

OET 65

TEST REPORT

Product Name CDMA 1X digital mobile phone

Model OT-355C

FCC ID R5C355C

Client Huizhou TCL Mobile Communication Co.,Ltd

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 2 of 77

GENERAL SUMMARY

Product Name	CDMA 1X digital mobile phone	Model	OT-355C
FCC ID	R5C355C	Report No.	RZA1108-1459SAR01R2
Client	Huizhou TCL Mobile Communication Co.,Ltd		
Manufacturer	Huizhou TCL Mobile Communication Co.,Ltd		
Standard(s)	<p>IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.</p> <p>IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.</p> <p>SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.</p> <p>KDB941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA</p>		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards.</p> <p>General Judgment: Pass</p> <p style="text-align: center;">(Stamp)</p> <p style="text-align: right;">Date of issue: October 17th, 2011</p>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中

Director

Revised by 凌敏宝

SAR Manager

Performed by 沈辰

SAR Engineer

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the Test Report	5
1.2. Testing Laboratory.....	5
1.3. Applicant Information.....	6
1.4. Manufacturer Information	6
1.5. Information of EUT	7
1.6. The Maximum SAR _{1g} Vaules.....	8
1.7. The Maximum Power of Each Tested Mode.....	8
1.8. Test Date.....	8
2. Operational Conditions during Test	9
2.1. General Description of Test Procedures	9
2.2. Information for the Measurement of CDMA 1x Devices.....	9
2.2.1. Output Power Verification	9
2.2.2. Head SAR Measurement.....	9
2.2.3. Body SAR Measurement	9
2.3. Test Positions	10
2.3.1. Against Phantom Head.....	10
2.3.2. Body Worn Configuration.....	10
3. SAR Measurements System Configuration.....	11
3.1. SAR Measurement Set-up.....	11
3.2. DASY4 E-field Probe System	12
3.2.1. EX3DV4 Probe Specification	12
3.2.2. E-field Probe Calibration	13
3.3. Other Test Equipment.....	13
3.3.1. Device Holder for Transmitters	13
3.3.2. Phantom	14
3.4. Scanning Procedure	14
3.5. Data Storage and Evaluation.....	16
3.5.1. Data Storage.....	16
3.5.2. Data Evaluation by SEMCAD	16
3.6. System Check	19
3.7. Equivalent Tissues.....	21
4. Laboratory Environment.....	21
5. Characteristics of the Test.....	22
5.1. Applicable Limit Regulations	22
5.2. Applicable Measurement Standards	22
6. Conducted Output Power Measurement.....	23
6.1. Summary	23
6.2. Conducted Power Results	25
7. Test Results	26

TA Technology (Shanghai) Co., Ltd.

Test Report

7.1. Dielectric Performance	26
7.2. System Check	26
7.3. Summary of Measurement Results	27
7.3.1. CDMA Cellular	27
8. Measurement Uncertainty	28
9. Main Test Instruments	30
ANNEX A: Test Layout	31
ANNEX B: System Check Results	33
ANNEX C: Graph Results	35
ANNEX D: Probe Calibration Certificate	48
ANNEX E: D835V2 Dipole Calibration Certificate	59
ANNEX F: DAE4 Calibration Certificate	68
ANNEX G: The EUT Appearances and Test Configuration	73

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 5 of 77

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: <http://www.ta-shanghai.com>

E-mail: yangweizhong@ta-shanghai.com

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 6 of 77

1.3. Applicant Information

Company: Huizhou TCL Mobile Communication Co.,Ltd
Address: NO.23 Zone, ZhongKai High-Technology Development Zone
City: /
Postal Code: /
Country: P.R.China
Contact: Jianjun Ji
Telephone: 86-755-33035352
Fax: 86-755-33313007

1.4. Manufacturer Information

Company: Huizhou TCL Mobile Communication Co.,Ltd
Address: NO.23 Zone, ZhongKai High-Technology Development Zone
City: /
Postal Code: /
Country: P.R.China
Telephone: 86-755-33035352
Fax: 86-755-33313007

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		
State of Sample:	Prototype Unit		
Product Name:	CDMA 1X digital mobile phone		
MEID:	/		
Hardware Version:	Q10M-V1.0		
Software Version:	Q10CAM-TTIN-V1.0		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Supporting Mode(s):	CDMA Cellular; (tested)		
Test Modulation:	(CDMA)QPSK		
Power Class:	CDMA Cellular: Tested with Power Control All up bits		
Operating Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)
	CDMA Cellular	824.7 ~ 848.31	869.7 ~ 893.31
Test Channel: (Low - Middle - High)	1013 - 384 - 777	(CDMA Cellular)	(tested)

Auxiliary Equipment Details

AE:Battery

Model: /
Manufacturer: /
SN: CAB2210002C1

Equipment Under Test (EUT) is a model of CDMA 1X digital mobile phone. The device has a internal antennas for CDMA Tx/Rx. The detail about Mobile phone and Lithium Battery is in chapter 1.5 in this report. SAR is tested for CDMA Cellular.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 8 of 77

1.6. The Maximum SAR_{1g} Values

Head Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
CDMA Cellular	High/777	Left, Cheek	0.792

Body Worn Configuration

Mode	Channel	Separation distance	SAR _{1g} (W/kg)
CDMA Cellular	Low/1013	15mm	0.738

Extrapolated SAR Values of the highest measured SAR

Mode	Test Position	Channel	Measurement Result		Tune-up procedures MAX Power(dBm)	1g Average Limit 1.6 W/kg Extrapolated Result (W/kg)
			Conducted Power(dBm)	1g Average (W/kg)		
CDMA Cellular	Left, Cheek	High/777	24.19	0.792	24.5	0.851
CDMA Cellular	Towards Ground	Low/1013	24.40	0.738	24.5	0.755

1.7. The Maximum Power of Each Tested Mode

Mode	Maximum Conducted Power (dBm)
CDMA Cellular	24.40

Note: The detail Power refers to Table 4 (Power Measurement Results).

1.8. Test Date

The test is performed on September 8, 2011.

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. Using the E5515C Power control is set “All Up Bits” in SAR of CDMA. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. Information for the Measurement of CDMA 1x Devices

2.2.1. Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
I or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

2.2.2. Head SAR Measurement

SAR is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

2.2.3. Body SAR Measurement

SAR is measured in RC3 with the EUT configured to transmit at full rate using TDSO/SO32, transmit at full rate on FCH with all other code channels disabled. SAR for multiple code channels (FCH+SCHn) is not required when the maximum average output of each RF channel is less than 0.25dB higher than measured with FCH only.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 10 of 77

Body SAR in RC1 is not required because the maximum average output of each channel is less than 0.25 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate using the body exposure configuration that results in the highest SAR for that channel in RC3.

Test communication setup meet as followings:

Communication standard between mobile station and base station simulator	3GPP2 C.S0011-B
Radio configuration	RC3 (Supporting CDMA 1X)
Spreading Rate	SR1
Data Rate	9600bps
Service Options	SO55 (loop back mode)
Service Options	SO32 (test data service mode)
Multiplex Options	The mobile station does not support this service.

2.3. Test Positions

2.3.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

2.3.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

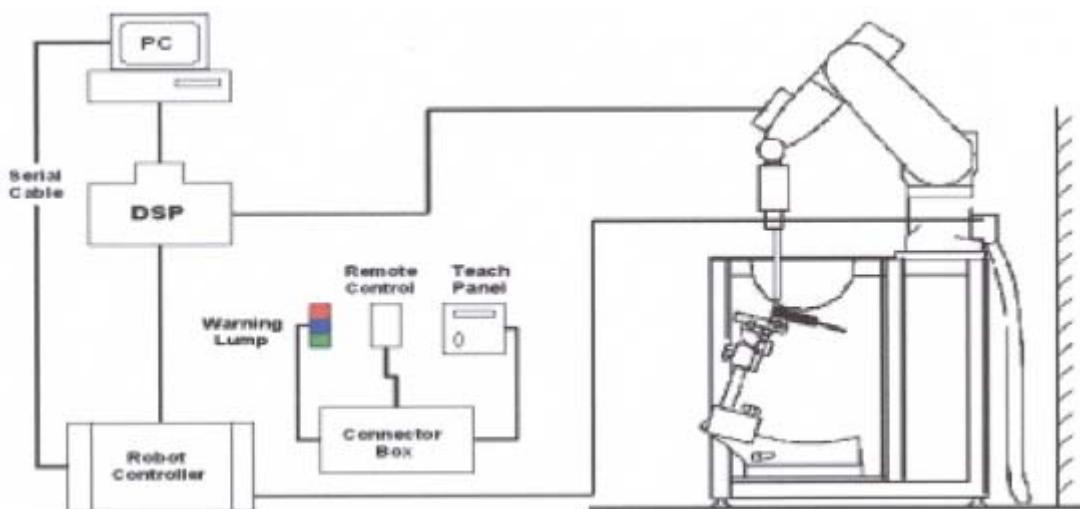


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2. EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4. Device Holder

3.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W)
Available	Special

Figure 5. Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

TA Technology (Shanghai) Co., Ltd.

Test Report

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	Conv _{F_i}
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.
Test Report

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

$d_c p_i$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
 [mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

TA Technology (Shanghai) Co., Ltd.
Test Report

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

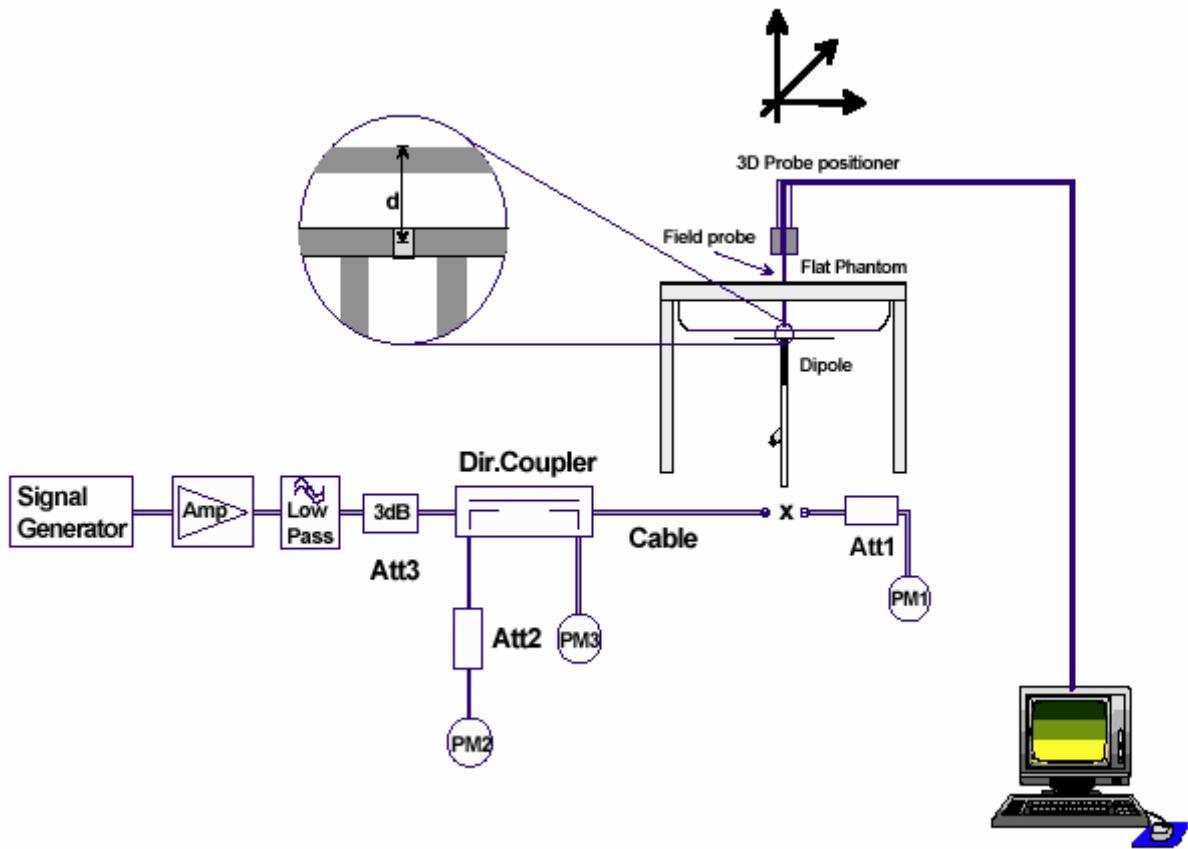
ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m


H_{tot} = total magnetic field strength in A/m

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

Figure 6. System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d092				
Head Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
1/14/2010	-30.3	1.3%	51.2	0.5Ω
1/13/2011	-29.9		51.7	
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
1/14/2010	-25.6	0.4%	47.6	0.2Ω
1/13/2011	-25.7		47.4	

3.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Preventol, Glycol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 1: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=41.5$ $\sigma=0.9$

