

RF TEST REPORT

Report No.: 16070599-FCC-R2

Supersede Report No.: N/A

Applicant	STAR MICRONICS CO., LTD.	
Product Name	Portable Thermal Printer	
Model No.	SM-L304	
Serial No.	SM-L300	
Test Standard	FCC Part 15.247: 2015, ANSI C63.10: 2013	
Test Date	August 06 to November 30, 2016	
Issue Date	December 01, 2016	
Test Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail	
Equipment complied with the specification		<input checked="" type="checkbox"/>
Equipment did not comply with the specification		<input type="checkbox"/>
Loren Luo	David Huang	
Loren Luo Test Engineer	David Huang Checked By	
This test report may be reproduced in full only		
Test result presented in this test report is applicable to the tested sample only		

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park

South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16070599-FCC-R2
Page	3 of 41

This page has been left blank intentionally.

CONTENTS

1. REPORT REVISION HISTORY	5
2. CUSTOMER INFORMATION	5
3. TEST SITE INFORMATION.....	5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5. TEST SUMMARY	7
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 ANTENNA REQUIREMENT.....	8
6.2 DTS (6 DB) CHANNEL BANDWIDTH	9
6.3 MAXIMUM OUTPUT POWER	11
6.4 POWER SPECTRAL DENSITY.....	13
6.5 BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	15
6.6 AC POWER LINE CONDUCTED EMISSIONS.....	18
6.7 RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	24
ANNEX A. TEST INSTRUMENT.....	30
ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS.....	31
ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT.....	36
ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	40
ANNEX E. DECLARATION OF SIMILARITY	41

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070599-FCC-R2	NONE	Original	December 01, 2016

2. Customer information

Applicant Name	STAR MICRONICS CO., LTD.
Applicant Add	20-10 Nakayoshida, Suruga-ku Shizuoka-shi Japan
Manufacturer	Xiamen PRT Technology Co.,Ltd
Manufacturer Add	4,5/f,#8,gaoqi Nan Shi'er Road(Aide Airport Industrial Park),Xiamen,Fujian.

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108
FCC Test Site No.	718246
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

4. Equipment under Test (EUT) Information

Description of EUT: Portable Thermal Printer

 Main Model: SM-L304

 Serial Model: SM-L300

 Date EUT received: August 05, 2016

 Test Date(s): August 06 to November 30, 2016

 Equipment Category : DTS

 Antenna Gain: BT/BLE: 0dBi

 Antenna Type: PCB antenna

 Type of Modulation: Bluetooth: GFSK, $\pi/4$ DQPSK, 8DPSK
 BLE: GFSK

 RF Operating Frequency (ies): BT/BLE: 2402-2480 MHz(TX/RX)

 Max. Output Power: -0.063dBm

 Number of Channels: Bluetooth: 79CH
 BLE: 40CH

 Port: USB Port, Power Port

 Trade Name :

 Battery:
 Input Power: Spec: 2000mAh, 7.4V
 USB: DC 5V, 1.0A

 FCC ID: R49SM-L300

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

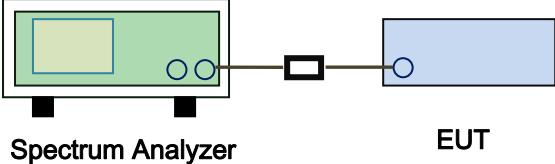
- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 1 antenna:


A permanently attached PCB antenna for Bluetooth/BLE, the gain is 0dBi for Bluetooth/BLE.

The antenna meets up with the ANTENNA REQUIREMENT.

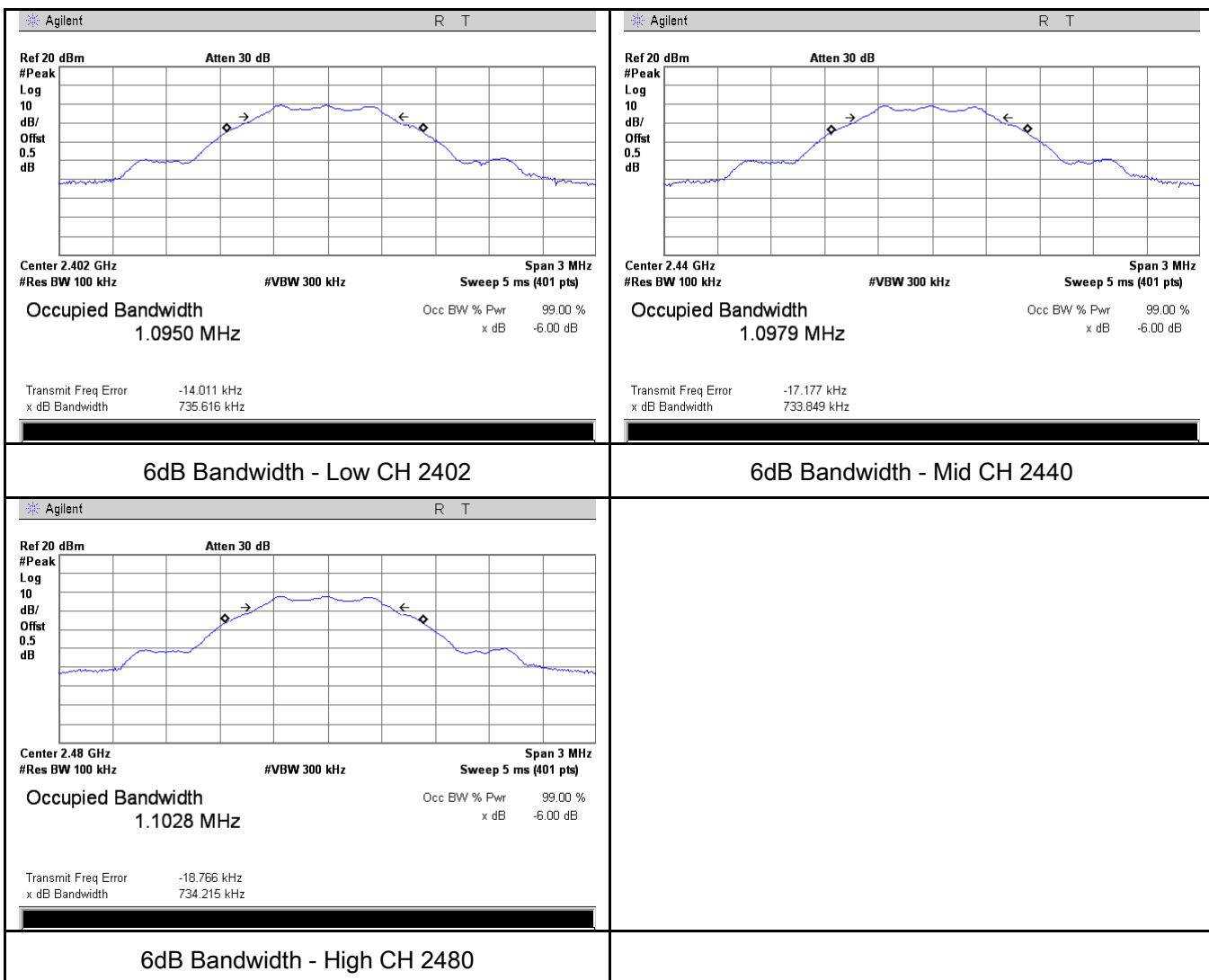
Result: Compliance.

6.2 DTS (6 dB) Channel Bandwidth

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable
§ 15.247(a)(2)	a)	6dB BW \geq 500kHz;	<input checked="" type="checkbox"/>
	b)	99% BW: For FCC reference only; required by IC.	<input checked="" type="checkbox"/>
Test Setup	 Spectrum Analyzer EUT		
Test Procedure	<p>558074 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth</p> <p><u>6dB Emission bandwidth measurement procedure</u></p> <ul style="list-style-type: none"> - Set RBW = 100 kHz. - Set the video bandwidth (VBW) \geq 3 RBW. - Detector = Peak. - Trace mode = max hold. - Sweep = auto couple. - Allow the trace to stabilize. <p>Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</p>		
Remark			
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail		

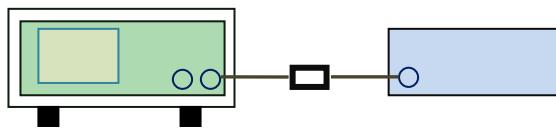
Test Data Yes N/A


Test Plot Yes (See below) N/A

6dB Bandwidth measurement result

Test Data

CH	Frequency (MHz)	6dB Bandwidth (kHz)	99% Occupied Bandwidth (MHz)
Low	2402	735.616	1.0950
Mid	2440	733.849	1.0979
High	2480	734.215	1.1028


