

Page: 1 / 37 Rev.: 01

FCC ID: R4UARCFLEXHANDY Report No.: T190703W02-RP

FCC RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard FCC Part 15.231

Trade name ARC

Product name Industrial radio remote control systems

Model No. FLEX HANDY 2X, FLEX HANDY 2S

Operation Freq. 433.050MHz – 434.575MHz

Test Result Pass

Statements of Determination of compliance is based on the results of

Conformity the compliance measurement,

not taking into account measurement instrumentation

uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of SGS Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Reviewed by:

Kevin Tsai

Deputy Manager

Dally Hong Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

Komil Train

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 37
Report No.: T190703W02-RP Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect page	Revised By
00	September 27, 2019	Initial Issue	ALL	May Lin
01	November 06, 2019	See the following Note Rev. (01)	P.11-12, P.16, P.21, P.28-35	May Lin

Rev (01):

^{1.} Revised the section 3.2 · section 3.3 · section 4.2.2 · section 4.3.4 and section 4.4.4.

Page: 3 / 37 Rev.: 01

Table of contents

1.	GENERAL INFORMATION4
1.1	EUT INFORMATION4
1.2	EUT CHANNEL INFORMATION5
1.3	ANTENNA INFORMATION6
1.4	MEASUREMENT UNCERTAINTY7
1.5	FACILITIES AND TEST LOCATION8
1.6	INSTRUMENT CALIBRATION8
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMERY10
3.	DESCRIPTION OF TEST MODES11
3.1	THE WORST MODE OF OPERATING CONDITION11
3.2	THE WORST MODE OF MEASUREMENT11
3.3	FCC PART 15.231 PERIODIC OPERATION IN THE BAND 40.66-40.70 MHZ AND ABOVE 70 MHZ12
3.4	EUT DUTY CYCLE14
4.	TEST RESULT15
4.1	AC POWER LINE CONDUCTED EMISSION15
4.2	EMISSION BANDWIDTH16
4.3	FIELD STRENGTH OF FUNDAMENTAL19
4.4	RADIATION UNWANTED EMISSION24
4.5	OPERATION RESTRICTION36
4 D	DENDIV 4 DUOTOCDADUS OF SUT

Page: 4 / 37
Report No.: T190703W02-RP

Rev.: 01

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	ADVANCED RADIOTECH CORPORATION No.3, South 1st Road, Chien Chen District, Kaohsiung, Taiwan
Manufacturer	ADVANCED RADIOTECH CORPORATION No.3, South 1st Road, Chien Chen District, Kaohsiung, Taiwan
Equipment	Industrial radio remote control systems
Model Name	FLEX HANDY 2X, FLEX HANDY 2S
Model Discrepancy	FLEX HANDY 2X: 2 Push button Two step FLEX HANDY 2S: 2 Push button One step
Received Date	July 03, 2019
Date of Test	August 21 ~ 26, 2019
Periodic operation	 \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(
Power Operation	Power from battery: DC 3V
Operation Frequency	433.050MHz – 434.575MHz
S/W Version	ARC-107STD-EN1-1-4
H/W Version	V 1.0

Page: 5 / 37 Rev.: 01

1.2 EUT CHANNEL INFORMATION

Frequency Range	433.050MHz – 434.575MHz						
Modulation Type	GFSK						
Bandwidth	25 KHz						
Number of Channels	62 cha	annels					
	СН	Freq.(MHz)	СН	Freq.(MHz)	СН	Freq.(MHz)	
	1	433.050	22	433.575	43	434.100	
	2	433.075	23	433.600	44	434.125	
	3	433.100	24	433.625	45	434.150	
	4	433.125	25	433.650	46	434.175	
	5	433.150	26	433.675	47	434.200	
	6	433.175	27	433.700	48	434.225	
	7	433.200	28	433.725	49	434.250	
	8	433.225	29	433.750	50	434.275	
	9	433.250	30	433.775	51	434.300	
Channel List	10	433.275	31	433.800	52	434.325	
Charmer List	11	433.300	32	433.825	53	434.350	
	12	433.325	33	433.850	54	434.375	
	13	433.350	34	433.875	55	434.400	
	14	433.375	35	433.900	56	434.425	
	15	433.400	36	433.925	57	434.450	
	16	433.425	37	433.950	58	434.475	
	17	433.450	38	433.975	59	434.500	
	18	433.475	39	434.000	60	434.525	
	19	433.500	40	434.025	61	434.550	
	20	433.525	41	434.050	62	434.575	
	21	433.550	42	434.075			

