FCC TEST REPORT

for

Meiloon Industrial Co., Ltd.

Home theater with wireless subwoofer

Model Number: ES-SNDBR-2.1-BLK

FCC ID: R48ESSBR21BLK IC ID: 7190A-ESSBR21BLK

Prepared for : Meiloon Industrial Co., Ltd.

Address: NO.77, Lane 1775, Chuen-Ryh Road,

330 Taoyuan City, TAIWAN

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Building 1, Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 14KWE122289F Date of Test : Dec. 12~ 15, 2014 Date of Report : Dec. 22, 2014

TABLE OF CONTENTS

Te	st Re	eport Declaration	Page
1.	TES	ST SUMMARY	4
2.	GE	NERAL PRODUCT INFORMATION	4
	2.1.	Product Function	4
	2.2.	Description of Device (EUT)	
	2.3.	Difference between Model Numbers	
	2.4.	Independent Operation Modes	
	2.5.	Test Supporting System	
	2.6.	Test Facilities	
	2.7.	List of Test and Measurement Instruments	
3.		ST SET-UP AND OPERATION MODES	
	3.1.	Principle of Configuration Selection	
	3.2.	Block Diagram of Test Set-up	
	3.3.	Test Operation Mode and Test Software	
	3.4. 3.5.	Special Accessories and Auxiliary Equipment	
	3.6.	Countermeasures to Achieve EMC Compliance Test Environment:	
4.		IISSION TEST RESULTS	
	4.1.	Conducted Emission at the Mains Terminals Test	
	4. 1. 4.2.	Radiated Emission Test	
5.		DB OCCUPY BANDWIDTH	
_		Limits	
	5.1. 5.2.	Test setup	
6.	_	% OCCUPY BANDWIDTH	
	99 <i>7</i> 6.1.	Limits	
	6.1. 6.2.	Test setup	
7.	-	ND EDGE COMPLIANCE TEST	
	- БАІ 7.1.	Limits	
	7.1. 7.2.	Test setup	
8.		TENNA REQUIREMENTS	
_			
	8.1. 8.2.	Limits	
		OTOGRAPHS OF TEST SET-UP	
9.			
10	. Р	PHOTOGRAPHS OF THE EUT	25

Keyway Testing Technology Co., Ltd.

Applicant: Meiloon Industrial Co., Ltd.

Address: NO.77,Lane 1775,Chuen-Ryh Road, 330 Taoyuan City,TAIWAN.

Manufacturer: Snap AV

Address: 1800 Continental Blvd Suite 200 Charlotte, NC 28273, USA

E.U.T: Home theater with wireless subwoofer

Model Number: ES-SNDBR-2.1-BLK

Trade Name: Opisode Serial No.: -----

Date of Receipt: Dec. 11, 2014 **Date of Test:** Dec. 12~ 15, 2014

Test Specification: FCC Part 15, Subpart C Section 15.249: 2014

ANSI C63.4:2014 ANSI C63.10:2013

RSS-210 Issue 8 December 2010 RSS-Gen Issue 4 November 2014

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Dec. 22, 2014

Tested by:

Reviewed by:

Daisy Chen / Engineer

Andy Gao / Supervisor

Jade Yang/Supervisor

Approved by:

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1. TEST SUMMARY

Test Items	Test Requirement	Result	
Conducted Emissions	15.207/RSS-GEN/	PASS	
Conducted Emissions	RSS-210	17100	
Radiated Emissions	15.20915.249(a)(d)/	PASS	
Naulateu Emissions	RSS-GEN/RSS-210	FASS	
20dB Bandwidth	15.249/RSS-GEN	PASS	
200B Bariuwiuiri	RSS-210	PASS	
99% Bandwidth	RSS-GEN	DACC	
99% Bandwidth	RSS-210	PASS	
Emissions from out of band	15.249(d)/RSS-GEN	DACC	
Emissions from out of band	RSS-210	PASS	
Antenna Requirement	15.203	PASS	