Test Plots

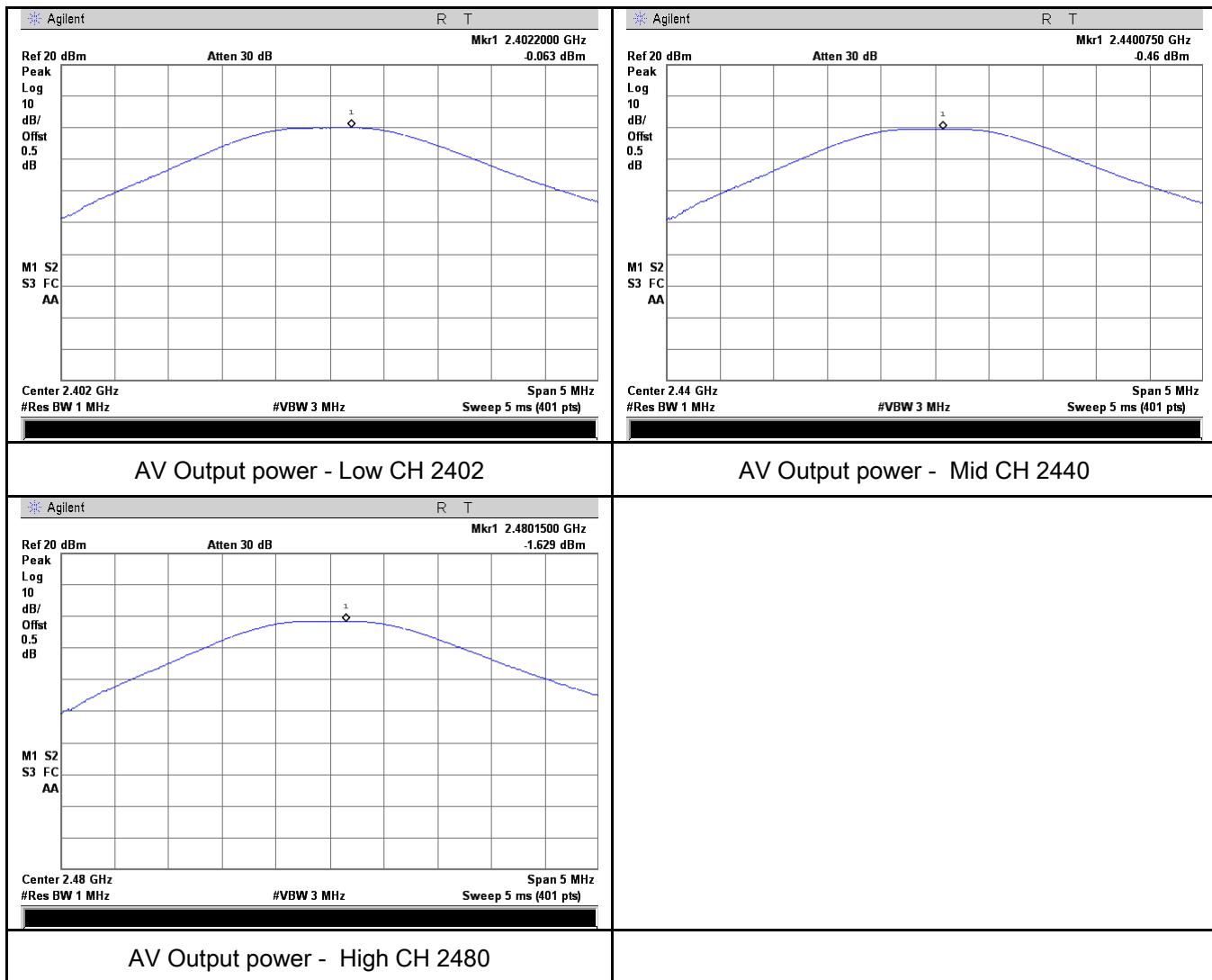
6.3 Maximum Output Power

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

Requirement(s):

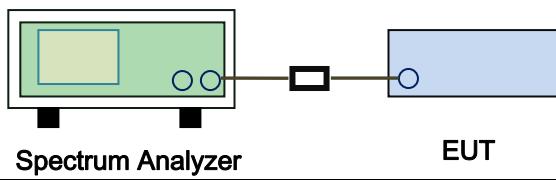
Spec	Item	Requirement	Applicable
§15.247(b) (3), RSS210 (A8.4)	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt	<input type="checkbox"/>
	b)	FHSS in 5725-5850MHz: \leq 1 Watt	<input type="checkbox"/>
	c)	For all other FHSS in the 2400-2483.5MHz band: \leq 0.125 Watt.	<input type="checkbox"/>
	d)	FHSS in 902-928MHz with \geq 50 channels: \leq 1 Watt	<input type="checkbox"/>
	e)	FHSS in 902-928MHz with \geq 25 & $<$ 50 channels: \leq 0.25 Watt	<input type="checkbox"/>
	f)	DTS in 902-928MHz, 2400-2483.5MHz: \leq 1 Watt	<input checked="" type="checkbox"/>
Test Setup		 Spectrum Analyzer EUT	
Test Procedure		<p>558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method</p> <p>Maximum output power measurement procedure</p> <ol style="list-style-type: none"> Set the RBW \geq DTS bandwidth. Set VBW \geq $3 \times$ RBW. Set span \geq $3 \times$ RBW Sweep time = auto couple. Detector = peak. Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level. 	
Remark			
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail		

Test Data Yes N/A


Test Plot Yes (See below) N/A

Output Power measurement result

Test Data


Type	CH	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
Output power	Low	2402	-0.063	30	Pass
	Mid	2440	-0.46	30	Pass
	High	2480	-1.629	30	Pass

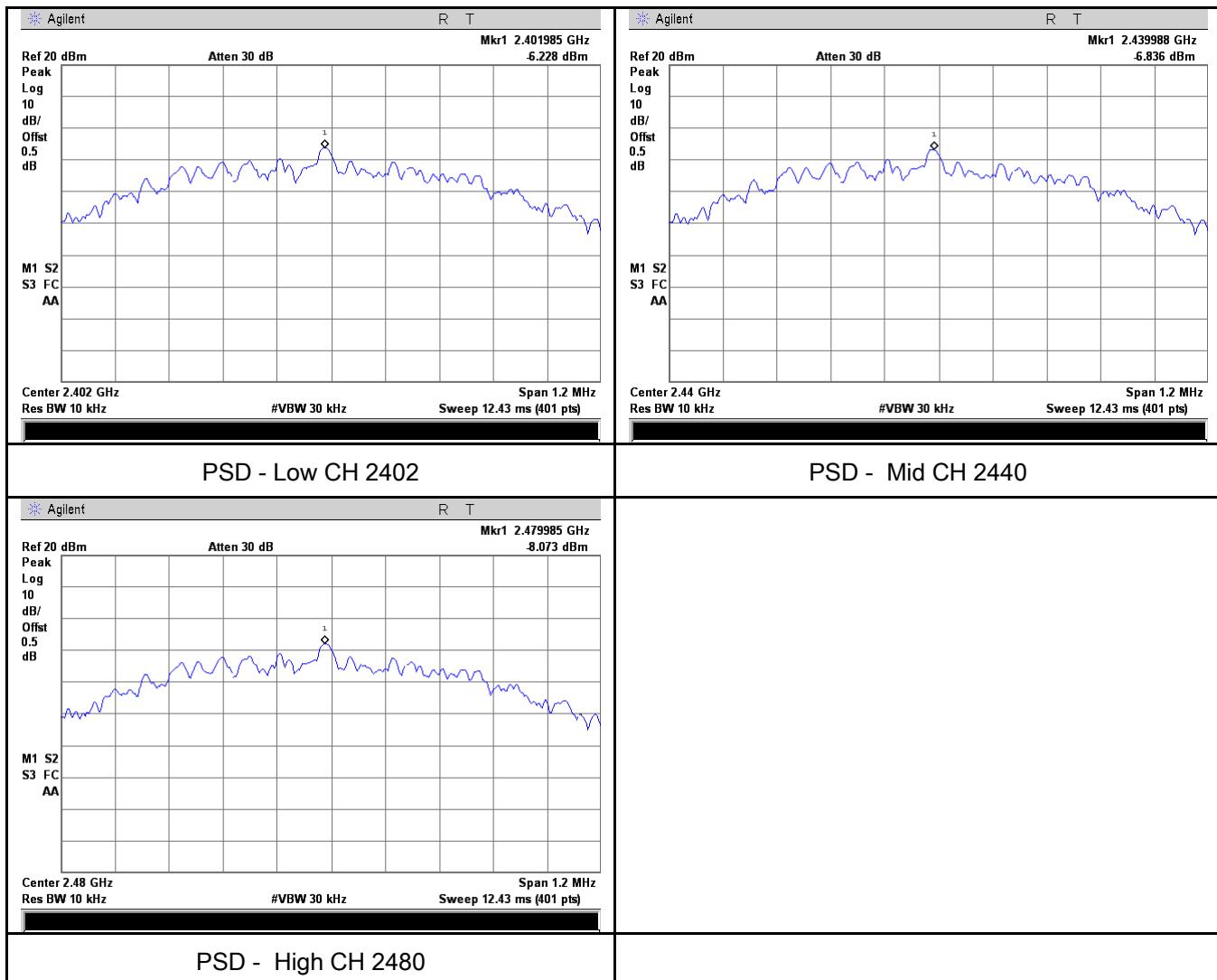
Test Plots

6.4 Power Spectral Density

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable
§15.247(e)	a)	The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	<input checked="" type="checkbox"/>
Test Setup			
Test Procedure	<p>558074 D01 DTS MEAS Guidance v03r03, 10.2 power spectral density method power spectral density measurement procedure</p> <ul style="list-style-type: none"> - a) Set analyzer center frequency to DTS channel center frequency. - b) Set the span to 1.5 times the DTS bandwidth. - c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. - d) Set the VBW $\geq 3 \times \text{RBW}$. - e) Detector = peak. - f) Sweep time = auto couple. - g) Trace mode = max hold. - h) Allow trace to fully stabilize. - i) Use the peak marker function to determine the maximum amplitude level within the RBW. - j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. 		
Remark			
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail		

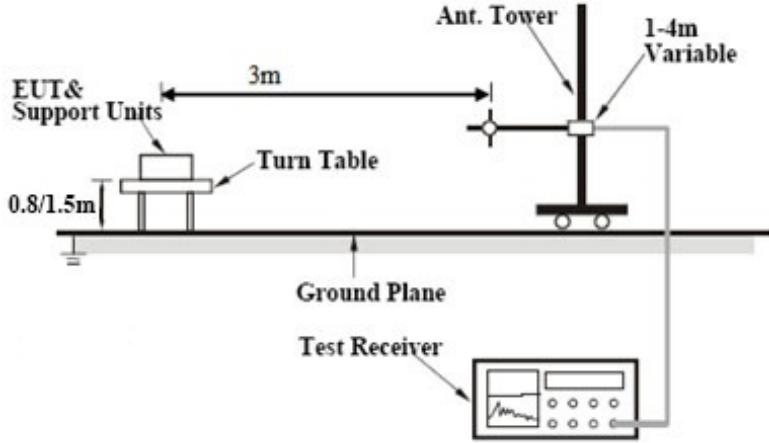
Test Data Yes N/A
 Test Plot Yes (See below) N/A