Page: 6 / 37
Report No.: T190703W02-RP Rev.: 01

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested							
Frequency range in Number of Location in frequency which device operates frequencies range of operation							
1 MHz or less	1	Middle					
1 MHz to 10 MHz	2	1 near top and 1 near bottom					
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom					

1.3 ANTENNA INFORMATION

Antenna Type	☐ PIFA ☑ PCB ☐ Dipole
Antenna Gain	0 dBi
Antenna Connector	N/A

Page: 7 / 37
Report No.: T190703W02-RP Rev.: 01

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 8 / 37
Report No.: T190703W02-RP Rev.: 01

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Jerry Lu	-
RF Conducted	Dally Hong	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Coaxial Cable	Woken	WC12	CC003	06/28/2019	06/27/2020		
Signal Analyzer	R&S	FSV 40	101073	09/27/2018	09/26/2019		
Software N/A							

3M 966 Chamber Test Site							
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/26/2019	07/25/2020		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	02/26/2019	02/25/2020		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/26/2019	02/25/2020		
Digital Thermo- Hygro Meter	WISEWIND	1206	D07	01/30/2019	01/29/2020		
High Pass Filter	SOLVANG TECHNOLOGY INC.	STI15	9923	02/26/2019	02/25/2020		
Horn Antenna	ETS LINDGREN	3117	00143280	07/16/2019	07/15/2020		
Loop Ant	COM-POWER	AL-130	121051	03/22/2019	03/21/2020		
Pre-Amplifier	EMEC	EM330	060609	02/26/2019	02/25/2020		
Pre-Amplifier	HP	8449B	3008A00965	02/26/2019	02/25/2020		
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/29/2019	05/28/2020		
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	ccs	CC-T-1F	N/A	N.C.R	N.C.R		
Software	Software e3 6.11-20180413						

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 9 / 37
Report No.: T190703W02-RP Rev.: 01

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

There are no accessories and support equipment be used during the test.

	EUT Accessories Equipment							
No.	No. Equipment Brand Model Series No. FCC ID							
	N/A							

	Support Equipment							
No. Equipment Brand Model Series No. FCC ID								
	N/A							

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC 15.231.

Page: 10 / 37 Report No.: T190703W02-RP Rev.: 01

2. TEST SUMMERY

Standard Sec.	Chapter	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207	4.1	AC Power-line Conducted Emission	Not applicable
15.231(c)	4.2	Emission Bandwidth	Pass
15.231(b)	4.3	Fundamental Emission	Pass
15.209(b)	4.4	Transmitter Radiated Emission	Pass
15.231(a)(1)	4.5	Operation Restriction	Pass

Page: 11 / 37
Report No.: T190703W02-RP Rev.: 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	433.050 MHz	434.575MHz
RF Filed strength	Peak: 86.49 dBuv/m Average : 74.91 dBuv/m	Peak: 87.29 dBuv/m Average : 75.71 dBuv/m

Remark: Field strength performed Average level at 3m.

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G		
Test Condition	Band edge, Emission for Unwanted and Fundamental	
Power supply Mode	Mode 1: EUT power by Battery (DC 3V)	
Worst Mode		
Worst Position	 □ Placed in fixed position. □ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) □ Placed in fixed position at Z-Plane (H-Plane) 	

Radiated Emission Measurement Below 1G		
Test Condition Radiated Emission Below 1G		
Power supply Mode	Mode 1: EUT power by Battery (DC 3V)	
Worst Mode		

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (X-Plane) were recorded in this report

Page: 12 / 37
Report No.: T190703W02-RP Rev.: 01

3.3 FCC PART 15.231 PERIODIC OPERATION IN THE BAND 40.66-40.70 MHZ AND ABOVE 70 MHZ

According to FCC 15.231(b), 15.231(e),

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

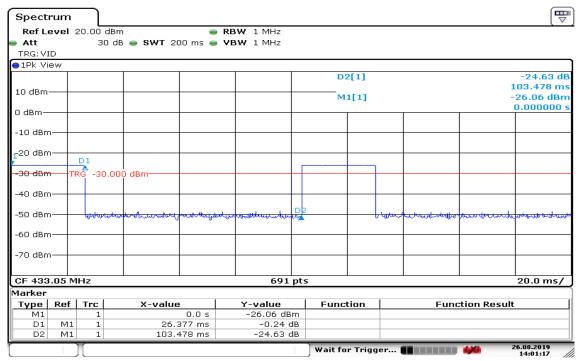
Page: 13 / 37
Report No.: T190703W02-RP Rev.: 01

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.