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=55.2$ $\sigma=0.97$

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

5.2. Applicable Measurement Standards

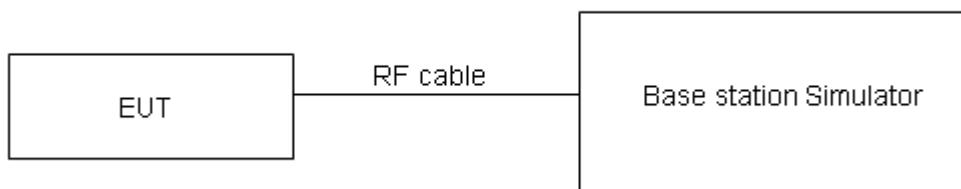
IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

6. Conducted Output Power Measurement

6.1. Summary

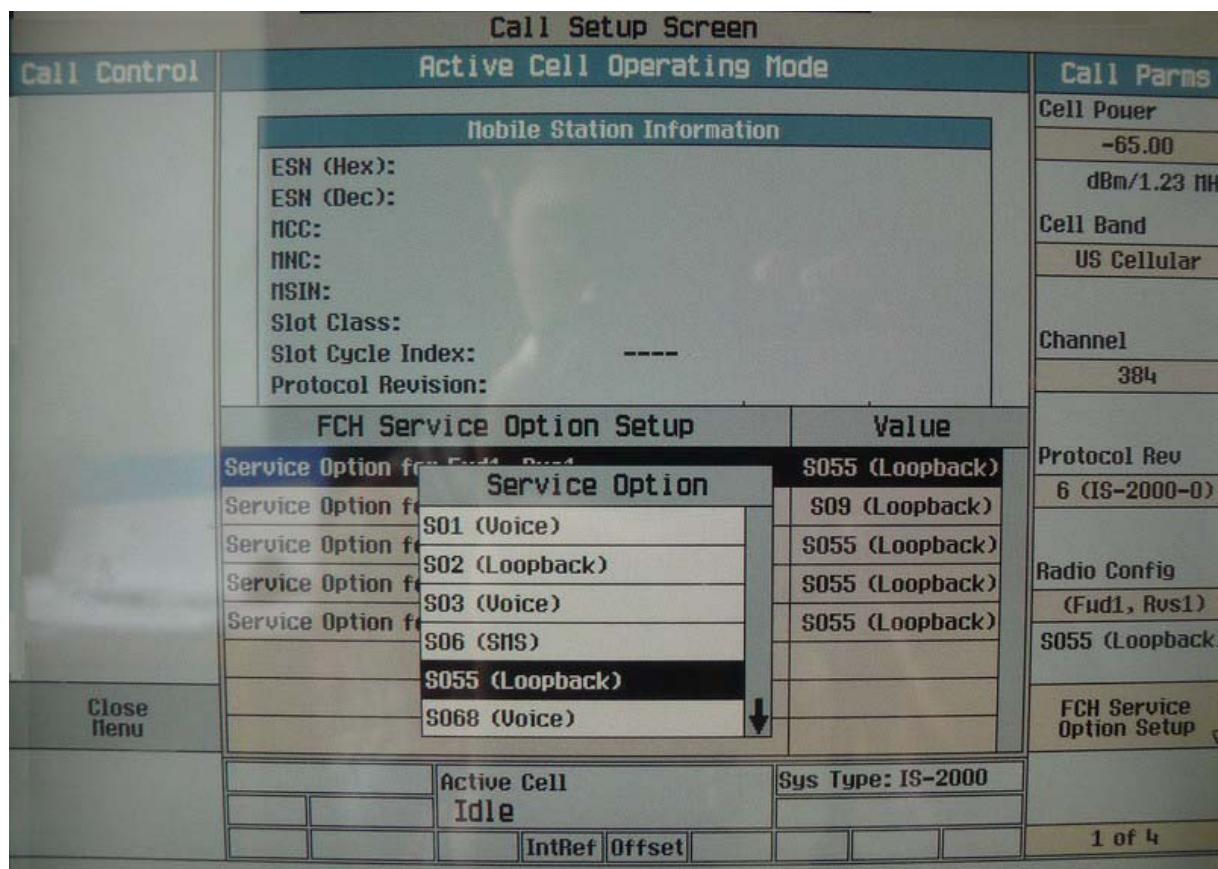
The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.


Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

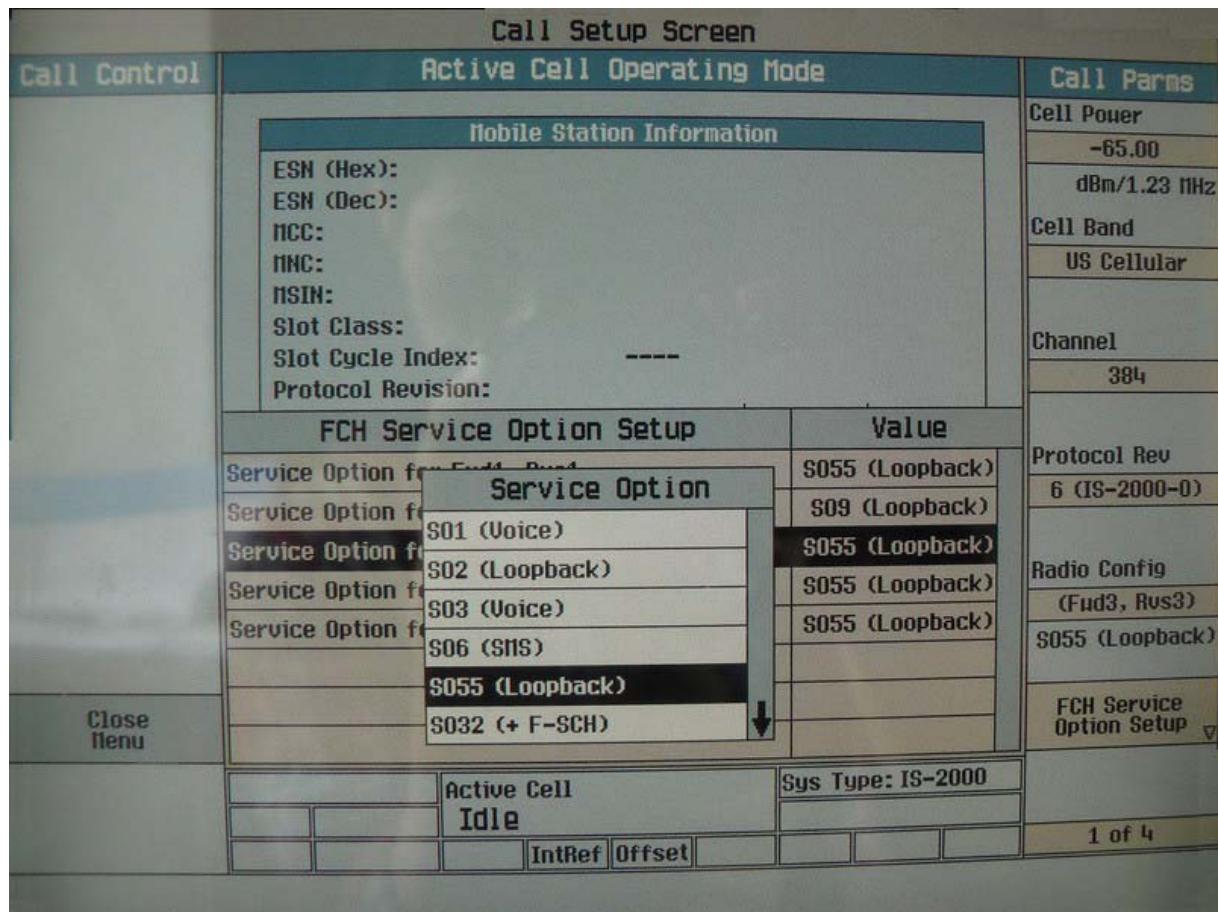
Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. Results for at least step 3, 4 and 10 of the power measurement procedures should be tabulated in the SAR report. Steps 3 and 4 should be measured using SO55 with power control bits in “All Up” condition. TDSO/SO32 may be used instead of SO55 for step 4. Step 10 should be measured using TDSO/SO32 with power control bits in the “Bits Hold” condition (i.e.alternative Up/Down Bits). All power measurements defined in C.S0011/TIA-98-E that are inapplicable to the DUT or cannot be measured due to technical or equipment limitations should be clearly identified in the test report.

The EUT was tested according to the requirements of the FCC 3G procedures and the 3.1.2.3.4. A detailed analysis of the output power verification is provided as the table below:

Function Type	Reverse Traffic Channel	Test Mode	Radio Configuration		Service Option	Data Rates (kbps)	Power Control
			Forward Traffic Channel(Fwd)	Reverse Traffic Channel(Rvs)			
CDMA2000 Cellular	FCH	1	1	1	55	Full	All Up
		3	3	3	55	Full	All Up


CDMA2000 Setup Configuration:

Setup Configuration


TA Technology (Shanghai) Co., Ltd. Test Report

1. The EUT was connected to System Simulator, Agilent 8960. Refer to the drawing of Setup Configuration.
2. The RF path losses were compensated into the measurements.
3. A call was established between EUT and System Simulator with following setting:
 - a. For 1xRTT, set the Radio Configuration and the Service Option
 - b. Set the Power Control to All Up Bits
4. The transmitted maximum output power was recorded.

1xRTT setting for Radio Configuration 1 with Service Option 55

TA Technology (Shanghai) Co., Ltd.
Test Report

1xRTT setting for Radio Configuration 3 with Service Option 55

6.2. Conducted Power Results

Table 4: Conducted Power Measurement Results

CDMA Cellular	Conducted Power(dBm)		
	Channel 1013	Channel 384	Channel 777
RC3	24.40	23.98	24.19
RC1	24.26	23.94	24.11

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp °C
		ϵ_r	$\sigma(\text{s/m})$	
835MHz (head)	Target value ±5% window	41.5 39.43 — 43.58	0.90 0.86 — 0.95	/
	Measurement value 2011-9-8	42.30	0.87	

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp °C
		ϵ_r	$\sigma(\text{s/m})$	
835MHz (body)	Target value ±5% window	55.20 52.44 — 57.96	0.97 0.92 — 1.02	/
	Measurement value 2011-9-8	55.39	1.00	

7.2. System Check

Table 7: System Checking for Head Tissue Simulating Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp °C
		10g	1g	ϵ_r	$\sigma(\text{s/m})$	
835MHz	Recommended value ±10% window	1.56 1.40 — 1.72	2.39 2.15 — 2.63	41.2	0.89	/
	Measurement value 2011-9-8	1.51	2.32	42.30	0.87	

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

Table 8: System Check for Body Tissue Simulating Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp °C
		10g	1g	ϵ_r	$\sigma(\text{s/m})$	
835MHz	Recommended value ±10% window	1.63 1.47 — 1.79	2.49 2.24 — 2.74	54.6	0.98	/
	Measurement value 2011-9-8	1.59	2.41	55.39	1.00	

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

TA Technology (Shanghai) Co., Ltd.
Test Report

7.3. Summary of Measurement Results

7.3.1. CDMA Cellular

Table 9: SAR Values (CDMA Cellular)

Limit of SAR		10 g Average	1 g Average	Power Drift	Graph Results	
		2.0 W/kg	1.6 W/kg	± 0.21 dB		
Different Test Position	Channel	Measurement Result(W/kg)		Power Drift (dB)		
		10 g Average	1 g Average			
Test Position of Head						
Left hand, Touch cheek	High/777	0.580	0.792	-0.095	Figure 9	
	Middle/384	0.490	0.663	-0.124	Figure 10	
	Low/1013	0.483	0.655	0.027	Figure 11	
Left hand, Tilt 15 Degree	Middle/384	0.245(max.cube)	0.325(max.cube)	0.010	Figure 12	
Right hand, Touch cheek	Middle/384	0.484	0.656	-0.075	Figure 13	
Right hand, Tilt 15 Degree	Middle/384	0.258	0.342	-0.009	Figure 14	
Test Position of Body (Distance 15mm)						
Towards Ground	High/777	0.493	0.678	-0.121	Figure 15	
	Middle/384	0.414	0.569	0.009	Figure 16	
	Low/1013	0.539	0.738	0.168	Figure 17	
Towards Phantom	Middle/384	0.264	0.356	-0.015	Figure 18	
Worst Case Position of Body with Earphone (Distance 15mm)						
Towards Ground	Low/1013	0.495	0.678	0.048	Figure 19	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Upper and lower frequencies were measured at the worst position.
3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR_{1g} limit (< 0.8W/kg), testing at the high and low channels is optional.
4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 28 of 77

8. Measurement Uncertainty

No.	source	Type	Uncertainty Value (%)	Probability Distribution	k	c _i	Standard uncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	-probe calibration	B	5.9	N	1	1	5.9	∞
3	-axial isotropy of the probe	B	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	B	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	B	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	B	1.0	N	1	1	1.0	∞
10	-response time	B	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	B	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	B	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	B	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test sample Related								
17	-Test Sample Positioning	A	2.9	N	1	1	4.92	71
18	-Device Holder Uncertainty	A	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 29 of 77

21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	0.77	N	1	0.64	0.493	9
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	0.29	N	1	0.6	0.174	9
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					11.36	
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$	N	k=2	22.72		