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	Home theater with wireless subwoofer		
Model No.:	ES-SNDBR-2.1-BLK		
On and the Free control	2.4G: 2405MHz ~2475MHz		
Operation Frequency:	BT: 2402MHz ~2480MHz		
Channel numbers	2.4G: 36 Channels		
Channel numbers:	BT: 79 Channels		
Channel angeing	2.4G:2MHz		
Channel spacing	BT:1MHz		
Modulation technology	2.4G:QPSK		
Modulation technology:	BT:GFSK, Pi/4DQPSK, 8-DPSK		
Antenna Type:	2.4G:PCB Antenna		
Antenna Type.	BT: Permanently fixed antenna		
Antenna gain:	2.4G:1.02dBi(max)		
Antenna gain.	BT:1.53dBi		
Power supply:	DC 24V from adapter		
	Manufacturer: DYS		
	Model: DYS602-240250W		
Adapter:	I/P: 100-240Vac, 50/60Hz, 1.5A;		
	O/P: 24Vdc, 2.5A		
	DC Line: Unshielded, Undetachable, 1.8m		

2.3. Difference between Model Numbers

None.

2.4. Independent Operation Modes

The basic operation modes are:

2.4.1. EUT work continues TX mode and frequency as below:

Modulation	Channel	Frequency
	Low	2405MHz
QPSK	Middle	2439MHz
	High	2475MHz

2.5. Test Supporting System

None.

2.6. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA Registration No.: 100567-237

Date of registration: Dectember 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Keyway Testing Technology Co., Ltd. Name of Firm

Site Location Building 1, Baishun Industrial Zone, Zhangmutou

Town, Dongguan, Guangdong, China

2.7. List of Test and Measurement Instruments

2.7.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,14	Apr. 27,15
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	Apr. 27,14	Apr. 27,15
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	Apr. 27,14	Apr. 27,15
RF Cable	FUJIKURA	3D-2W	944 Cable	Apr. 27,14	Apr. 27,15

2.7.2. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,14	Apr. 27,15
System Simulator	Agilent	E5515C	GB43130245	Apr. 30,14	Apr. 30,15
Power Splitter	Weinschel	1506A	NW425	Apr. 30,14	Apr. 30,15
Bilog Antenna	ETS-LINDGREEN	3142D	135452	Apr. 27,14	
Spectrum Analyzer	Agilent	E4411B	MY4511304	Apr. 27,14	Apr. 27,15
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	Apr. 27,14	Apr. 27,15
Signal Amplifier	SONOMA	310	187016	Apr. 27,14	Apr. 27,15
Signal Amplifier	Agilent	8449B	3008A00251	Apr. 27,14	Apr. 27,15
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	Apr. 27,14	Apr. 27,15
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	8593E	3911A04271	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4408B	MY44211125	Apr. 30,14	Apr. 30,15
Signal Amplifier	DAZE	ZN3380C	11001	Apr. 27,14	Apr. 27,15
High Pass filter	Micro	HPM50111	324216	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C836.5-25-X	KW032	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1747.5-75-X2	KW035	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1880-60-X2	KW037	Apr. 30,14	Apr. 30,15
DC Power Supply	LongWei	PS-305D	010964729	Apr. 27,14	Apr. 27,15
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	Apr. 27,14	Apr. 27,15
Universal radio communication tester	Rohde&Schwarz	CMU200	3215420	Apr. 27,14	Apr. 27,15
Splitter	Agilent	11636B	0025164	Apr. 27,14	Apr. 27,15

3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

3.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

(EUT: Home theater with wireless subwoofer)

- 3.3. Test Operation Mode and Test Software None.
- 3.4. Special Accessories and Auxiliary Equipment None.
- 3.5. Countermeasures to Achieve EMC Compliance None.

3.6. Test Environment:

Ambient conditions in the test laboratory:

7 miles of the management of t					
Items	Actual				
Temperature (°C)	21~23				
Humidity (%RH)	50~65				