Page: 14 / 37
Report No.: T190703W02-RP Rev.: 01

3.4 EUT DUTY CYCLE

433MHz - 434MHz

Duty Cycle				
TX ON (ms)	TX All(ms)	Duty Cycle (%)	Duty Factor(dB)	
26.377	100	25.49%	-11.58	

Date: 26.AUG.2019 14:01:17

Notes:

- 1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by 20 log (Time_(on) / [Period or 100 ms whichever is the lesser])
- 2. The EUT transmits for a Time(on) of 26.377 milliseconds.

20 log (Time_(on) / [Period or 100 ms whichever is the lesser]).

 $20 \log (26.377/100) = -11.58 dB$

Page: 15 / 37
Report No.: T190703W02-RP Rev.: 01

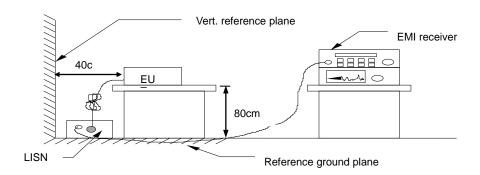
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete

4.1.3 Test Setup

4.1.4 Test Result

Not applicable

Page: 16 / 37 Report No.: T190703W02-RP Rev.: 01

4.2 EMISSION BANDWIDTH

4.2.1 Test Limit

According to §15.231(c),

Limit	
-------	--------------------

4.2.2 Test Procedure

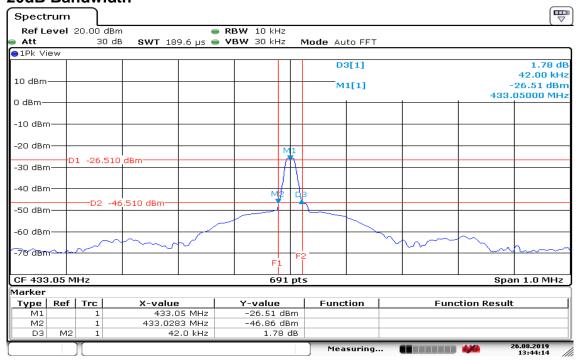
Test method Refer as ANSI 63.10:2013 clause 6.9.2,

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=10KHz, VBW=30KHz, Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the 20dB Bandwidth.

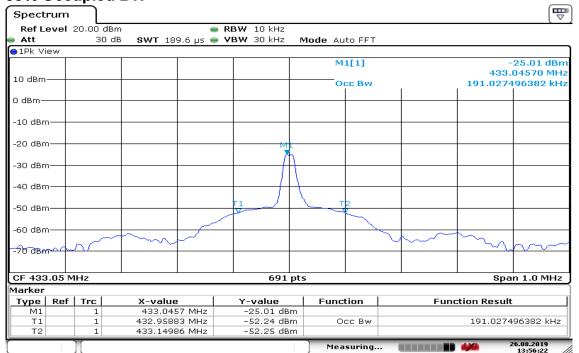
The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. SA set RBW = $1\% \sim 5\%$ OBW, VBW = three times the RBW and Detector = Peak, Trace mode = Max hold, Sweep = Auto. Measure the maximum width of the emission that is constrained by the frequencies associated with the Occupied Bandwidth (99%).

4.2.3 Test Setup

4.2.4 Test Result


Spectrum Bandwidth				
Frequency (MHz) 20dB Bandwidth 20dB Bandwidth Limits (MHz) 99% Occupied BW 99% Bandwidth Limits (MHz) (KHz) Limits (MHz)				
433.050	42.0	1.082625	191.027	1.082625
434.575	50.7	1.086437	240.231	1.086437

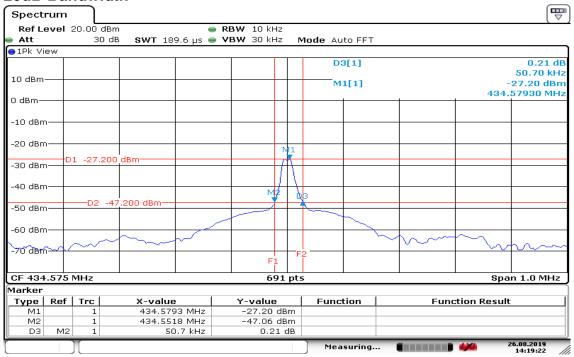
Page: 17 / 37
Report No.: T190703W02-RP Rev.: 01


