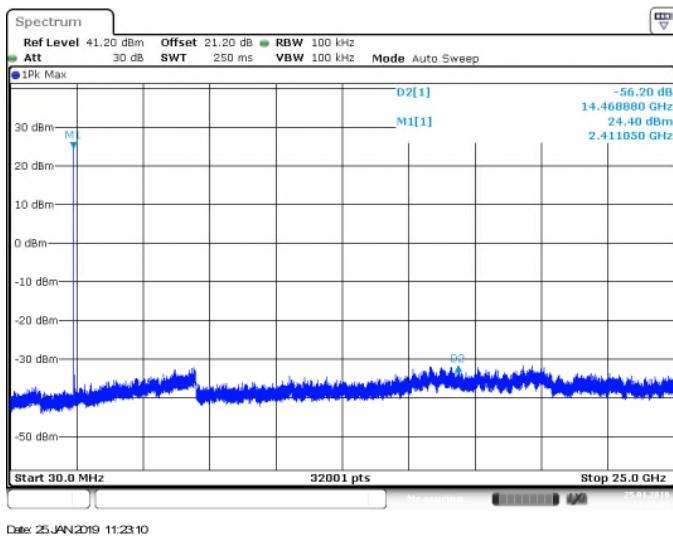


Figure 7.5.1.2-1: LCH – 30MHz–25GHz

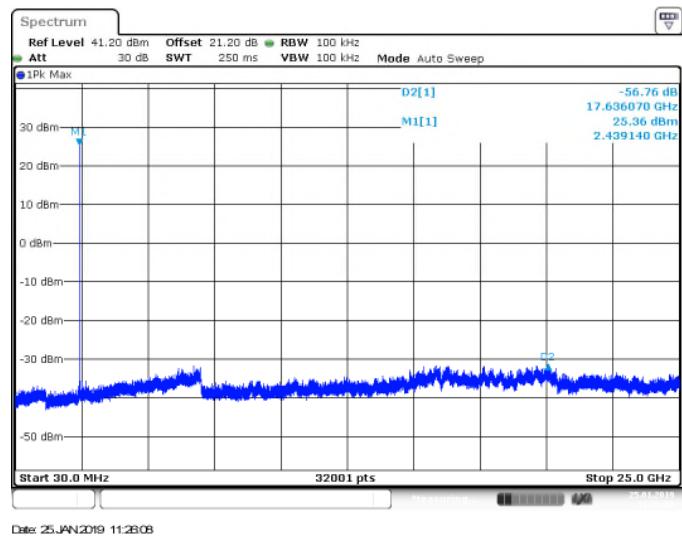


Figure 7.5.1.2-2: MCH – 30MHz–25GHz

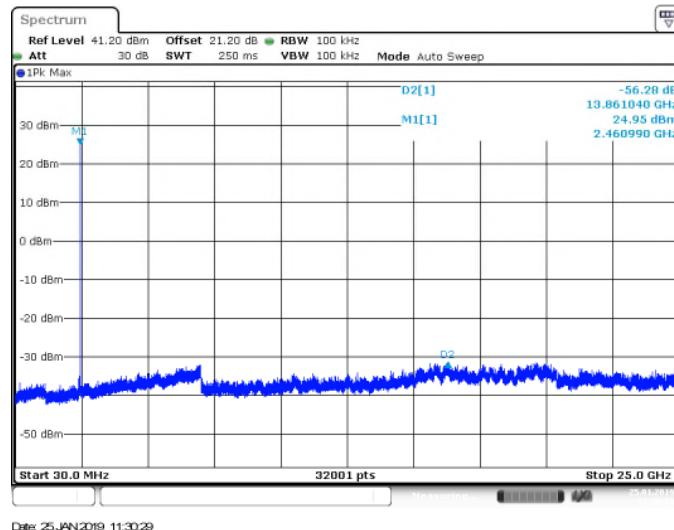


Figure 7.5.1.2-3: HCH – 30MHz–25GHz

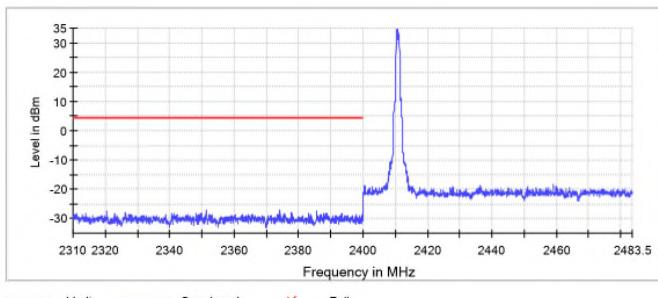


Figure 7.5.1.2-4: Lower Band-edge

Table 7.5.1.2-1: Lower Band-edge

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2374.175000	-27	31.7	4.8	PASS
2351.275000	-27	31.8	4.8	PASS
2374.225000	-27.1	31.9	4.8	PASS
2351.225000	-27.3	32.1	4.8	PASS
2320.375000	-27.5	32.2	4.8	PASS
2385.625000	-27.5	32.3	4.8	PASS
2351.325000	-27.6	32.4	4.8	PASS
2320.325000	-27.7	32.4	4.8	PASS
2385.575000	-27.9	32.6	4.8	PASS
2377.775000	-27.9	32.7	4.8	PASS
2326.325000	-28	32.7	4.8	PASS
2326.375000	-28	32.7	4.8	PASS
2377.825000	-28	32.7	4.8	PASS
2383.225000	-28.1	32.8	4.8	PASS
2383.175000	-28.1	32.9	4.8	PASS

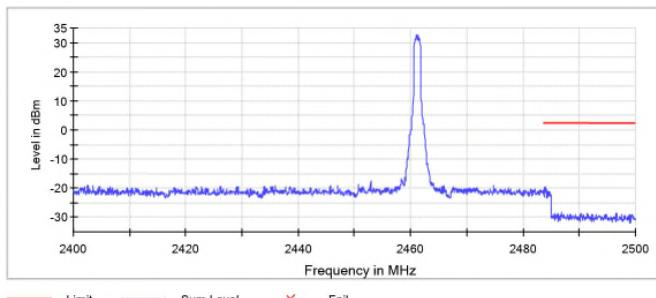


Figure 7.5.1.2-5: Upper Band-edge

Table 7.5.1.2-2: Upper Band-edge

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2483.925000	-19.4	22	2.6	PASS
2483.875000	-19.9	22.4	2.6	PASS
2484.125000	-20.5	23	2.6	PASS
2483.975000	-20.5	23.1	2.6	PASS
2483.575000	-20.7	23.3	2.6	PASS
2484.075000	-20.8	23.3	2.6	PASS
2484.675000	-21	23.6	2.6	PASS
2484.425000	-21.1	23.6	2.6	PASS
2483.525000	-21.1	23.7	2.6	PASS
2484.475000	-21.4	23.9	2.6	PASS
2483.825000	-21.4	24	2.6	PASS
2484.625000	-21.4	24	2.6	PASS
2484.725000	-21.5	24	2.6	PASS
2484.175000	-21.5	24	2.6	PASS
2484.025000	-21.5	24.1	2.6	PASS

7.5.2 Emissions into Restricted Frequency Bands – FCC: 15.205, 15.209; ISED Canada: RSS-Gen 8.9 / 8.10

7.5.2.1 Measurement Procedure

The unwanted emissions into restricted bands were measured radiated over the frequency range of 9kHz to 25GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1 meter to 4 meters so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3 MHz respectively.

Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in section 15.209.

7.5.2.2 Measurement Results

Performed by: Jeremy Pickens / Ryan McGann

Radiated spurious emissions found in the band of 9kHz to 25GHz are reported in the Table 7.5.2.2-1 below.

Table 7.5.2.2-1: Radiated Spurious Emissions Tabulated Data

Frequency (MHz)	Level (dB _u V)		Antenna Polarity (H/V)	Correction Factors (dB)	Corrected Level (dB _u V/m)		Limit (dB _u V/m)		Margin (dB)	
	pk	Qpk/Avg			pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
Low Channel										
2390	56.29	45.16	V	0.09	56.38	45.25	74.0	54.0	17.6	8.7
2390	42.53	32.16	H	0.09	42.62	32.25	74.0	54.0	31.4	21.7
4821.6	45.7	30.6	V	7.91	53.61	38.51	74.0	54.0	20.4	15.5
4821.6	48	32.1	H	7.91	55.91	40.01	74.0	54.0	18.1	14.0
Middle Channel										
4872	46.80	32.10	V	8.13	54.93	40.23	74.0	54.0	19.1	13.8
High Channel										
4922.4	48.80	31.00	H	8.34	57.14	39.34	74.0	54.0	16.9	14.7
4922.4	53.10	34.60	V	8.34	61.44	42.94	74.0	54.0	12.6	11.1

Note: When testing high channel, the emissions at the 2483.5MHz band edge were in the equipment noise floor.

7.5.2.3 Sample Calculation:

$$R_C = R_U + CF_T$$

Where:

CF _T	=	Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
R _U	=	Uncorrected Reading
R _C	=	Corrected Level
AF	=	Antenna Factor
CA	=	Cable Attenuation
AG	=	Amplifier Gain
DC	=	Duty Cycle Correction Factor

Example Calculation: Peak

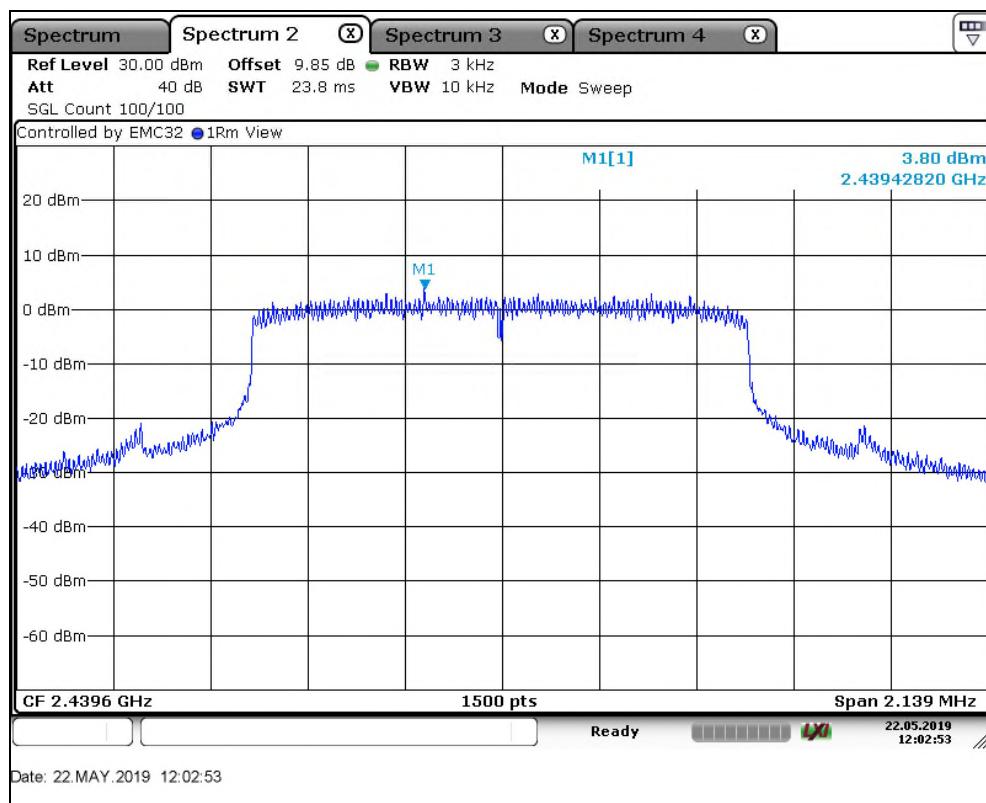
Corrected Level: $56.29 + 0.09 = 56.38 \text{ dBuV/m}$
Margin: $74 \text{ dBuV/m} - 56.38 \text{ dBuV/m} = 17.62 \text{ dB}$

Example Calculation: Average

Corrected Level: $45.16 + 0.09 - 0 = 45.25 \text{ dBuV}$
Margin: $54 \text{ dBuV} - 45.25 \text{ dBuV} = 8.75 \text{ dB}$

7.6 Maximum Power Spectral Density in the Fundamental Emission – FCC 15.247(e)
ISED Canada: RSS-247 5.2(2)

7.6.1 Measurement Procedure


The power spectral density was measured in accordance with the FCC KDB 558074 D01 DTS Meas Guidance utilizing the AVGPSD-2 method. The RF output of the equipment under test was directly connected to the input of the spectrum analyzer applying suitable attenuation. The Resolution Bandwidth (RBW) of the spectrum analyzer was set to 3 kHz. The Video Bandwidth (VBW) was set to 10 kHz. Span was set to 1.5 times the channel bandwidth. The trace was set for trace averaging over 100 traces with the RMS detector active. A duty cycle correction factor was added to the measured power spectral density. The power spectral density limit was corrected for the antenna gain by the amount in dB that the gain exceeds 6dBi. See section 7.7 of this test report for the duty cycle correction factor.

7.6.2 Measurement Results

Performed by: Ryan McGann

Table 7.6.2-1: Power Spectral Density

Modulation	Frequency [MHz]	Measured PSD [dBm]	Corrected PSD [dBm]	PSD Limit [dBm/3kHz]	Margin [dB]
OFDM	2410.8	3.79	4.14	6	1.86
	2439.6	3.80	4.15	6	1.85
	2461.2	3.21	3.56	6	2.44

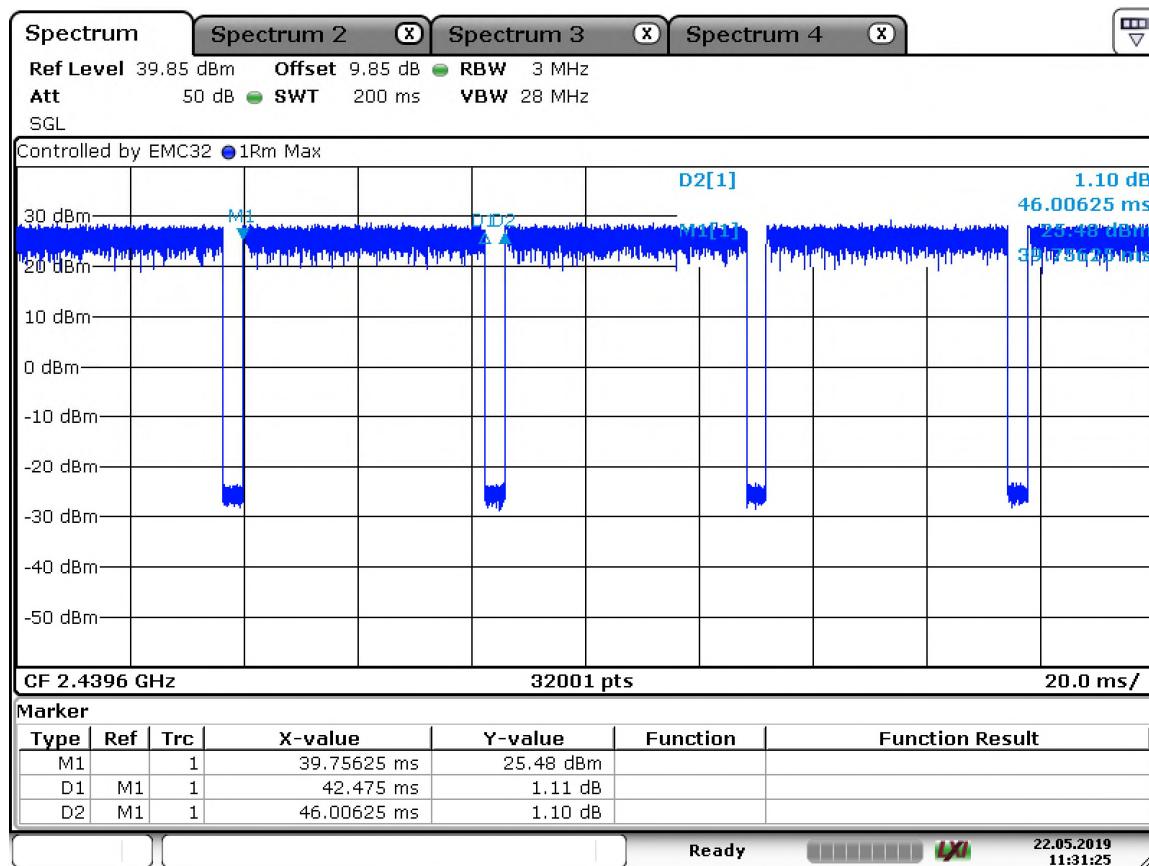
Figure 7.6.2-1: Sample Power Spectral Density – MCH

7.7 Duty Cycle

7.7.1 Measurement Procedure

The duty cycle was using spectrum analyzer in Zero Span mode. The sweep time was adjusted to capture at least one full burst of the transmitter. Markers were used to measure the ON time and the period of the burst while transmitting at its maximum power control level.

7.7.2 Measurement Results


Performed by: Ryan McGann

The results for all the modes of operation are provided below.

Table 7.7.2-1: Duty Cycle Correction Factor

Mode	Data Rate	ON Time [ms]	Period [ms]	Duty Cycle [%]	Correction Factor [dB]
OFDM	MCS0	42.47500	46.00625	92.3244	0.3468

Note: The correction factor was calculated as $10 \times \log(1/DC)$

Date: 22.MAY.2019 11:31:25

Figure 7.7.2-1: Measured Test Mode Duty Cycle

8 ESTIMATION OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) $k = 1.96$ which provide confidence levels of 95%.

Table 8-1: Estimation of Measurement Uncertainty

Parameter	U_{lab}
Occupied Channel Bandwidth	$\pm 0.009 \%$
RF Conducted Output Power	$\pm 0.349 \text{ dB}$
Power Spectral Density	$\pm 0.372 \text{ dB}$
Antenna Port Conducted Emissions	$\pm 1.264 \text{ dB}$
Radiated Emissions $\leq 1 \text{ GHz}$	$\pm 5.814 \text{ dB}$
Radiated Emissions $> 1 \text{ GHz}$	$\pm 4.318 \text{ dB}$
Temperature	$\pm 0.860 \text{ }^{\circ}\text{C}$
Radio Frequency	$\pm 2.832 \times 10^{-8}$
AC Power Line Conducted Emissions	$\pm 3.360 \text{ dB}$

9 CONCLUSION

In the opinion of TUV SUD the Series-6 RF Mesh mSBR Card, manufactured by Landis & Gyr meets the requirements of FCC Part 15 subpart C and ISED Canada's Radio Standards Specification RSS-247 for the tests documented herein.

END REPORT