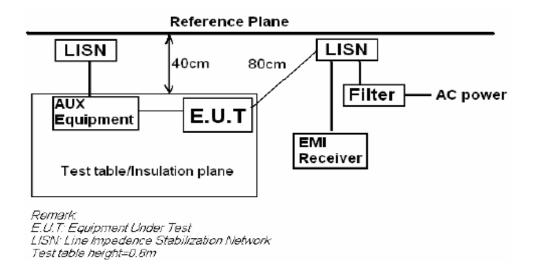
4. EMISSION TEST RESULTS

4.1. Conducted Emission at the Mains Terminals Test

4.1.1. Limit 15.207 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

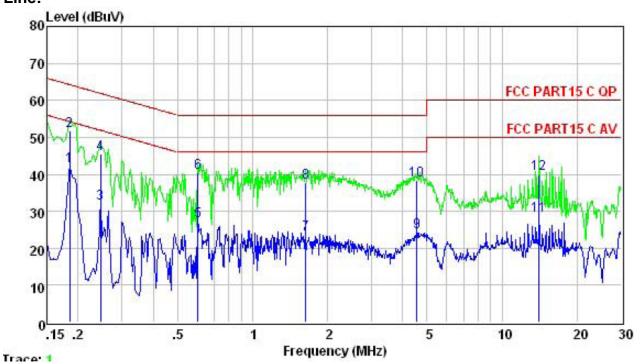
4.1.2. Test Setup


The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.

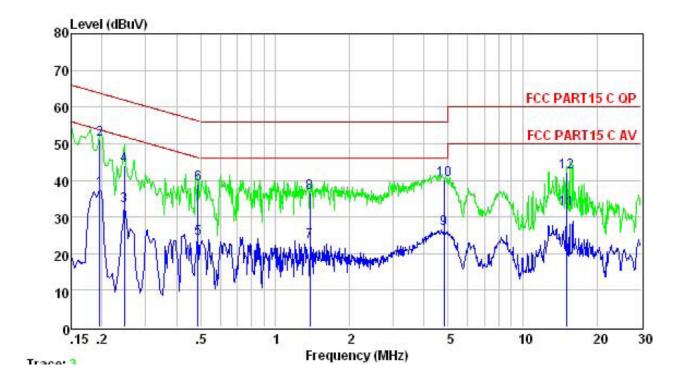
The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.


Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

4.1.3. Test Mode


Set EUT in TX mode.

	Freq	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dBuV	——dB	
1	0.185	42.12	54.24	-12.12	Average
2	0.185	51.60	64.24	-12.64	QP
3	0.246	32.19	51.91	-19.72	Average
4	0.246	45.60	61.91	-16.31	QP
5	0.604	27.38	46.00	-18.62	Average
6	0.604	40.30	56.00	-15.70	QP
7	1.636	23.77	46.00	-22.23	Average
8	1.636	37.89	56.00	-18.11	QP
9	4.549	24.51	46.00	-21.49	Average
10	4.549	38.23	56.00	-17.77	QP
11	14.063	28.96	50.00	-21.04	Average
12	14.063	40.00	60.00	-20.00	QP

Neutral

			Limit	Over	
	Freq	Level	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	
1	0.195	37.46	53.80	-16.34	Average
2	0.195	51.20	63.80	-12.60	QP
3	0.246	32.99	51.91	-18.92	Average
4	0.246	43.90	61.91	-18.01	QP
5	0.489	24.04	46.19	-22.15	Average
6	0.489	39.03	56.19	-17.16	QP
7	1.381	23.23	46.00	-22.77	Average
8	1.381	36.60	56.00	-19.40	QP
9	4.822	26.67	46.00	-19.33	Average
10	4.822	40.03	56.00	-15.97	QP
11	14.986	32.06	50.00	-17.94	Average
12	14.986	42.30	60.00	-17.70	OP

4.2. Radiated Emission Test

4.2.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	$\mu V/m$	dB(μV)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV	7)/m (Peak)
		54.0 dB(μV	V)/m (Average)

4.2.2. Restricted bands of operation

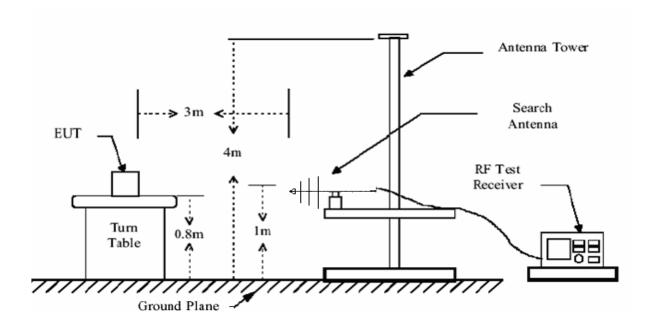
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