Test Data

433.050MHz 20dB Bandwidth

Date: 26.AUG.2019 13:44:14

99% Occupied BW



Date: 26.AUG.2019 13:56:22

Page: 18 / 37 Report No.: T190703W02-RP 01 Rev.:

434.575MHz 20dB Bandwidth

Date: 26.AUG.2019 14:19:23

99% Occupied BW \Box Spectrum Ref Level 20.00 dBm ■ RBW 10 kHz **SWT** 189.6 µs **● VBW** 30 kHz 30 dB Mode Auto FFT Att 1Pk View M1[1] 31.93 dBm 434.57930 MHz 10 dBm-240.231548481 kHz Occ Bw 0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-78°d8m-≏ CF 434.575 MHz 691 pts Span 1.0 MHz Marker Ref | Trc Function **Function Result** Туре X-value Y-value 434.5793 MHz 31.93 dBm 240.231548481 kHz 434.45923 MHz -61.11 dBm Occ Bw 434.69946 MHz -61.15 dBm T2 26.08.2019 14:20:16

Date: 26.AUG.2019 14:20:17

Measuring...

Page: 19 / 37
Report No.: T190703W02-RP Rev.: 01

4.3 FIELD STRENGTH OF FUNDAMENTAL

4.3.1 Test Limit

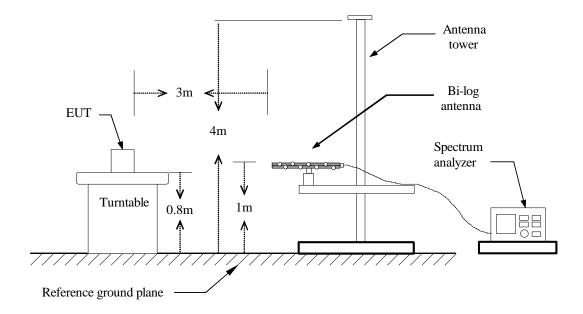
According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

^{*} Linear interpolation with frequency, f, in MHz:

For 130-174 MHz: Field Strength (μ V/m) = (56.82 × f)-6136 For 260-470 MHz: Field Strength (μ V/m) = (41.67 × f)-7083

4.3.2 Test Procedure


Test method Refer as ANSI 63.10:2013 clause 4.1.4 and clause 6.5

clause 4.1.4	
--------------	---------------------

Page: 20 / 37
Report No.: T190703W02-RP Rev.: 01

4.3.3 Test Setup

Page: 21 / 37
Report No.: T190703W02-RP Rev.: 01

4.3.4 Test Result

Field Strength					
Frequency Fundamental (MHz) (dBuV/m) at 3m		Limit Margii (dBuV/m) at 3m (dB)		Axis/Pol.	Remark
433.05	74.91	80.80	-5.89	X/H	AVG

Remark:

1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.

2. Average result = Peak result + Duty factor = 86.49 dBuV/m - 11.58= 74.91dBuV/m

3. 260MHz ~ 470MHz limit is 41.67 * (Frequency, MHz) – 7083

Limit = 41.67 * (433.06 MHz) – 7083

= 10962.6102 (uV/m)

dBuv/m = 20 Log (uV/m) = 20 Log (10962.6102 uV/m) = 80.80 dBuV/m

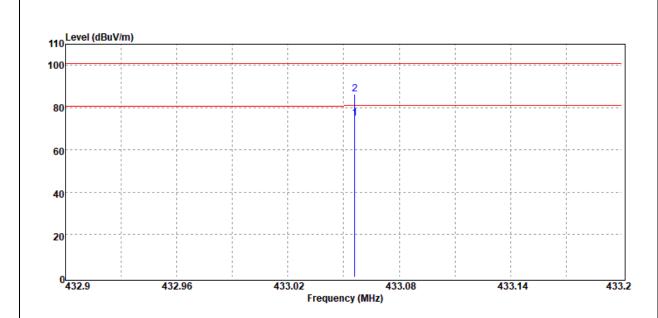
Field Strength						
Frequency (MHz)	Fundamental (dBuV/m) at 3m	Limit (dBuV/m) at 3m	Margin (dB)	Axis/Pol.	Remark	
434.57	75.71	80.85	-5.14	X/H	AVG	

Remark:

- 1. Fundamental measured method setting on spectrum, RBW=100 kHz, VBW=100kHz and Detector=Peak.
- 2. Average result = Peak result + Duty factor = 87.29 dBuV/m 11.58= 75.71dBuV/m
- 3. 260MHz ~ 470MHz limit is 41.67 * (Frequency, MHz) 7083