Power Spectral Density measurement result

Test Data

Type	CH	Freq (MHz)	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Result
PSD	Low	2402	-6.228	-5.23	-11.458	8	Pass
	Mid	2440	-6.836	-5.23	-12.066	8	Pass
	High	2480	-8.073	-5.23	-13.303	8	Pass

Note: factor=10log(3/10)=-5.23

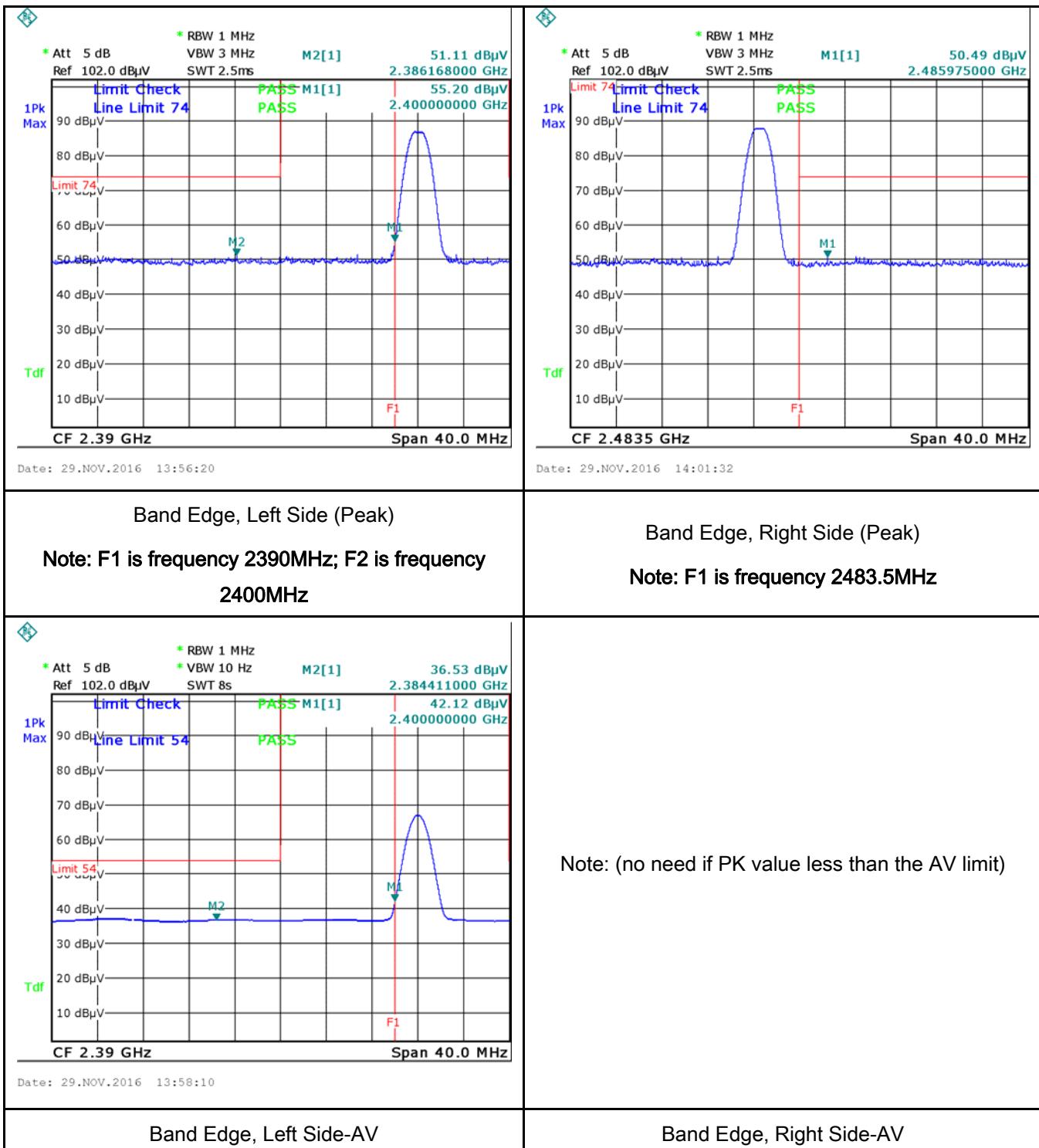

Test Plots

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

Requirement(s):

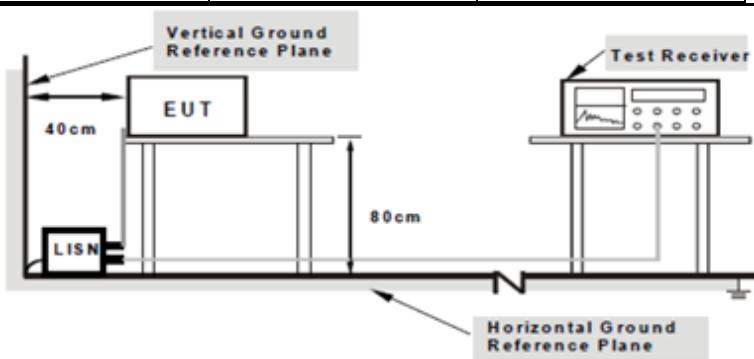
Spec	Item	Requirement	Applicable
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	<input checked="" type="checkbox"/>
Test Setup	<p>The diagram illustrates the test setup. An 'EUT & Support Units' is positioned on a 'Turn Table' at a height of '0.8/1.5m' above a 'Ground Plane'. A 'Test Receiver' is connected to the EUT. A '1-4m Variable' height 'Ant. Tower' is mounted on the turn table, with a vertical distance of '3m' indicated between the EUT and the base of the tower. The tower is connected to the 'Test Receiver'.</p>		
Test Procedure	<p>Radiated Method Only</p> <ul style="list-style-type: none"> - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. 		


	<ul style="list-style-type: none"> - 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below: <ul style="list-style-type: none"> a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. - 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail

Test Data Yes N/A

Test Plot Yes (See below) N/A

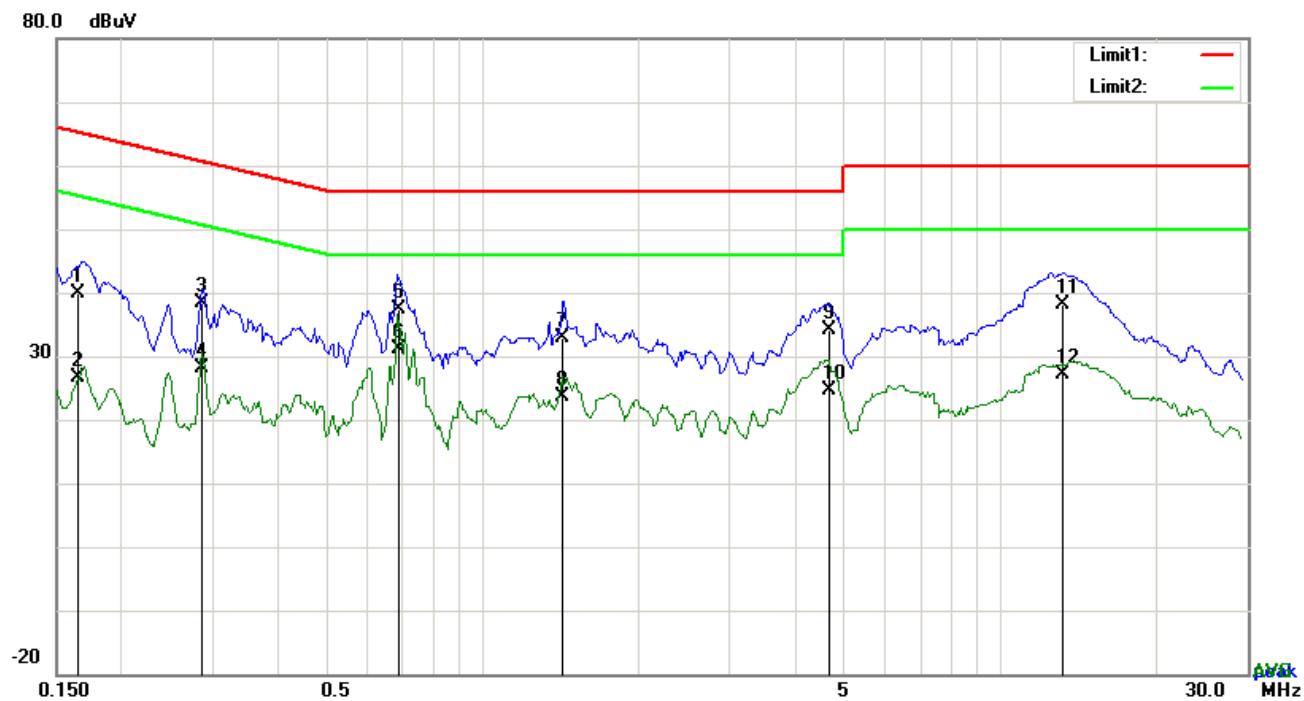
Test Plots


Band Edge measurement result

6.6 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

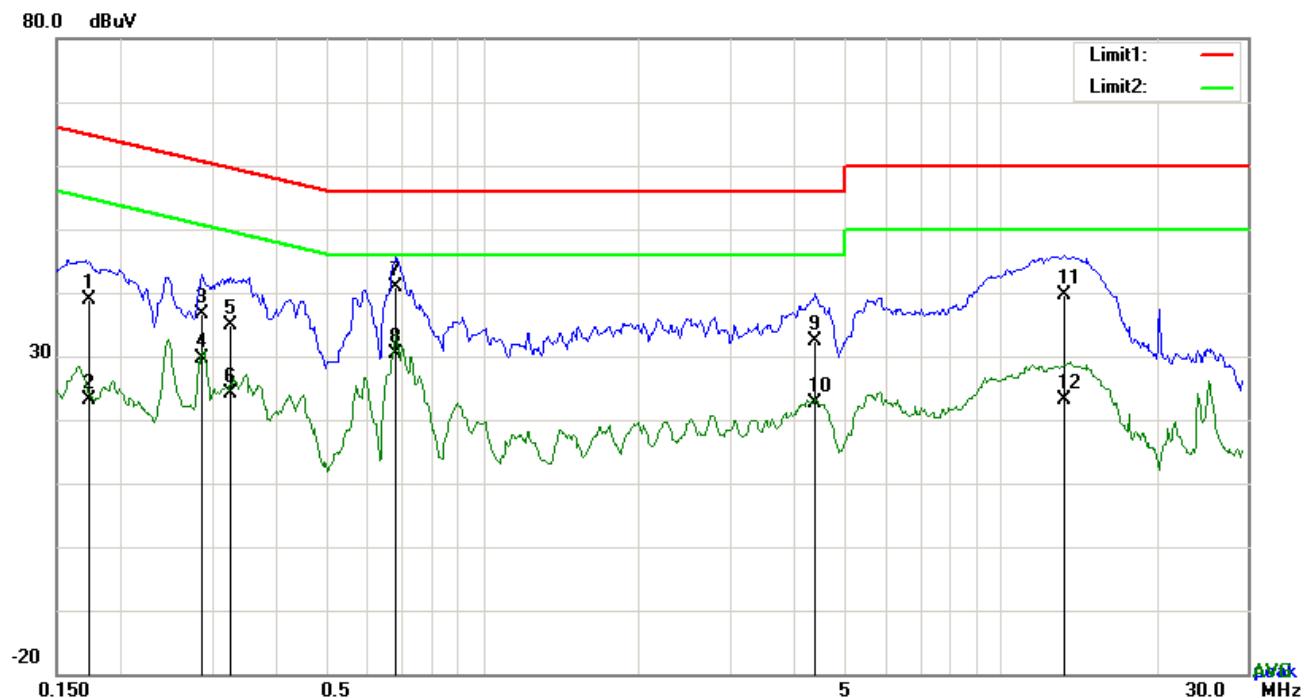
Requirement(s):


Spec	Item	Requirement	Applicable															
47CFR§15.207, RSS210 (A8.1)	a)	<p>For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.</p> <table border="1"> <thead> <tr> <th>Frequency ranges (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th></th> <th>QP</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15 ~ 0.5</td> <td>66 – 56</td> <td>56 – 46</td> </tr> <tr> <td>0.5 ~ 5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5 ~ 30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>	Frequency ranges (MHz)	Limit (dB μ V)			QP	Average	0.15 ~ 0.5	66 – 56	56 – 46	0.5 ~ 5	56	46	5 ~ 30	60	50	<input checked="" type="checkbox"/>
Frequency ranges (MHz)	Limit (dB μ V)																	
	QP	Average																
0.15 ~ 0.5	66 – 56	56 – 46																
0.5 ~ 5	56	46																
5 ~ 30	60	50																
Test Setup	<p>Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.</p>																	
Procedure	<ol style="list-style-type: none"> The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 																	

	<p>coaxial cable.</p> <ol style="list-style-type: none"> 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. 8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail

Test Data Yes N/A

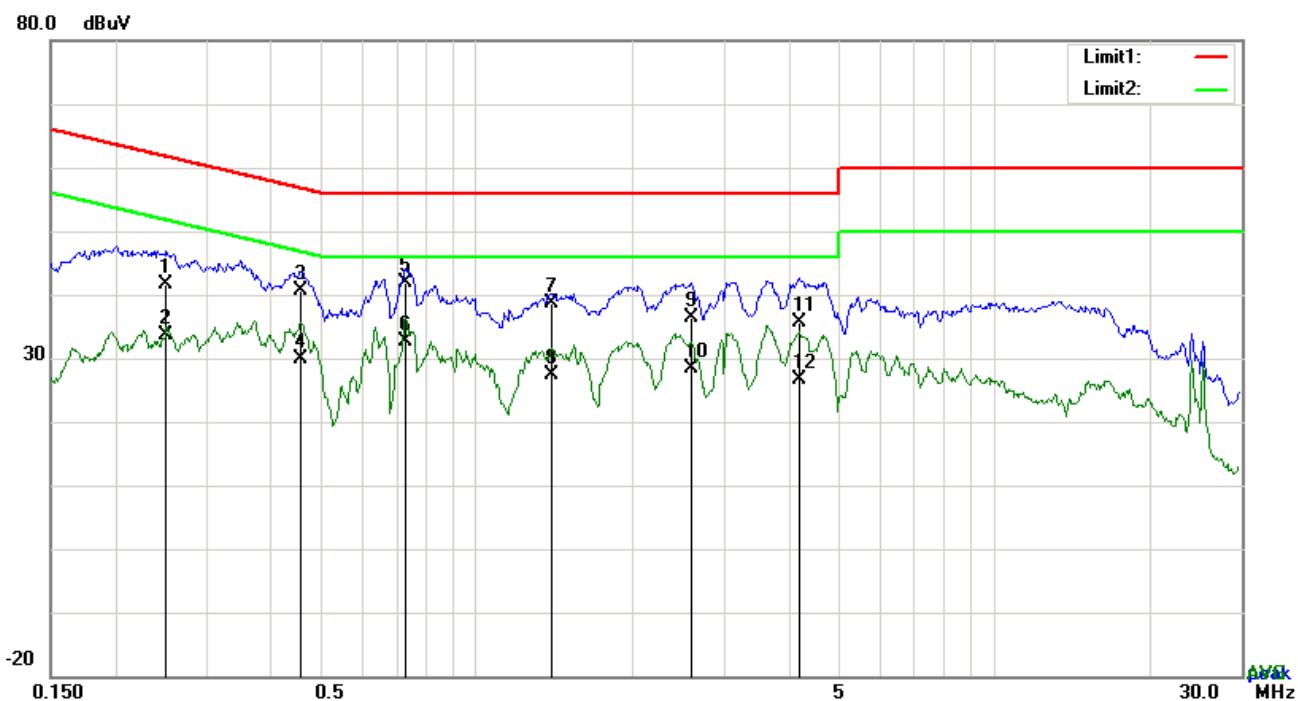
Test Plot Yes (See below) N/A


Test Mode: Transmitting Mode

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)
1	L1	0.1656	29.84	QP	10.03	39.87	65.18	-25.31
2	L1	0.1656	16.51	AVG	10.03	26.54	55.18	-28.64
3	L1	0.2865	28.42	QP	10.03	38.45	60.63	-22.18
4	L1	0.2865	18.13	AVG	10.03	28.16	50.63	-22.47
5	L1	0.6882	27.23	QP	10.03	37.26	56.00	-18.74
6	L1	0.6882	21.19	AVG	10.03	31.22	46.00	-14.78
7	L1	1.4331	22.80	QP	10.04	32.84	56.00	-23.16
8	L1	1.4331	13.63	AVG	10.04	23.67	46.00	-22.33
9	L1	4.6731	24.17	QP	10.08	34.25	56.00	-21.75
10	L1	4.6731	14.67	AVG	10.08	24.75	46.00	-21.25
11	L1	13.2336	28.01	QP	10.20	38.21	60.00	-21.79
12	L1	13.2336	16.91	AVG	10.20	27.11	50.00	-22.89