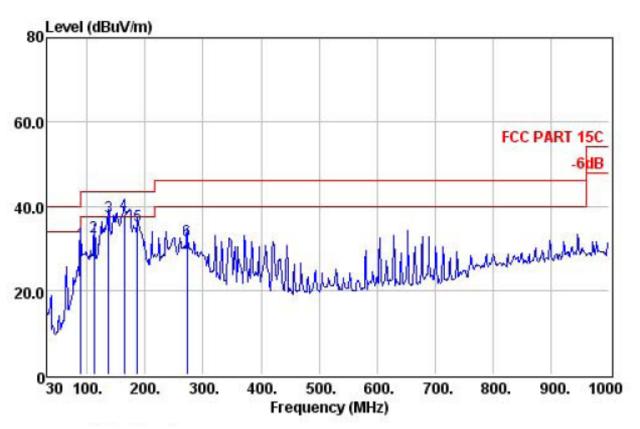
4.2.3. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector below 1GHz.

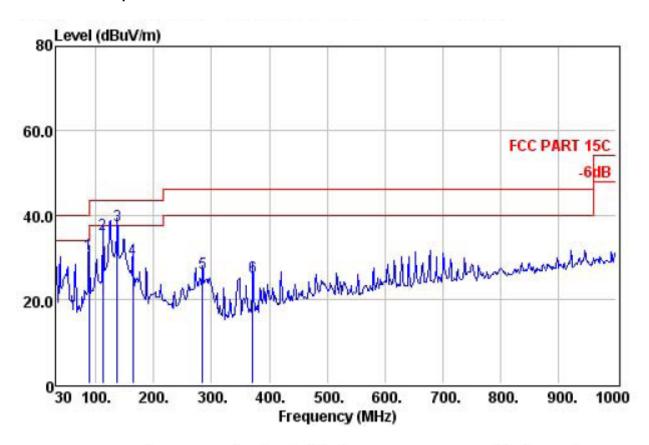

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz, for all test, used peak detector.


The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.
- 5. we pretest two antenna, the worst mode was antenna A, the data show in the report.



Below 1GHz TX Mode Horizontal polarizations

			Preamp	Read	Cable	Antenna		Limit	Over	
		Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	S	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	S S
1		89.17	31.35	52.63	0.94	9.01	31.23	43.50	-12.27	QP
2		112.45	31.29	53.93	1.03	9.10	32.77	43.50	-10.73	QP
3		136.70	31.20	59.05	1.12	8.37	37.34	43.50	-6.16	QP
4	!	163.86	31.21	58.55	1.30	9.55	38.19	43.50	-5.31	QP
5		187.14	31.13	55.05	1.39	10.19	35.50	43.50	-8.00	QP
6		272.50	30.95	47.93	1.78	12.99	31.75	46.00	-14.25	QP

TX Mode Vertical polarizations

		Preamp	Read	Cable.	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
,	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	88.20	31.35	52.16	0.94	8.90	30.65	43.50	-12.85	QP
2	112.45	31.29	56.56	1.03	9.10	35.40	43.50	-8.10	QP
3	136.70	31.20	59.10	1.12	8.37	37.39	43.50	-6.11	QP
4	163.86	31.21	49.89	1.30	9.55	29.53	43.50	-13.97	QP
5	284.14	30.94	41.85	1.87	13.29	26.07	46.00	-19.93	QP
6	371.44	30.62	37.58	2.27	16.17	25.40	46.00	-20.60	OP

Above 1GHz 2405MHz Horizontal polarizations

		Preamp	Read	Cable.	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	S -3
1	2405.00	26.32	76.02	7.39	32.26	89.35	94.00	-4.65	Average
2	2405.00	26.32	93.02	7.39	32.26	106.35	114.00	-7.65	Peak
3	3475.00	26.74	28.35	9.98	34.93	46.52	74.00	-27.48	Peak
4	3950.00	26.98	29.18	10.43	34.65	47.28	74.00	-26.72	Peak
5	5015.00	27.60	28.66	12.50	38.92	52.48	74.00	-21.52	Peak
6	13058.00	29.21	560.99	18.28	-500.00	50.06	74.00	-23.94	Peak