Limit = 41.67 * (434.57 MHz) - 7083

=11025.5319 (uV/m)

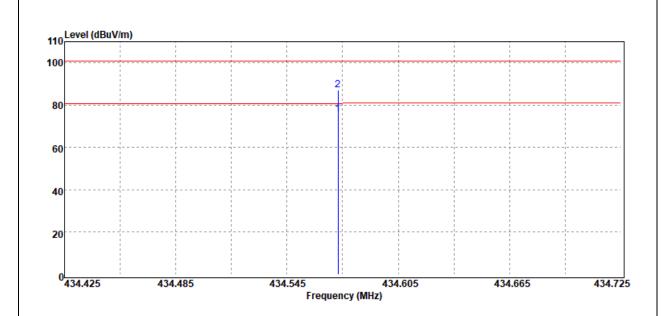

dBuv/m = 20 Log(uV/m) = 20 Log (11025.5319 uV/m) = 80.85 dBuV/m

Page: 22 / 37
Report No.: T190703W02-RP Rev.: 01

Test Data

Test Mode:	TX-433.06MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Fundamental	Test Date	2019/08/21
Axis/Polarize	X-Plane /Hor	Test Engineer	Jerry Lu
Detector	Peak & AVG		

No	Frequency	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
	(MHz)	PK/QP/AV	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
2	433.05	Peak	90.77	-4.28	86.49	100.80	-14.31


Note:

No.1 Average result = Peak result + Duty factor = 86.49 dBuV/m -11.58= 74.91dBuV/m

Page: 23 / 37
Report No.: T190703W02-RP Rev.: 01

Test Mode:	TX-433.06MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Fundamental	Test Date	2019/08/21
Axis/Polarize	X-Plane /Hor	Test Engineer	Jerry Lu
Detector	Peak & AVG		

No	Frequency	Detector Mode			Actual FS	Limit @3m	Margin
	(MHz)	PK/QP/AV	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
2	434.57	Peak	91.53	-4.24	87.29	100.85	-13.56

Note:

No.1 Average result = Peak result + Duty factor = 87.29 dBuV/m -11.58= 75.71dBuV/m

Page: 24 / 37
Report No.: T190703W02-RP Rev.: 01

4.4 RADIATION UNWANTED EMISSION

4.4.1 Test Limit

According to §15.231(b) and §15.209, §15.205

Unwanted emissions limit follow the table or the FCC Part 15.209, whichever limit permits higher field strength.

According to §15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of fundamental (microvolts/meter)	
40.66-40.70	2,250	225	
70-130	1,250	125	
130-174	¹ 1,250 to 3,750	¹ 125 to 375	
174-260	3,750	375	
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250	
Above 470	12,500	1,250	

¹Linear interpolations.

Below 30MHz

Selow Sulinz							
_			Field Strength				
Frequency (MHz)	(µV/m)	(dBµV/m)	Measurement Distance (meter)	(dBµV/m)	Measurement Distance (meter)		
0.009 - 0.490	2400/F(kHz)	48.52 – 13.80	300	128.52–104.84	3		
0.490 - 1.705	24000/F(kHz)	33.80 – 22.97	30	73.80– 62.97	3		
1.705 – 30.0	30	29.54	30	69.54	3		

Above 30MHz

Frequency	Field	d Strength	Measurement Distance
(MHz)	(μV/m)	(dBµV/m)	(meter)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

.

Page: 25 / 37
Report No.: T190703W02-RP Rev.: 01

4.4.2 Test Procedure

Test method Refer as ANSI 63.10:2013

□ Unwanted Emission	 Clause 4.1.4.2.2: Measurement Peak value. Clause 4.1.4.2.3: Duty cycle ≥ 100%. Clause 4.1.4.2.4: Measurement Average value.
□ Radiated Emission	

- 1. The EUT is placed on a turntable, which is 0.8m for test below 1GHz and 1.5m for test above 1GHz, above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

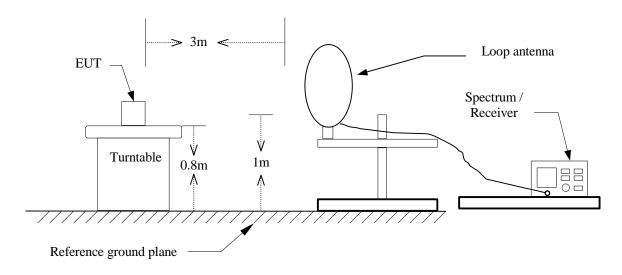
Above 1GHz:

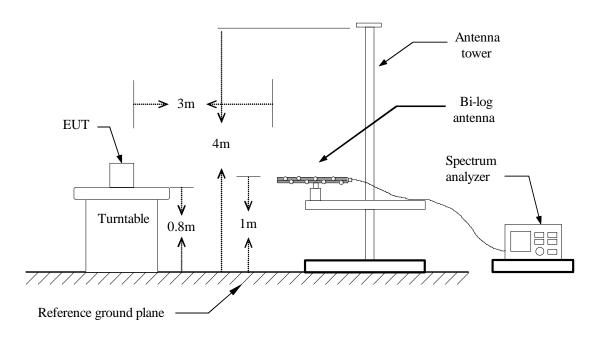
(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

7. Repeat above procedures until the measurements for all frequencies are complete.

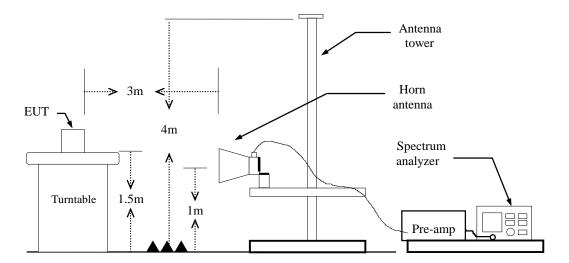
Remark.


- 1. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).


Page: 26 / 37
Report No.: T190703W02-RP Rev.: 01

4.4.3 Test Setup

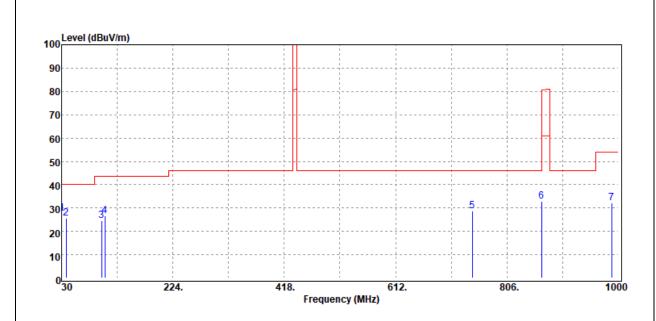
9kHz ~ 30MHz


30MHz ~ 1 GHz

Page: 27 / 37 Rev.: 01

Above 1 GHz

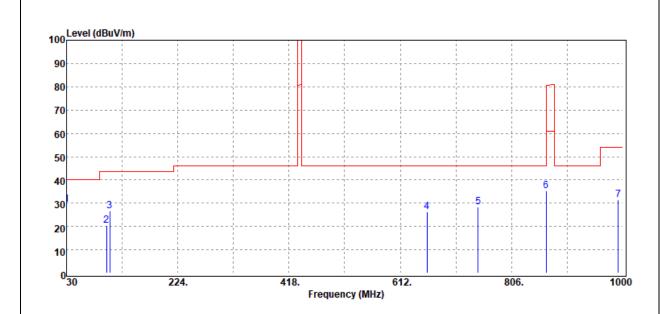
4.4.4 Test Result


Pass.

Page: 28 / 37
Report No.: T190703W02-RP Rev.: 01

Test Data Below 1GHz

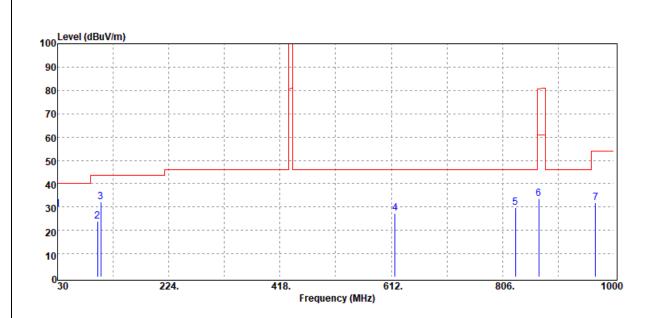
	Test Mode:	TX-433.050MHz	Temp/Hum	30.1(°C)/ 53%RH
	Test Item	Below 1GHz	Test Date	2019/08/21
Ī	Polarize	Vertical	Test Engineer	Jerry Lu
Γ	Detector	Peak		