TA Technology (Shanghai) Co., Ltd.
Test Report

9. Main Test Instruments

Table 10: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2010	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 12, 2011	One year
04	Power sensor	Agilent N8481H	MY50350004	September 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2010	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	MY48360988	December 3, 2010	One year
08	E-field Probe	EX3DV4	3677	November 24, 2010	One year
09	DAE	DAE4	871	November 18, 2010	One year
10	Validation Kit 835MHz	D835V2	4d092	January 14, 2010	Two years

*****END OF REPORT BODY*****

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 31 of 77

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 32 of 77

Picture 2: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Picture 3: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

Date/Time: 9/8/2011 4:40 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.87$ mho/m; $\epsilon_r = 42.30$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3°C Liquid Temperature: 21.7°C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.81 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.8 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.51 mW/g

Maximum value of SAR (measured) = 2.83 mW/g

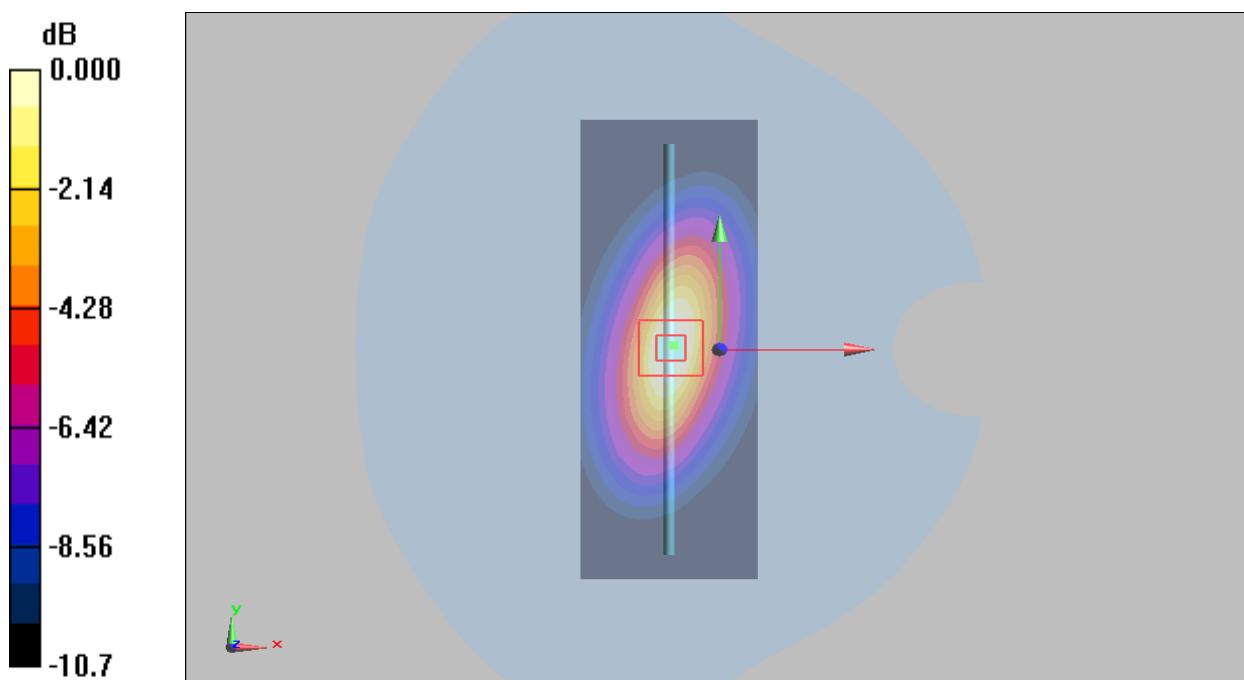


Figure 7 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 34 of 77

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

Date/Time: 9/8/2011 3:10:49 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 1.00$ mho/m; $\epsilon_r = 55.39$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3°C Liquid Temperature: 21.9°C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.93 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.92 mW/g

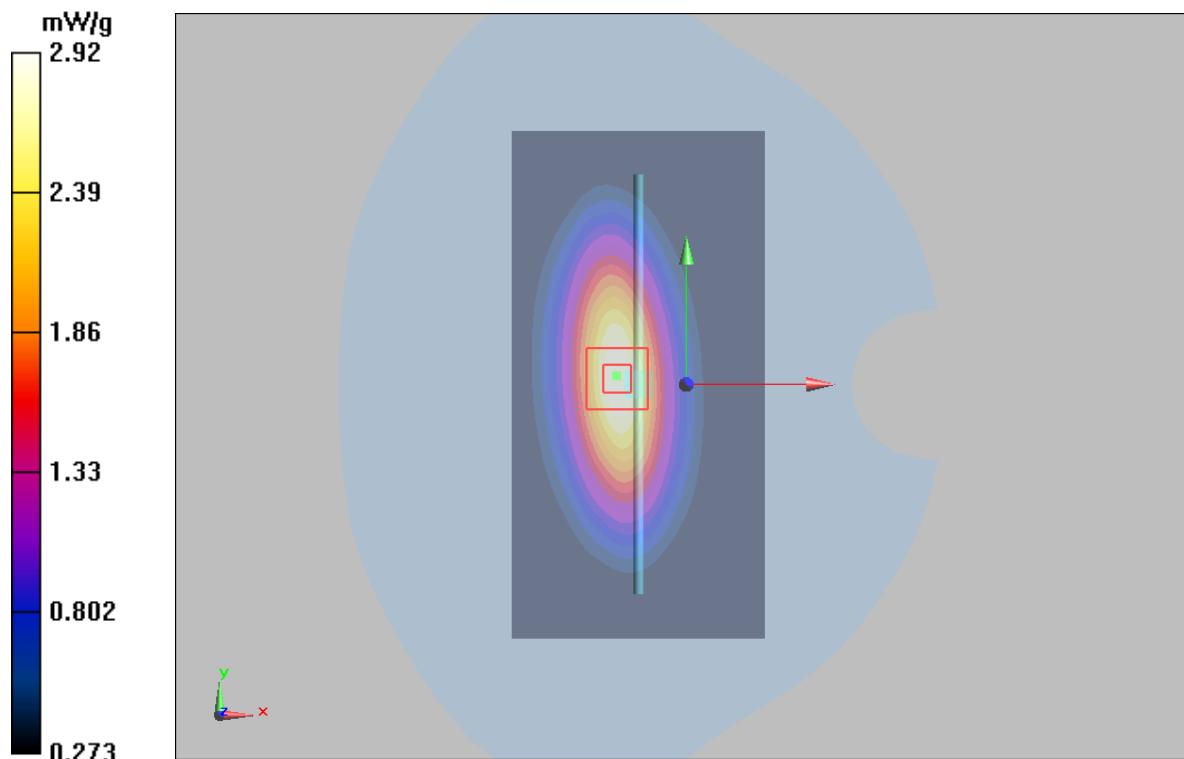


Figure 8 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co., Ltd.
Test Report

ANNEX C: Graph Results

CDMA Cellular Left Cheek High

Date/Time: 9/8/2011 8:33:38 PM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 848.31$ MHz; $\sigma = 0.883$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

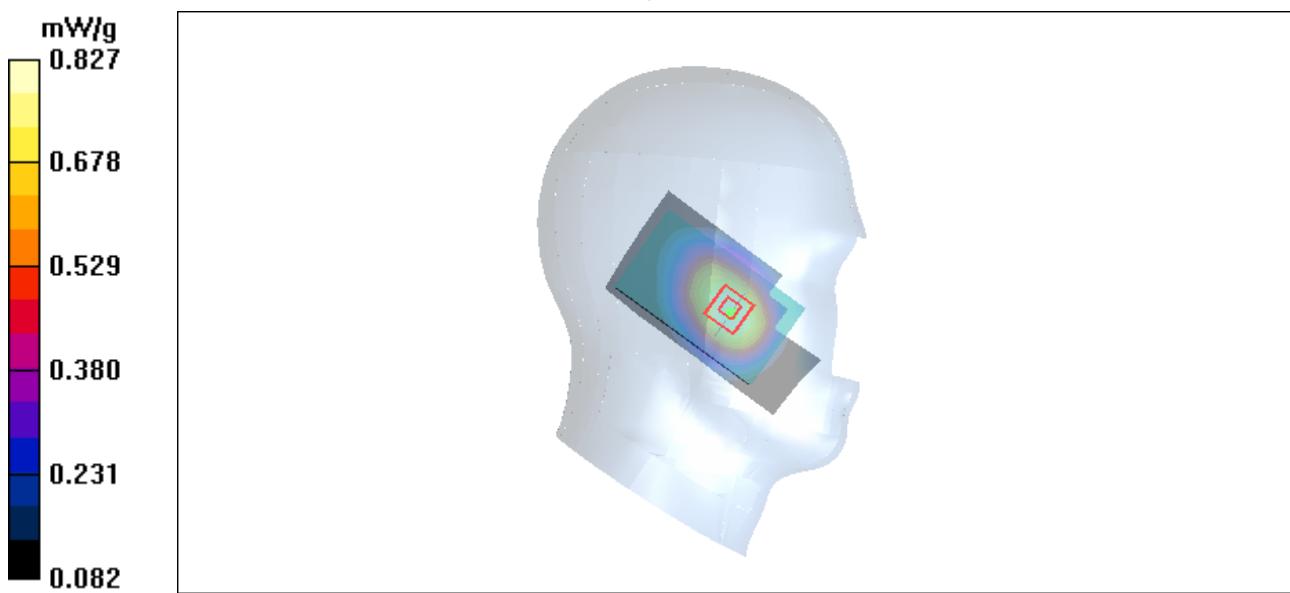
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

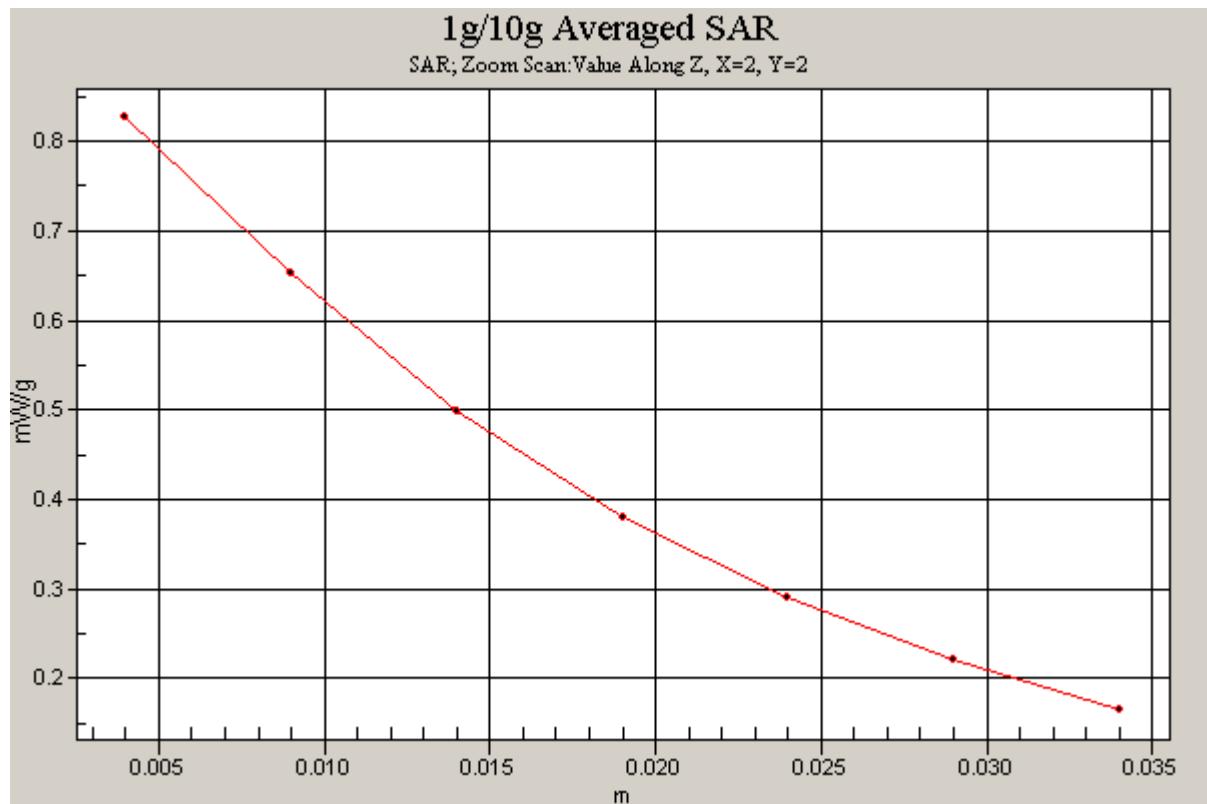
Maximum value of SAR (interpolated) = 0.868 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.4 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.975 W/kg

SAR(1 g) = 0.792 mW/g; SAR(10 g) = 0.580 mW/g


Maximum value of SAR (measured) = 0.827 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 36 of 77

Figure 9 CDMA Cellular Left Hand Touch Cheek Channel 777

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 37 of 77

CDMA Cellular Left Cheek Middle

Date/Time: 9/8/2011 6:03:18 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