2405MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	3
1	2405.00	26.32	76.63	7.39	32.26	89.96	94.00	-4.04	Average
2	2405.00	26.32	93.04	7.39	32.26	106.37	114.00	-7.63	Peak
3	2800.00	26.44	29.40	9.02	32.26	44.24	74.00	-29.76	Peak
4	4345.00	27.21	29.06	11.03	35.22	48.10	74.00	-25.90	Peak
5	5045.00	27.61	28.18	12.54	38.94	52.05	74.00	-21.95	Peak
6	12158.00	29.03	561.71	17.50-	-500.00	50.18	74.00	-23.82	Peak

2439MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	, -
1	2439.00	26.33	75.97	7.48	32.56	89.68	94.00	-4.32	Average
2	2439.00	26.33	92.16	7.48	32.56	105.87	114.00	-8.13	Peak
3	3905.00	26.96	29.05	10.37	34.69	47.15	74.00	-26.85	Peak
4	4860.00	27.52	29.06	12.10	37.95	51.59	74.00	-22.41	Peak
5	11314.00	28.93	561.85	17.23-	-500.00	50.15	74.00	-23.85	Peak
6	14514.00	29.48	559.88	19.69-	-500.00	50.09	74.00	-23.91	Peak

2439MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	, 1
1	2439.00	26.33	75.95	7.48	32.56	89.66	94.00	-4.34	Average
2	2439.00	26.33	92.21	7.48	32.56	105.92	114.00	-8.08	Peak
3	4465.00	27.28	27.84	11.24	35.44	47.24	74.00	-26.76	Peak
4	4960.00	27.58	28.37	12.36	38.63	51.78	74.00	-22.22	Peak
5	11058.00	28.91	562.06	17.18-	-500.00	50.33	74.00	-23.67	Peak
6	14631.00	29.49	560.76	19.77-	-500.00	51.04	74.00	-22.96	Peak

2475MHz Horizontal polarizations

	Freq	Preamp Factor			Antenna Factor		Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	S -3
1	2475.00	26.34	75.57	7.57	32.88	89.68	94.00	-4.32	Average
2	2475.00	26.34	92.38	7.57	32.88	106.49	114.00	-7.51	Peak
3	3730.00	26.87	28.33	10.15	34.87	46.48	74.00	-27.52	Peak
4	4655.00	27.40	28.43	11.63	36.55	49.21	74.00	-24.79	Peak
5	9467.00	28.59	561.04	16.92-	-500.00	49.37	74.00	-24.63	Peak
6	12037.00	29.01	561.69	17.40-	-500.00	50.08	74.00	-23.92	Peak

2475MHz Vertical polarizations

	Fren	Preamp Factor			Antenna Factor	Level	Limit Line	Over	Remark
	rreq	ractor	PEACT	1033	ractor	PCACI	Line	LIMIC	Keniark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	9 3
1	2475.00	26.34	75.17	7.57	32.88	89.28	94.00	-4.72	Average
2	2475.00	26.34	91.70	7.57	32.88	105.81	114.00	-8.19	Peak
3	3840.00	26.92	29.97	10.28	34.76	48.09	74.00	-25.91	Peak
4	4455.00	27.27	29.18	11.24	35.42	48.57	74.00	-25.43	Peak
5	4970.00	27.59	28.23	12.36	38.70	51.70	74.00	-22.30	Peak
6	10120.00	28.81	562.18	16.99-	-500.00	50.36	74.00	-23.64	Peak

5. 20DB OCCUPY BANDWIDTH

5.1. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

5.2. Test setup

- 1. Set the RBW =100kHz.
- 2. Set the VBW =300kHz.
- 3. Span=10MHz
- 4. Detector = peak.
- 5. Sweep time = auto
- 6. Allow trace to fully stabilize, and view the plot.
- 7. Measure and record the result in the test report.


Test data:

Channel Frequency (MHz)		20dB Bandwidth (MHz)			
	Antenna A	Antenna B			
2405	1.48	1.46	Pass		
2439	1.46	1.46	Pass		
2475	1.48	1.44	Pass		

Note: the plots only show the worst data.