Frequency	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	PK/QP/AV	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
30.00	Peak	29.21	-1.51	27.70	40.00	-12.30
37.76	Peak	33.42	-7.85	25.57	40.00	-14.43
99.84	Peak	37.38	-12.75	24.63	43.50	-18.87
105.66	Peak	37.72	-11.02	26.70	43.50	-16.80
745.86	Peak	26.77	1.96	28.73	46.00	-17.27
866.10	Peak	30.13	2.80	32.93	80.79	-47.86
988.36	Peak	26.81	5.46	32.27	54.00	-21.73

Page: 29 / 37 Rev.: 01

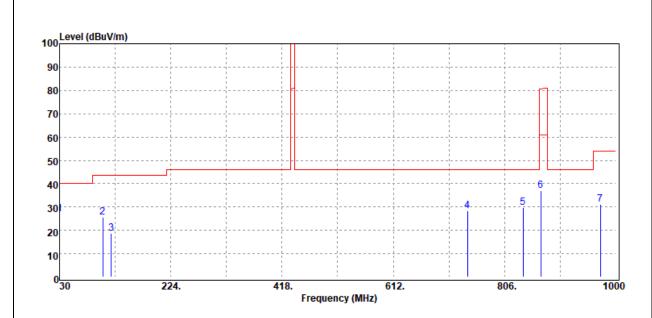
Test Mode:	TX-433.050MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Below 1GHz	Test Date	2019/08/21
Polarize	Horizontal	Test Engineer	Jerry Lu
Detector	Peak		



Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
30.00	Peak	30.76	-1.51	29.25	40.00	-10.75
99.84	Peak	33.34	-12.75	20.59	43.50	-22.91
105.66	Peak	37.79	-11.02	26.77	43.50	-16.73
658.56	Peak	26.42	-0.21	26.21	46.00	-19.79
747.80	Peak	26.45	1.93	28.38	46.00	-17.62
866.10	Peak	32.61	2.80	35.41	80.79	-45.38
992.24	Peak	26.26	5.17	31.43	54.00	-22.57

Page: 30 / 37 Rev.: 01

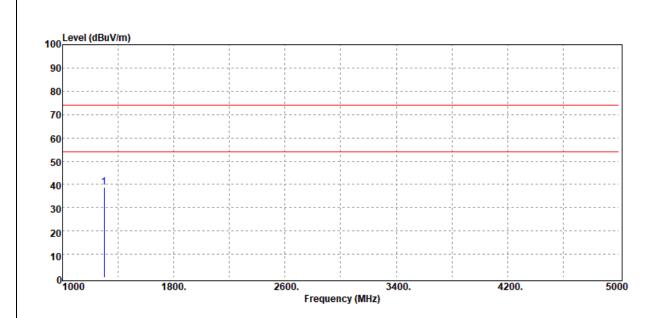
Test Mode:	TX-434.575MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Below 1GHz	Test Date	2019/08/21
Polarize	Vertical	Test Engineer	Jerry Lu
Detector	Peak		



Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
30.00	Peak	30.64	-1.51	29.13	40.00	-10.87
	reak	30.04	-1.51			-10.87
99.84	Peak	36.67	-12.75	23.92	43.50	-19.58
105.66	Peak	43.14	-11.02	32.12	43.50	-11.38
618.79	Peak	28.00	-0.78	27.22	46.00	-18.78
828.31	Peak	26.57	3.26	29.83	46.00	-16.17
869.15	Peak	30.37	3.04	33.41	80.85	-47.44
967.99	Peak	26.64	5.21	31.85	54.00	-22.15

Page: 31 / 37 Rev.: 01

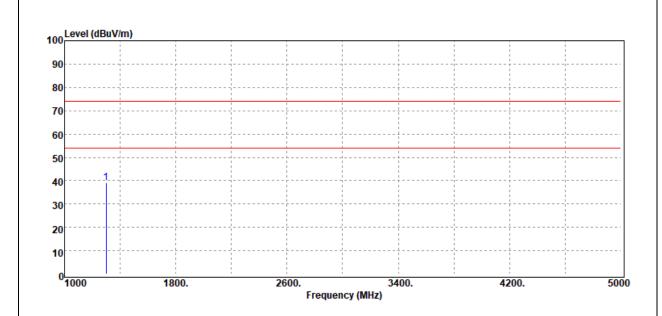
	Test Mode:	TX-434.575MHz	Temp/Hum	30.1(°C)/ 53%RH
	Test Item	Below 1GHz	Test Date	2019/08/21
	Polarize	Horizontal	Test Engineer	Jerry Lu
Г	Detector	Peak		


Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
30.00	Peak	28.54	-1.51	27.03	40.00	-12.97
105.66	Peak	36.56	-11.02	25.54	43.50	-17.96
120.21	Peak	27.58	-8.88	18.70	43.50	-24.80
741.01	Peak	26.79	1.65	28.44	46.00	-17.56
838.01	Peak	26.55	3.36	29.91	46.00	-16.09
869.15	Peak	33.88	3.04	36.92	80.85	-43.93
972.84	Peak	25.46	5.56	31.02	54.00	-22.98

Page: 32 / 37
Report No.: T190703W02-RP Rev.: 01

Above 1GHz

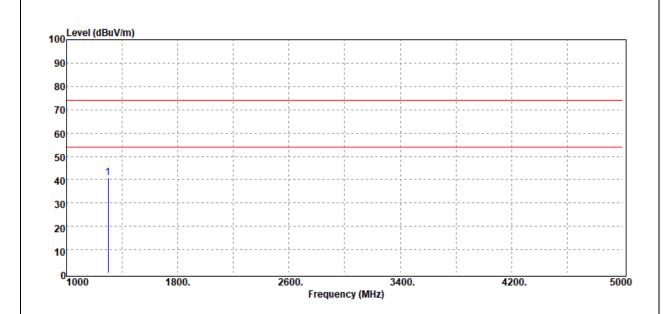
Test Mode:	TX-433.050MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Above 1GHz	Test Date	2019/08/21
Polarize	Vertical	Test Engineer	Jerry Lu
Detector	Peak		


Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
1299.15	Peak	46.27	-7.67	38.60	74.00	-35.40
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 33 / 37
Report No.: T190703W02-RP Rev.: 01

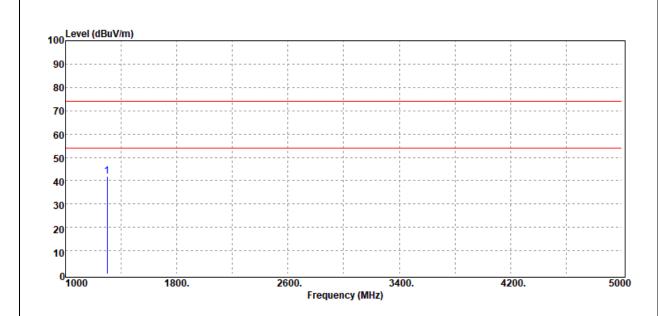
Test Mode:	TX-433.050MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Above 1GHz	Test Date	2019/08/21
Polarize	Horizontal	Test Engineer	Jerry Lu
Detector	Peak		


Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
1299.15	Peak	46.83	-7.67	39.16	74.00	-34.84
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 34 / 37
Report No.: T190703W02-RP Rev.: 01

Test Mode:	TX-434.575MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Above 1GHz	Test Date	2019/08/21
Polarize	Vertical	Test Engineer	Jerry Lu
Detector	Peak		


Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
1300.73	Peak	48.31	-7.65	40.66	74.00	-33.34
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 35 / 37
Report No.: T190703W02-RP Rev.: 01

Test Mode:	TX-434.575MHz	Temp/Hum	30.1(°C)/ 53%RH
Test Item	Above 1GHz	Test Date	2019/08/21
Polarize	Horizontal	Test Engineer	Jerry Lu
Detector	Peak		

Frequency (MHz)	Detector Mode PK/QP/AV	Spectrum Reading Level (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
1300.73	Peak	49.63	-7.65	41.98	74.00	-32.02
N/A						

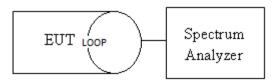
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 36 / 37 Report No.: T190703W02-RP Rev.: 01

4.5 OPERATION RESTRICTION

4.5.1 Test Limit

15.231(a)(1),


A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.4

The Loop antenna connected to the spectrum analyzer, was touching to the transmitter antenna. Set the RBW=1MHz, VBW=1MHz, Detector = Peak, Trace mode = Max hold, Sweep = 1s. Measure

4.5.3 Test Setup

4.5.4 Test Result

433.050MHz

Dwell Time				
Operation condition	Pulse On Time (s)	Limits	Result	
manually operated	2.1304s	5 sec	PASS	

434.575MHz

Dwell Time				
Operation condition	Pulse On Time (s)	Limits	Result	
manually operated	2.1304s	5 sec	PASS	

Page: 37 / 37

Report No.: T190703W02-RP

Rev.: 01

Test Data

- End of Test Report -