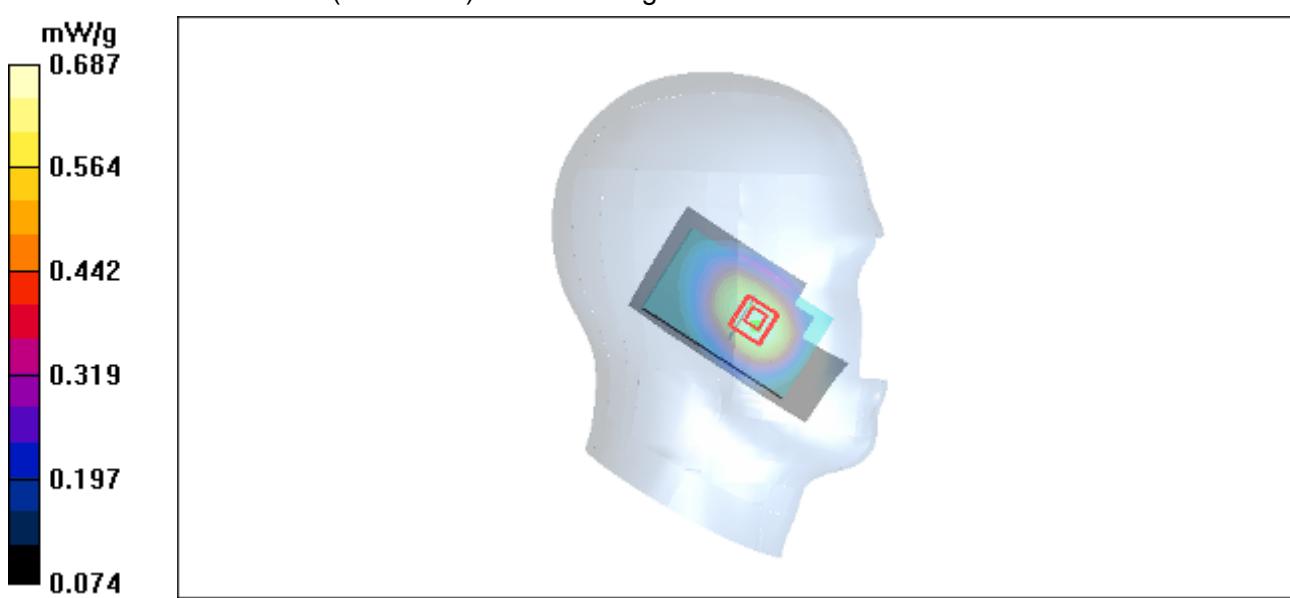
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.715 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.816 W/kg

SAR(1 g) = 0.663 mW/g; SAR(10 g) = 0.490 mW/g

Maximum value of SAR (measured) = 0.687 mW/g

Figure 10 CDMA Cellular Left Hand Touch Cheek Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 38 of 77

CDMA Cellular Left Cheek Low

Date/Time: 9/8/2011 8:06:22 PM

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.864$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

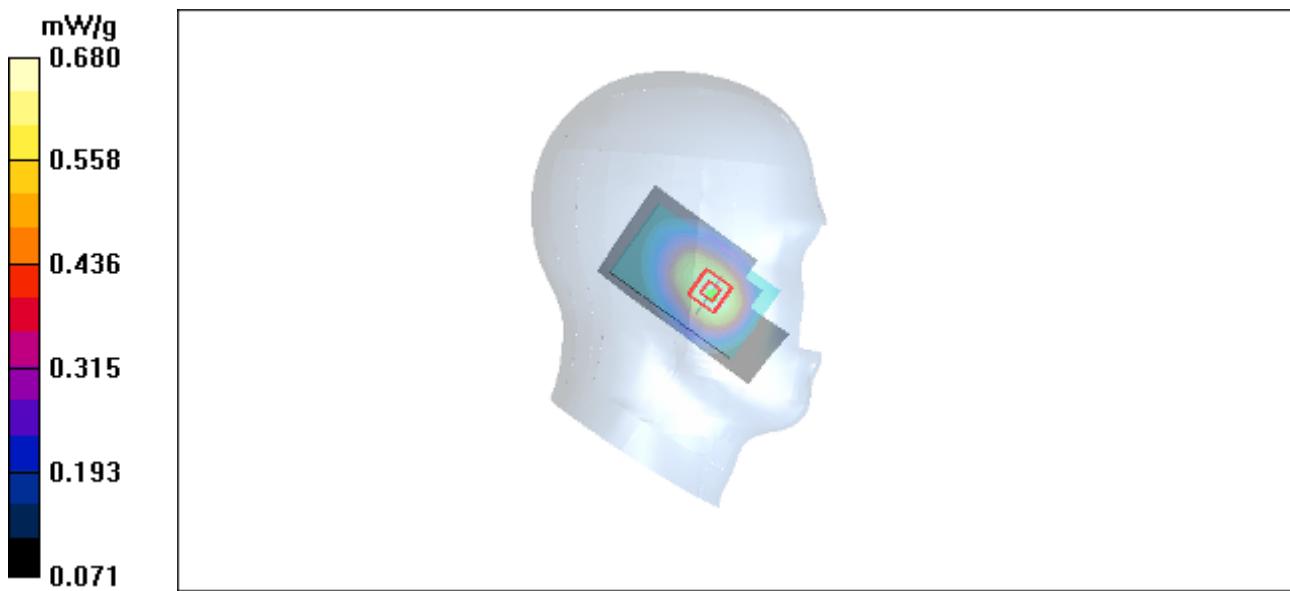
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.697 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.798 W/kg

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.483 mW/g

Maximum value of SAR (measured) = 0.680 mW/g

Figure 11 CDMA Cellular Left Hand Touch Cheek Channel 1013

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 39 of 77

CDMA Cellular Left Tilt Middle

Date/Time: 9/8/2011 6:16:57 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.337 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.155 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 0.389 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.342 mW/g

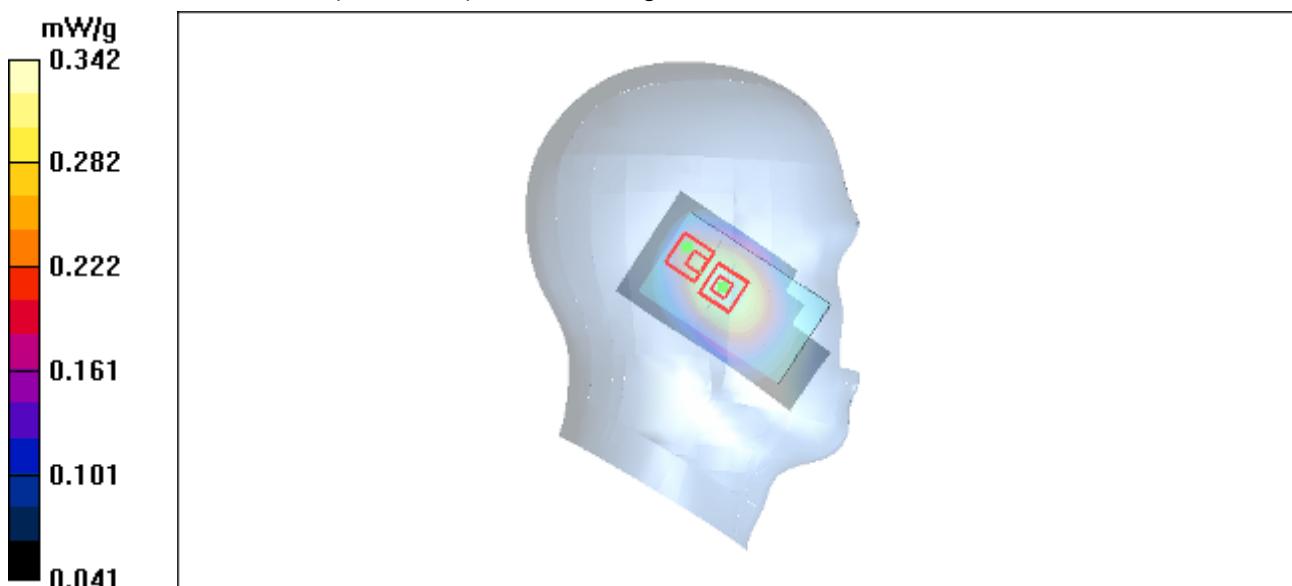


Figure 12 CDMA Cellular Left Hand Tilt 15° Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 40 of 77

CDMA Cellular Right Cheek Middle

Date/Time: 9/8/2011 7:07:09 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

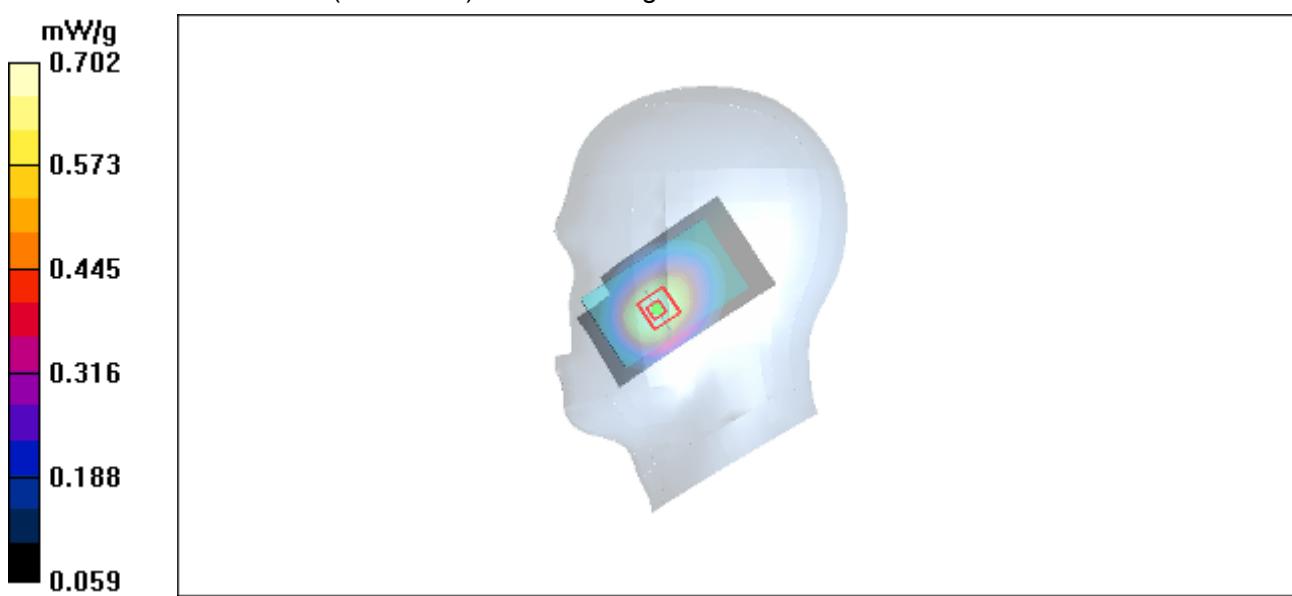
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.691 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.4 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.796 W/kg

SAR(1 g) = 0.656 mW/g; SAR(10 g) = 0.484 mW/g

Maximum value of SAR (measured) = 0.702 mW/g

Figure 13 CDMA Cellular Right Hand Touch Cheek Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 41 of 77

CDMA Cellular Right Tilt Middle

Date/Time: 9/8/2011 7:34:32 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.50, 9.50, 9.50); Calibrated: 11/24/2010

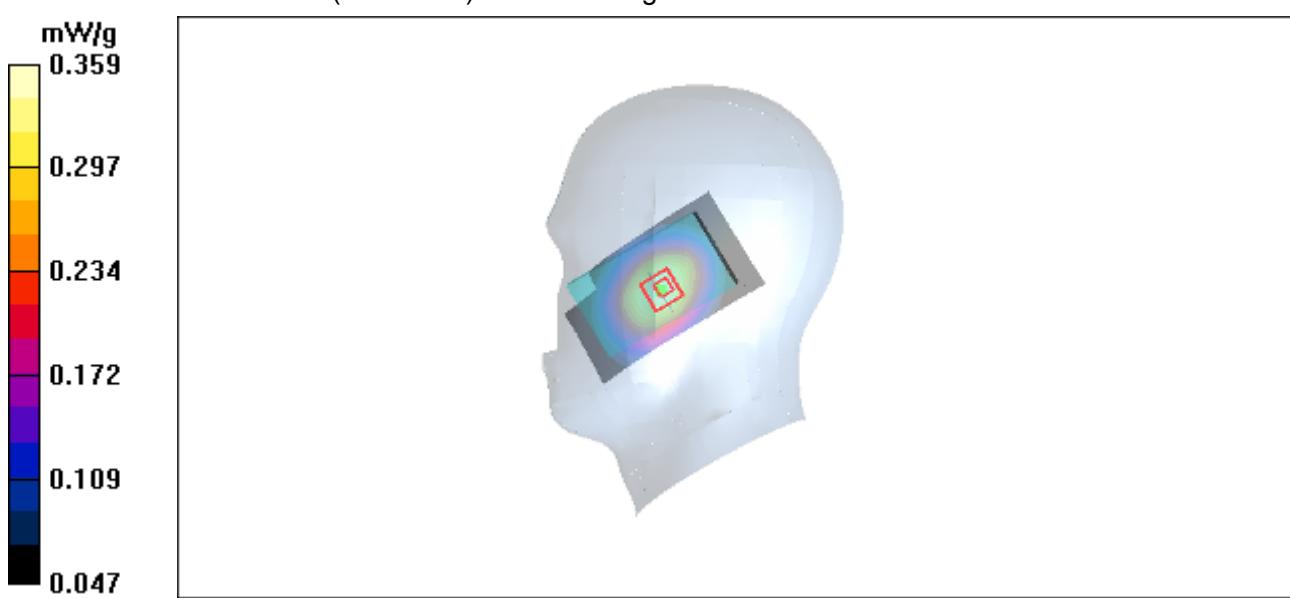
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.362 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.404 W/kg