Test Mode:	Transmitting Mode
------------	-------------------

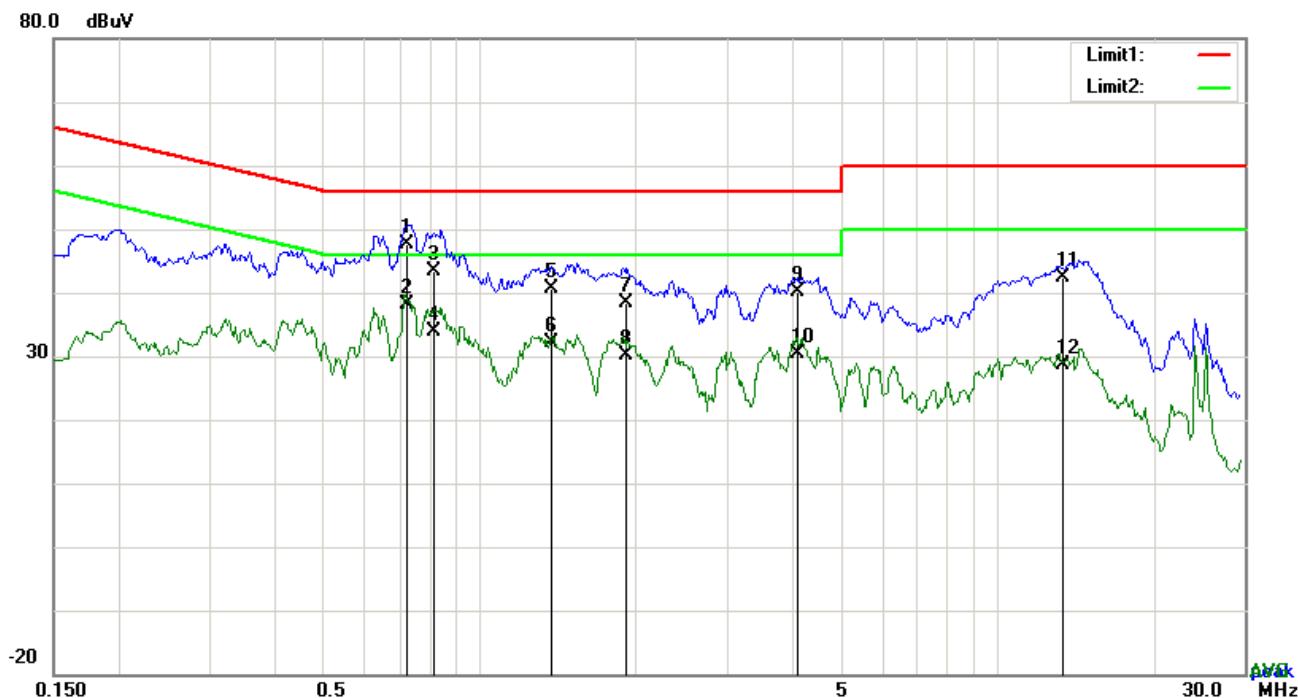


Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)
1	N	0.1734	28.94	QP	10.02	38.96	64.80	-25.84
2	N	0.1734	13.13	AVG	10.02	23.15	54.80	-31.65
3	N	0.2865	26.55	QP	10.02	36.57	60.63	-24.06
4	N	0.2865	19.52	AVG	10.02	29.54	50.63	-21.09
5	N	0.3255	24.84	QP	10.02	34.86	59.57	-24.71
6	N	0.3255	14.11	AVG	10.02	24.13	49.57	-25.44
7	N	0.6804	30.85	QP	10.02	40.87	56.00	-15.13
8	N	0.6804	20.24	AVG	10.02	30.26	46.00	-15.74
9	N	4.3767	22.40	QP	10.06	32.46	56.00	-23.54
10	N	4.3767	12.67	AVG	10.06	22.73	46.00	-23.27
11	N	13.2843	29.36	QP	10.18	39.54	60.00	-20.46
12	N	13.2843	12.93	AVG	10.18	23.11	50.00	-26.89

Test Mode: Transmitting Mode



Test Data

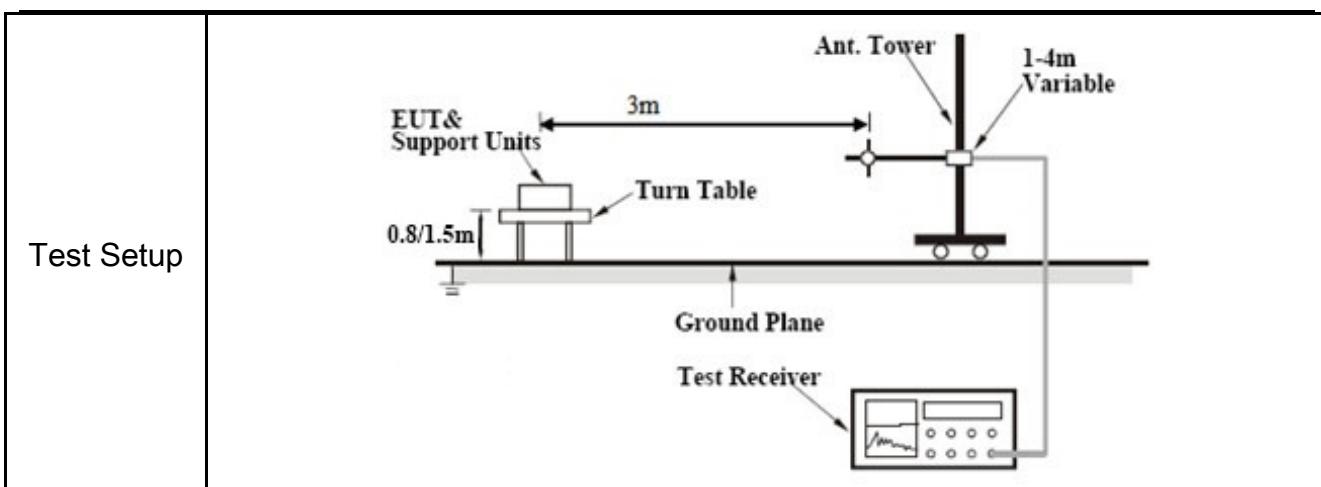
Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)
1	L1	0.2514	31.62	QP	10.03	41.65	61.71	-20.06
2	L1	0.2514	23.50	AVG	10.03	33.53	51.71	-18.18
3	L1	0.4581	30.71	QP	10.03	40.74	56.73	-15.99
4	L1	0.4581	19.95	AVG	10.03	29.98	46.73	-16.75
5	L1	0.7311	31.83	QP	10.03	41.86	56.00	-14.14
6	L1	0.7311	22.57	AVG	10.03	32.60	46.00	-13.40
7	L1	1.3902	28.65	QP	10.03	38.68	56.00	-17.32
8	L1	1.3902	17.33	AVG	10.03	27.36	46.00	-18.64
9	L1	2.5992	26.22	QP	10.05	36.27	56.00	-19.73
10	L1	2.5992	18.33	AVG	10.05	28.38	46.00	-17.62
11	L1	4.2207	25.47	QP	10.07	35.54	56.00	-20.46
12	L1	4.2207	16.55	AVG	10.07	26.62	46.00	-19.38

Test Mode:	Transmitting Mode
------------	-------------------

Test Data

Phase Neutral Plot at 240Vac, 60Hz

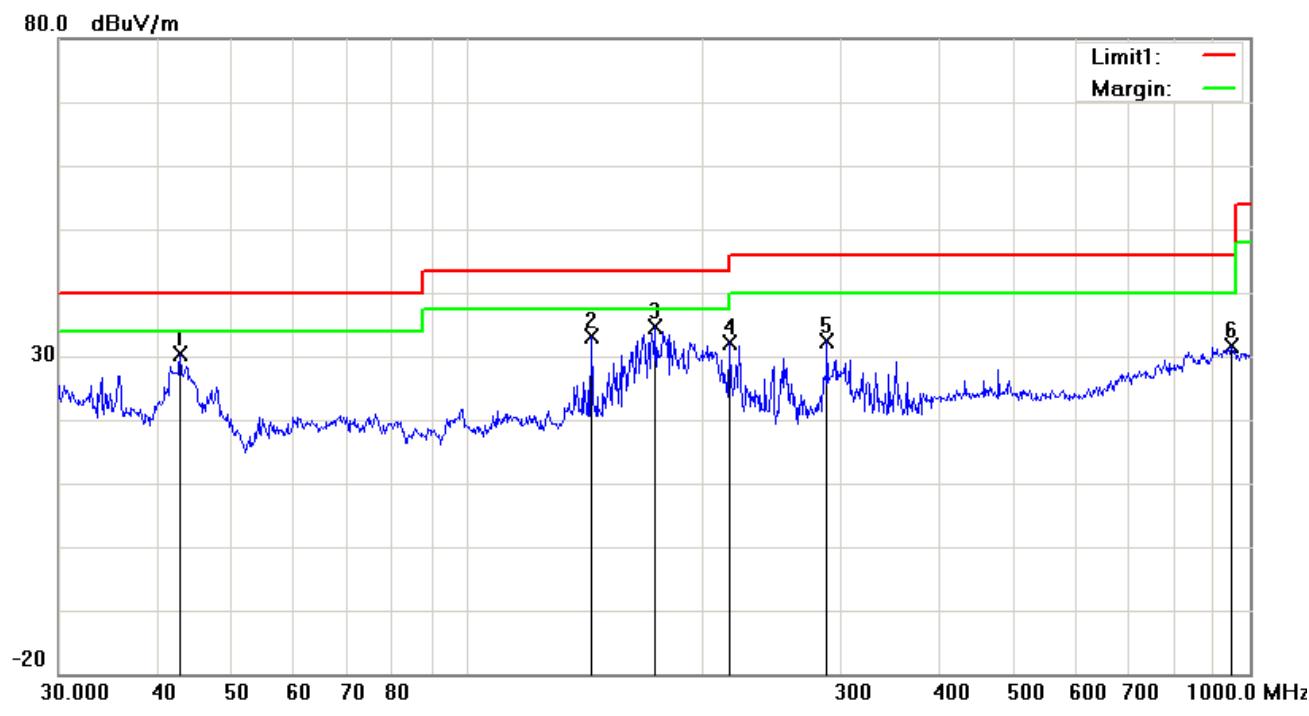

No.	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)
1	N	0.7233	37.63	QP	10.02	47.65	56.00	-8.35
2	N	0.7233	28.10	AVG	10.02	38.12	46.00	-7.88
3	N	0.8169	33.26	QP	10.03	43.29	56.00	-12.71
4	N	0.8169	23.84	AVG	10.03	33.87	46.00	-12.13
5	N	1.3746	30.51	QP	10.03	40.54	56.00	-15.46
6	N	1.3746	22.14	AVG	10.03	32.17	46.00	-13.83
7	N	1.9167	28.37	QP	10.04	38.41	56.00	-17.59
8	N	1.9167	20.02	AVG	10.04	30.06	46.00	-15.94
9	N	4.1154	29.97	QP	10.06	40.03	56.00	-15.97
10	N	4.1154	20.20	AVG	10.06	30.26	46.00	-15.74
11	N	13.3372	32.19	QP	10.18	42.37	60.00	-17.63
12	N	13.3372	18.36	AVG	10.18	28.54	50.00	-21.46

6.7 Radiated Spurious Emissions & Restricted Band

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	November 29, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable										
47CFR§15. 247(d), RSS210 (A8.5)	a)	<p>Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges</p> <table border="1"> <thead> <tr> <th>Frequency range (MHz)</th> <th>Field Strength (μV/m)</th> </tr> </thead> <tbody> <tr> <td>30 – 88</td> <td>100</td> </tr> <tr> <td>88 – 216</td> <td>150</td> </tr> <tr> <td>216 – 960</td> <td>200</td> </tr> <tr> <td>Above 960</td> <td>500</td> </tr> </tbody> </table>	Frequency range (MHz)	Field Strength (μ V/m)	30 – 88	100	88 – 216	150	216 – 960	200	Above 960	500	<input checked="" type="checkbox"/>
Frequency range (MHz)	Field Strength (μ V/m)												
30 – 88	100												
88 – 216	150												
216 – 960	200												
Above 960	500												
b)	<p>For non-restricted band, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required</p> <p><input checked="" type="checkbox"/> 20 dB down <input type="checkbox"/> 30 dB down</p>	<input checked="" type="checkbox"/>											
	c)	or restricted band, emission must also comply with the radiated emission limits specified in 15.209	<input checked="" type="checkbox"/>										