Test plot as follows:

Antenna A

6.99% OCCUPY BANDWIDTH

6.1. Limits

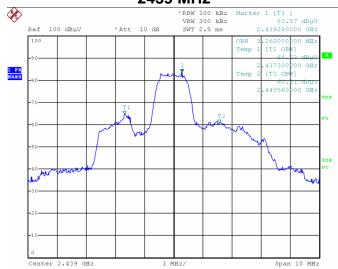
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in RSS-210 of this part, must be designed to ensure that the 99% bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.2. Test setup

- 1. Set the RBW =100kHz.
- 2. Set the VBW =300kHz.
- 3. Span=10MHz
- 4. Detector = peak.
- 5. Sweep time = auto
- 6. Allow trace to fully stabilize, and view the plot.
- 7. Measure and record the result in the test report.

Test data:

Channel Frequency (MHz)	99% Ba (M	Result	
	Antenna A Antenna B		
2405	3.32	3.12	Pass
2439	3.26	3.16	Pass
2475	3.20	3.16	Pass


We pretest two antennas, the antenna A was worst mode, the plots show in the report.

Test plot as follows:

2405MHz

2439 MHz

2475 MHz

7. BAND EDGE COMPLIANCE TEST

7.1. Limits

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure.

Test plot as follows:

Frequency (MHz)	Antenna polarization	Emission (dBuV/m)	Band edge Limit (dBuV/m)		Result
	(H/V)	PK	PK	AV	Pass
<2400	Н	49.98	74.00	54.00	Pass
<2400	V	50.16	74.00	54.00	Pass
>2483.5	Н	50.32	74.00	54.00	Pass
>2483.5	V	50.19	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

8. ANTENNA REQUIREMENTS

8.1. Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.2. Result

The antennas used for this product are PCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.02dBi.

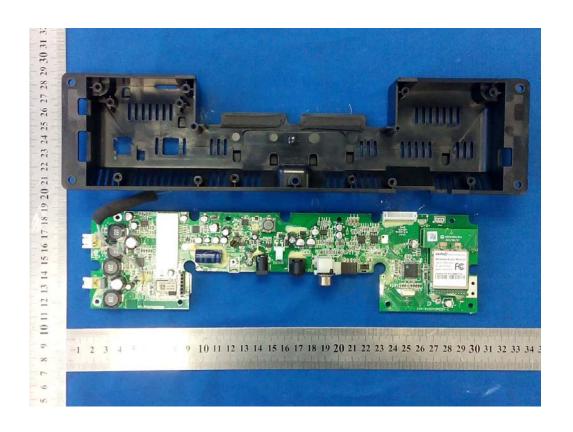
The product had two antenna for 2.4GHz, the antenna cannot work at same time.