SAR(1 g) = 0.342 mW/g; SAR(10 g) = 0.258 mW/g

Maximum value of SAR (measured) = 0.359 mW/g

Figure 14 CDMA Cellular Right Hand Tilt 15° Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 42 of 77

CDMA Cellular Towards Ground High

Date/Time: 9/8/2011 9:49:13 PM

Communication System: CDMA Cellular; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 848.31$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

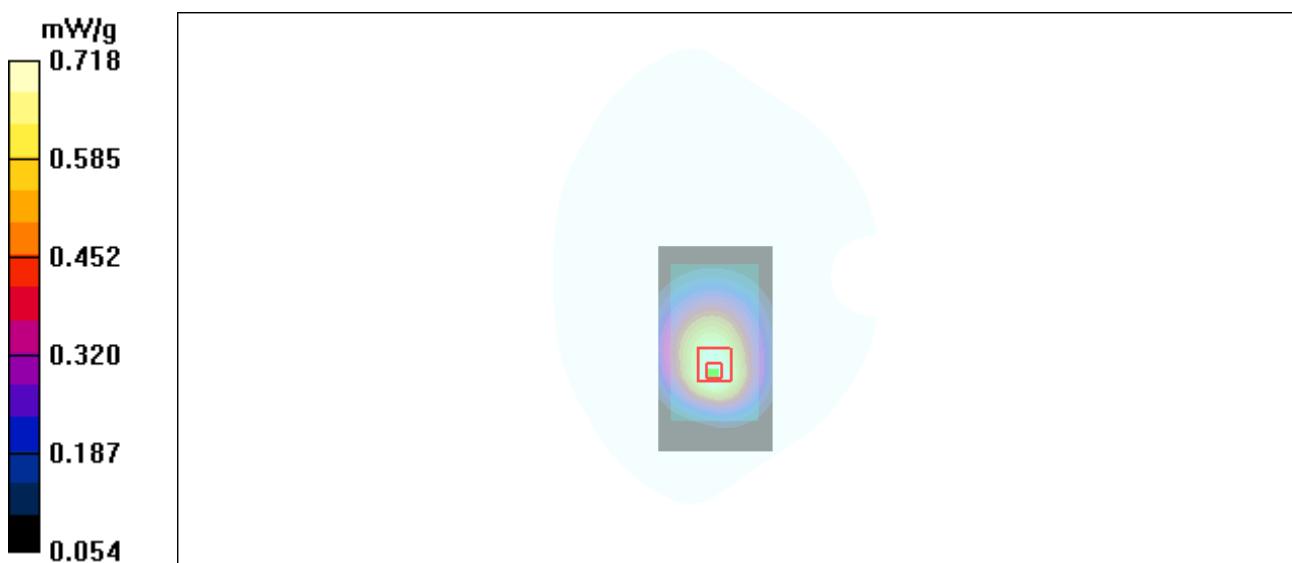
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.761 mW/g


Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.863 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.493 mW/g

Maximum value of SAR (measured) = 0.718 mW/g

Figure 15 Body, CDMA Cellular Towards Ground Channel 777

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 43 of 77

CDMA Cellular Towards Ground Middle

Date/Time: 9/8/2011 9:33:35 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837 \text{ MHz}$; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

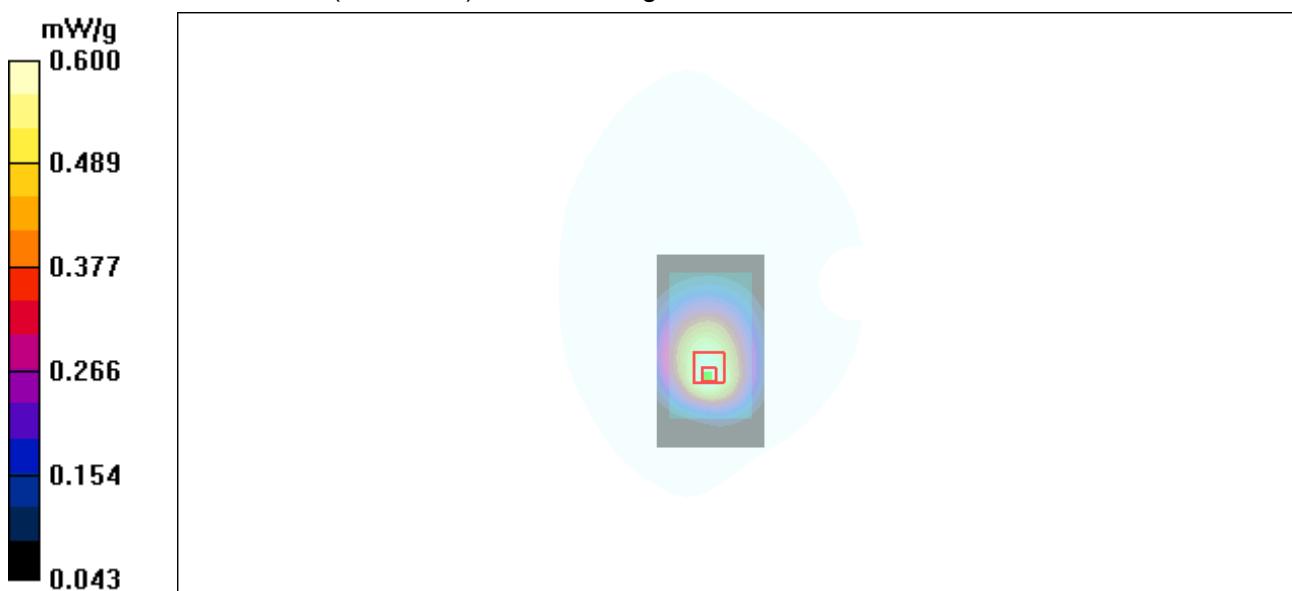
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 0.638 mW/g


Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 11.4 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 0.739 W/kg

SAR(1 g) = 0.569 mW/g; SAR(10 g) = 0.414 mW/g

Maximum value of SAR (measured) = 0.600 mW/g

Figure 16 Body, CDMA Cellular Towards Ground Channel 384

TA Technology (Shanghai) Co., Ltd.
Test Report

CDMA Cellular Towards Ground Low

Date/Time: 9/8/2011 10:01:25 PM

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

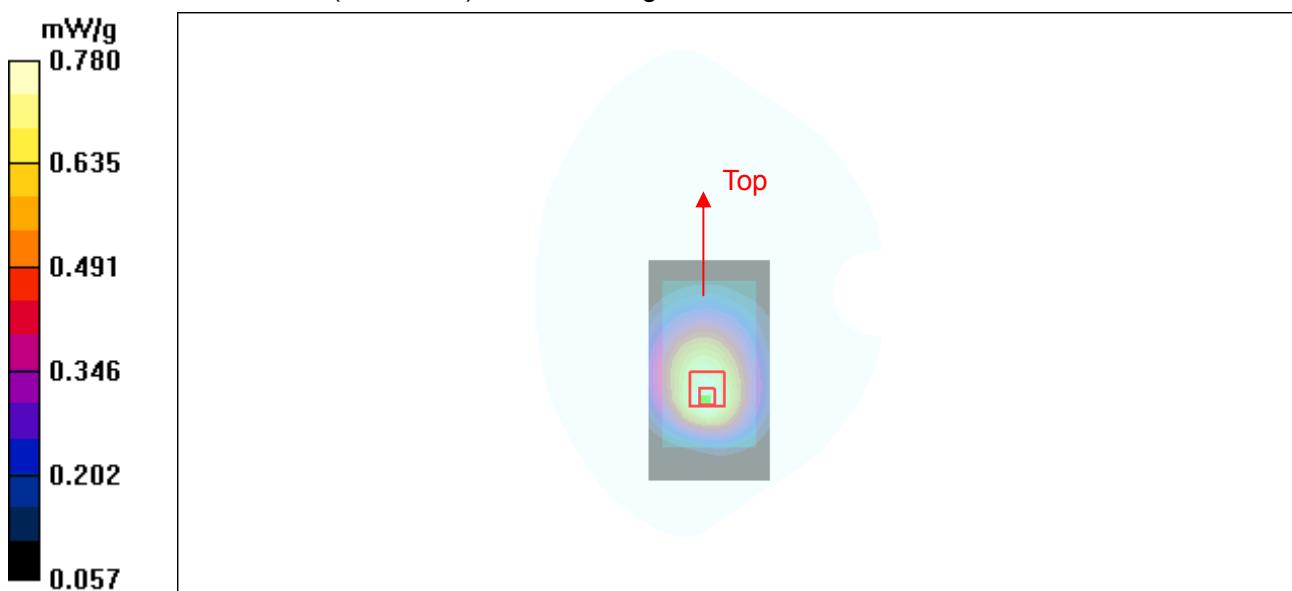
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

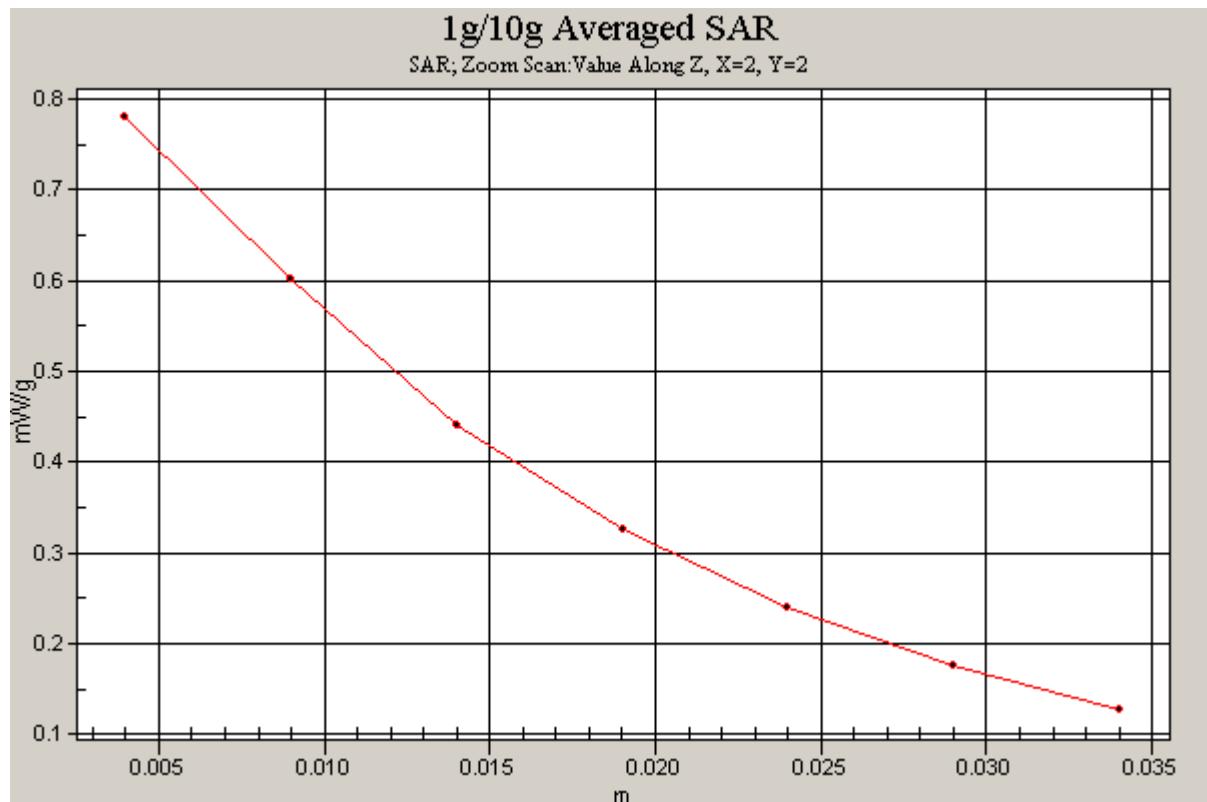
Maximum value of SAR (interpolated) = 0.822 mW/g


Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = 0.168 dB

Peak SAR (extrapolated) = 0.940 W/kg

SAR(1 g) = 0.738 mW/g; SAR(10 g) = 0.539 mW/g


Maximum value of SAR (measured) = 0.780 mW/g

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 45 of 77

Figure 17 Body, CDMA Cellular Towards Ground Channel 1013

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 46 of 77

CDMA Cellular Towards Phantom Middle

Date/Time: 9/8/2011 10:40:17 PM

Communication System: CDMA Cellular; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837 \text{ MHz}$; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

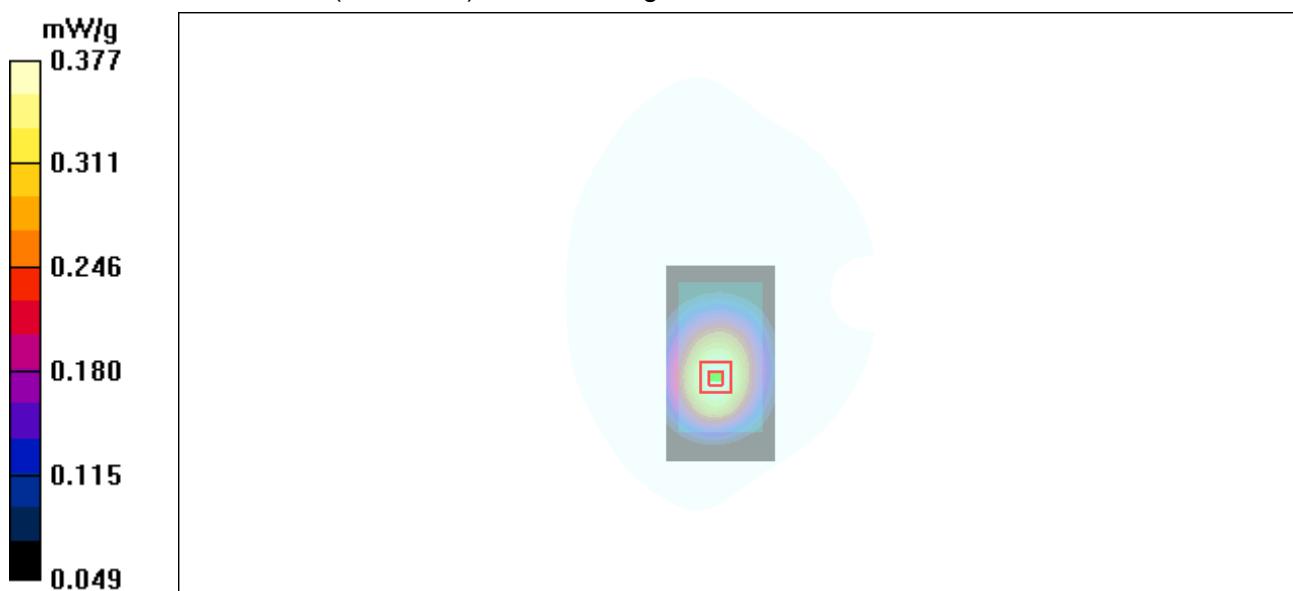
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 0.378 mW/g


Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 9.23 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.435 W/kg

SAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.264 mW/g

Maximum value of SAR (measured) = 0.377 mW/g

Figure 18 Body, CDMA Cellular Towards Phantom Channel 384

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 47 of 77

CDMA Cellular with Earphone Towards Ground Low

Date/Time: 9/8/2011 10:20:57 PM

Communication System: CDMA Cellular; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 825$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

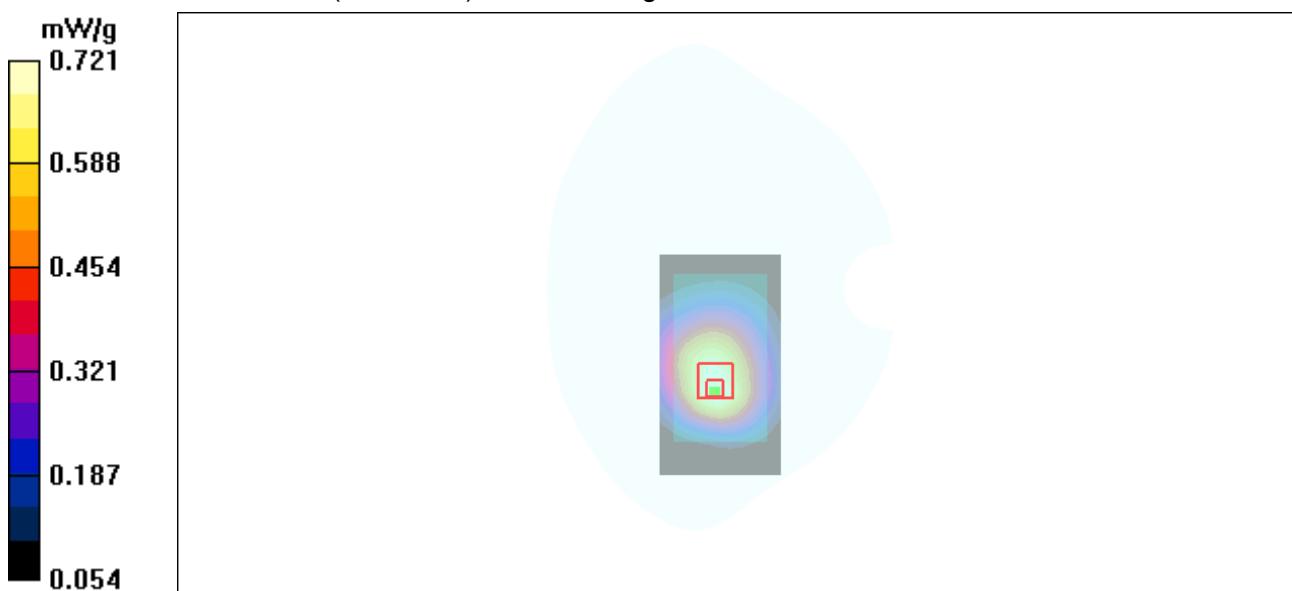
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.741 mW/g


Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.868 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.495 mW/g

Maximum value of SAR (measured) = 0.721 mW/g

Figure 19 Body, CDMA Cellular with Earphone Towards Ground Channel 1013

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 48 of 77

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-SH (Auden)

Certificate No: EX3-3677_Nov10

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3677

Calibration procedure(s)
QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2
Calibration procedure for dosimetric E-field probes

Calibration date: November 24, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	
Approved by:	Niels Kuster	Quality Manager	

Issued: November 25, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 49 of 77

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x, y, z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x, y, z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM x, y, z : Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax, y, z; Bx, y, z; Cx, y, z, VRx, y, z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM $x, y, z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 50 of 77

EX3DV4 SN:3677

November 24, 2010

Probe EX3DV4

SN:3677

Manufactured:	September 9, 2008
Last calibrated:	September 23, 2009
Recalibrated:	November 24, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 51 of 77

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.41	0.47	0.39	$\pm 10.1\%$
DCP (mV) ^B	96.8	98.9	98.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc ^E (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	143.2 140.9 135.8	$\pm 2.4\%$

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX, Y, Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 8).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 52 of 77

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	43.5 ± 5%	0.87 ± 5%	10.04	10.04	10.04	0.09	1.00 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	9.50	9.50	9.50	0.72	0.64 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	8.22	8.22	8.22	0.72	0.59 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.94	7.94	7.94	0.81	0.57 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.32	7.32	7.32	0.47	0.75 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 53 of 77

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

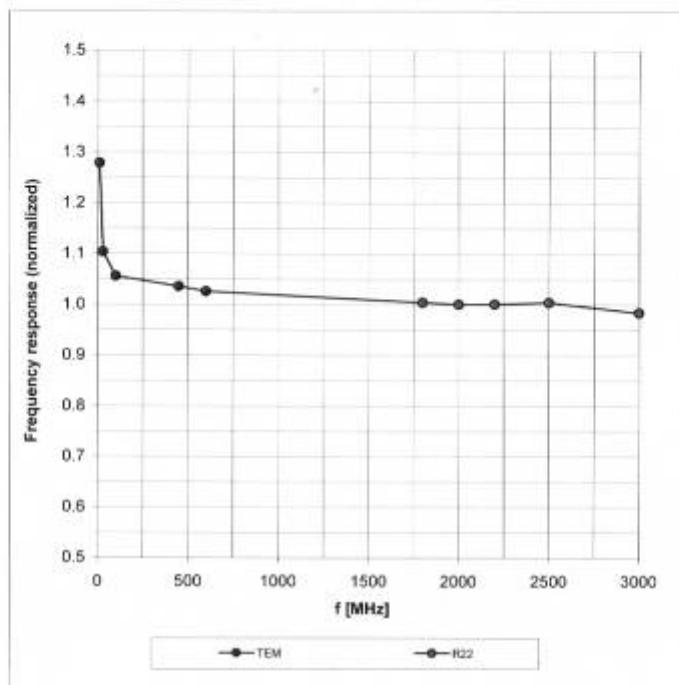
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	10.62	10.62	10.62	0.02	1.00 ± 13.3%
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	10.14	10.14	10.14	0.59	0.72 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	10.33	10.33	10.33	0.20	2.06 ± 11.0%
1450	± 50 / ± 100	54.0 ± 5%	1.30 ± 5%	8.47	8.47	8.47	0.99	0.53 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	8.02	8.02	8.02	0.63	0.67 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.77	7.77	7.77	0.69	0.67 ± 11.0%
2100	± 50 / ± 100	53.2 ± 5%	1.62 ± 5%	8.04	8.04	8.04	0.16	1.44 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.46	7.46	7.46	0.99	0.49 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	6.61	6.61	6.61	0.28	1.40 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2


Page 54 of 77

EX3DV4 SN:3677

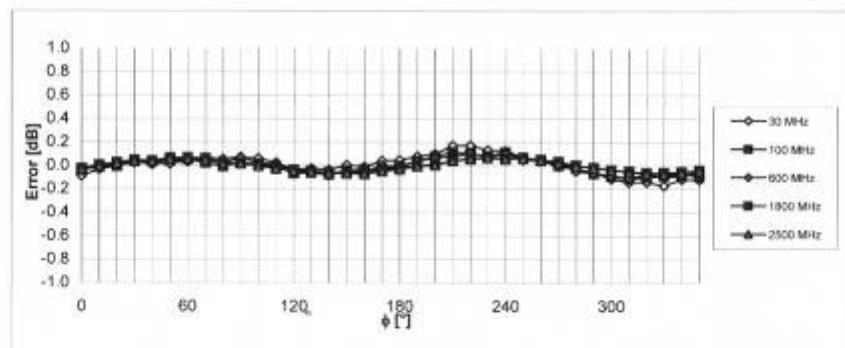
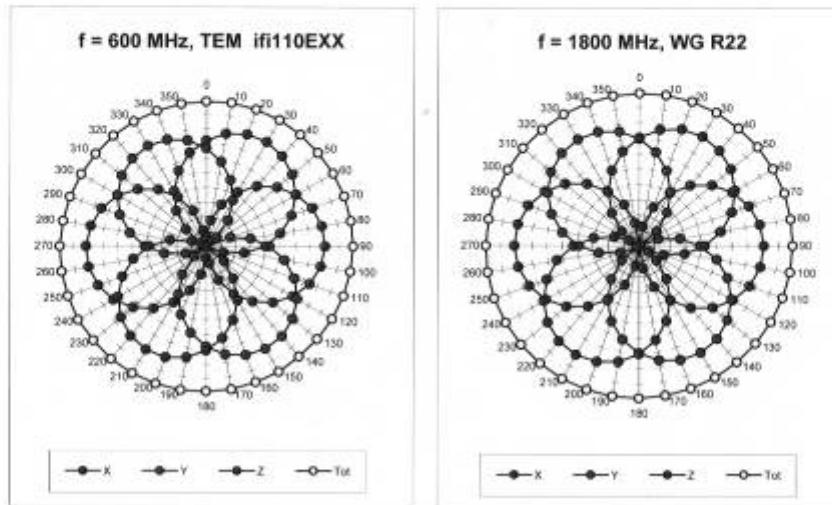
November 24, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

