



## **Certification Exhibit**

**FCC ID: R7PMGPM2B1**

**FCC Rule Part: 47 CFR Part 2.1091**

**Project Number: 721002294**

Manufacturer: Landis + Gyr Technology, Inc

Model Name/Number: S6G2 N651

Product Marketing Name: Series 6 Gen 2 Network Node

## **RF Exposure**

**General Information:**

Applicant: Landis + Gyr Technology, Inc  
 Device Category: Mobile  
 Environment: General Population/Uncontrolled Exposure

**Purpose:**

The purpose of this document is the RF exposure evaluation of the S6G2 N651 model in accordance with FCC 47 CFR Part 2.1091.

**Description:**

Landis+Gyr's Series 6 Gen 2 Network Node (S6G2 N651) is key to building a single, integrated IoT network for your utility future. This product is a fully-functional, Network Interface Card (NIC) for the network that is mPCIe standard-enabled to allow simple network and sensor device integration.

**Technical Information (900MHz– FCC 15.247):**

Antenna Type: Dipole Antenna  
 Antenna Gain: 5.7 dBi  
 Maximum Transmitter Conducted Power: 29.81dBm, 957.19mW  
 Maximum System EIRP: 35.51dBm, 3556.31mW  
 Exposure Conditions: 22 centimeters  
 \*Worst Case from all 900 MHz modes (FHSS/Hybrid/DTS)

**Technical Information (900MHz– FCC 15.247):**

Antenna Type: Sector Antenna  
 Antenna Gain: 9 dBi  
 Maximum Transmitter Conducted Power: 26.85dBm, 484.17mW  
 Maximum System EIRP: 35.85dBm, 3845.92 mW  
 Exposure Conditions: 23 centimeters  
 \*Worst Case from all 900 MHz modes (FHSS/Hybrid/DTS)

**RF Exposure Calculation****Table 1: Device Characteristics**

| Technical Parameters                                      | Dipole Antenna | Sector Antenna |
|-----------------------------------------------------------|----------------|----------------|
| Frequency Range (GHz)                                     | 0.9022-0.9278  | 0.9022-0.9278  |
| Frequency Range (MHz)                                     | 902.2 – 927.8  | 902.2 – 927.8  |
| Frequency (MHz)                                           | 902.2          | 927.8          |
| Separation Distance (cm)                                  | 20.00          | 20.0           |
| Separation Distance (m)                                   | 0.2000         | 0.200          |
| Antenna Gain (dBi)                                        | 5.70           | 9.00           |
| ERP Easily Determined                                     | YES            | YES            |
| 1-g body or 10-g extremity                                | Body           | Body           |
| Conducted Power (dBm)                                     | 29.81          | 26.85          |
| Conducted Power (mW)                                      | 957.19         | 484.17         |
| Duty Factor (Source-Based) %                              | 100.0          | 100.0          |
| Maximum (Source-Based) Time-Averaged Conducted Power (mW) | 957.19         | 484.17         |
| Maximum (Source-Based) Time-Averaged ERP (mW)             | 2168.48        | 2345.07        |

|                                                |         |         |
|------------------------------------------------|---------|---------|
| Maximum (Source-Based) Time-Averaged EIRP (mW) | 3556.31 | 3845.92 |
| Maximum Output (mW)                            | 2168.48 | 2345.07 |

**Table 2: 47 CFR 1.1307(b)(3)(i)(C) MPE – Based Exemption Pth (mW)**

| Technical Parameters                         | Dipole Antenna | Sector Antenna |
|----------------------------------------------|----------------|----------------|
| $\lambda / 2\pi$ (m)                         | 0.053          | 0.051          |
| $R \geq \lambda / 2\pi$                      | YES            | YES            |
| Maximum (Source-Based) Time-Averaged ERP (W) | 2.1685         | 2.3451         |
| ERP Threshold (W)                            | 0.4619         | 0.4750         |
| Exemption                                    | NO             | NO             |

**MPE Calculation**

The Power Density (W/m<sup>2</sup>) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g., W/m<sup>2</sup>)

P = power input to the antenna (in appropriate units, e.g., W)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., m)

**Table 3: MPE Calculation (Dipole Antenna & Sector Antenna)**

| Transmit Frequency (MHz) | Radio Power (dBm) | Power Density Limit (mW/cm <sup>2</sup> ) | Radio Power (mW) | Antenna Gain (dBi) | Antenna Gain (mW eq.) | Distance (cm) | Power Density (mW/cm <sup>2</sup> ) |
|--------------------------|-------------------|-------------------------------------------|------------------|--------------------|-----------------------|---------------|-------------------------------------|
| 902.2                    | 29.81             | 0.60                                      | 957.19           | 5.7                | 3.715                 | 22            | 0.585                               |
| 902.2                    | 26.85             | 0.60                                      | 484.17           | 9                  | 7.943                 | 23            | 0.579                               |

**Conclusion**

The power density calculation is within compliance as per FCC § 1.1310(e)(1).