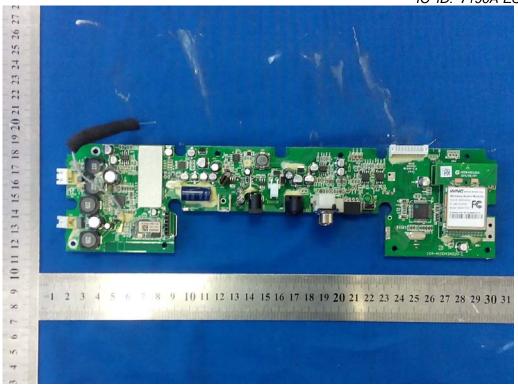
9. PHOTOGRAPHS OF TEST SET-UP

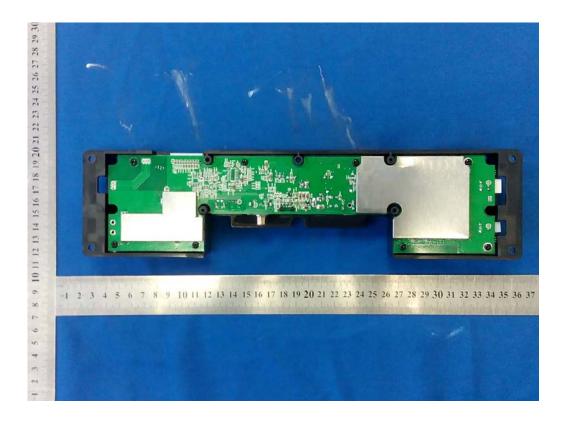
Conducted Emission

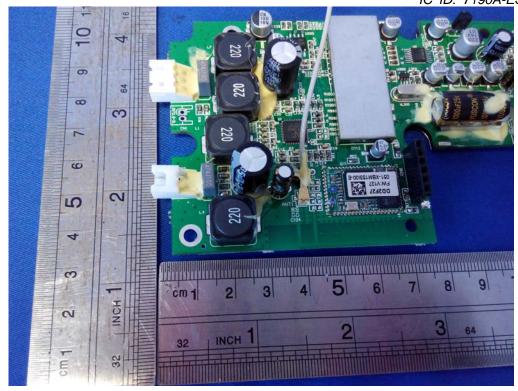
10. PHOTOGRAPHS OF THE EUT

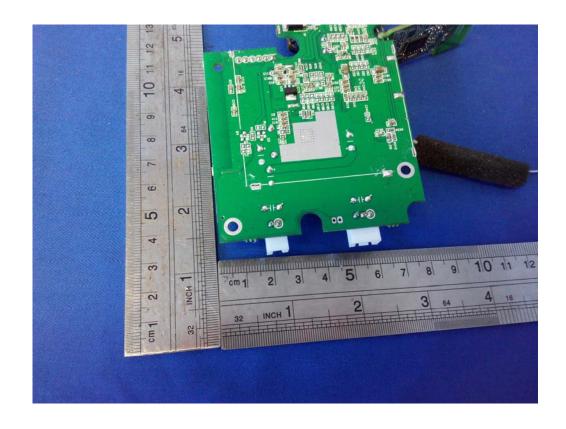


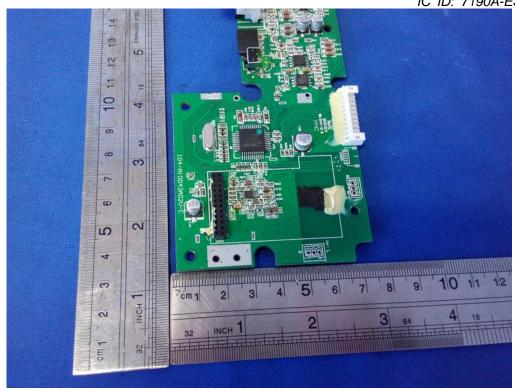


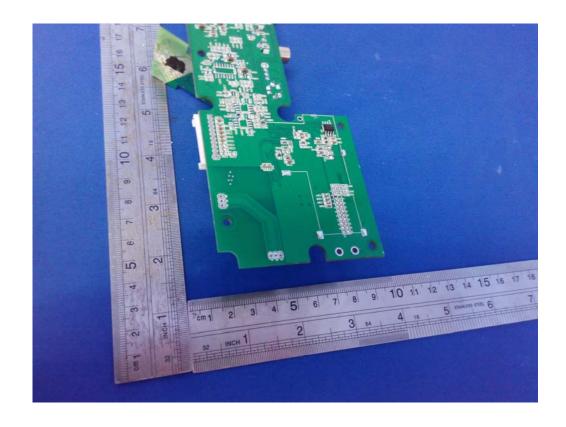


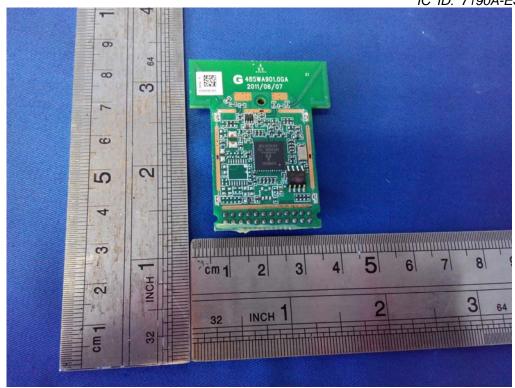


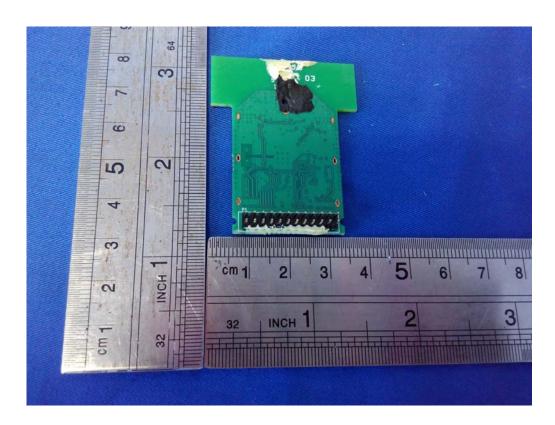












-----End-----