**TA Technology (Shanghai) Co., Ltd.
Test Report**



Report No. RZA1108-1459SAR01R2

Page 55 of 77

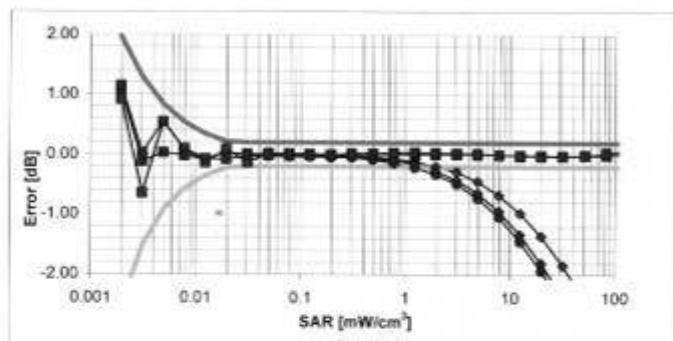
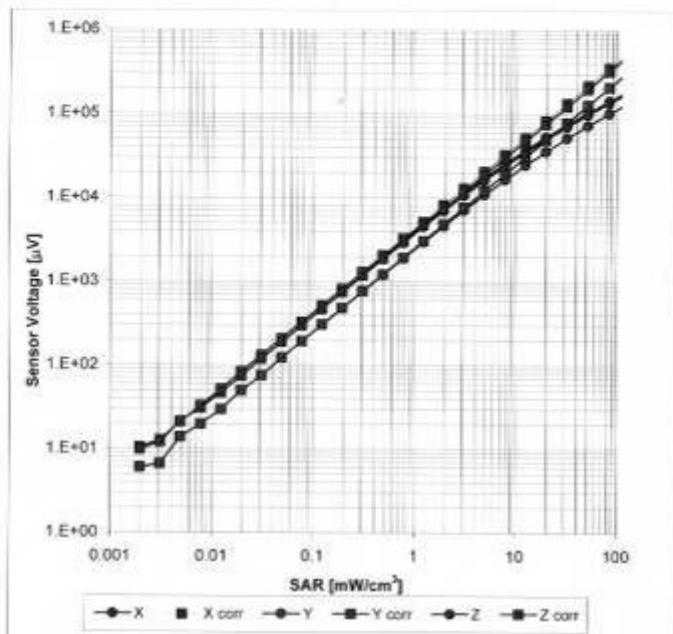
EX3DV4 SN:3677

November 24, 2010

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RZA1108-1459SAR01R2

Page 56 of 77

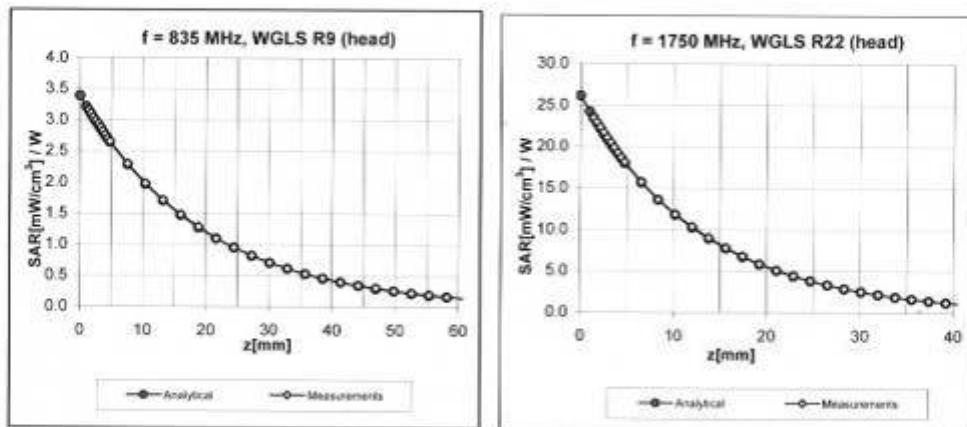
EX3DV4 SN:3677

November 24, 2010

Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f = 900 \text{ MHz}$)

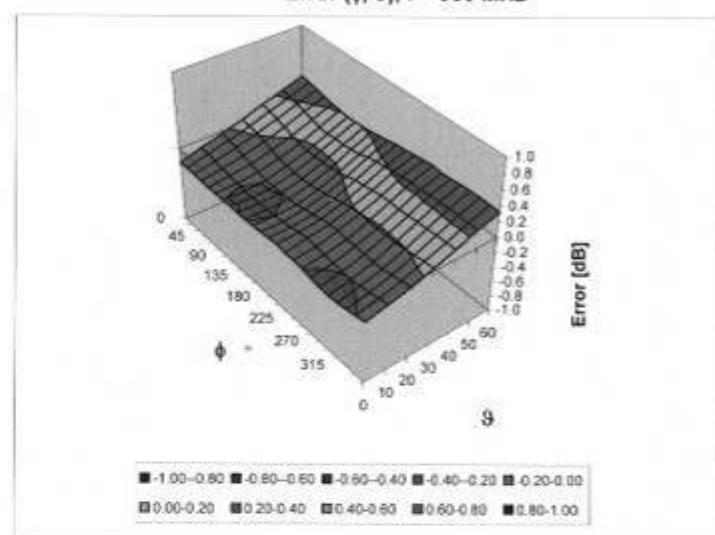
Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd. Test Report


Report No. RZA1108-1459SAR01R2

Page 57 of 77

EX3DV4 SN:3677


November 24, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 58 of 77

EX3DV4 SN:3677

November 24, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 59 of 77

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden

Certificate No: D835V2-4d092_Jan10

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d092
Calibration procedure(s) QA CAL-05.v7
Calibration procedure for dipole validation kits
Calibration date: January 14, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41082317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390565 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 18, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 60 of 77

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$835 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.90 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ °C}$	$41.4 \pm 6 \text{ %}$	$0.89 \text{ mho/m} \pm 6 \text{ %}$
Head TSL temperature during test	$(21.5 \pm 0.2) \text{ °C}$	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	$9.63 \text{ mW / g} \pm 17.0 \text{ % (k=2)}$

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	$6.27 \text{ mW / g} \pm 16.5 \text{ % (k=2)}$

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 62 of 77

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	10.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.86 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.47 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 2.8 $j\Omega$
Return Loss	- 30.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω - 4.5 $j\Omega$
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1108-1459SAR01R2

Page 64 of 77

DASY5 Validation Report for Head TSL

Date/Time: 11.01.2010 12:00:00

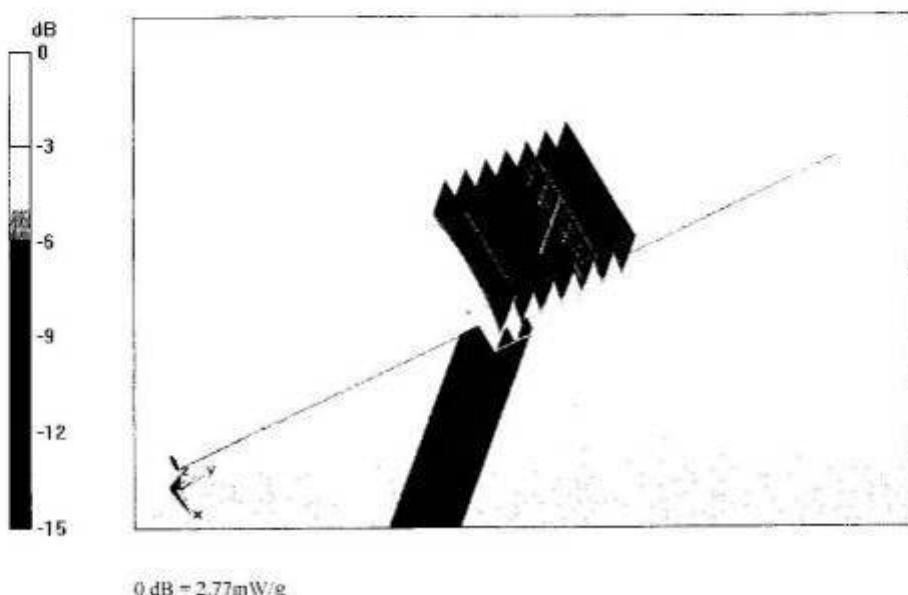
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

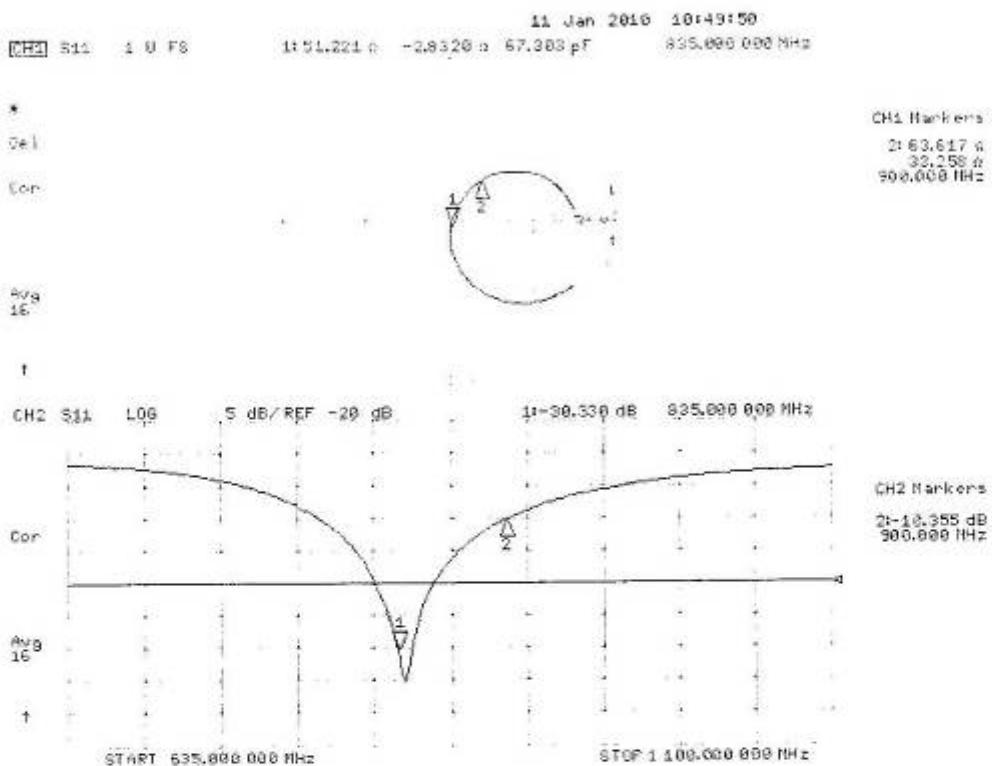

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 57.5 V/m; Power Drift = -0.00176 dB
Peak SAR (extrapolated) = 3.58 W/kg
SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g
Maximum value of SAR (measured) = 2.77 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 65 of 77

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA1108-1459SAR01R2

Page 66 of 77

DASY5 Validation Report for Body

Date/Time: 14.01.2010 15:40:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.98 \text{ mho/m}$; $r_t = 54.6$; $\rho = 1000 \text{ kg/m}^3$

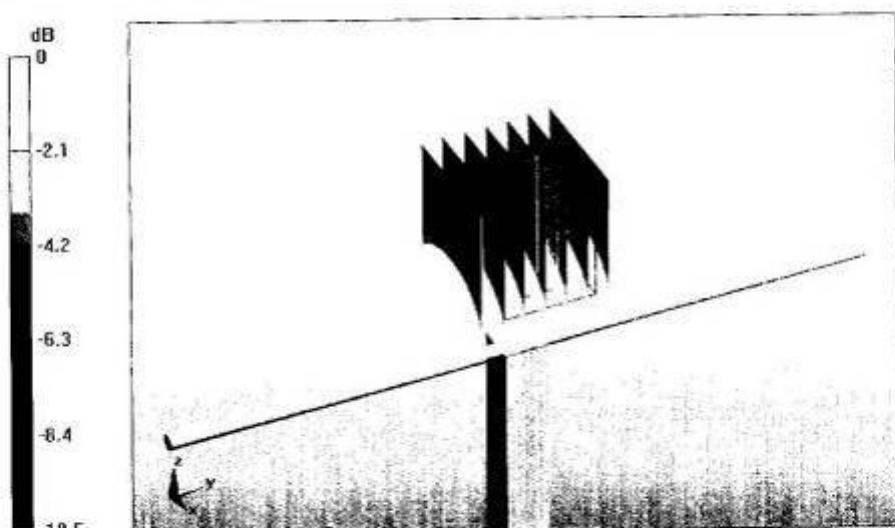
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

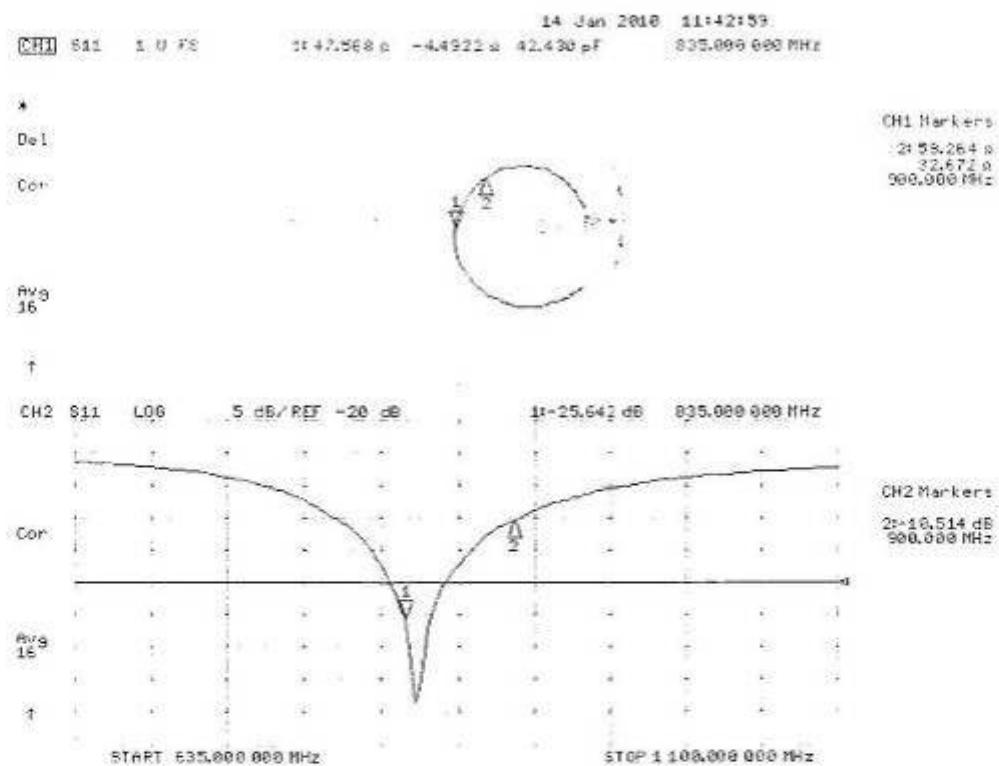

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.9 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g