Procedure	<ol style="list-style-type: none"> 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: <ol style="list-style-type: none"> a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. 5. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
-----------	---

Remark	Different RF configuration has been evaluated but not much difference was found. The data presented here is the worst case data with EUT under 802.11n – HT20-2437MHz mode.
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail

Test Data	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> N/A
Test Plot	<input checked="" type="checkbox"/> Yes (See below) <input type="checkbox"/> N/A

Test Mode: Transmitting Mode

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Height	Degree
1	H	42.8998	39.99	peak	-9.53	30.46	40.00	-9.54	100	63
2	H	143.8295	41.50	peak	-8.48	33.02	43.50	-10.48	100	217
3	H	173.8135	44.14	peak	-9.41	34.73	43.50	-8.77	100	94
4	H	216.0240	41.01	peak	-8.88	32.13	46.00	-13.87	100	31
5	H	287.9904	39.88	peak	-7.45	32.43	46.00	-13.57	100	185
6	H	945.4399	26.54	peak	5.10	31.64	46.00	-14.36	100	62

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dB μ V)	Detector	Corrected (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Height	Degree
1	V	30.2111	32.97	peak	-0.41	32.56	40.00	-7.44	100	51
2	V	42.8998	39.94	peak	-9.53	30.41	40.00	-9.59	100	138
3	V	83.2298	42.97	peak	-13.60	29.37	40.00	-10.63	100	96
4	V	136.9392	40.48	peak	-8.35	32.13	43.50	-11.37	100	72
5	V	896.9965	30.04	peak	4.64	34.68	46.00	-11.32	100	105
6	V	942.1305	28.31	peak	5.06	33.37	46.00	-12.63	100	231

Above 1GHz

Test Mode:	Transmitting Mode
-------------------	--------------------------

Low Channel (2402 MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4804	38.42	AV	V	33.83	6.86	31.72	47.39	54	-6.61
4804	38.12	AV	H	33.83	6.86	31.72	47.09	54	-6.91
4804	48.16	PK	V	33.83	6.86	31.72	57.13	74	-16.87
4804	47.58	PK	H	33.83	6.86	31.72	56.55	74	-17.45
17785	24.13	AV	V	45.03	11.21	32.38	47.99	54	-6.01
17785	23.97	AV	H	45.03	11.21	32.38	47.83	54	-6.17
17785	40.52	PK	V	45.03	11.21	32.38	64.38	74	-9.62
17785	40.31	PK	H	45.03	11.21	32.38	64.17	74	-9.83

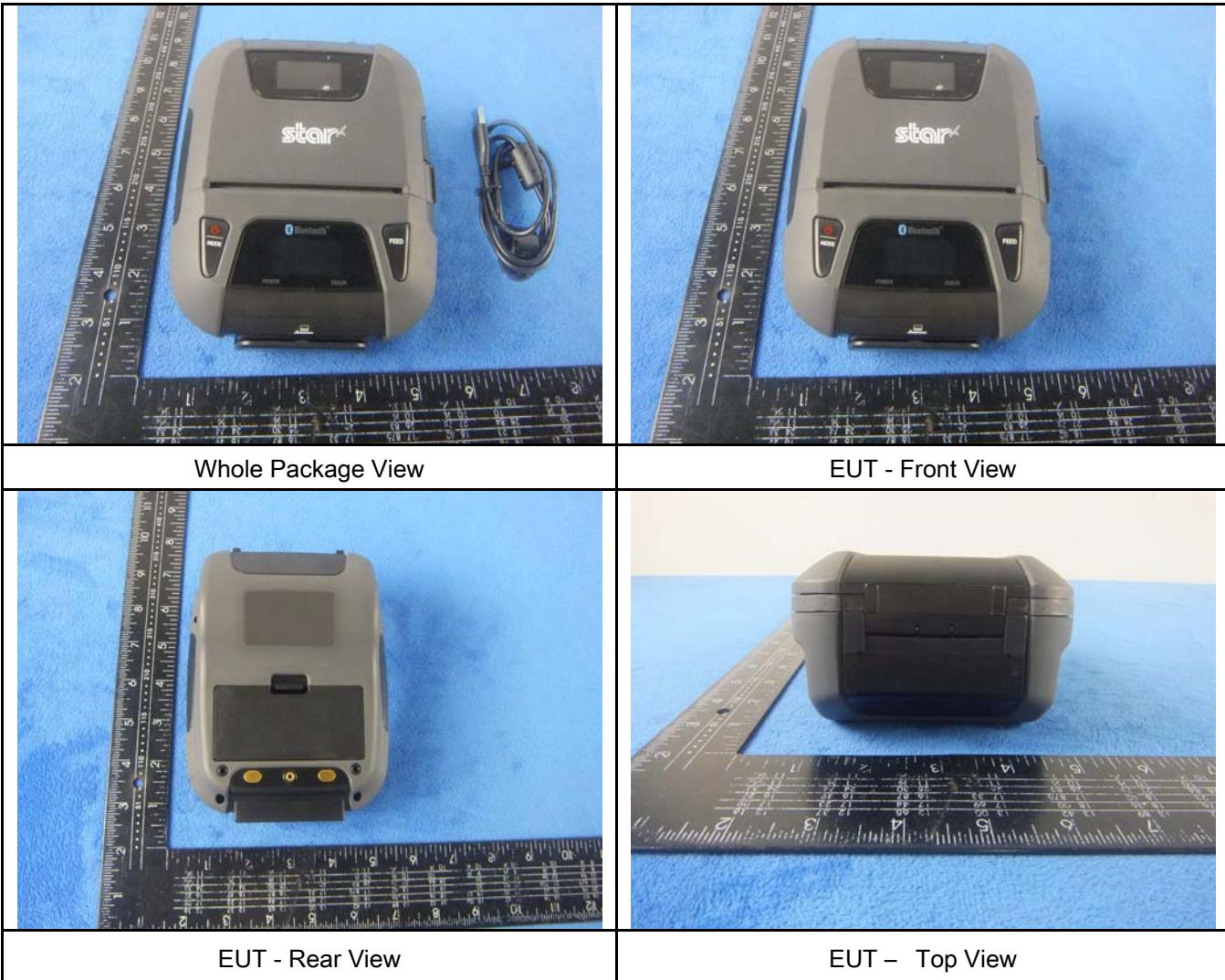
Middle Channel (2440 MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4880	38.75	AV	V	33.86	6.82	31.82	47.61	54	-6.39
4880	38.46	AV	H	33.86	6.82	31.82	47.32	54	-6.68
4880	48.25	PK	V	33.86	6.82	31.82	57.11	74	-16.89
4880	47.87	PK	H	33.86	6.82	31.82	56.73	74	-17.27
17810	23.86	AV	V	45.15	11.18	32.41	47.78	54	-6.22
17810	23.57	AV	H	45.15	11.18	32.41	47.49	54	-6.51
17810	41.13	PK	V	45.15	11.18	32.41	65.05	74	-8.95
17810	40.82	PK	H	45.15	11.18	32.41	64.74	74	-9.26

High Channel (2480 MHz)

Frequency (MHz)	S.A. Reading (dB μ V)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
4960	38.46	AV	V	33.9	6.76	31.92	47.2	54	-6.8
4960	38.28	AV	H	33.9	6.76	31.92	47.02	54	-6.98
4960	48.21	PK	V	33.9	6.76	31.92	56.95	74	-17.05
4960	48.03	PK	H	33.9	6.76	31.92	56.77	74	-17.23
17793	24.76	AV	V	45.22	11.35	32.38	48.95	54	-5.05
17793	24.51	AV	H	45.22	11.35	32.38	48.7	54	-5.3
17793	40.35	PK	V	45.22	11.35	32.38	64.54	74	-9.46
17793	40.13	PK	H	45.22	11.35	32.38	64.32	74	-9.68

Note:


- 1, The testing has been conformed to $10*2480MHz=24,800MHz$
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

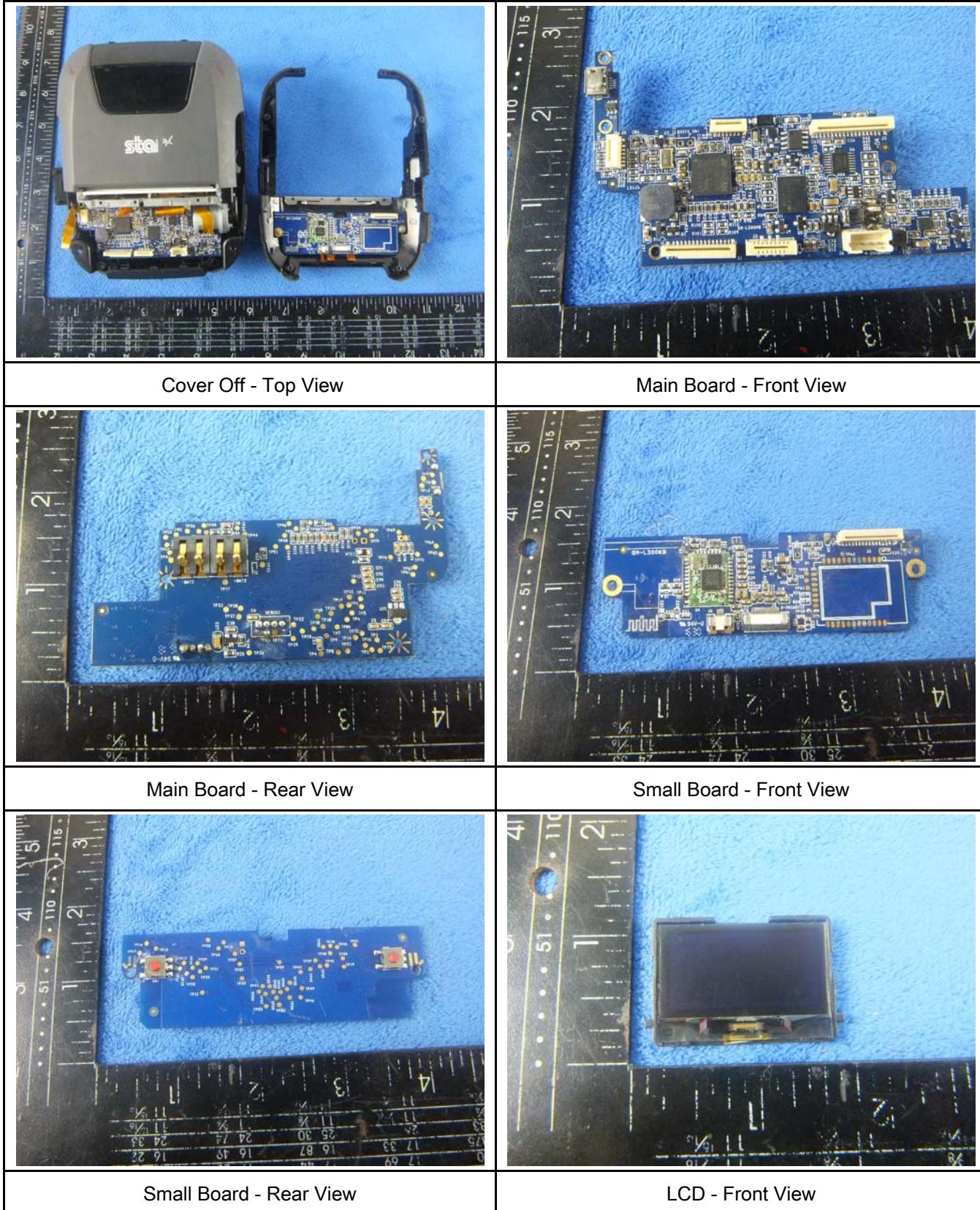
Annex A. TEST INSTRUMENT

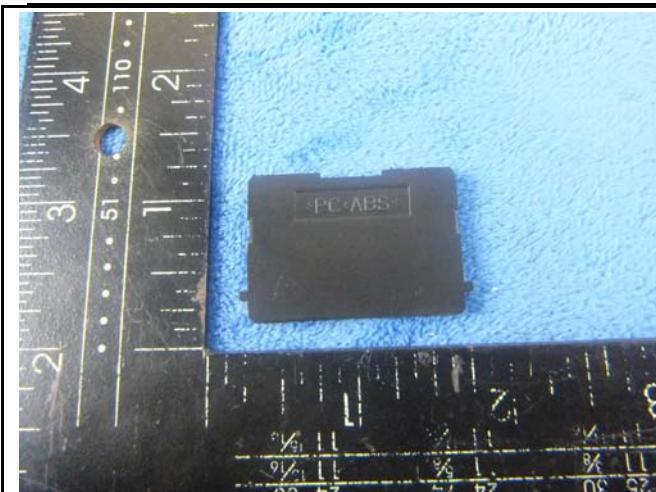
Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/16/2016	09/15/2017	<input checked="" type="checkbox"/>
Line Impedance	LI-125A	191106	09/24/2016	09/23/2017	<input checked="" type="checkbox"/>
Line Impedance	LI-125A	191107	09/24/2016	09/23/2017	<input checked="" type="checkbox"/>
LISN	ISN T800	34373	09/24/2016	09/23/2017	<input checked="" type="checkbox"/>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/23/2016	09/22/2017	<input checked="" type="checkbox"/>
Transient Limiter	LIT-153	531118	08/31/2016	08/30/2017	<input checked="" type="checkbox"/>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/16/2016	09/15/2017	<input checked="" type="checkbox"/>
Power Splitter	1#	1#	08/31/2016	08/30/2017	<input checked="" type="checkbox"/>
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	<input checked="" type="checkbox"/>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	<input checked="" type="checkbox"/>
Positioning Controller	UC3000	MF780208282	11/18/2016	11/17/2017	<input checked="" type="checkbox"/>
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	<input checked="" type="checkbox"/>
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	<input checked="" type="checkbox"/>
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	<input checked="" type="checkbox"/>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/23/2016	09/22/2017	<input checked="" type="checkbox"/>
Universal Radio Communication Tester	CMU200	121393	09/24/2016	09/23/2017	<input checked="" type="checkbox"/>

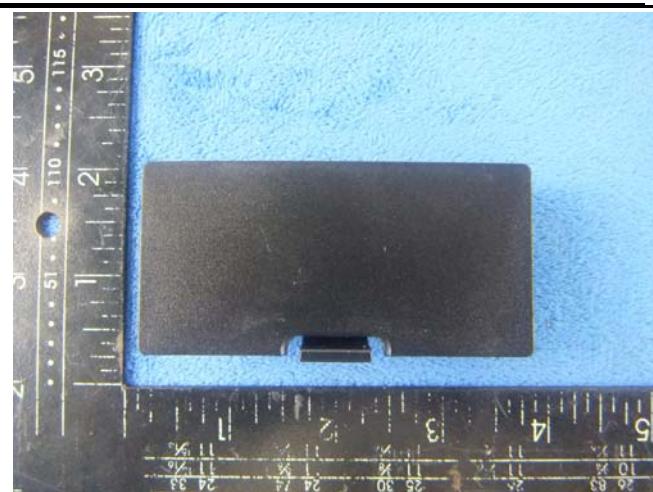
Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

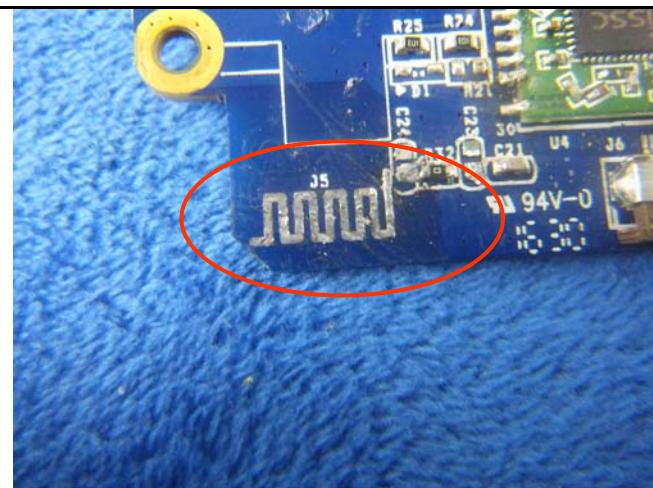
EUT - Bottom View




EUT - Left View


EUT - Right View

Annex B.ii. Photograph: EUT Internal Photo

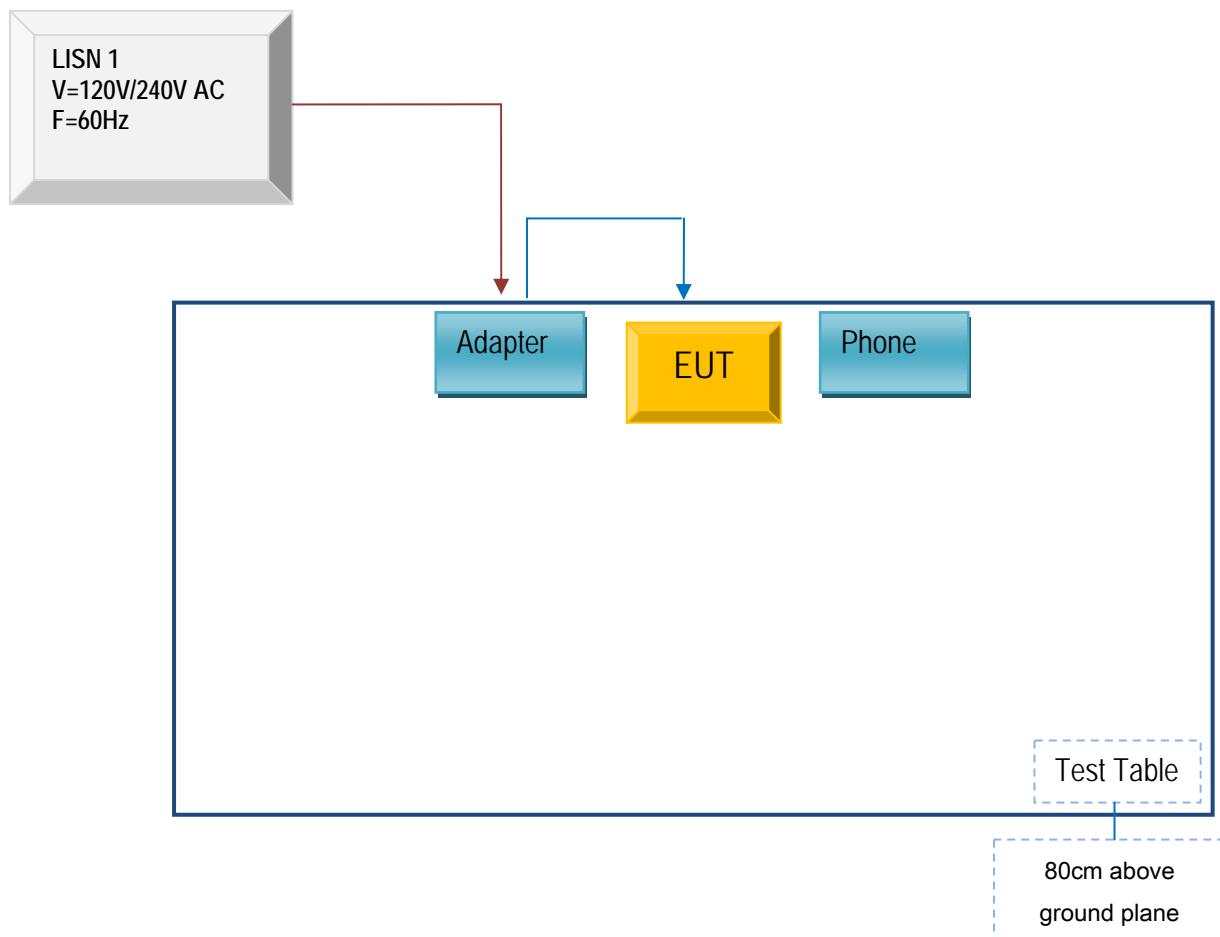

LCD - Rear View

Battery - Front View

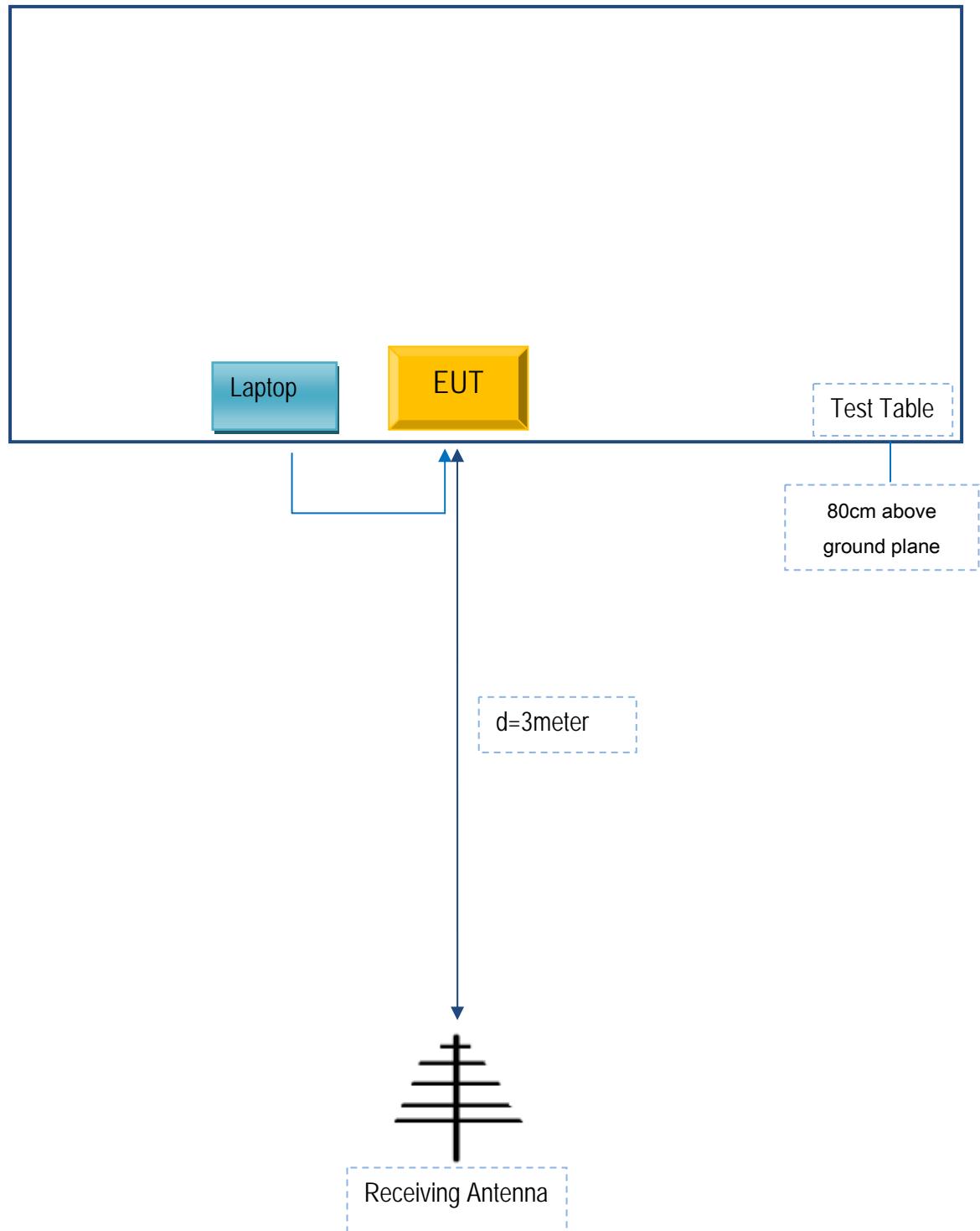


Battery - Rear View

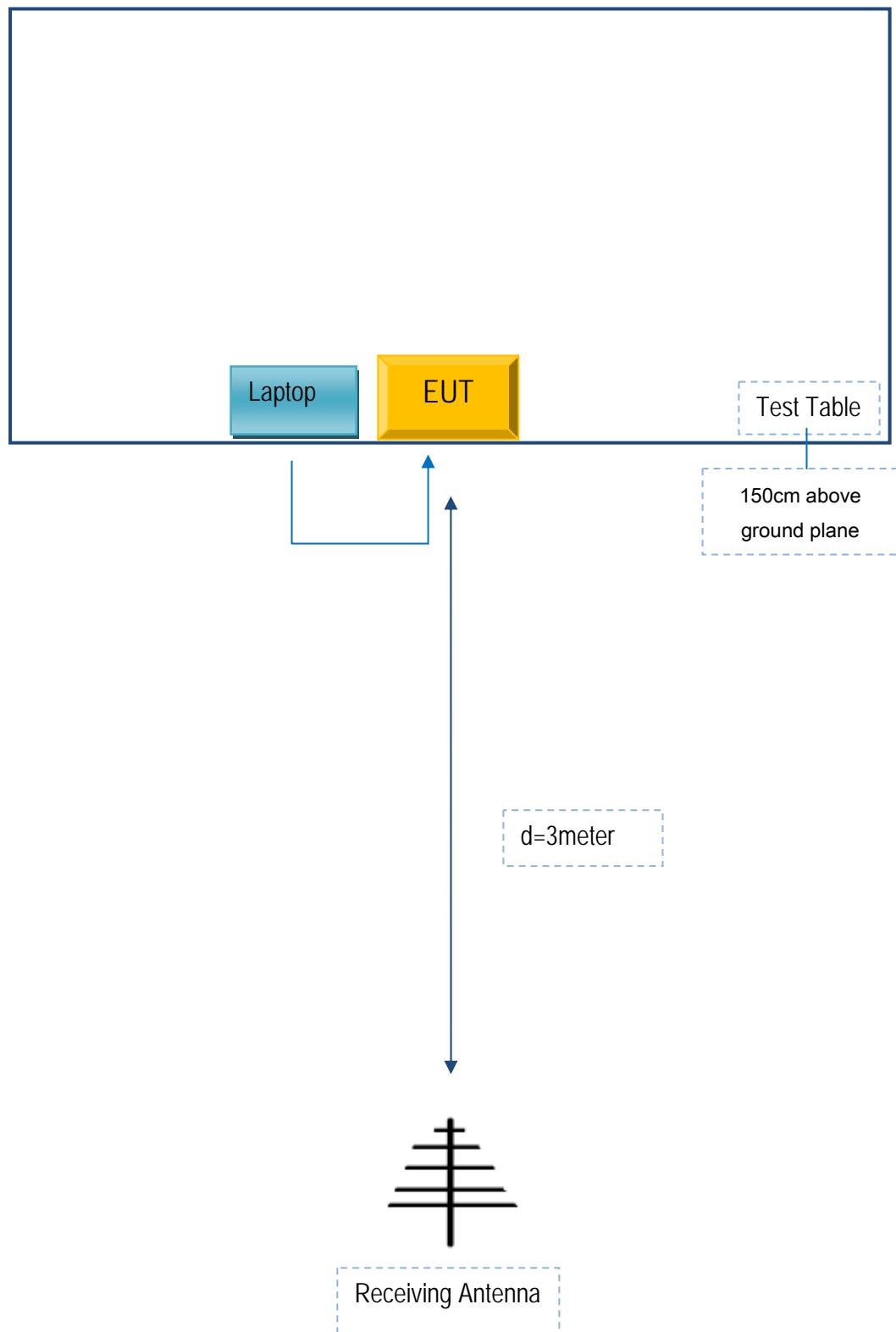
BT/BLE – Antenna View


Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup – Front View	Conducted Emissions Test Setup – Side View
Radiated Spurious Emissions Test Setup Below 1GHz	Radiated Spurious Emissions Test Above 1GHz
Radiated Spurious Emissions Test Above 1GHz	


Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Block Configuration Diagram for Radiated Emission (Below 1GHz) .

Block Configuration Diagram for Radiated Emission (Above 1GHz) .

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Lenovo Laptop	E40	N3-F5022
MI	Phone	MI 4W	W01400
STAR MICRONICS CO., LTD.	Adapter	P12USB050200	Y20160311

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
Power Cable	Un-shielding	No	0.8m	Y20160311
USB Cable	Un-shielding	No	50cm	TZ0215308

Test Report No.	16070599-FCC-R2
Page	40 of 41

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Annex E. DECLARATION OF SIMILARITY

STAR MICRONICS CO., LTD.

To: SIEMIC ,775 Montague Expressway, Milpitas, CA 95035,USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list 2 model numbers on the **CE/IC/FCC/ TELEC** certificates and reports, as following:

Model No.:**SM-L304**

We declare that the difference of these is **listed as below**:

Main Model No	Serial Model No	Difference
SM-L304	SM-L300	SM-L304 has magnetic reader head ; There's no magnetic reader head in SM-L300. The internal circuit structure is the same.

Thank you!

Signature:

Printed name/title: Tsuyoshi Tanamori

Tel: +81-54-347-2163

Fax: 81-54-347-0409

Address: 20-10 NAKAYOSHIDA, SURUGA-ku, SHIZUOKA-shi, SHIZUOKA 422-8654,
JAPAN