Maximum value of SAR (measured) = 2.89 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1108-1459SAR01R2

Page 67 of 77

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 68 of 77

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA - SH (Auden)

Certificate No.: DAE4-871_Nov10

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 871

Calibration procedure(s) QA CAL-06.v22
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 18, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11

Calibrated by: Name Andrea Guntli Function Technician Signature

Approved by: Name Birnhold Function R&D Director Signature

Issued: November 18, 2010
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 69 of 77

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- **DC Voltage Measurement:** Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- **Connector angle:** The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - **DC Voltage Measurement Linearity:** Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - **Common mode sensitivity:** Influence of a positive or negative common mode voltage on the differential measurement.
 - **Channel separation:** Influence of a voltage on the neighbor channels not subject to an input voltage.
 - **AD Converter Values with inputs shorted:** Values on the internal AD converter corresponding to zero input voltage
 - **Input Offset Measurement:** Output voltage and statistical results over a large number of zero voltage measurements.
 - **Input Offset Current:** Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - **Input resistance:** Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - **Low Battery Alarm Voltage:** Typical value for information. Below this voltage, a battery alarm signal is generated.
 - **Power consumption:** Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\ldots+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1\ldots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.757 \pm 0.1\% \text{ (k=2)}$	$404.740 \pm 0.1\% \text{ (k=2)}$	$405.181 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.98219 \pm 0.7\% \text{ (k=2)}$	$3.93489 \pm 0.7\% \text{ (k=2)}$	$3.96831 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$90.0^\circ \pm 1^\circ$
---	--------------------------

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA1108-1459SAR01R2

Page 71 of 77

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200001.2	-1.56	-0.00
Channel X	+ Input	20000.71	0.71	0.00
Channel X	- Input	-19997.87	1.63	-0.01
Channel Y	+ Input	199994.3	1.99	0.00
Channel Y	+ Input	19998.92	-1.08	-0.01
Channel Y	- Input	-20000.26	-0.76	0.00
Channel Z	+ Input	200009.2	-1.04	-0.00
Channel Z	+ Input	19998.70	-1.10	-0.01
Channel Z	- Input	-20000.16	-0.76	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.1	0.16	0.01
Channel X	+ Input	199.58	-0.52	-0.26
Channel X	- Input	-200.79	-0.89	0.45
Channel Y	+ Input	1999.9	-0.03	-0.00
Channel Y	+ Input	199.45	-0.55	-0.27
Channel Y	- Input	-200.31	-0.41	0.21
Channel Z	+ Input	2000.1	0.33	0.02
Channel Z	+ Input	199.13	-0.77	-0.38
Channel Z	- Input	-201.47	-1.37	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	14.25	12.86
	-200	-12.68	-14.21
Channel Y	200	-10.04	-10.39
	-200	9.20	9.17
Channel Z	200	-0.85	-1.40
	-200	-0.34	-0.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.85	0.69
Channel Y	200	2.41	-	2.73
Channel Z	200	2.54	0.73	-

TA Technology (Shanghai) Co., Ltd.

Test Report

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15517
Channel Y	16171	16732
Channel Z	15803	16474

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.03	-2.35	0.86	0.43
Channel Y	-0.50	-1.49	-0.49	0.38
Channel Z	-0.92	-2.21	0.14	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

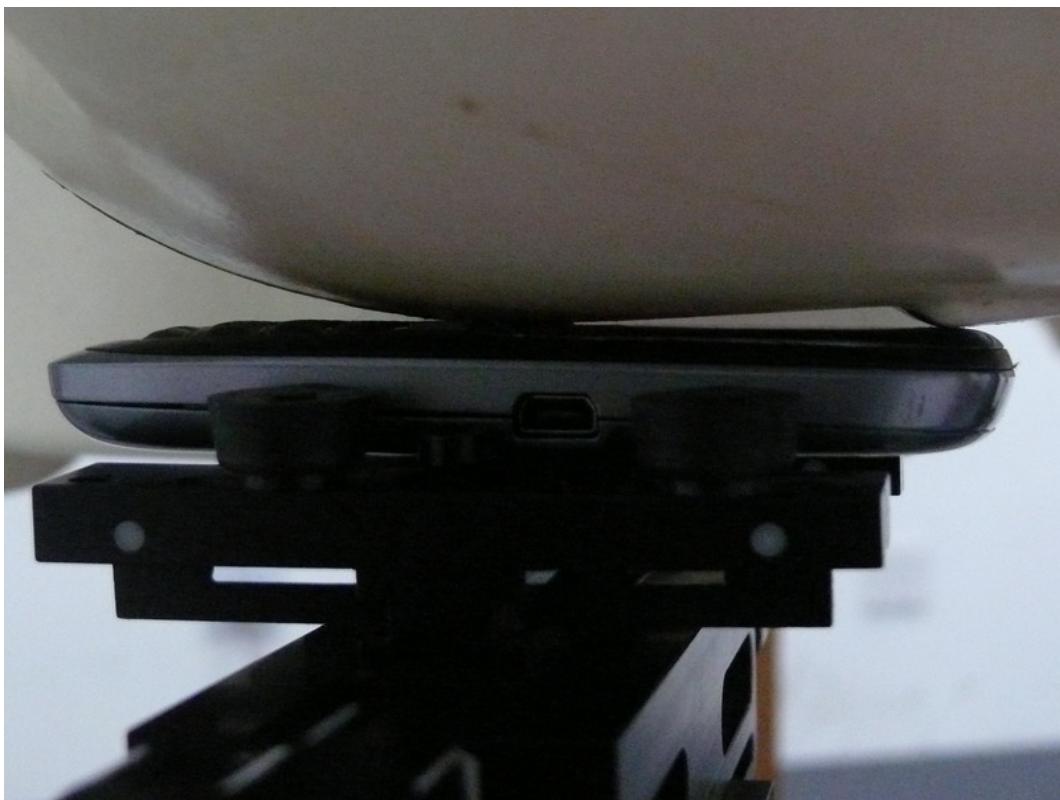
**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1108-1459SAR01R2

Page 73 of 77

ANNEX G: The EUT Appearances and Test Configuration

a: EUT


b: Battery

Picture 4: Constituents of EUT

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA1104-0608SAR

Page 74 of 77

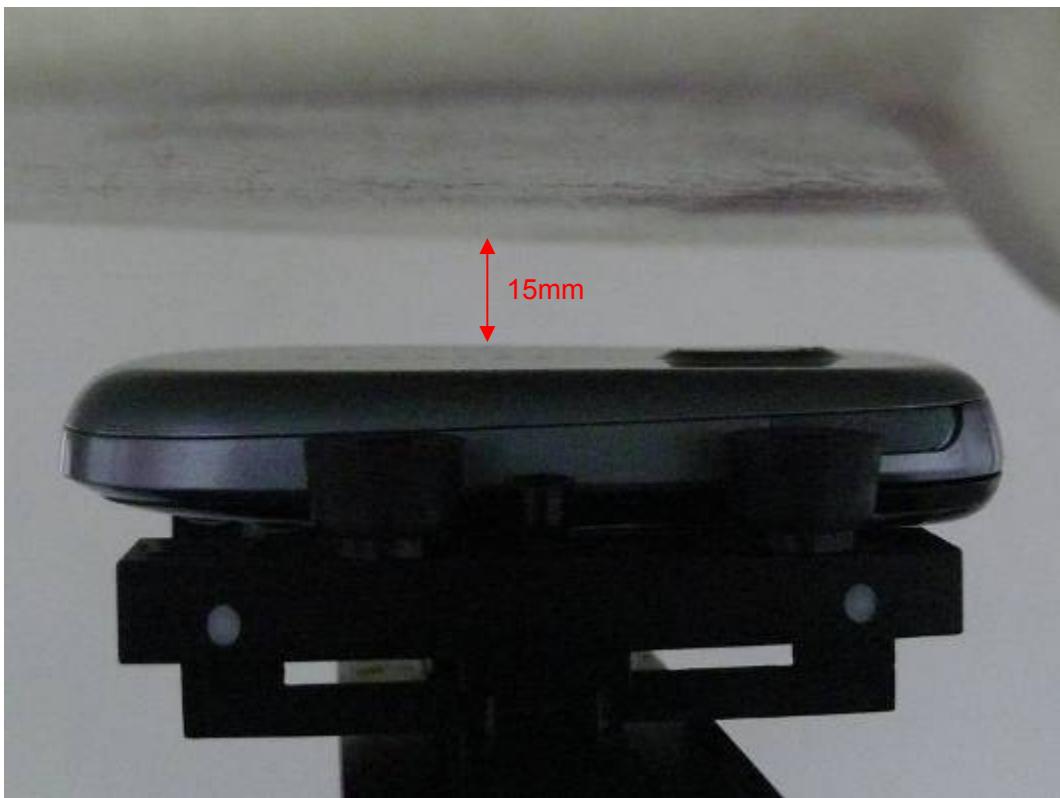
Picture 5: Left Hand Touch Cheek Position

Picture 6: Left Hand Tilt 15 Degree Position

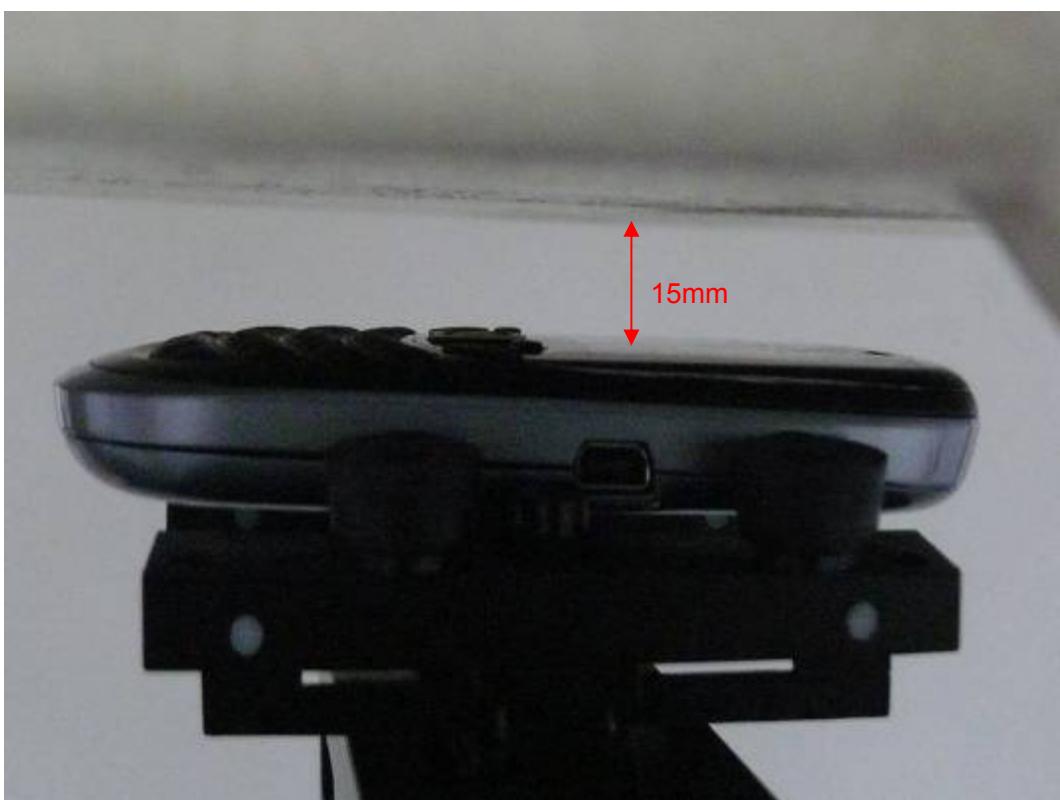
TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA1104-0608SAR

Page 75 of 77



Picture 7: Right Hand Touch Cheek Position



Picture 8: Right Hand Tilt 15 Degree Position

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Picture 9: Body, the EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm

Picture 10: Body, the EUT display towards phantom, the distance from handset to the bottom of the Phantom is 15mm

TA Technology (Shanghai) Co., Ltd.
Test Report

Picture 11: Body with Earphone, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm