

InterLab®

FCC Measurement/Technical Report on

Bluetooth transceiver
RTX3371 V2

Report Reference: MDE_Tunst_1001_FCCd

Test Laboratory:

Borsigstr. 11
Germany
7Layers AG
40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7Layers AG
Borsigstrasse 11
40880 Ratingen, Germany
Phone: +49 (0) 2102 749 0
Fax: +49 (0) 2102 749 350
www.7Layers.com

Aufsichtsratsvorsitzender •
Chairman of the Supervisory Board:
Markus Becker
Vorstand • Board:
Dr. H.-J. Meckelburg

Registergericht • registered in:
Düsseldorf, HRB 44096
UST-IdNr • VAT No.:
DE 203159652
TAX No. 147/5869/0385

Table of Contents

0 Summary	3
0.1 Technical Report Summary	3
0.2 Measurement Summary	4
1 Administrative Data	7
1.1 Testing Laboratory	7
1.2 Project Data	7
1.3 Applicant Data	7
1.4 Manufacturer Data	7
2 Test object Data	8
2.1 General EUT Description	8
2.2 EUT Main components	9
2.3 Ancillary Equipment	9
2.4 Auxiliary Equipment	9
2.5 EUT Setups	10
2.6 Operating Modes	10
2.7 Product labelling	10
3 Test Results	11
3.1 Conducted emissions (AC power line)	11
3.2 Occupied bandwidth	13
3.3 Peak power output	16
3.4 Spurious RF conducted emissions	19
3.5 Spurious radiated emissions	22
3.6 Band edge compliance	28
3.7 Dwell time	32
3.8 Channel separation	34
3.9 Number of hopping frequencies	36
4 Test Equipment	37
5 Photo Report	44
6 Setup Drawings	44
7 FCC and IC Correlation of measurement requirements	45
8 Annex measurement plots	46
8.1 AC Mains conducted	46
8.2 Occupied bandwidth	47
8.3 Peak power output	56
8.4 Band edge compliance conducted and Spurious RF conducted emissions	65
8.5 Band edge compliance radiated	83
8.6 Radiated emissions (f < 30 MHz)	86
8.7 Dwell time	88
8.8 Channel separation	89
8.9 Number of hopping frequencies	90

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-10 Edition) and 15 (10-1-10 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000.

Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C		§ 15.207	
Conducted emissions (AC power line)			
The measurement was performed according to ANSI C63.4		2009	
OP-Mode	Setup	Port	Final Result
op-mode 5	Setup_a02	AC Port (power line)	passed
FCC Part 15, Subpart C		§ 15.247 (a) (1)	
Occupied bandwidth			
The measurement was performed according to FCC § 15.31		10-1-10 Edition	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
op-mode 10	Setup_b01	Temp ant.connector	passed
op-mode 11	Setup_b01	Temp ant.connector	passed
op-mode 12	Setup_b01	Temp ant.connector	passed
FCC Part 15, Subpart C		§ 15.247 (b) (1)	
Peak power output			
The measurement was performed according to FCC § 15.31		10-1-10 Edition	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
op-mode 10	Setup_b01	Temp ant.connector	passed
op-mode 11	Setup_b01	Temp ant.connector	passed
op-mode 12	Setup_b01	Temp ant.connector	passed
FCC Part 15, Subpart C		§ 15.247 (d)	
Spurious RF conducted emissions			
The measurement was performed according to FCC § 15.31		10-1-10 Edition	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 2	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 7	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
op-mode 10	Setup_b01	Temp ant.connector	passed
op-mode 11	Setup_b01	Temp ant.connector	passed
op-mode 12	Setup_b01	Temp ant.connector	passed

FCC Part 15, Subpart C**§ 15.247 (d), § 15.35 (b), § 15.209**

Spurious radiated emissions

The measurement was performed according to ANSI C63.4

2009

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_a01	Enclosure	passed
op-mode 2	Setup_a01	Enclosure	passed
op-mode 3	Setup_a01	Enclosure	passed
op-mode 6	Setup_a01	Enclosure	passed
op-mode 7	Setup_a01	Enclosure	passed
op-mode 8	Setup_a01	Enclosure	passed
op-mode 10	Setup_a01	Enclosure	passed
op-mode 11	Setup_a01	Enclosure	passed
op-mode 12	Setup_a01	Enclosure	passed

FCC Part 15, Subpart C**§ 15.247 (d)**

Band edge compliance

The measurement was performed according to FCC § 15.31 / ANSI C63.4

10-1-10 Edition /
2009

OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_b01	Temp ant.connector	passed
op-mode 3	Setup_a01	Enclosure	passed
op-mode 6	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_b01	Temp ant.connector	passed
op-mode 8	Setup_a01	Enclosure	passed
op-mode 10	Setup_b01	Temp ant.connector	passed
op-mode 12	Setup_b01	Temp ant.connector	passed
op-mode 12	Setup_a01	Enclosure	passed

FCC Part 15, Subpart C**§ 15.247 (a) (1) (iii)****Dwell time**

The measurement was performed according to FCC § 15.31 10-1-10 Edition
OP-Mode **Setup** **Port** **Final Result**
op-mode 2 Setup_b01 Temp ant.connector passed

FCC Part 15, Subpart C**§ 15.247 (a) (1)****Channel separation**

The measurement was performed according to FCC § 15.31 10-1-10 Edition
OP-Mode **Setup** **Port** **Final Result**
op-mode 4 Setup_b01 Temp ant.connector passed

FCC Part 15, Subpart C**§ 15.247 (a) (iii)****Number of hopping frequencies**

The measurement was performed according to FCC § 15.31 10-1-10 Edition
OP-Mode **Setup** **Port** **Final Result**
op-mode 4 Setup_b01 Temp ant.connector passed

Responsible for
Accreditation Scope:

A handwritten signature in blue ink that appears to read "B. Roth".

Responsible
for Test Report:

A handwritten signature in blue ink that appears to read "A. Reit".

7 layers AG, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7Layers AG
Address Borsigstr. 11
40880 Ratingen
Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:
Laboratory accreditation no.: DAkKS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka
Dipl.-Ing. Robert Machulec
Dipl.-Ing. Thomas Hoell
Dipl.-Ing. Andreas Petz

Report Template Version: 2011-08-15

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Andreas Petz
Date of Test(s): 2011-06-28 to 2011-08-09
Date of Report: 2011-08-19

1.3 Applicant Data

Company Name: Tunstall Healthcare A/S
Address: Stroemmen 6
9400 Noerresundby
Denmark
Contact Person: Mr. Søren Vester

1.4 Manufacturer Data

Company Name: please see applicant data
Address:
Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test	Bluetooth transceiver
Type Designation:	RTX3371 V2
Kind of Device: (optional)	-
Voltage Type:	AC (of AC/DC converter)
Voltage level:	120 V
Modulation Type:	GFSK, 8DPSK, $\pi/4$ DQPSK

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 μ s. The maximum time slot length on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds.

The basic data rate of 1 Mbps uses GFSK modulation and the enhanced data rate uses PSK modulation. For the enhanced data rate of 3 Mbps 8DPSK modulation and of 2 Mbps $\pi/4$ DQPSK modulation is used.

Specific product description for the EUT:

The RTX3371 is for use in non-clinical settings (such as the home), as an accessory device that is intended to be a communication tool to enable healthcare providers to receive historical patient information. It is intended to be used in combination with a variety of external devices. The RTX3371 serves as the remote communication link between compatible external devices, and the compatible healthcare facility at another location. The healthcare facility could be at a disease management centre or with the healthcare/wellness provider or other out of hospital caregivers. The purpose is to collect and transmit selected medical information (such as weight, blood pressure, blood glucose) using standard wireless technologies. The RTX3371 does not measure, interpret or make any decisions on the vital data that it conveys.

The EUT provides the following ports:

Ports

Temp antenna connector

Enclosure

AC Port (power line), provided by external AC/DC adapter AE1

RS232 service port, providing data transport, not intended for normal usage

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: U2000e02)	Bluetooth transceiver	RTX3371 V2	RTX337100 11203	Version 5 revision B	11.1	2011-06-28
Remark: EUT A is equipped with an integral antenna (gain = 0.0 dBi).						
EUT B (Code: U2000b01)	Bluetooth transceiver	RTX3371 V2	RTX337100 11191	Version 5 revision B	11.1	2011-08-08
Remark: EUT B is equipped with a temporary antenna connector.						

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AE1 (Code: U2000ACDC 01)	AC/DC adapter	FW7333M/06	3708T	—	—	—

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1	Laptop Toshiba Tecra M9	PTM91E- 02800TGR	87060248H	—	WinXP Prof. Ger.	—
AUX2	AC/DC Adapter (for laptop) Toshiba / Delta Electronics	PA3378E- 3AC3 (P/N: G71C0006R3 10)	—	—	—	—
AUX3	Keyboard CHERRY ON	RS 6000 USB	G 0000273 2P28	—	—	—
AUX4	Mouse Logitech	M-BB48	LZC90505478	—	—	—
AUX5	TFT monitor	LG Flatron L1740BQ	509WANF1W607	—	—	—

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_a01	EUT A + AE1	setup for radiated measurements
Setup_b01	EUT B + AE1	setup for the test conducted emissions
Setup_a02	EUT A + AUX1 + AUX2 + AUX3 + AUX4 + AUX5	setup for the test conducted emissions (representative computer peripheral setup to connect to RS232 port)

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	The EUT transmits on 2402 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 2	The EUT transmits on 2441 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 3	The EUT transmits on 2480 MHz	Loopback mode, basic data rate 1 Mbps
op-mode 4	The EUT is in Hopping mode	The EUT is hopping on 79 channels, basic data rate 1 Mbps
op-mode 5	The EUT transmits on 2441 MHz for Bluetooth and 836.6 MHz for GSM 850	
op-mode 6	The EUT transmits on 2402 MHz	Loopback mode, enhanced data rate 3 Mbps
op-mode 7	The EUT transmits on 2441 MHz	Loopback mode, enhanced data rate 3 Mbps
op-mode 8	The EUT transmits on 2480 MHz	Loopback mode, enhanced data rate 3 Mbps
op-mode 10	The EUT transmits on 2402 MHz	Loopback mode, enhanced data rate, 2 Mbps
op-mode 11	The EUT transmits on 2441 MHz	Loopback mode, enhanced data rate, 2 Mbps
op-mode 12	The EUT transmits on 2480 MHz	Loopback mode, enhanced data rate, 2 Mbps

The EUT is prepared with special software which sets the EUT in the "Bluetooth Test Mode" after power up. The test mode allows connecting the EUT to a signalling unit. The signalling unit controls the EUT to put it in the required operating modes for testing.

For Bluetooth technology, the Bluetooth Standards define a test mode that enables the operator during the tests to set the EUT into a mode that it can be externally controlled by the signalling unit in the active Bluetooth radio-link "over-the-air." The Bluetooth test mode is completely documented in the Bluetooth Specifications.

2.7 Product labelling

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: ANSI C63.4-2009

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4-2009. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H} \parallel 50\text{ Ohm}$ Line Impedance Stabilization Network (LISN) which meets the requirements of ANSI C63.4-2009, Annex B, in the frequency range of the measurements. The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold
- Frequency range: 150 kHz – 30 MHz
- Frequency steps: 5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF - Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead - reference ground (PE grounded)
- 2) Phase lead - reference ground (PE grounded)
- 3) Neutral lead - reference ground (PE floating)
- 4) Phase lead - reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dB μ V)	AV Limit (dB μ V)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 5	Setup_a02	AC Port (power line)

Power line	Frequency MHz	Measured value QP dB μ V	Measured value AV dB μ V	QP Limit dB μ V	AV Limit dB μ V	Delta to QP limit dB	Delta to AV limit dB
L1	1.180000	45.50	–	56	–	10.5	–
L1	2.085000	48.90	–	56	–	7.1	–
L1	2.330000	47.00	–	56	–	9.0	–
L1	4.575000	39.70	–	56	–	16.3	–
N	2.115000	–	39.20	–	46	–	6.8
L1	2.225000	–	38.90	–	46	–	7.1

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. Please see annex for the measurement plot.

The chosen operating mode is selected as representative mode to generate "worst-case" conditions, i.e. high power consumption.

3.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 5	passed

3.2 Occupied bandwidth

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 30 kHz.

The EUT was connected to the spectrum analyzer via a short coax cable.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):
Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz
2. If the system output power exceeds 125 mW (21.0 dBm):
Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm).

For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz.

3.2.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Temp ant.connector
20 dB bandwidth		Remarks
MHz		—
0.848		—

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp ant.connector
20 dB bandwidth		Remarks
MHz		—
0.848		—

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp ant.connector
20 dB bandwidth		Remarks
MHz		—
0.848		—

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_b01	Temp ant.connector
20 dB bandwidth		Remarks
MHz		—
1.215		—

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 7	Setup_b01	Temp ant.connector
20 dB bandwidth		Remarks
MHz		—
1. 215		—

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 8	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
1.209	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 10	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
1.246	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 11	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
1. 246	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 12	Setup_b01	Temp ant.connector

20 dB bandwidth MHz	Remarks
1. 246	-

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed
	op-mode 10	passed
	op-mode 11	passed
	op-mode 12	passed

3.3 Peak power output

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The resolution bandwidth for measuring the output power was set to 3 MHz. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (1)

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

==> Maximum Output Power: 30 dBm

3.3.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
6.93		The EIRP including antenna gain (0.0 dBi) is 6.93 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
6.30		The EIRP including antenna gain (0.0 dBi) is 6.30 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
6.22		The EIRP including antenna gain (0.0 dBi) is 6.22 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
3.02		The EIRP including antenna gain (0.0 dBi) is 3.02 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 7	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
2.33		The EIRP including antenna gain (0.0 dBi) is 2.33 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 8	Setup_b01	Temp.ant.connector
Output power dBm		Remarks
2.23		The EIRP including antenna gain (0.0 dBi) is 2.23 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 10	Setup_b01	Temp.ant.connector

Output power dBm	Remarks
2.82	The EIRP including antenna gain (0.0 dBi) is 2.82 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 11	Setup_b01	Temp.ant.connector

Output power dBm	Remarks
2.07	The EIRP including antenna gain (0.0 dBi) is 2.07 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 12	Setup_b01	Temp.ant.connector

Output power dBm	Remarks
1.93	The EIRP including antenna gain (0.0 dBi) is 1.93 dBm

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed
	op-mode 10	passed
	op-mode 11	passed
	op-mode 12	passed

3.4 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Detector: Peak-Maxhold
- Frequency range: 30 – 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

3.4.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port		
op-mode 1	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	7.04	-12.96	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 2	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	6.35	-13.65	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	6.19	-13.81	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 6	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	2.24	-17.76	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 7	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	1.48	-18.52	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 8	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	1.38	-18.62	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 10	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	2.28	-17.72	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 11	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	1.50	-18.50	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 12	Setup_b01	Temp ant.connector		
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
-	-	1.32	-18.68	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
Please see annex for the measurement plot.

3.4.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed
	op-mode 10	passed
	op-mode 11	passed
	op-mode 12	passed

3.5 Spurious radiated emissions

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: ANSI C63.4–2009

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4–2009. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The test was performed at the distance of 3 m between the EUT and the receiving antenna. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The radiated emissions measurements were made in a typical installation configuration. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C63.4–2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 – 0.15 and 0.15 – 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 – 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz – 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 – 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 μ s (BT Timing 1.25 ms)
- Turntable angle range: -180 to +180°
- Turntable step size: 90°
- Height variation range: 1 – 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180 to +180°
- Turntable step size: 45°
- Height variation range: 1 – 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved.

This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/-22.5° around this value.

During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to +22.5° around the determined value
- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2–4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the enhanced data rate packets the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at basic data rate. Typically, the measurement for these packets is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the basic data rate. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit(dB μ V/m @10m)
0.009 – 0.49	2400/F(kHz)	300	Limit (dB μ V/m) +30dB
0.49 – 1.705	24000/F(kHz)	30	Limit (dB μ V/m) +10dB
1.705 - 30	30	30	Limit (dB μ V/m) +10dB

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit (dB μ V/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.5.3 Test Protocol

Temperature: 28 °C
 Air Pressure: 1010 hPa
 Humidity: 47 %

3.5.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port						
op-mode 1	Setup_a01	Enclosure						
Polarisation	Frequency MHz	Corrected value dB μ V/m						
		QP	Peak	AV	QP	Peak	AV	QP/Peak
0°	-	-	-	-	-	-	-	-
90°	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. The found peak at 99.2 kHz is an emission from the loop antenna's power supply.

3.5.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port							
op-mode 1	Setup_a01	Enclosure							
Polarisation	Frequency MHz	Corrected value dB μ V/m							
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	38	27.8	-	-	40.0	-	-	12.2	-
Vertical + horizontal	119	29.8	-	-	43.5	-	-	13.7	-
Vertical + horizontal	120	28.5	-	-	43.5	-	-	15.0	-
Vertical + horizontal	4804	-	57.85	42.64	-	74.0	54.0	16.15	11.36

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port							
op-mode 2	Setup_a01	Enclosure							
Polarisation	Frequency MHz	Corrected value dB μ V/m							
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	38	28.2	-	-	40.0	-	-	11.8	-
Vertical + horizontal	115	30.5	-	-	43.5	-	-	13.0	-
Vertical + horizontal	116	28.2	-	-	43.5	-	-	15.3	-
Vertical + horizontal	121	25.8	-	-	43.5	-	-	17.7	-
Vertical + horizontal	125	28.8	-	-	43.5	-	-	14.7	-
Vertical + horizontal	4882	-	57.42	41.86	-	74.0	54.0	16.58	12.14

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	119	32.1	-	-	43.5	-	-	11.4	-
Vertical + horizontal	120	31.8	-	-	43.5	-	-	11.7	-
Vertical + horizontal	126	27.8	-	-	43.5	-	-	15.7	-
Vertical + horizontal	129	26.5	-	-	43.5	-	-	17.0	-
Vertical + horizontal	2484	-	58.81	43.80	-	74.0	54.0	15.19	10.20
Vertical + horizontal	4960	-	52.28	35.39	-	74.0	54.0	21.72	18.61

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 6	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4804	-	53.95	40.14	-	74.0	54.0	20.05	13.86

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

Op. Mode	Setup	Port
op-mode 7	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4882	-	51.31	38.05	-	74.0	54.0	22.69	15.95

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

Op. Mode	Setup	Port
op-mode 8	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4960	-	47.55	34.45	-	74.0	54.0	26.45	19.55

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

Op. Mode	Setup	Port
op-mode 10	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4804	-	53.57	40.21	-	74.0	54.0	20.43	13.79

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

Op. Mode	Setup	Port
op-mode 11	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4882	-	51.31	38.33	-	74.0	54.0	22.69	15.67

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

Op. Mode	Setup	Port
op-mode 12	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4960	-	47.68	34.41	-	74.0	54.0	26.32	19.59

Remark: No (further) spurious emissions in the range 20 dB below the limit found.
The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3.

3.5.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 7	passed
	op-mode 8	passed
	op-mode 10	passed
	op-mode 11	passed
	op-mode 12	passed

3.6 Band edge compliance

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: ANSI C63.4-2009 FCC §15.31

3.6.1 Test Description

The measurement was performed using two procedures to show the compliance at the lowest and highest band edges of the used ISM bands.

1. To show the compliance at the lowest and highest band edges of the used ISM bands by a conducted measurement.

The Equipment Under Test (EUT) was placed in a shielded room and is set to transmit on the lowest channel (The lower band edge is 2400 MHz) and highest channel (The higher band edge is 2483.5 MHz).

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW = 100 kHz
- VBW = 300 kHz

2. To show compliance at the highest band edge of the used ISM band by a radiated measurement.

The Equipment Under Test (EUT) was placed inside FAC (fully anechoic chamber) to perform the measurements. The radiated emissions measurements were performed in a typical installation configuration. The measurement was carried out with a spectrum analyser, cable and horn antenna in a distance of 1 m using peak and average detector. The EUT is set to transmit on the highest channel (The higher band edge is 2483.5 MHz).

EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

...

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a)."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.205(a)".

3.6.3 Test Protocol

3.6.3.1 Lower band edge

Conducted measurement

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port		
op-mode 1	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2400.00	-34.75	7.04	-12.96	21.79

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 6	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2400.00	-43.28	2.24	-17.76	25.52

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 10	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2400.00	-45.59	2.28	-17.72	27.87

Remark: Please see annex for the measurement plot.

3.6.3.2 Higher band edge

Conducted measurement

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port		
op-mode 3	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2483.50	-45.79	6.19	-13.81	31.98

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 8	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2483.50	-53.78	1.38	-18.62	35.16

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 12	Setup_b01	Temp ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2483.50	-52.65	1.32	-18.68	33.97

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 28 °C
Air Pressure: 1010 hPa
Humidity: 47 %

Op. Mode	Setup	Port					
op-mode 3	Setup_a01	Enclosure					
Frequency MHz	Polarisation	Corrected value dB μ V/m		Limit Peak dB μ V/m	Limit AV dB μ V/m	Delta to Peak limit dB	Delta to AV limit dB
		Peak	AV	74.00	54.00	15.19	10.20
2483.50	Vertical + horizontal	58.81	43.80				

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port					
op-mode 8	Setup_a01	Enclosure					
Frequency MHz	Polarisation	Corrected value dB μ V/m		Limit Peak dB μ V/m	Limit AV dB μ V/m	Delta to Peak limit dB	Delta to AV limit dB
		Peak	AV	74.00	54.00	23.08	16.01
2483.50	Vertical + horizontal	50.92	37.99				

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port					
op-mode 12	Setup_a01	Enclosure					
Frequency MHz	Polarisation	Corrected value dB μ V/m		Limit Peak dB μ V/m	Limit AV dB μ V/m	Delta to Peak limit dB	Delta to AV limit dB
		Peak	AV	74.00	54.00	21.74	15.90
2483.50	Vertical + horizontal	52.26	38.10				

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 3	passed
	op-mode 6	passed
	op-mode 8	passed
	op-mode 10	passed
	op-mode 12	passed

3.7 Dwell time

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate = $1600 * 1/s$ for DH1 packets = 1600 s^{-1}
- hop rate = $1600/3 * 1/s$ for DH3 packets = 533.33 s^{-1}
- hop rate = $1600/5 * 1/s$ for DH5 packets = 320 s^{-1}
- number of hopping channels = 79
- $31.6 \text{ s} = 0.4 \text{ seconds multiplied by the number of hopping channels} = 0.4 \text{ s} * 79$

The highest value of the dwell time is reported.

3.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

3.7.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port	
op-mode 2	Setup_b01	Temp ant.connector	
Packet type	Time slot length ms	Dwell time	Dwell time ms
DH5	2.926	time slot length * 1600/5 /79 * 31.6	375.0

Remark: Please see annex for the measurement plot.

3.7.4 Test result: Dwell time

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

3.8 Channel separation

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.8.1 Test Description

The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

- Detector: Peak-Maxhold
- Span: 3 MHz
- Centre Frequency: a mid frequency of the 2.4 GHz ISM band
- Resolution Bandwidth (RBW): 30 kHz
- Video Bandwidth (VBW): 100 kHz
- Sweep Time: Coupled

3.8.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

3.8.3 Test Protocol

Temperature: 26 °C
Air Pressure: 1008 hPa
Humidity: 42 %

Op. Mode	Setup	Port
op-mode 4	Setup_b01	Temp ant.connector
Channel separation		Remarks
MHz		—
1.000		—

Remark: Please see annex for the measurement plot.

3.8.4 Test result: Channel separation

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

3.9 Number of hopping frequencies

Standard FCC Part 15, 10-1-10 Edition Subpart C

The test was performed according to: FCC §15.31

3.9.1 Test Description

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern.

The EUT was connected to spectrum analyzer via a short coax cable.

Analyzer settings:

- Detector: Peak-Maxhold
- Centre frequency: 2442 MHz
- Frequency span: 84 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: Coupled

3.9.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.9.3 Test Protocol

Temperature: 26 °C

Air Pressure: 1008 hPa

Humidity: 42 %

Op. Mode	Setup	Port
op-mode 4	Setup_b01	Temp ant.connector
Number of hopping channels		Remarks
79		-

Remark: Please see annex for the measurement plot.

3.9.4 Test result: Number of hopping frequencies

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 1
Manufacturer:	Frankonia
Description:	Anechoic Chamber for radiated testing
Type:	10.58x6.38x6 m ³

Single Devices for Anechoic Chamber

Single Device Name	Type	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ <i>Calibration Details</i>	none	Frankonia <i>Last Execution</i> <i>Next Exec.</i>
	FCC listing 96716 3m Part15/18		2011/01/11 2014/01/10
	IC listing 3699A-1 3m		2011/02/07 2014/02/06
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Type	Serial Number	Manufacturer
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical dipole	VUBA 9117 <i>Calibration Details</i>	9117-108	Schwarzbeck <i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2008/10/27 2013/10/26
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P <i>Calibration Details</i>	849785	Miteq <i>Last Execution</i> <i>Next Exec.</i>
	Path Calibration		2011/05/11 2011/11/10
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4 <i>Calibration Details</i>	-	Miteq <i>Last Execution</i> <i>Next Exec.</i>
	Path Calibration		2011/05/11 2011/11/10
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P <i>Calibration Details</i>	896037	Miteq <i>Last Execution</i> <i>Next Exec.</i>
	Path Calibration		2011/05/11 2011/11/10
Cable "ESI to EMI Antenna"	EcoFlex10 <i>Calibration Details</i>	W18.01-2+W38.01- Kabel Kusch 2	Miteq <i>Last Execution</i> <i>Next Exec.</i>
	Path Calibration		2011/05/11 2011/11/10

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Type	Serial Number	Manufacturer	
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	Rosenberger Micro-Coax	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Path Calibration		2011/05/11	2011/11/10
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Standard Calibration		2009/04/16	2012/04/15
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Standard Calibration		2009/04/28	2012/04/27
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Path Calibration		2011/05/11	2011/11/10
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Path Calibration		2011/05/11	2011/11/10
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Path Calibration		2011/05/11	2011/11/10
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Path Calibration		2011/05/11	2011/11/10
Log.-per. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Standard Calibration		2009/05/27	2012/05/26
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	DKD calibration		2008/10/07	2011/10/06
Network Analyzer	E5071B	MY42200813	Agilent	
	<i>Calibration Details</i>		<i>Last Execution</i>	<i>Next Exec.</i>
	Standard Calibration		2010/11/09	2011/11/09
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH	
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH	
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5-10kg/024/3790709	Maturo GmbH	

Test Equipment Auxiliary Test Equipment

Lab ID: **Lab 1**
Manufacturer: see single devices
Description: Single Devices for various Test Equipment
Type: various
Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divider 1506A / 93459 N (Aux)		LM390	Weinschel Associates
Broadband Power Divider WA1515 SMA		A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2009/10/07 2011/10/06
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1
Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Type	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT		100589	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2008/08/14 2011/08/13
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	<i>HW/SW Status</i>		<i>Date of Start</i> <i>Date of End</i>
	Hardware: B11, B21V14, B21-2, B41, B52V14, B52-2, B53-2, B56V14, B68 3v04, PCMCIA, U65V04		2007/07/16
	Software: K21 4v21, K22 4v21, K23 4v21, K24 4v21, K42 4v21, K43 4v21, K53 4v21, K56 4v22, K57 4v22, K58 4v22, K59 4v22, K61 4v22, K62 4v22, K63 4v22, K64 4v22, K65 4v22, K66 4v22, K67 4v22, K68 4v22, K69 4v22		
	Firmware: μP1 8v50 02.05.06		

Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2008/12/01 2011/11/30
	<i>HW/SW Status</i>		<i>Date of Start</i> <i>Date of End</i>
	HW options: B11, B21V14, B21-2, B41, B52V14, B52-2, B53-2, B54V14, B56V14, B68 3v04, B95, PCMCIA, U65V02		2007/01/02
	SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v11, K27 4v10, K28 4v10, K42 4v11, K43 4v11, K53 4v10, K65 4v10, K66 4v10, K68 4v10,		
	Firmware: μP1 8v40 01.12.05		

	SW: K62, K69		2008/11/03

Test Equipment Emission measurement devices

Lab ID: Lab 1
Description: Equipment for emission measurements
Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Type	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Sensor	NRV-Z1	836219/005	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2009/10/20 2011/10/19
Powermeter	NRVS	836333/064	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2009/10/15 2011/10/14
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2009/12/03 2011/12/02

Test Equipment Multimeter 12

Lab ID: Lab 2
Description: Ex-Tech 520
Serial Number: 05157876

Single Devices for Multimeter 12

Single Device Name	Type	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard calibration		2009/10/07 2011/10/06

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 2
Description: Regulatory Bluetooth RF Tests
Type: Bluetooth RF
Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Type	Serial Number	Manufacturer
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.
Power Meter NRV	NRVD	832025/059	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2011/06/14 2012/06/13
Power Sensor NRV Z1 A	PROBE	832279/013	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2011/06/14 2012/06/13
Power Supply	NGSM 32/10	2725	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2011/06/15 2012/06/14
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2010/07/05 2011/07/04
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Exec.</i>
	Standard Calibration		2010/06/23 2013/06/20

Test Equipment Shielded Room 07

Lab ID: Lab 2
Description: Shielded Room 4m x 6m

Test Equipment T/H Logger 04

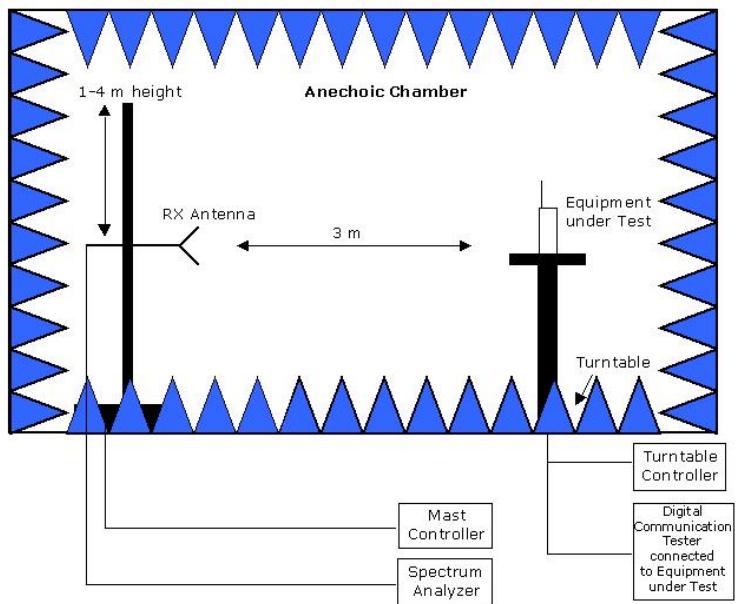
Lab ID: Lab 2
Description: Lufft Opus10
Serial Number: 7481

Single Devices for T/H Logger 04

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)		7481	Lufft Mess- und Regeltechnik GmbH

Test Equipment Temperature Chamber 01

<i>Lab ID:</i>	<i>Lab 2</i>
Manufacturer:	see single devices
Description:	Temperature Chamber KWP 120/70
Type:	Weiss
Serial Number:	see single devices


Single Devices for Temperature Chamber 01

<i>Single Device Name</i>	<i>Type</i>	<i>Serial Number</i>	<i>Manufacturer</i>
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
<i>Calibration Details</i>			
	Specific calibration	2010/03/16	2012/03/15

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane.
Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces

7 FCC and IC Correlation of measurement requirements

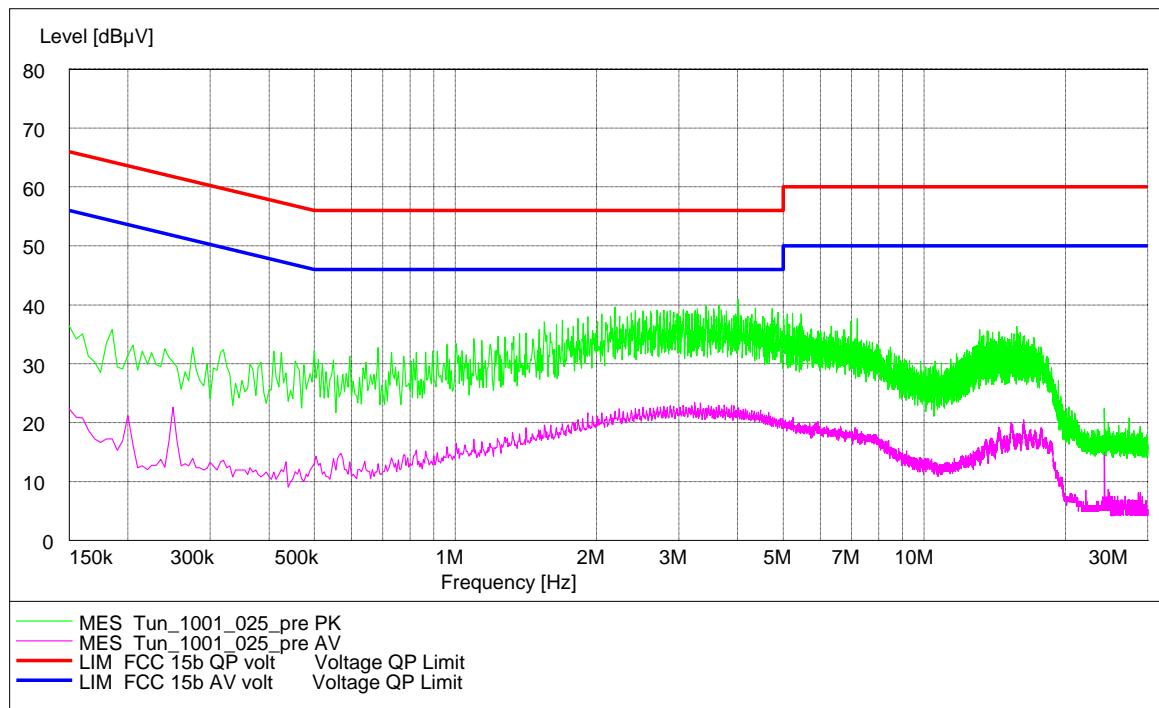
The following tables show the correlation of measurement requirements for Bluetooth equipment and Digital Apparatus from FCC and IC standards.

Bluetooth® equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC mains	§ 15.207	RSS-Gen: 7.2.4
Occupied bandwidth	§ 15.247 (a) (1)	RSS-210: A8.1
Peak power output	§ 15.247 (b) (1)	RSS-210: A8.4
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Spurious radiated emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210: A8.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-210: A8.1
Channel separation	§ 15.247 (a) (1)	RSS-210: A8.1
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-210: A8.1
Antenna requirement	§ 15.203 / 15.204	RSS-Gen: 7.1.2

Digital Apparatus

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§15.107	ICES-003
Spurious Radiated Emissions	§15.109	ICES-003

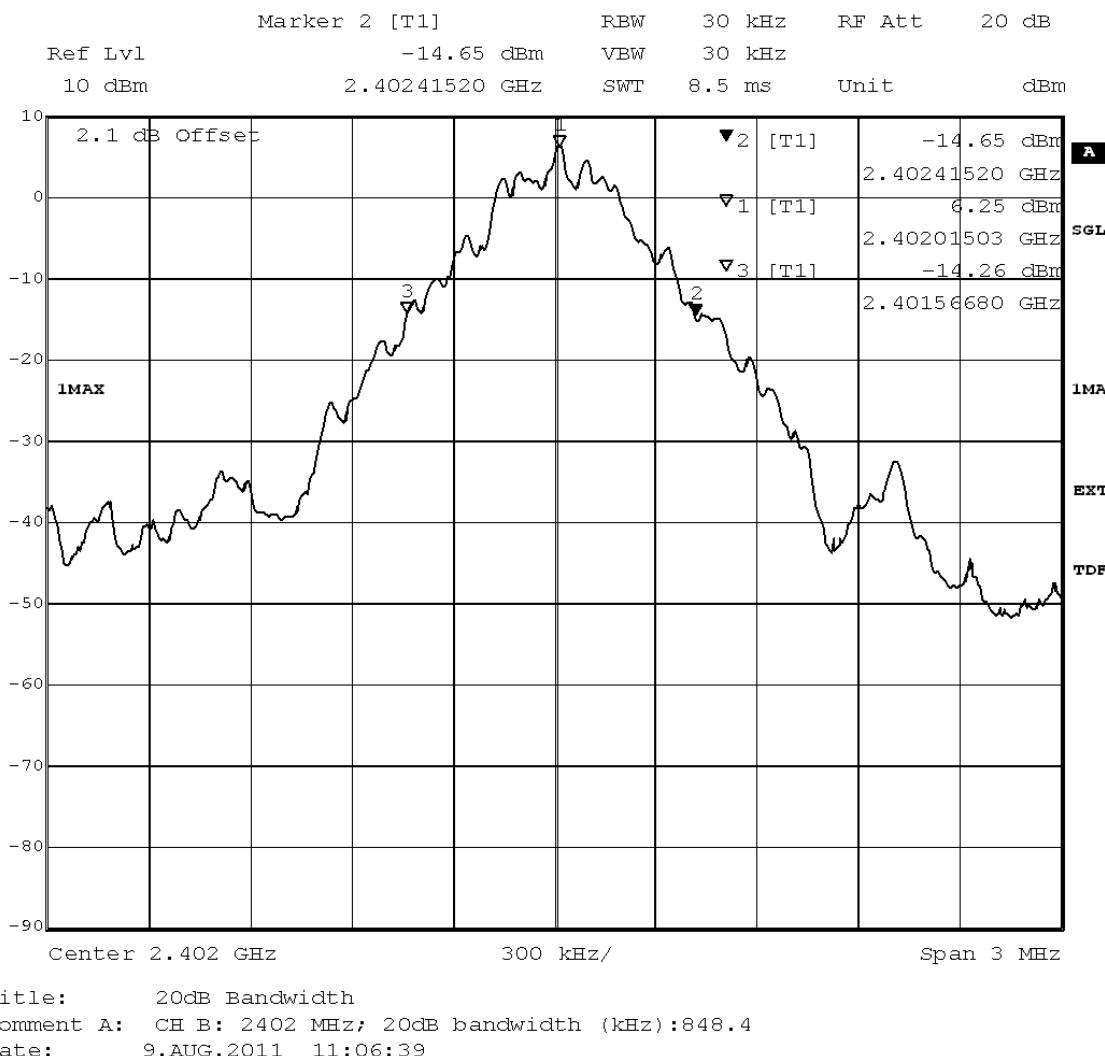

8 Annex measurement plots

8.1 AC Mains conducted

Op. Mode

op-mode 5

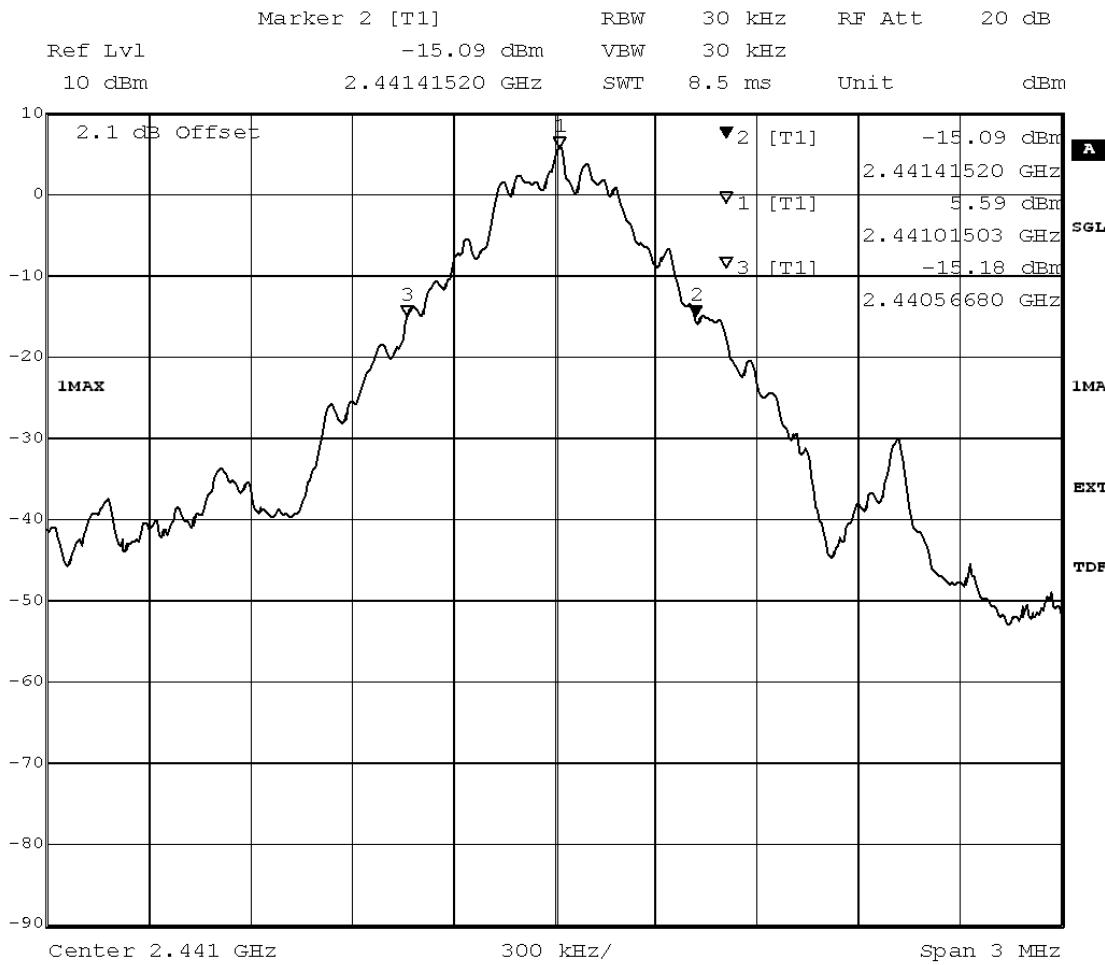
Start Frequency	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	30.0 MHz	5.0 kHz	MaxPeak	20.0 ms	9 kHz	ESH3-Z5
Average						



8.2 Occupied bandwidth

8.2.1 Occupied bandwidth operating mode 1

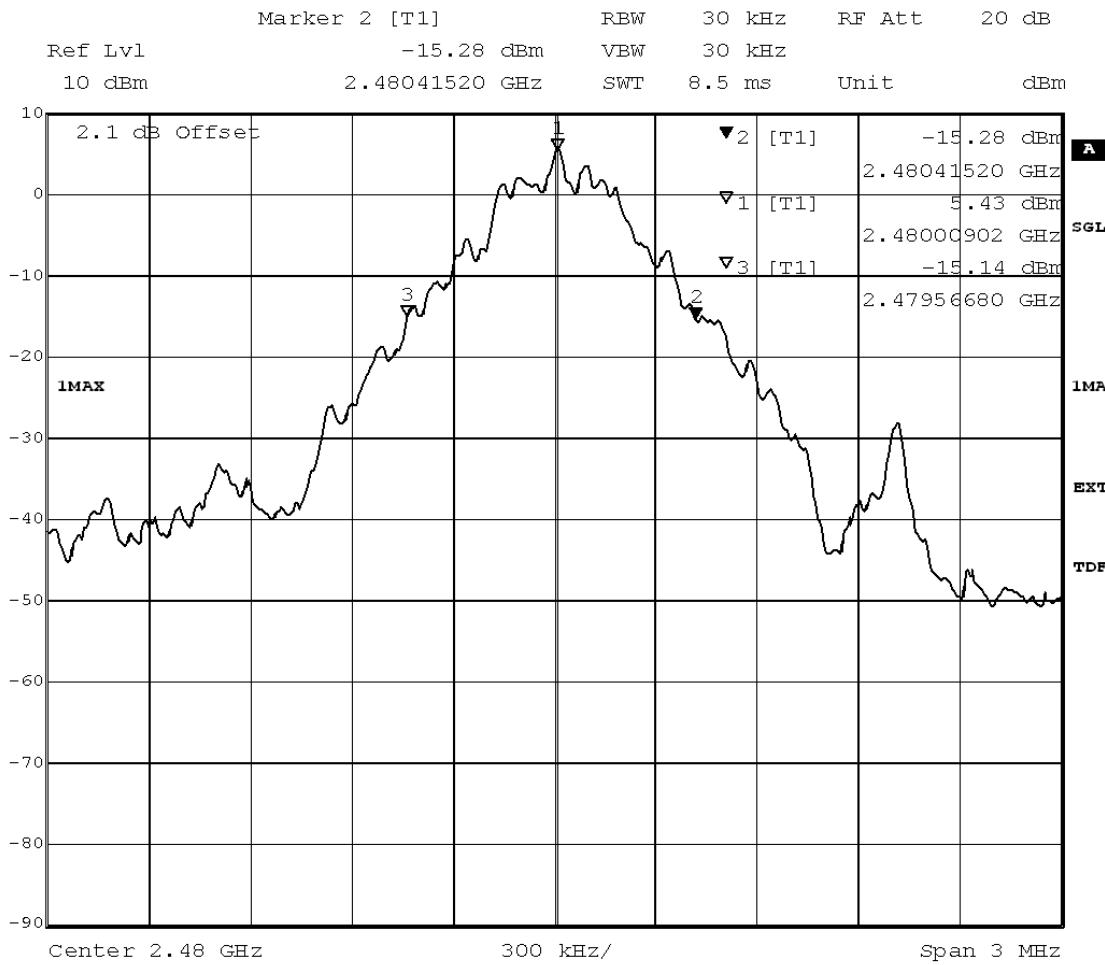
Op. Mode


op-mode 1

8.2.2 Occupied bandwidth operating mode 2

Op. Mode

op-mode 2

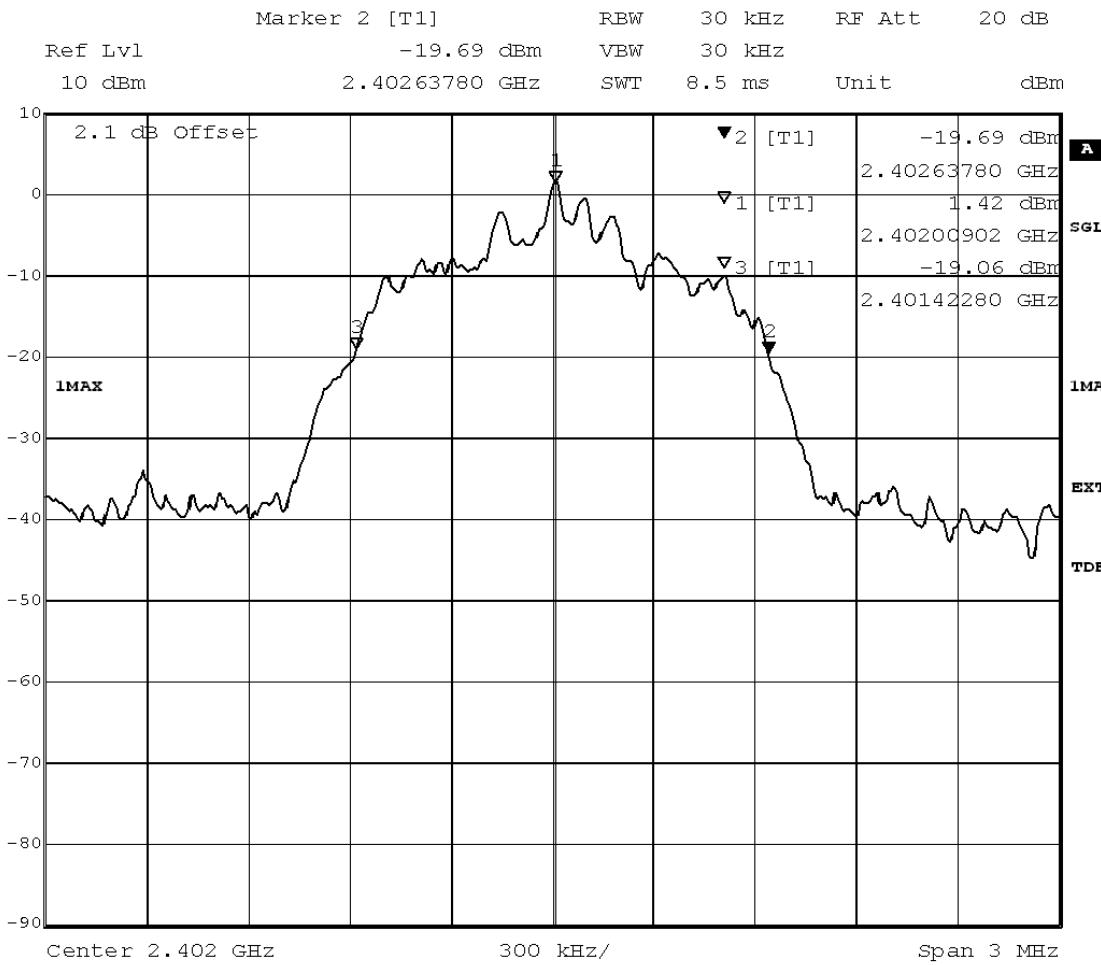


Title: 20dB Bandwidth
 Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):848.4
 Date: 9.AUG.2011 11:30:32

8.2.3 Occupied bandwidth operating mode 3

Op. Mode

op-mode 3

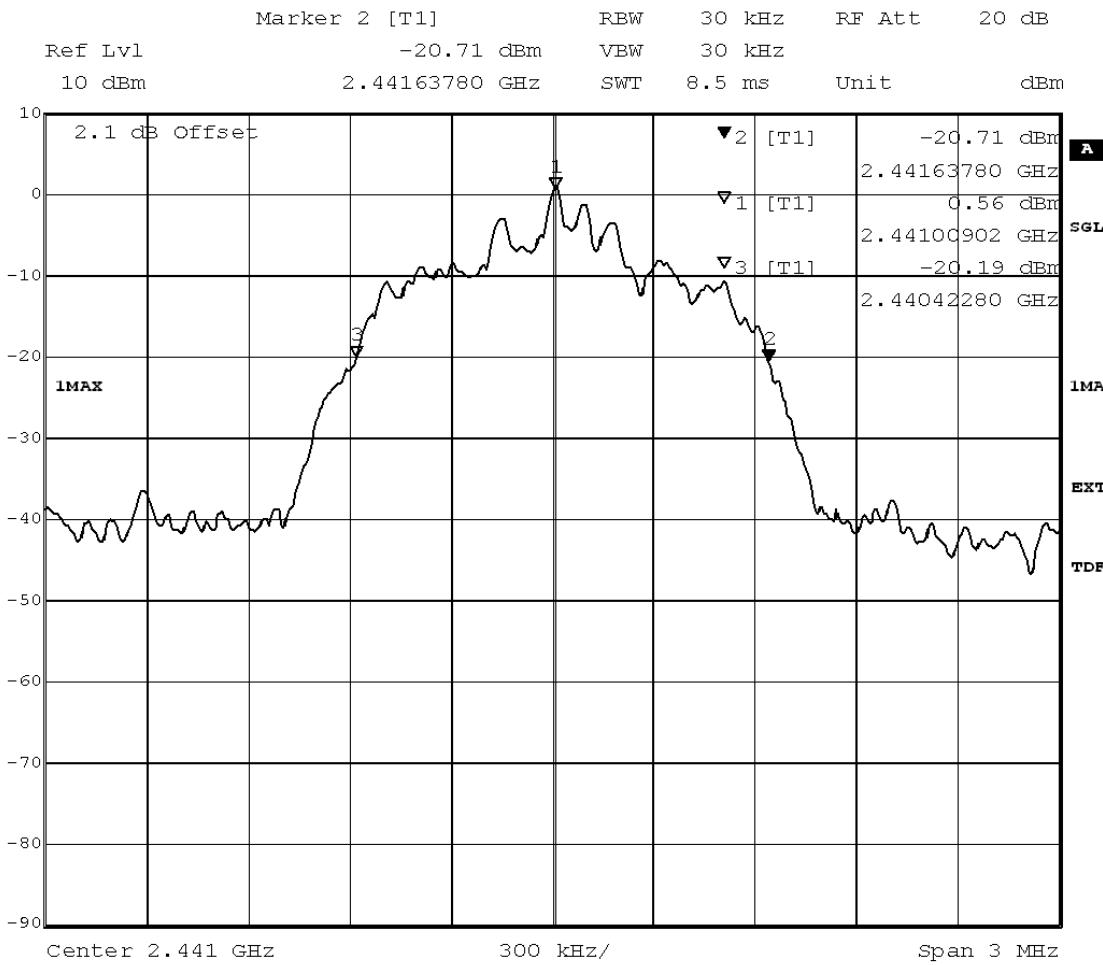


Title: 20dB Bandwidth
 Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):848.4
 Date: 9.AUG.2011 11:51:15

8.2.4 Occupied bandwidth operating mode 6

Op. Mode

op-mode 6

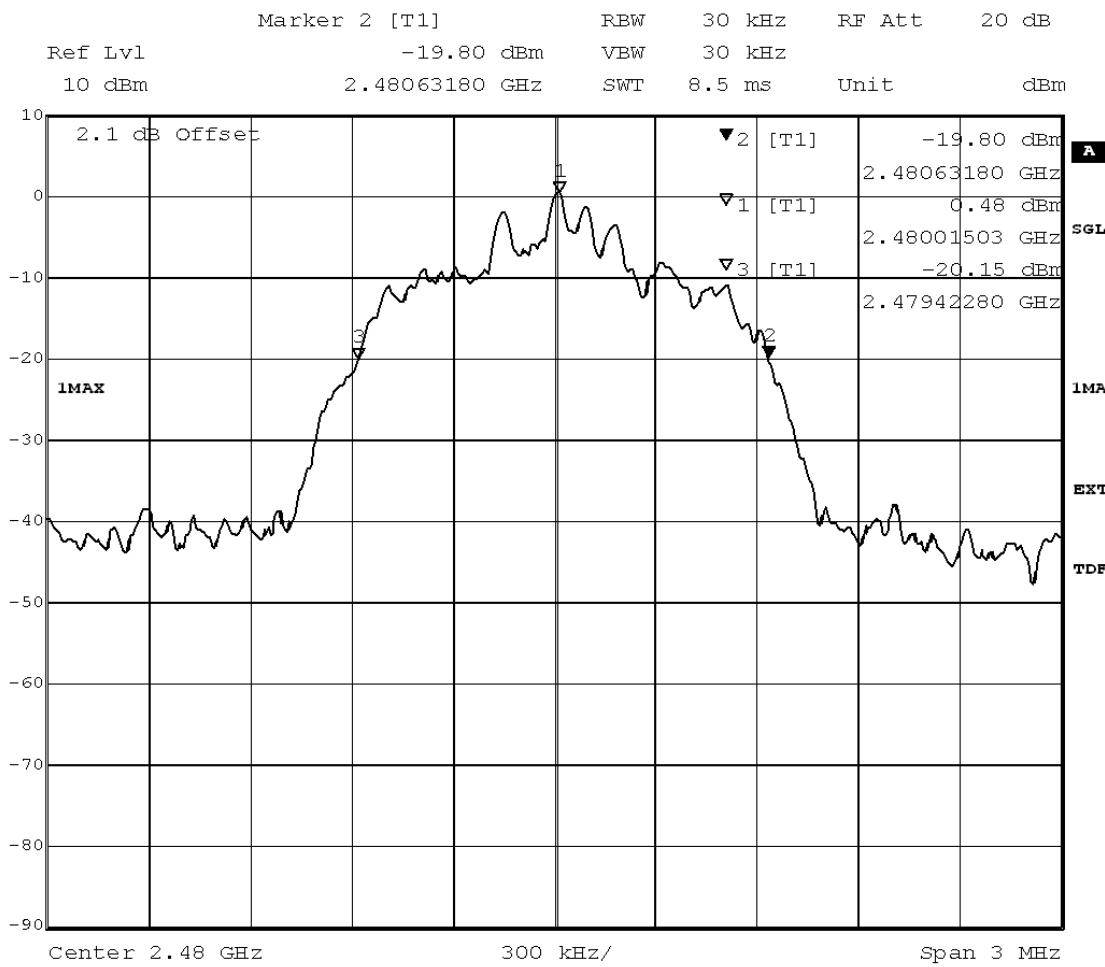


Title: 20dB Bandwidth
 Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):1215
 Date: 9.AUG.2011 13:51:22

8.2.5 Occupied bandwidth operating mode 7

Op. Mode

op-mode 7

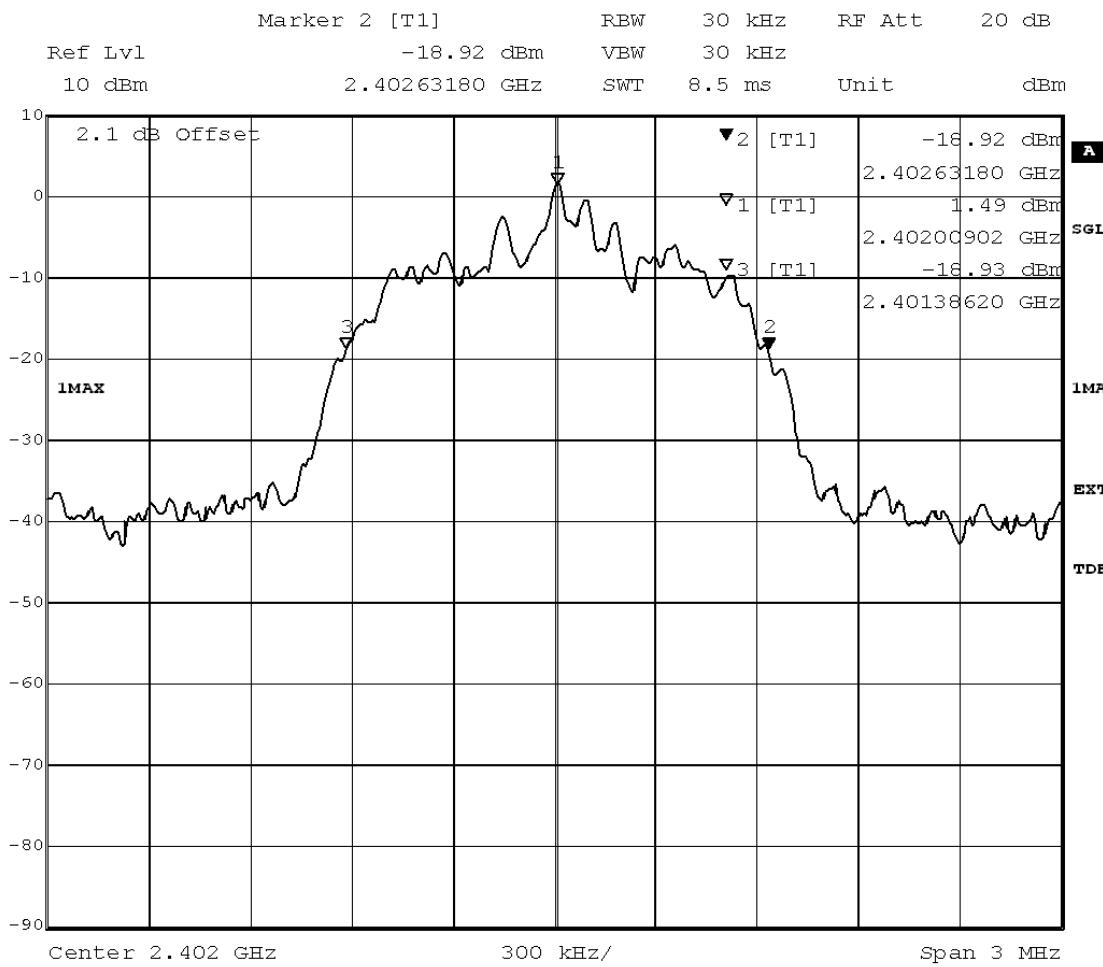


Title: 20dB Bandwidth
 Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1215
 Date: 9.AUG.2011 14:13:48

8.2.6 Occupied bandwidth operating mode 8

Op. Mode

op-mode 8

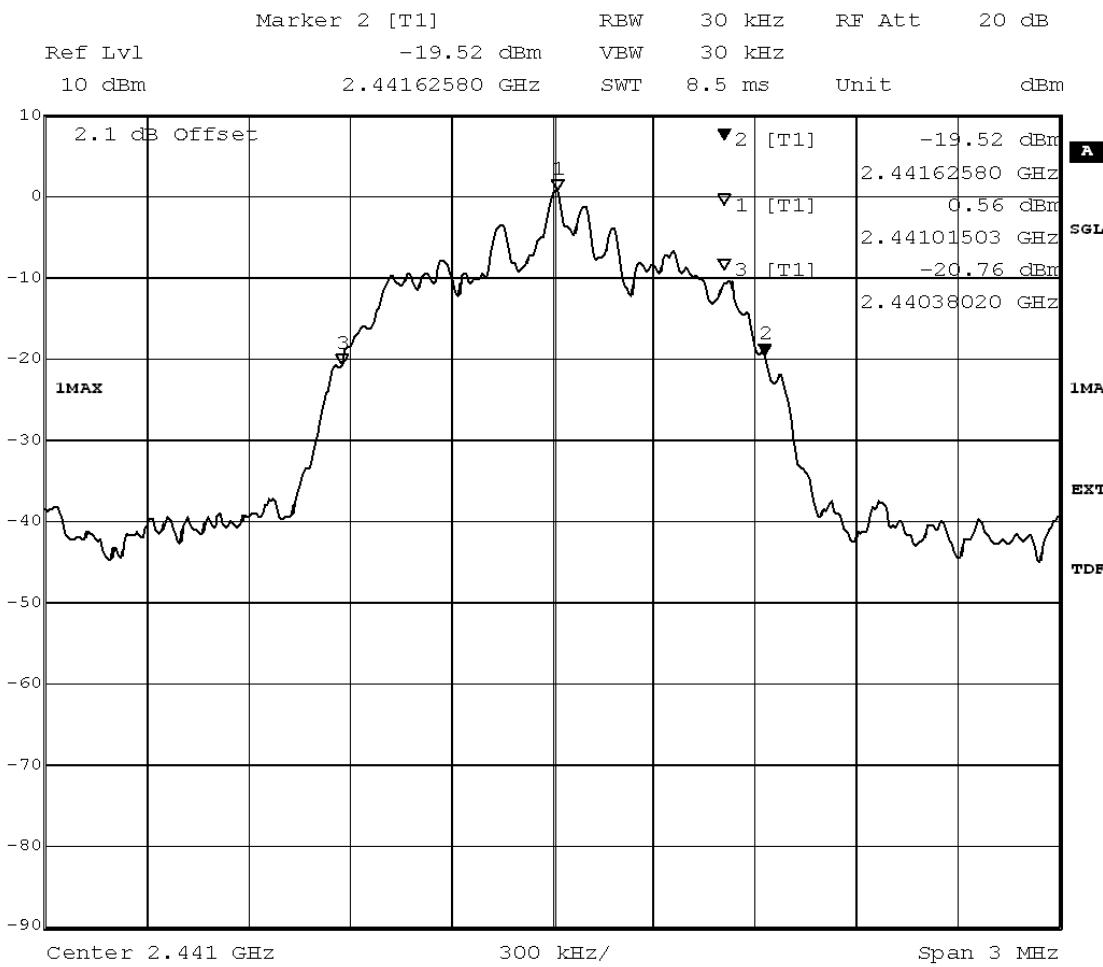


Title: 20dB Bandwidth
 Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):1209
 Date: 9.AUG.2011 14:37:03

8.2.7 Occupied bandwidth operating mode 10

Op. Mode

op-mode 10

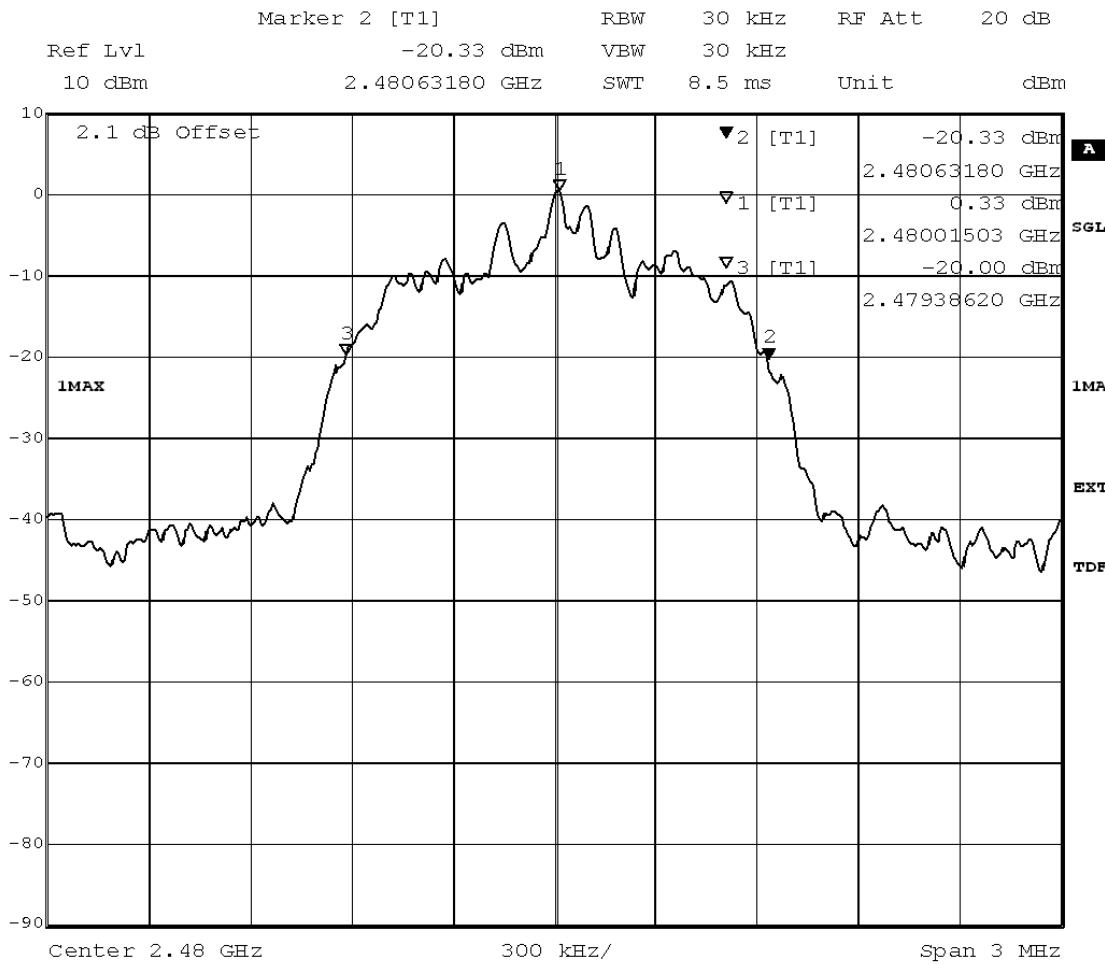


Title: 20dB Bandwidth
 Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):1245.6
 Date: 9.AUG.2011 12:30:20

8.2.8 Occupied bandwidth operating mode 11

Op. Mode

op-mode 11

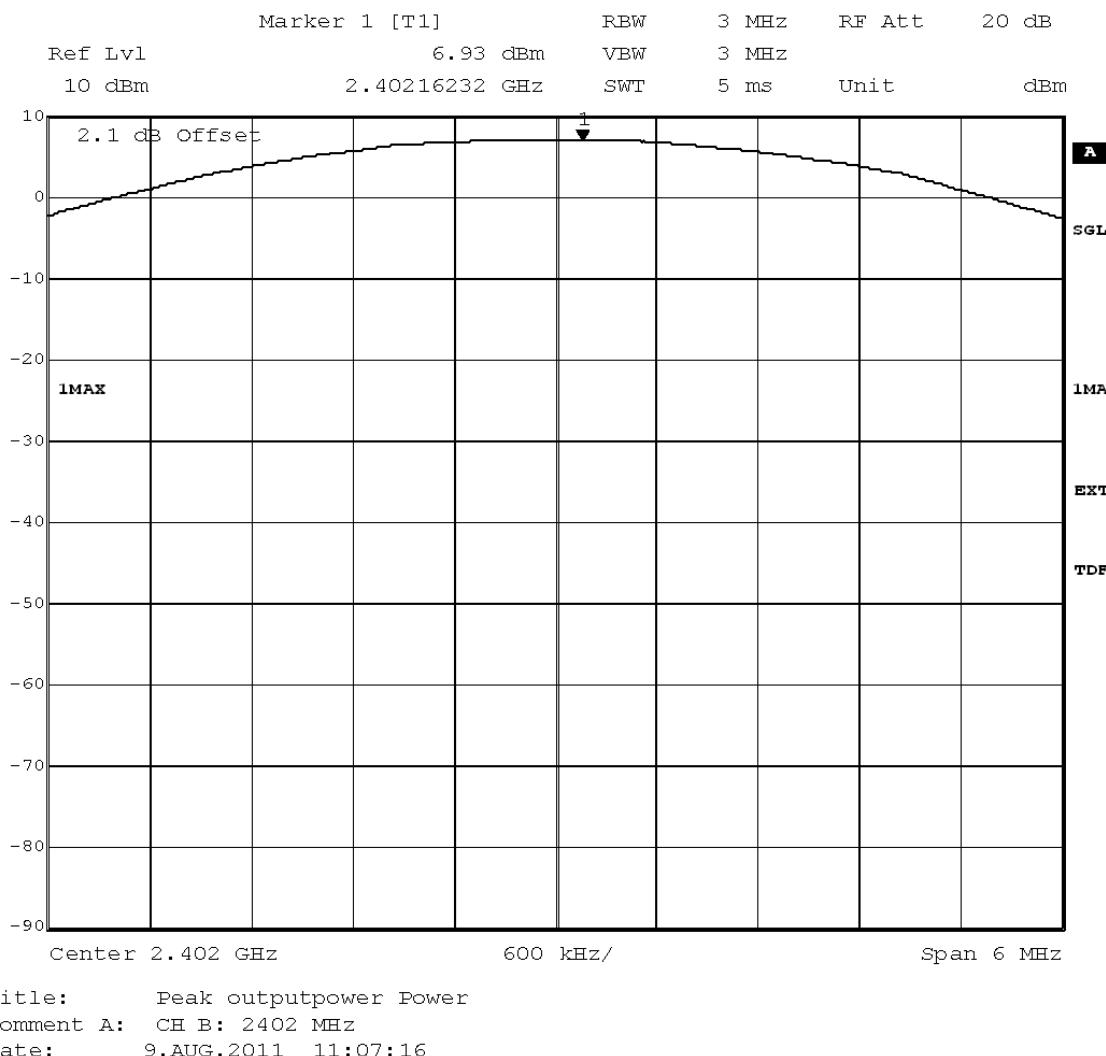


Title: 20dB Bandwidth
 Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1245.6
 Date: 9.AUG.2011 13:08:43

8.2.9 Occupied bandwidth operating mode 12

Op. Mode

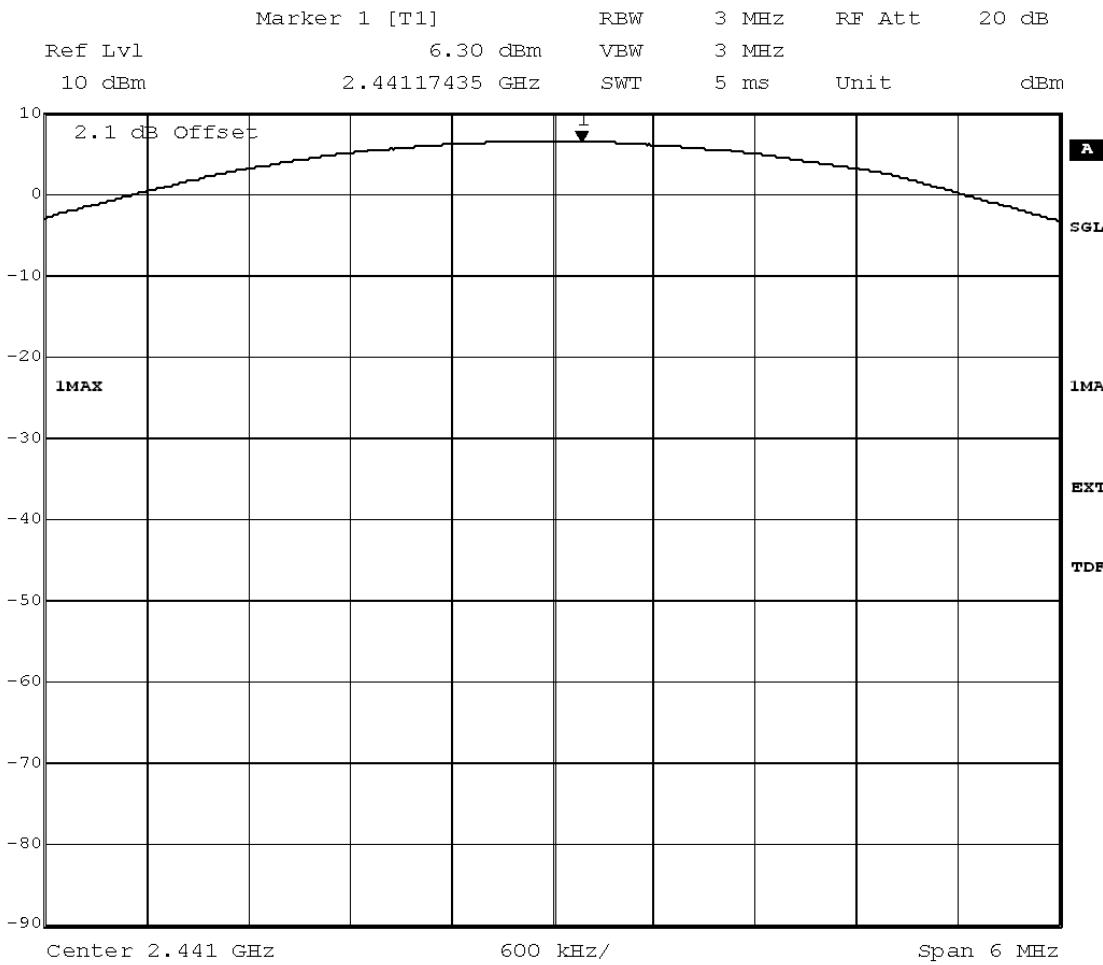
op-mode 12


Title: 20dB Bandwidth
 Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):1245.6
 Date: 9.AUG.2011 13:28:27

8.3 Peak power output

8.3.1 Peak power output operating mode 1

Op. Mode

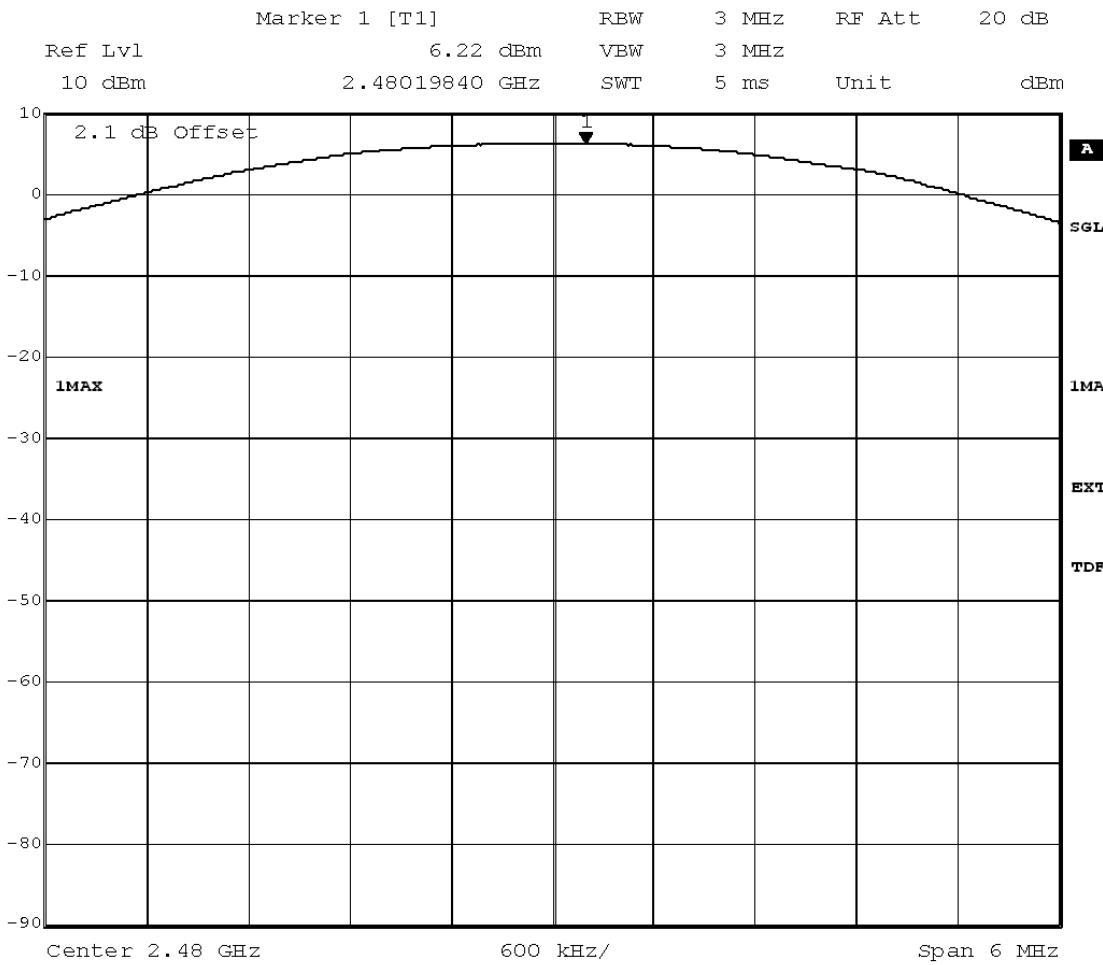

op-mode 1

8.3.2 Peak power output operating mode 2

Op. Mode

op-mode 2

Title: Peak outputpower Power


Comment A: CH M: 2441 MHz

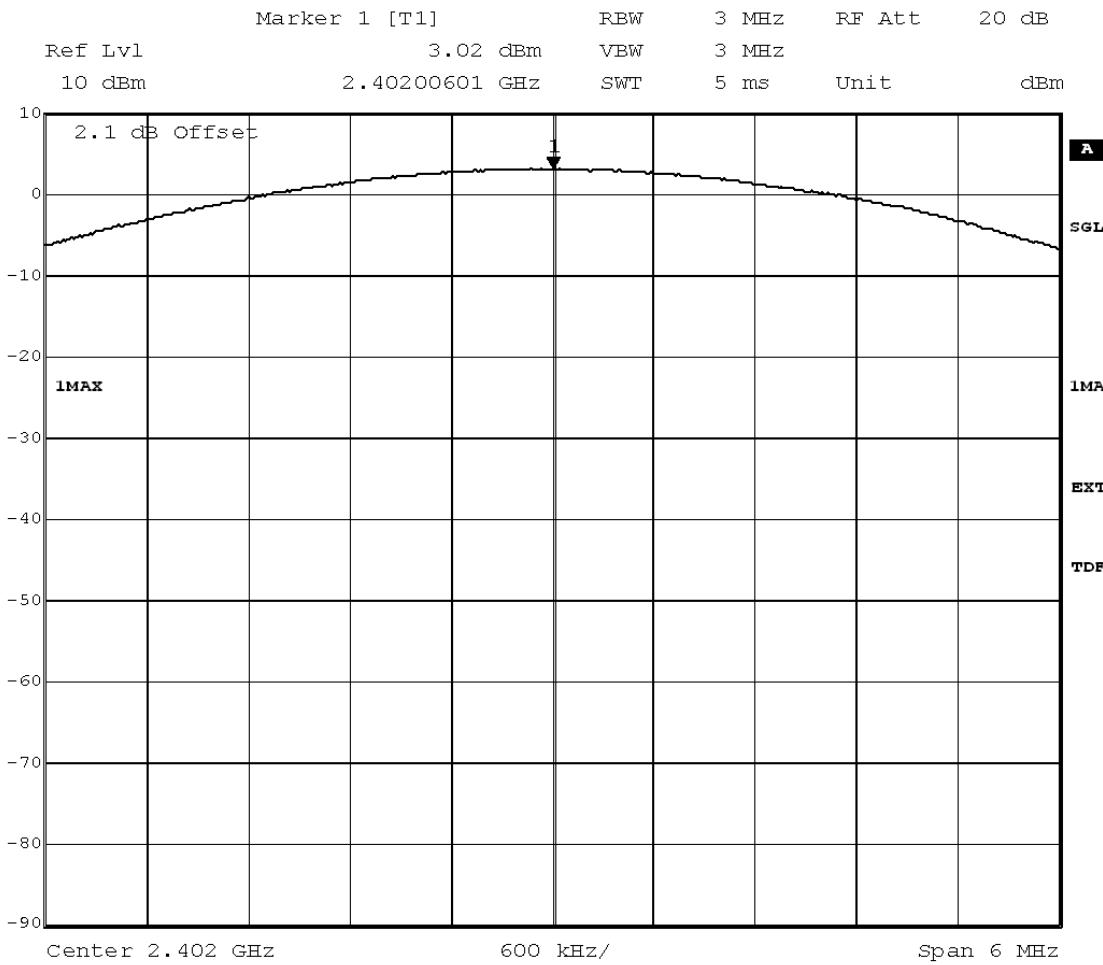
Date: 9.AUG.2011 11:31:10

8.3.3 Peak power output operating mode 3

Op. Mode

op-mode 3

Title: Peak outputpower Power


Comment A: CH T: 2480 MHz

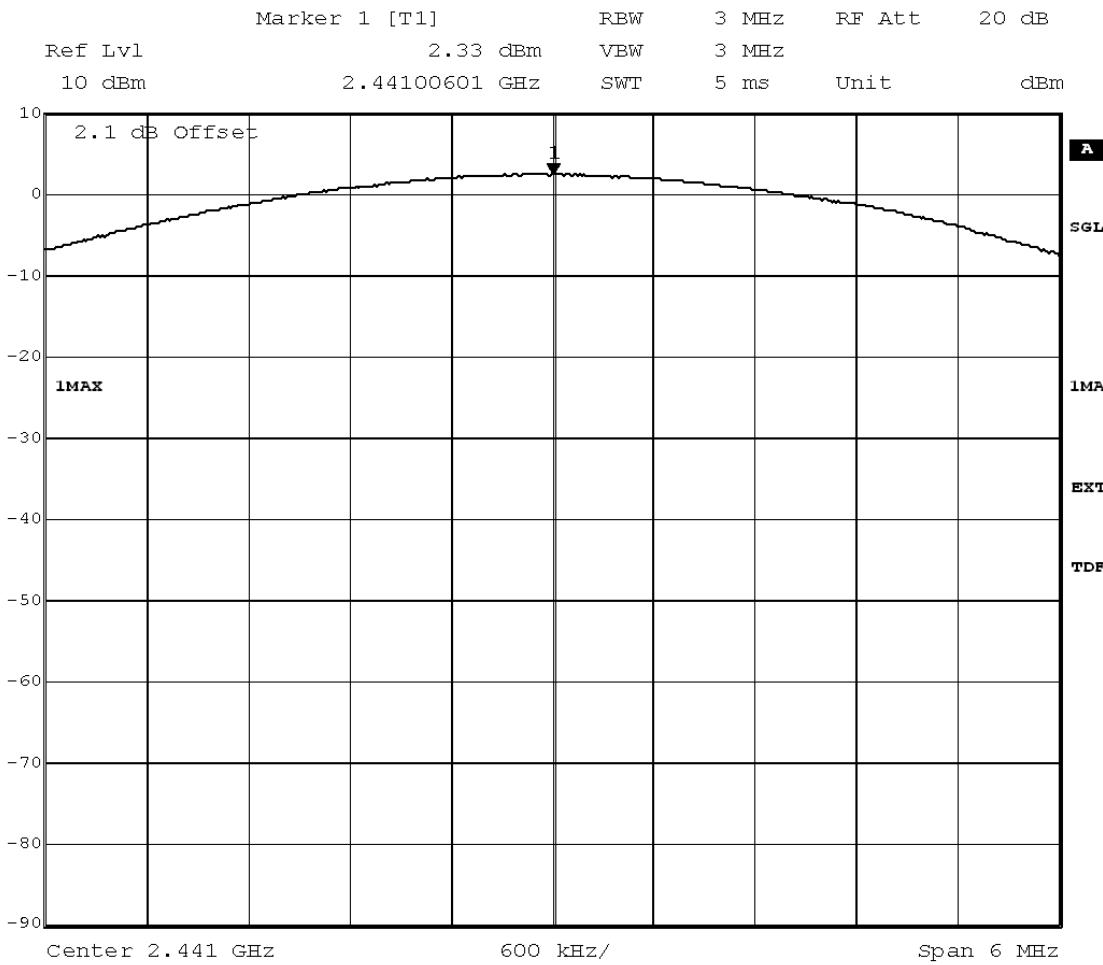
Date: 9.AUG.2011 11:51:52

8.3.4 Peak power output operating mode 6

Op. Mode

op-mode 6

Title: Peak outputpower Power


Comment A: CH B: 2402 MHz

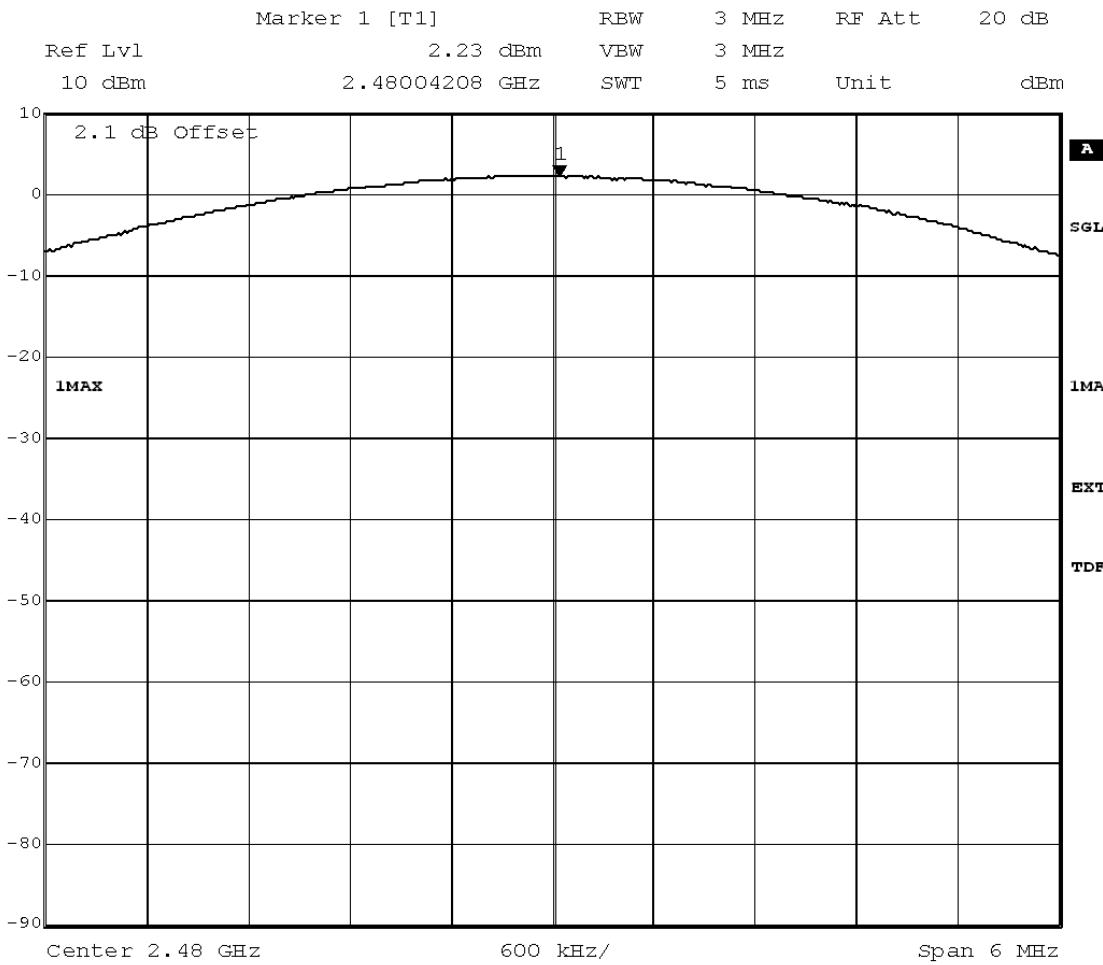
Date: 9.AUG.2011 13:52:01

8.3.5 Peak power output operating mode 7

Op. Mode

op-mode 7

Title: Peak outputpower Power


Comment A: CH M: 2441 MHz

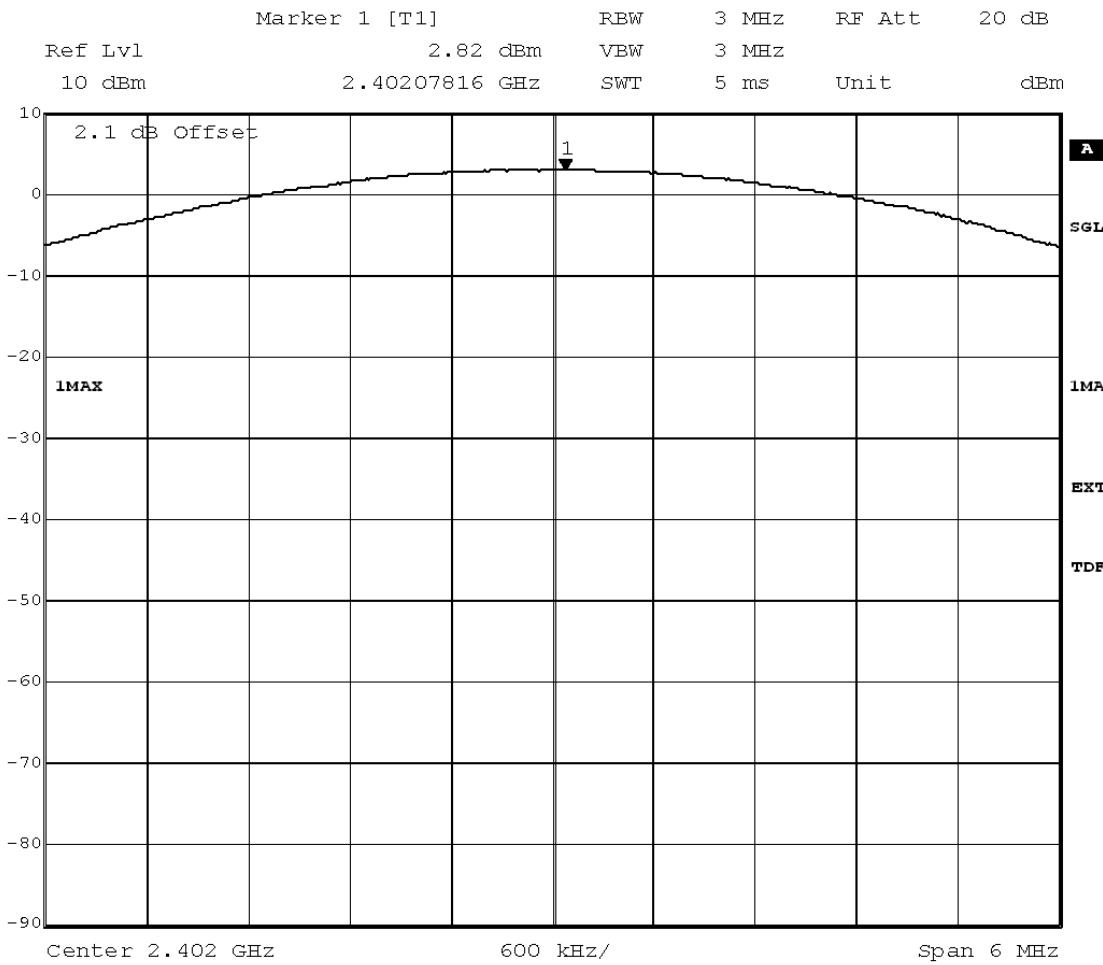
Date: 9.AUG.2011 14:14:27

8.3.6 Peak power output operating mode 8

Op. Mode

op-mode 8

Title: Peak outputpower Power


Comment A: CH T: 2480 MHz

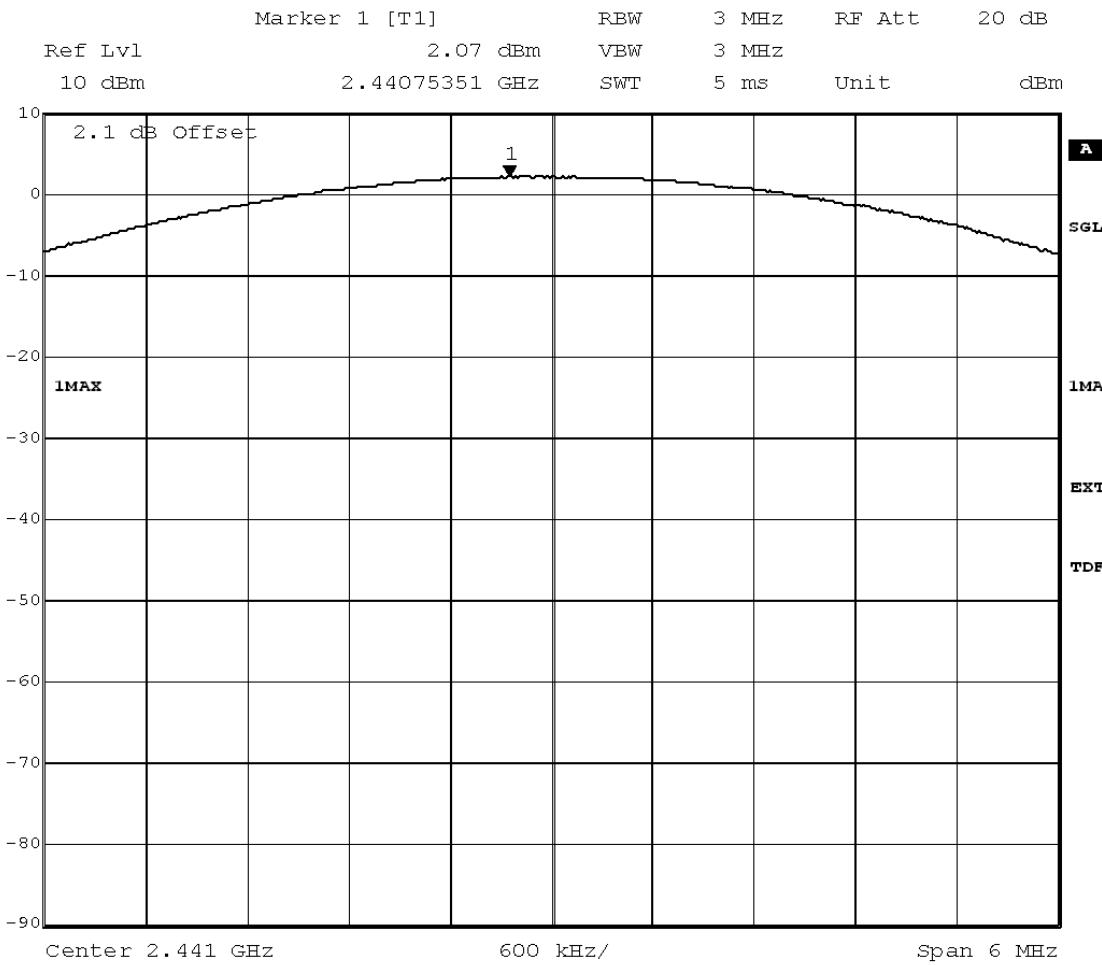
Date: 9.AUG.2011 14:37:41

8.3.7 Peak power output operating mode 10

Op. Mode

op-mode 10

Title: Peak outputpower Power


Comment A: CH B: 2402 MHz

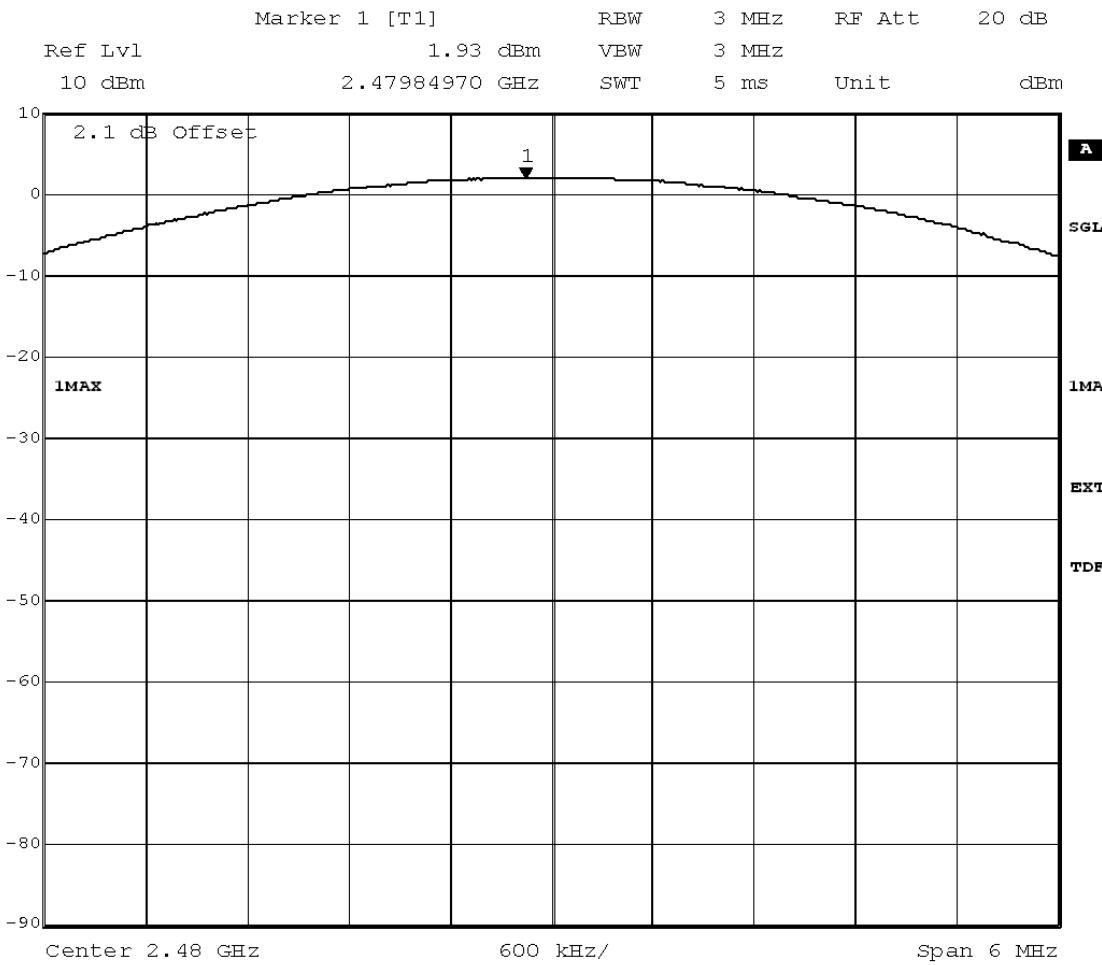
Date: 9.AUG.2011 12:30:58

8.3.8 Peak power output operating mode 11

Op. Mode

op-mode 11

Title: Peak outputpower Power


Comment A: CH M: 2441 MHz

Date: 9.AUG.2011 13:09:22

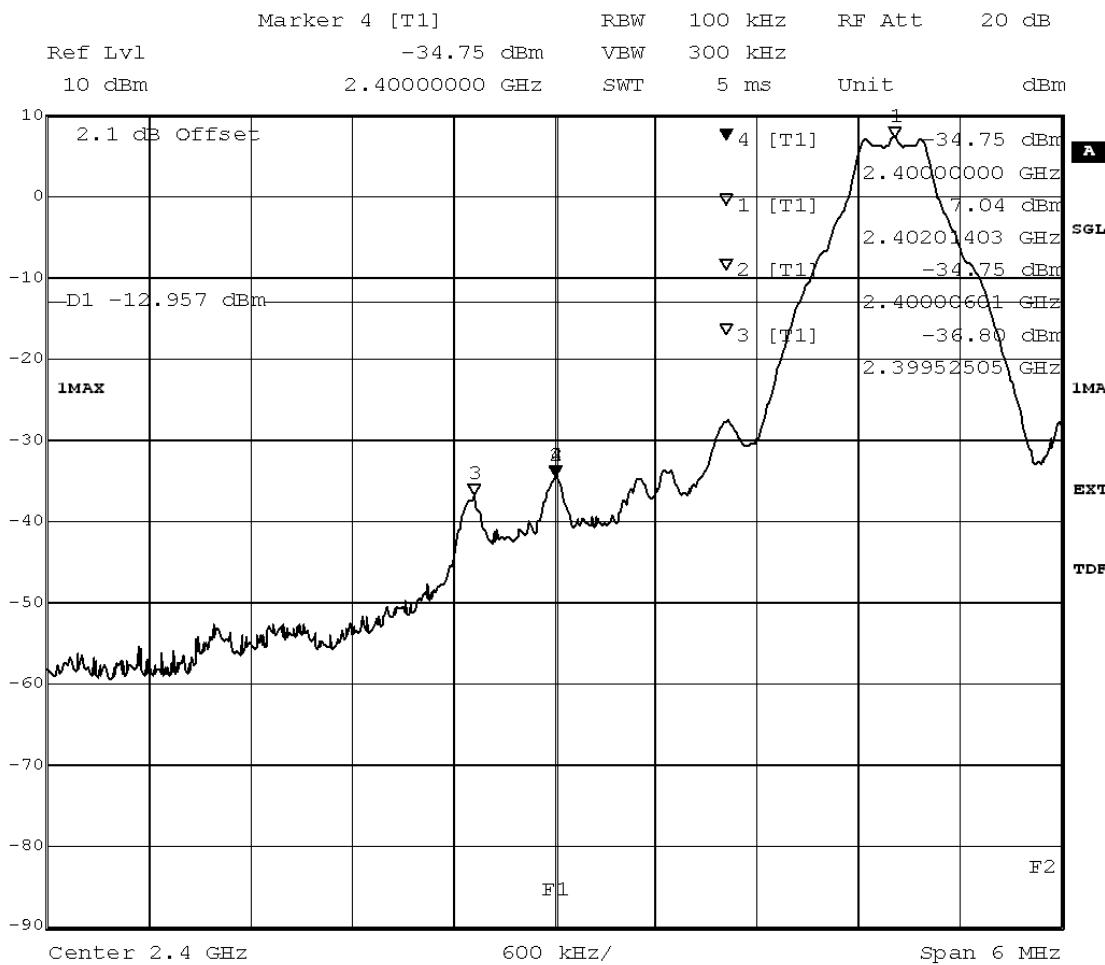
8.3.9 Peak power output operating mode 12

Op. Mode

op-mode 12

Title: Peak outputpower Power

Comment A: CH T: 2480 MHz

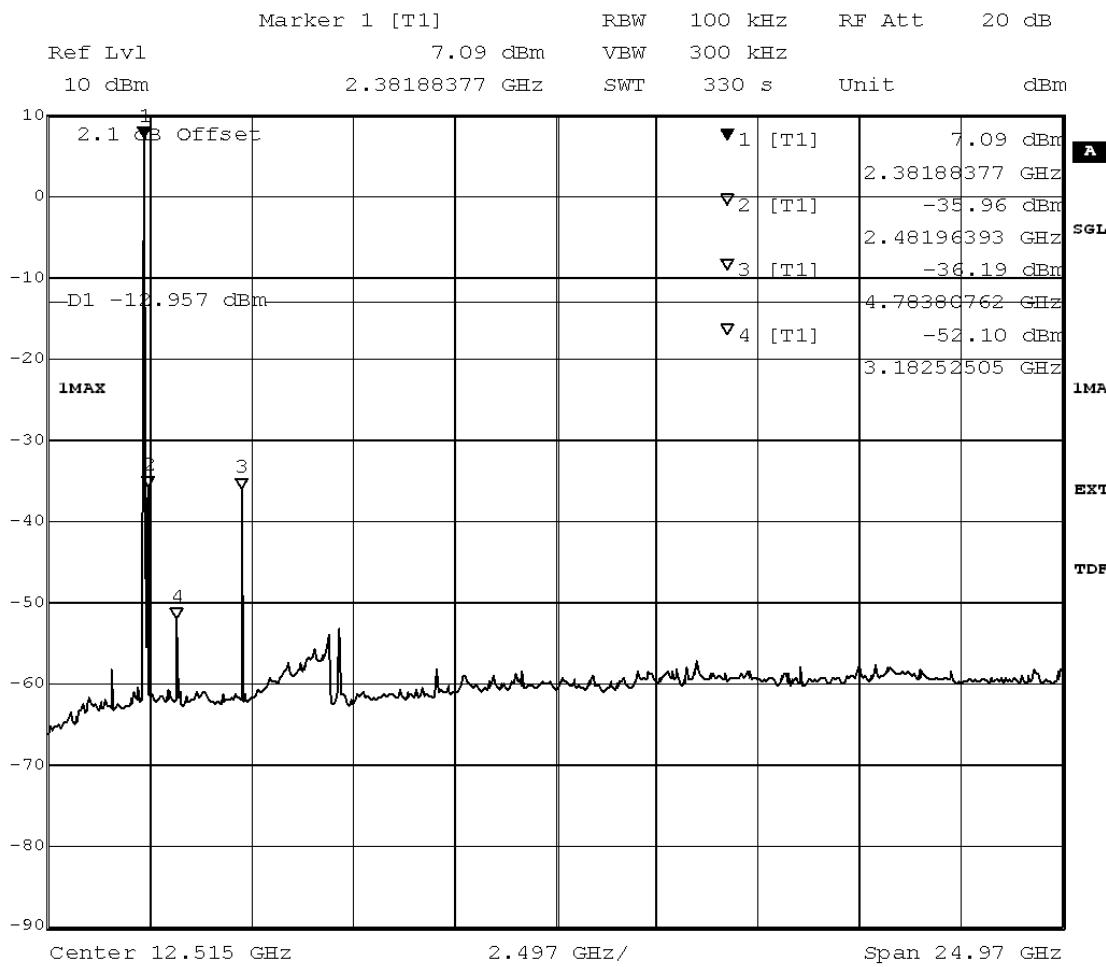

Date: 9.AUG.2011 13:29:06

8.4 Band edge compliance conducted and Spurious RF conducted emissions

8.4.1 Band edge compliance conducted operating mode 1

Op. Mode

op-mode 1

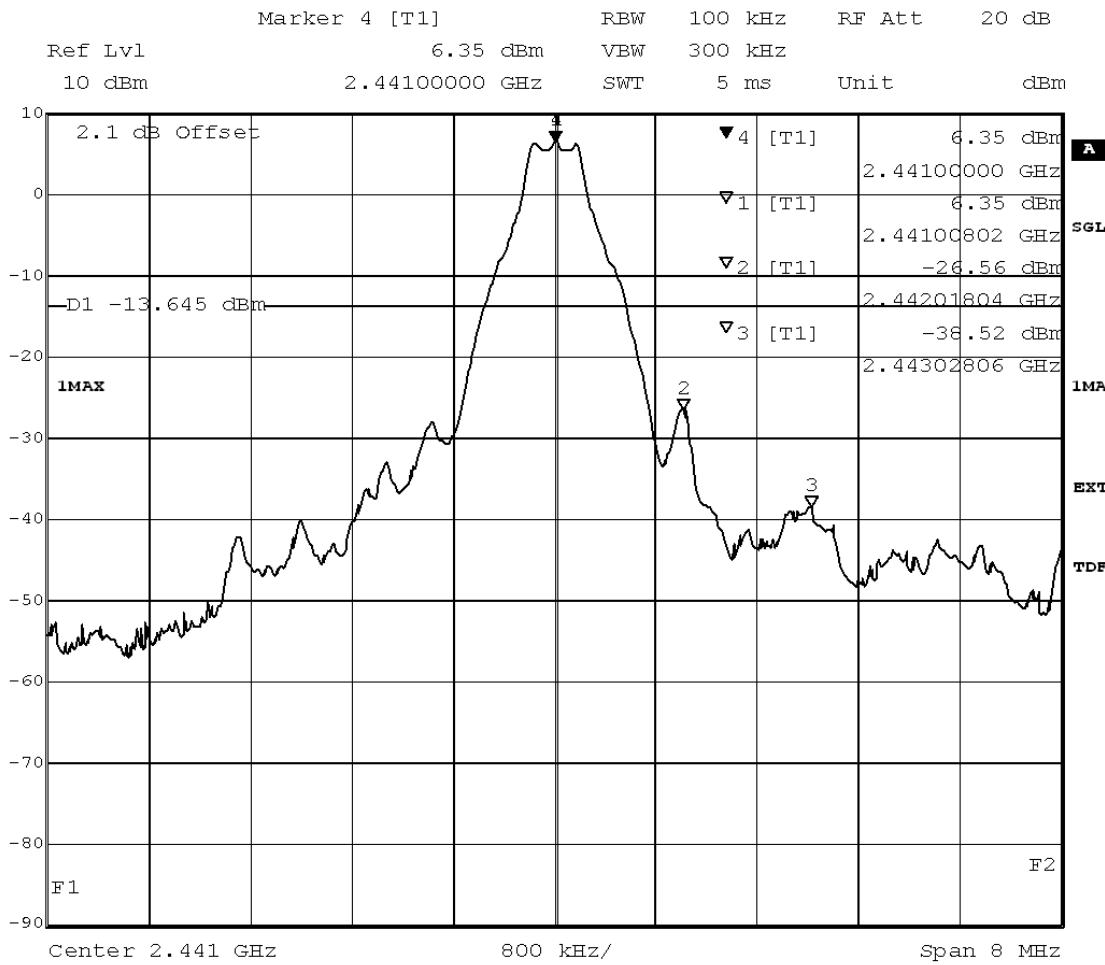

Title: Band Edge Compliance
Comment A: CH B: 2402 MHz
Date: 9.AUG.2011 10:51:06

(determination of reference value for spurious emissions measurement)

8.4.2 Spurious RF conducted emissions operating mode 1

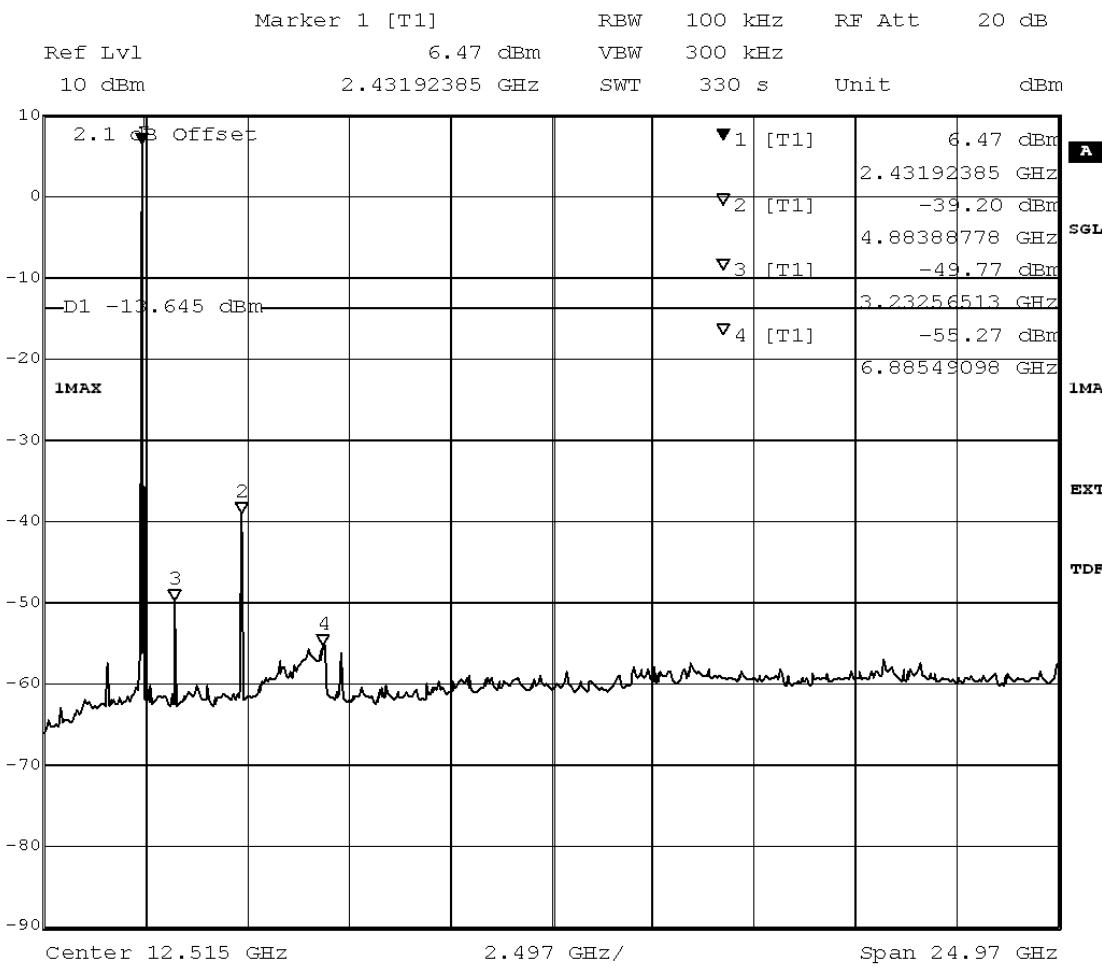
Op. Mode

op-mode 1


Title: spurious emissions
 Comment A: CH B: 2402 MHz
 Date: 9.AUG.2011 11:03:05

(spurious emissions measurement)

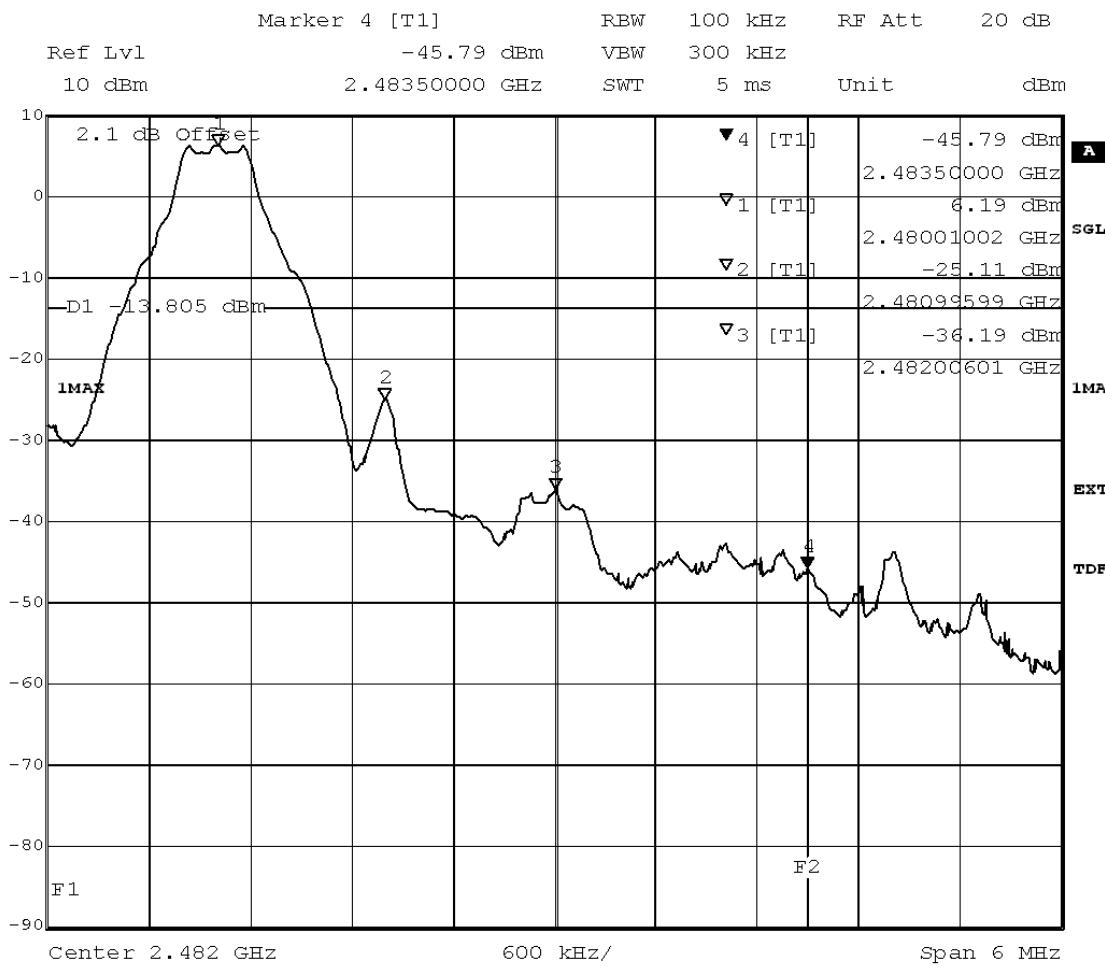
8.4.3 Spurious RF conducted emissions operating mode 2


Op. Mode

op-mode 2

Title: Band Edge Compliance
Comment A: CH M: 2441 MHZ
Date: 9.AUG.2011 11:15:07

(determination of reference value for spurious emissions measurement)



(spurious emissions measurement)

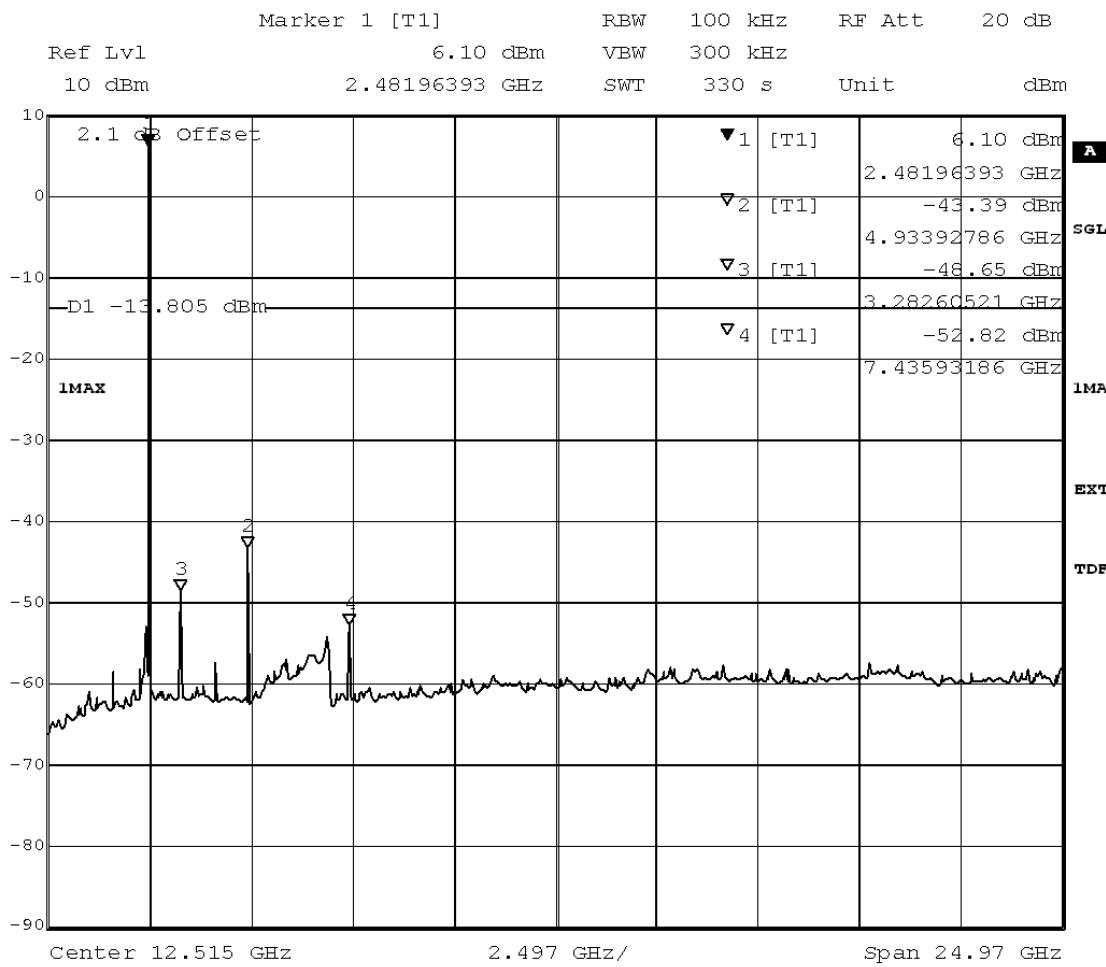
8.4.4 Band edge compliance conducted operating mode 3

Op. Mode

op-mode 3

Title: Band Edge Compliance

Comment A: CH T: 2480 MHz

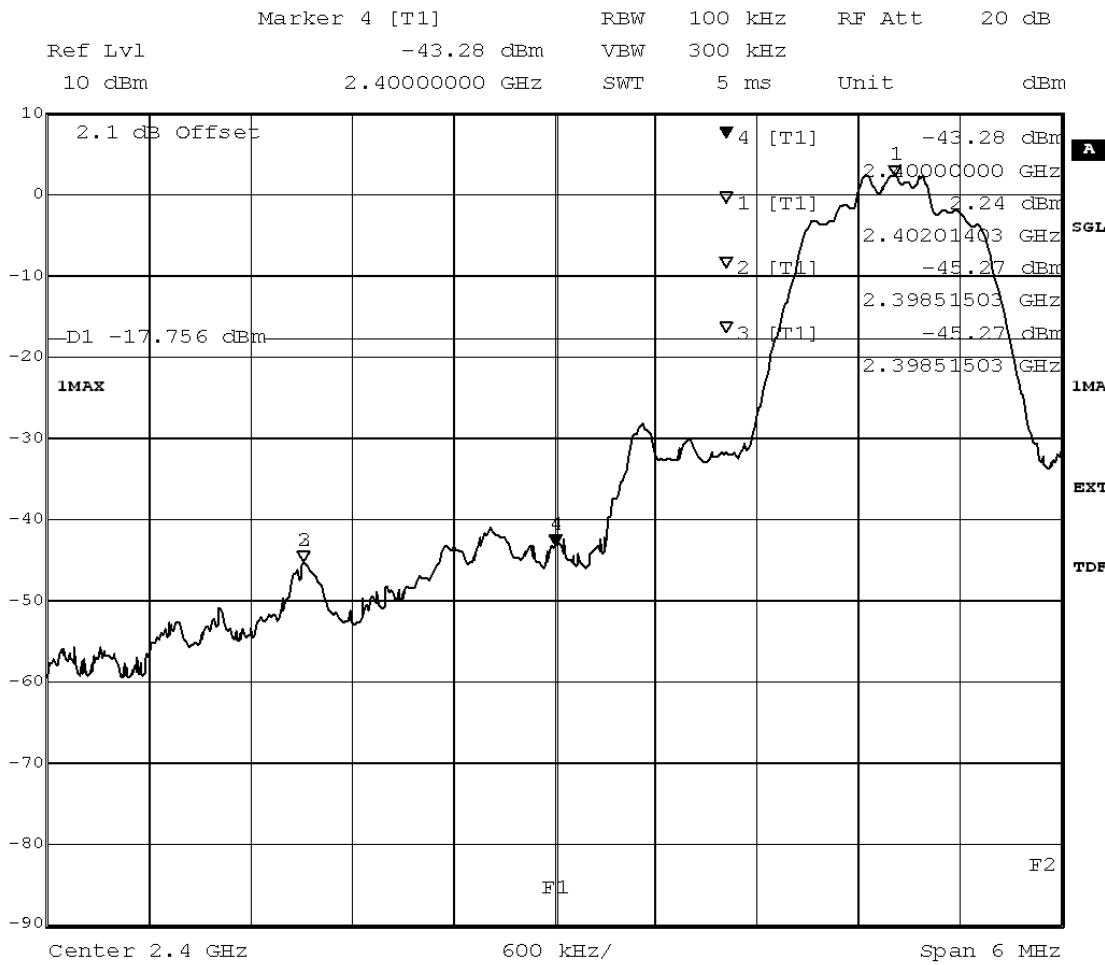

Date: 9.AUG.2011 11:35:42

(determination of reference value for spurious emissions measurement)

8.4.5 Spurious RF conducted emissions operating mode 3

Op. Mode

op-mode 3

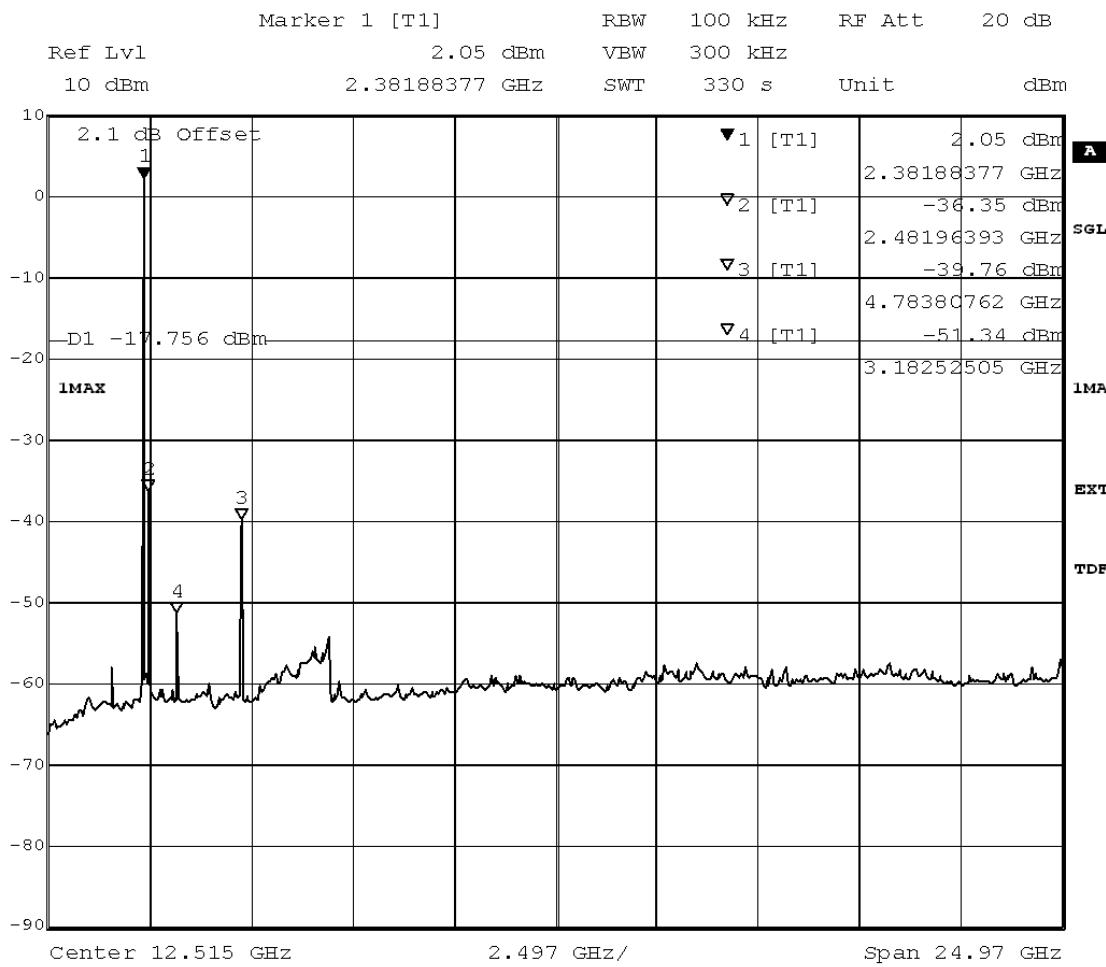

Title: spurious emissions
 Comment A: CH T: 2480 MHz
 Date: 9.AUG.2011 11:47:43

(spurious emissions measurement)

8.4.6 Band edge compliance conducted operating mode 6

Op. Mode

op-mode 6

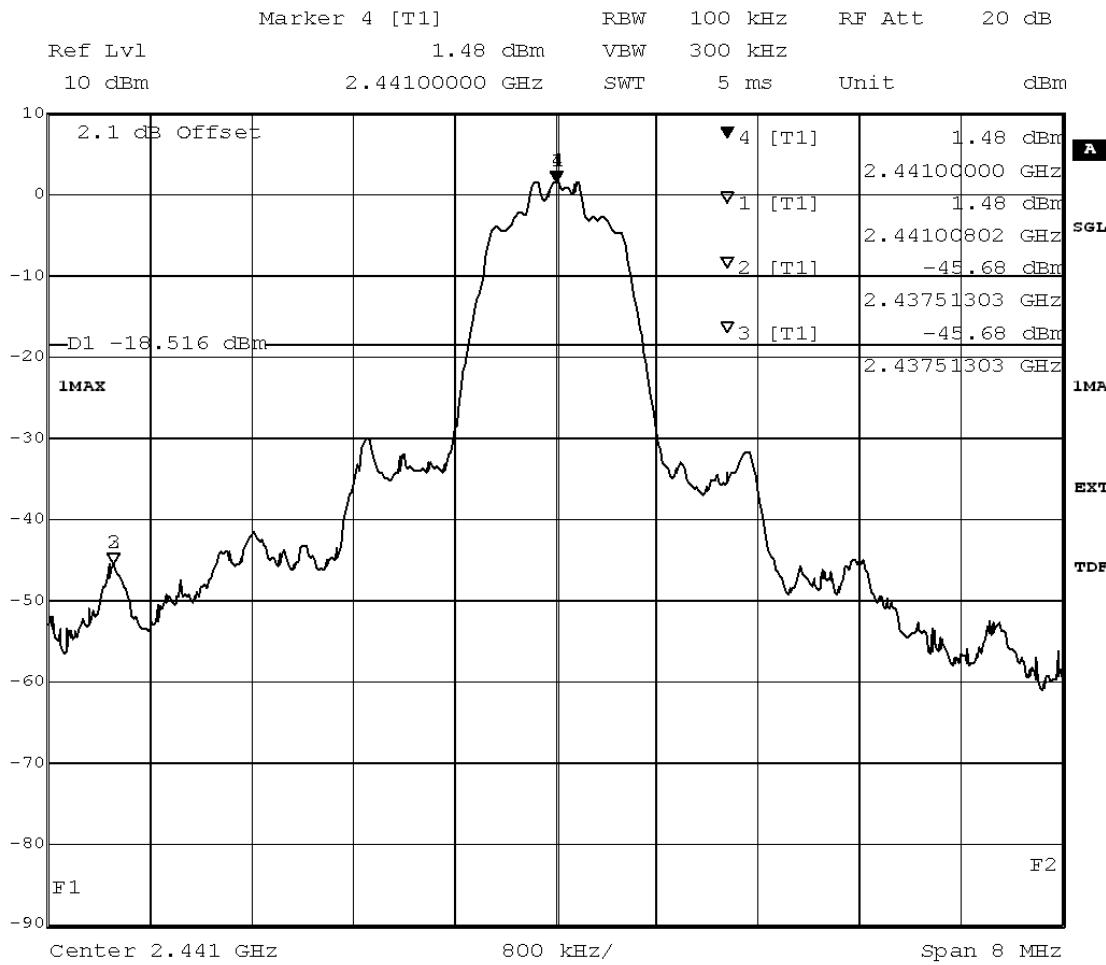

Title: Band Edge Compliance
 Comment A: CH B: 2402 MHz
 Date: 9.AUG.2011 13:36:03

(determination of reference value for spurious emissions measurement)

8.4.7 Spurious RF conducted emissions operating mode 6

Op. Mode

op-mode 6

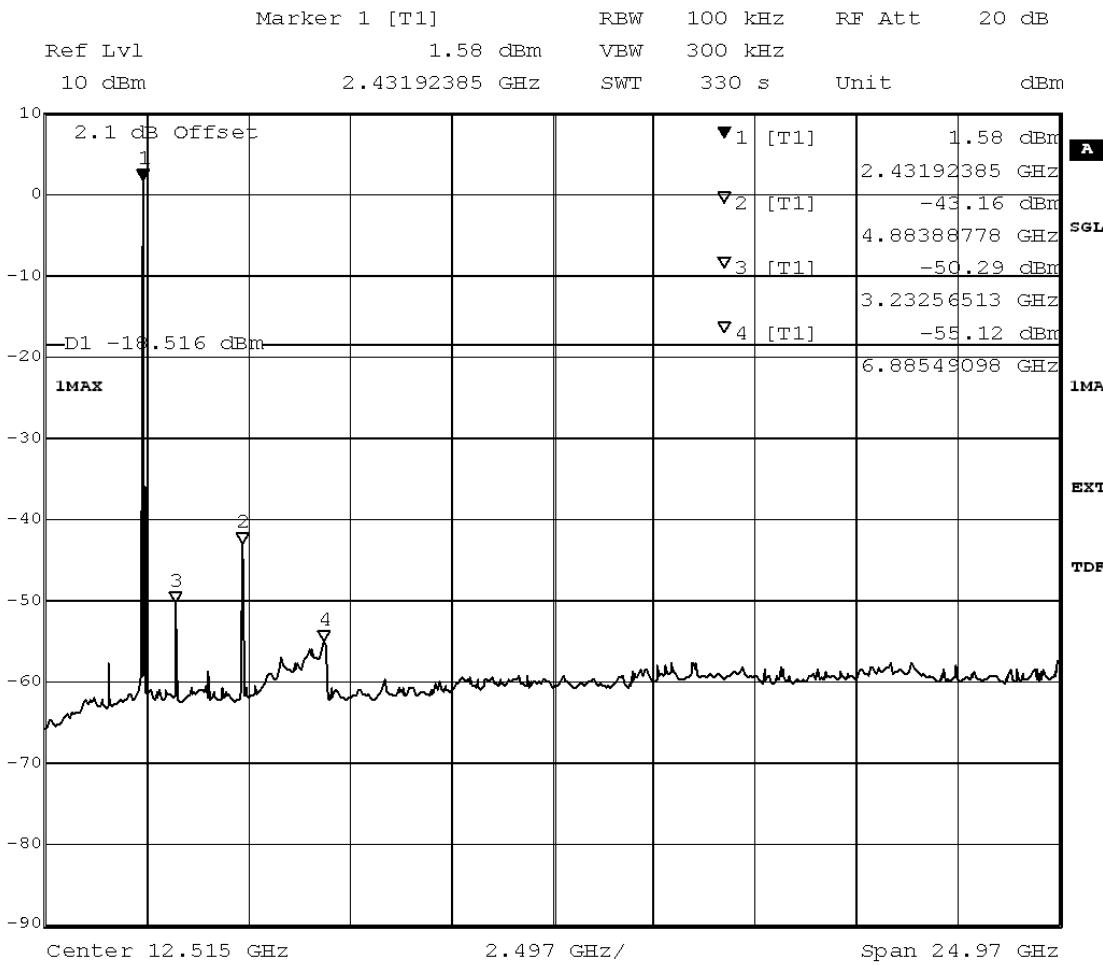

Title: spurious emissions
 Comment A: CH B: 2402 MHz
 Date: 9.AUG.2011 13:48:06

(spurious emissions measurement)

8.4.8 Spurious RF conducted emissions operating mode 7

Op. Mode

op-mode 7

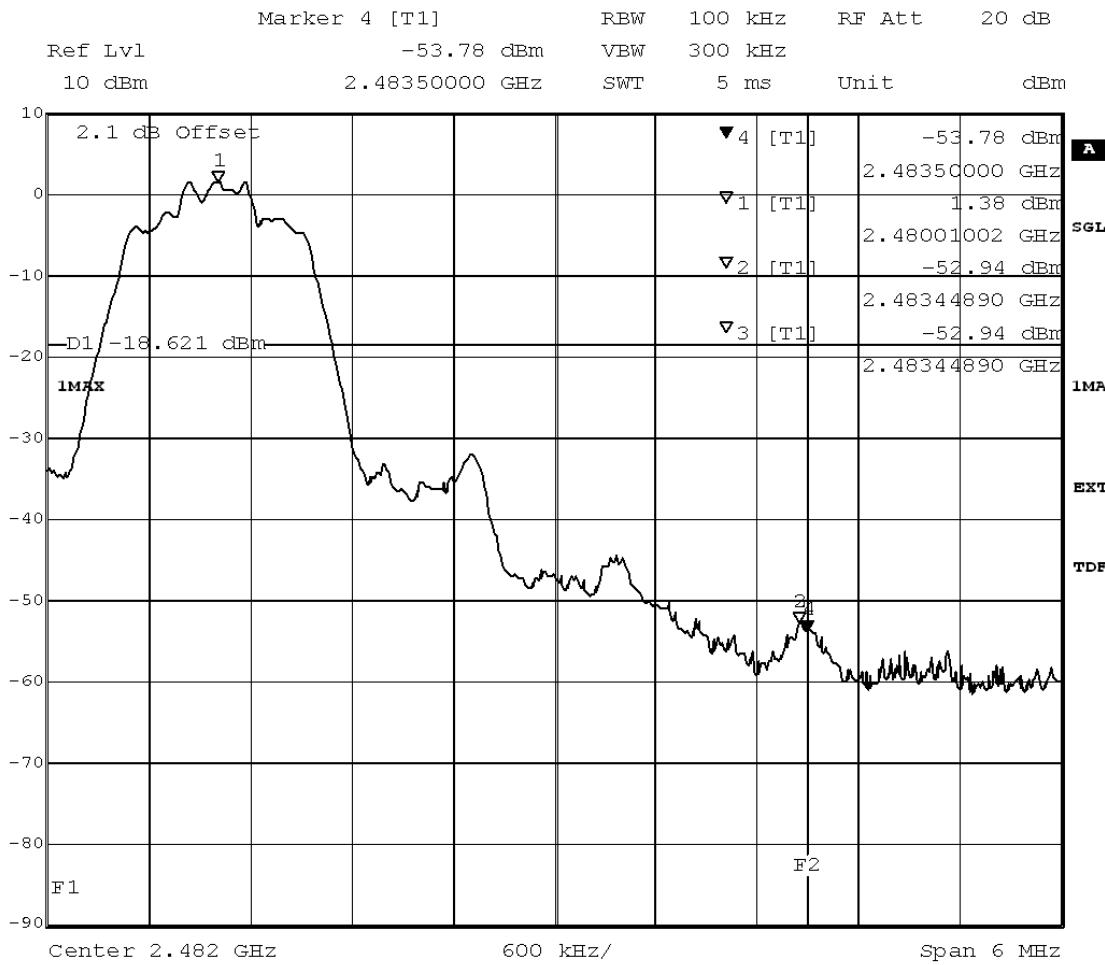


Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

Date: 9.AUG.2011 13:58:36

(determination of reference value for spurious emissions measurement)


Title: spurious emissions
 Comment A: CH M: 2441 MHz
 Date: 9.AUG.2011 14:10:40

(spurious emissions measurement)

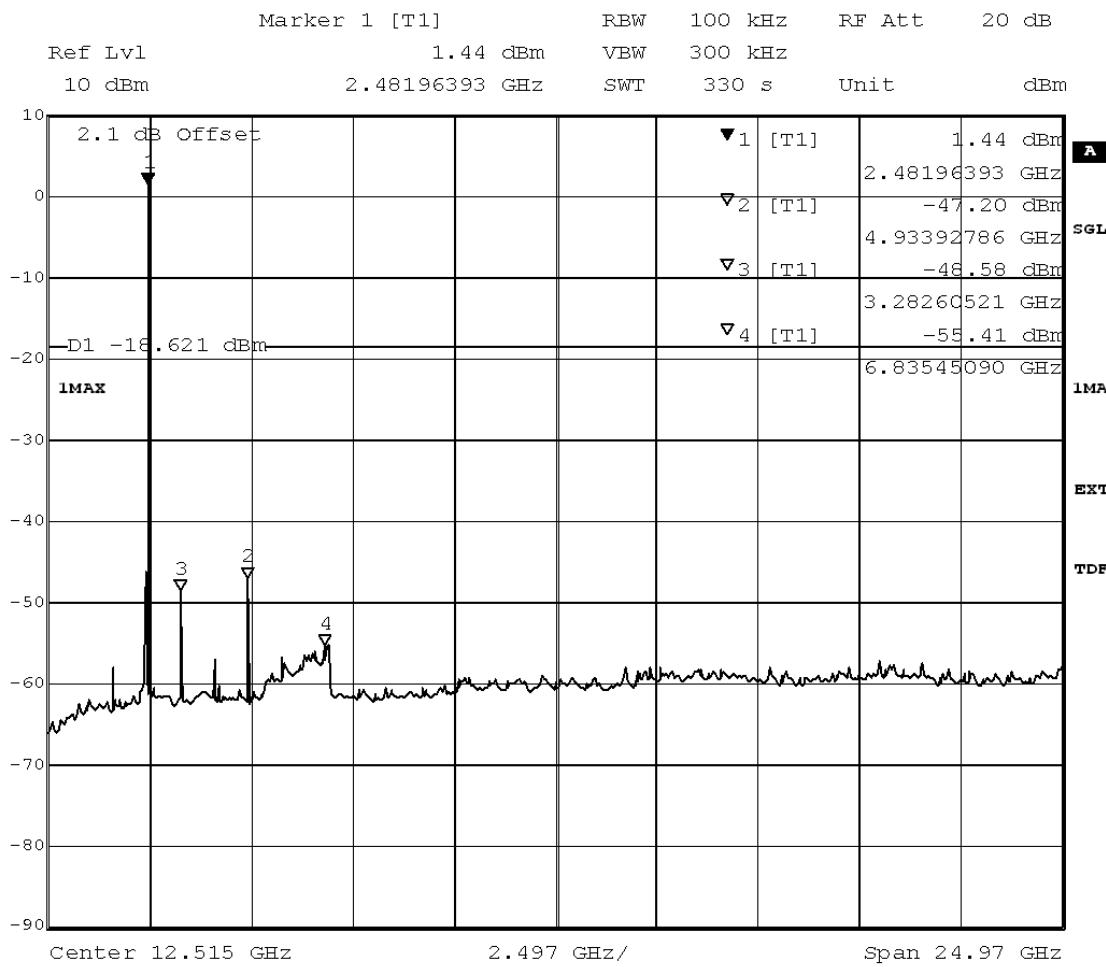
8.4.9 Band edge compliance conducted operating mode 8

Op. Mode

op-mode 8

Title: Band Edge Compliance

Comment A: CH T: 2480 MHz

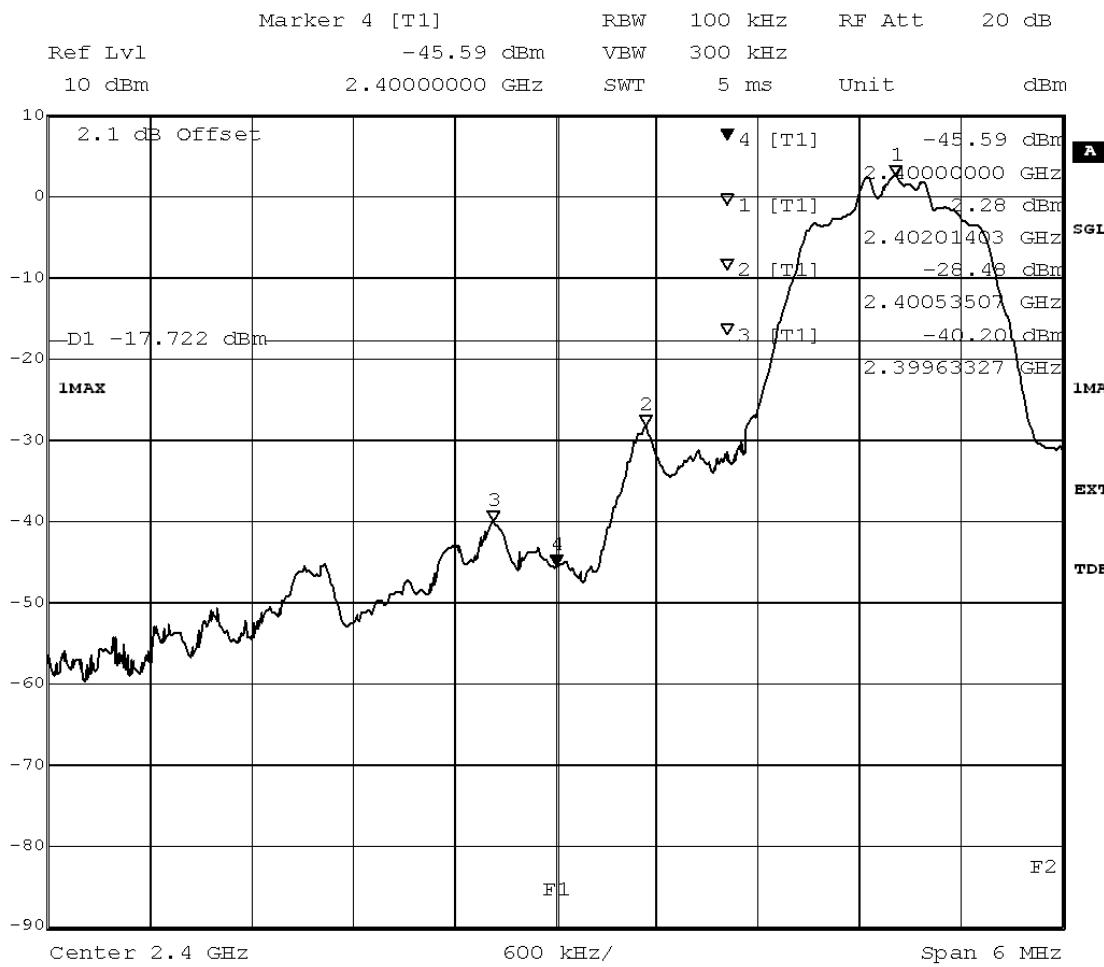

Date: 9.AUG.2011 14:21:38

(determination of reference value for spurious emissions measurement)

8.4.10 Spurious RF conducted emissions operating mode 8

Op. Mode

op-mode 8

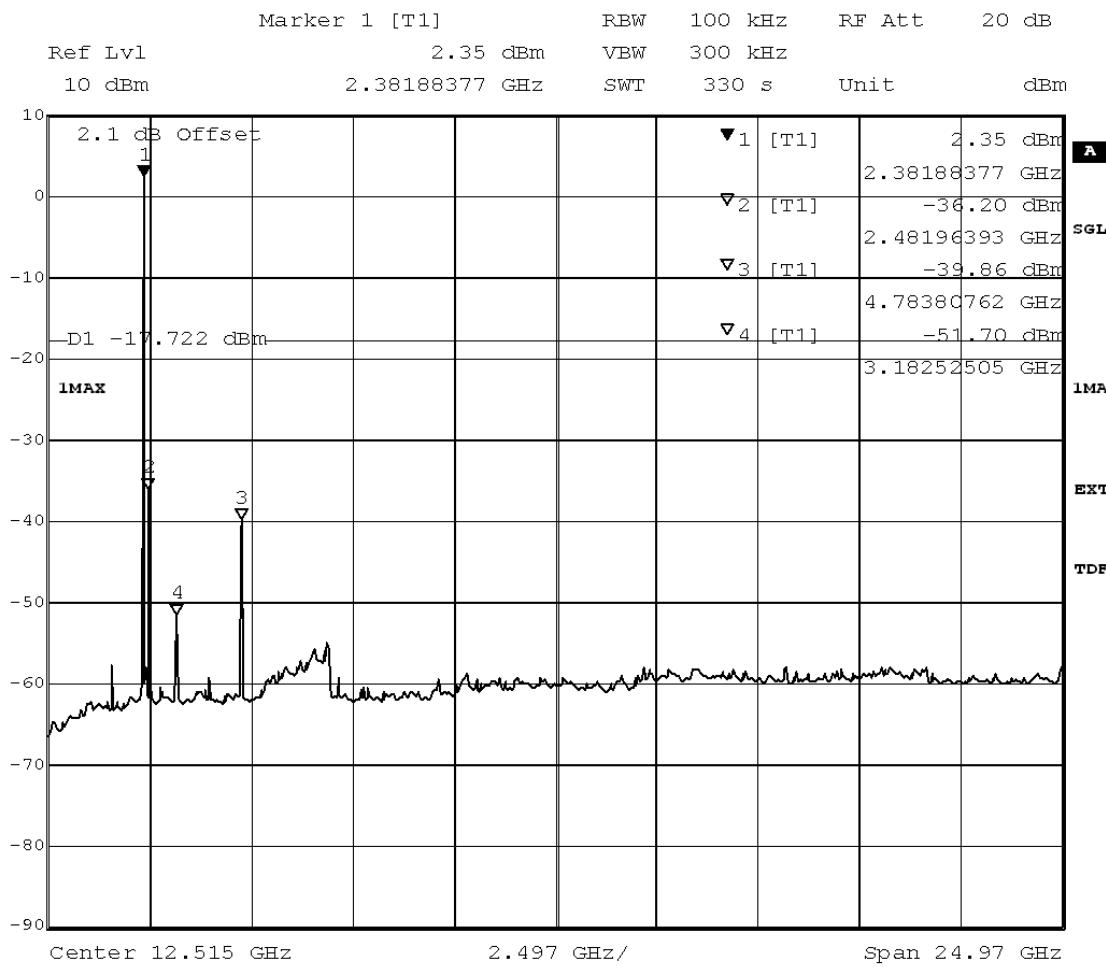

Title: spurious emissions
 Comment A: CH T: 2480 MHz
 Date: 9.AUG.2011 14:33:41

(spurious emissions measurement)

8.4.11 Band edge compliance conducted operating mode 10

Op. Mode

op-mode 10

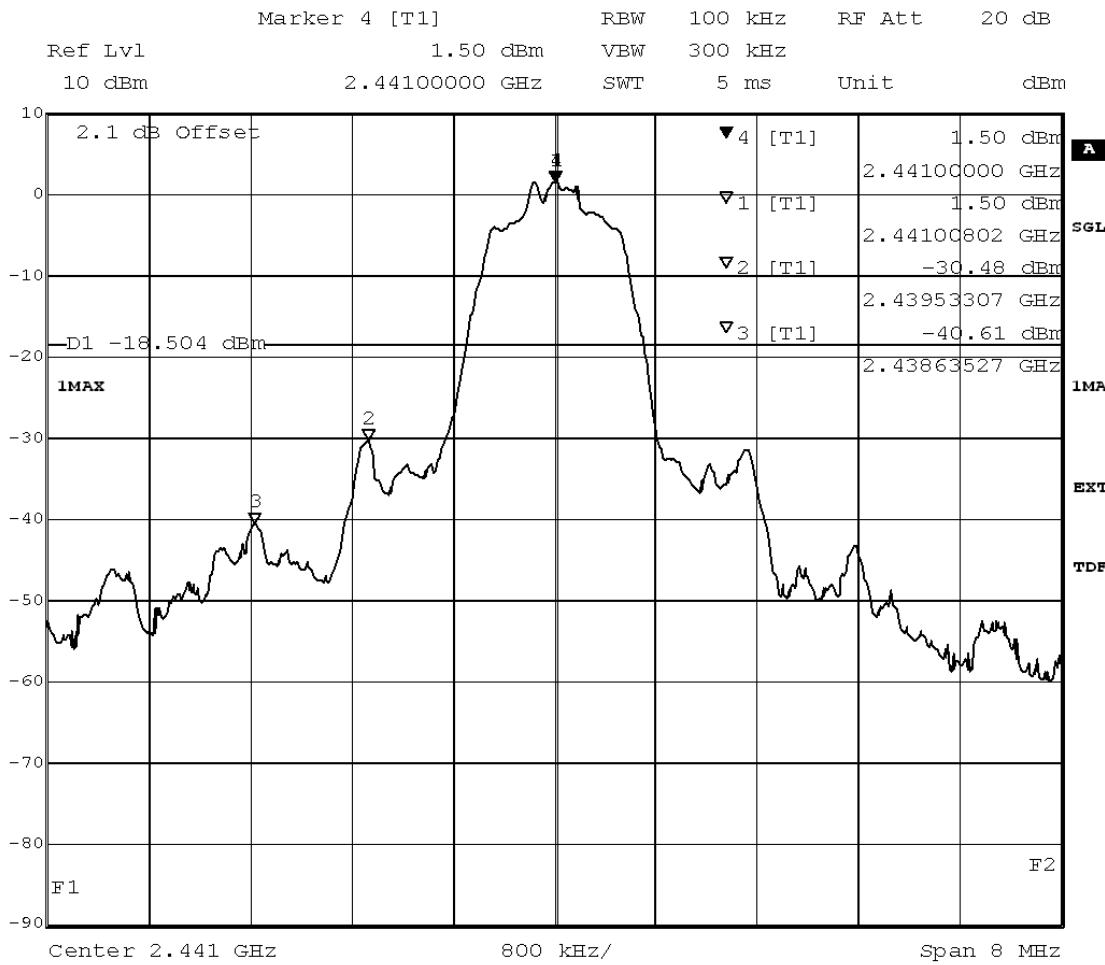

Title: Band Edge Compliance
 Comment A: CH B: 2402 MHz
 Date: 9.AUG.2011 12:15:01

(determination of reference value for spurious emissions measurement)

8.4.12 Spurious RF conducted emissions operating mode 10

Op. Mode

op-mode 10

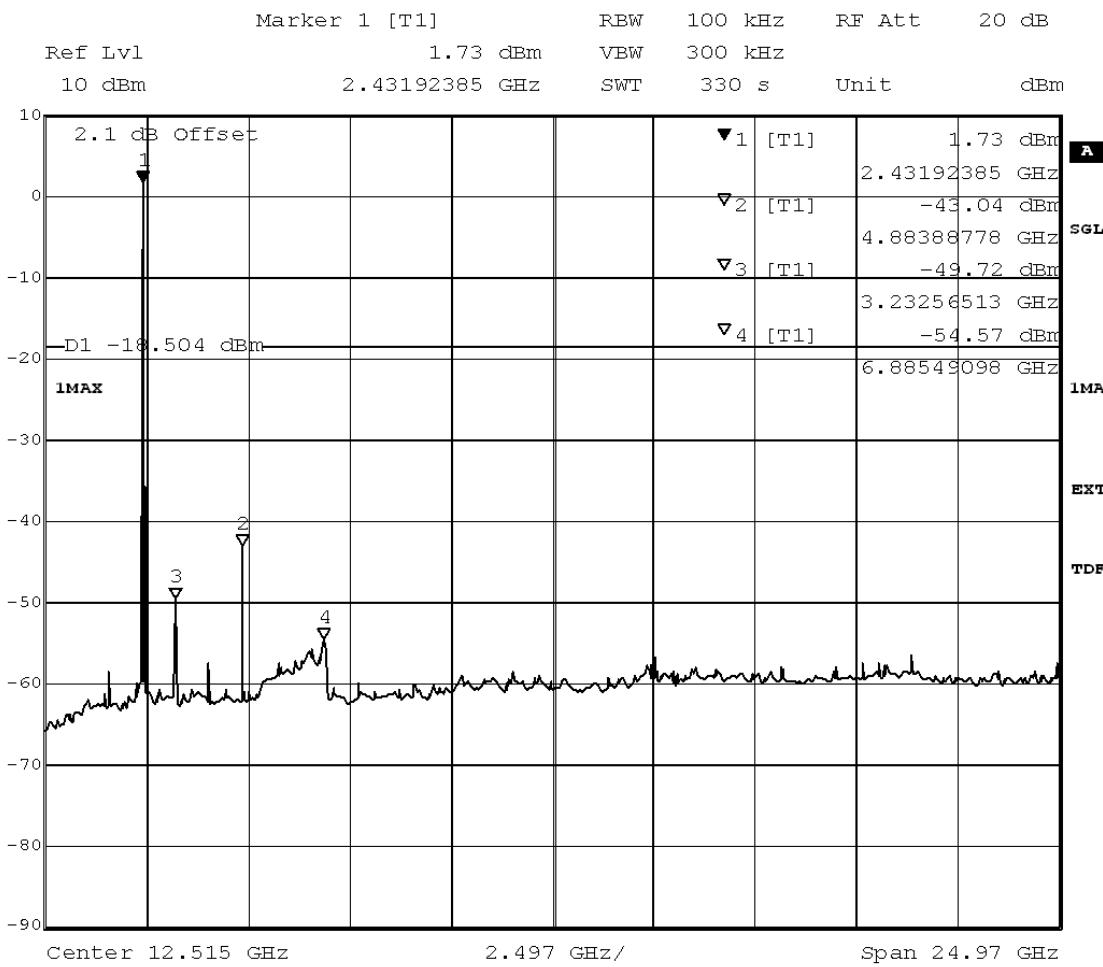

Title: spurious emissions
 Comment A: CH B: 2402 MHz
 Date: 9.AUG.2011 12:27:06

(spurious emissions measurement)

8.4.13 Spurious RF conducted emissions operating mode 11

Op. Mode

op-mode 11

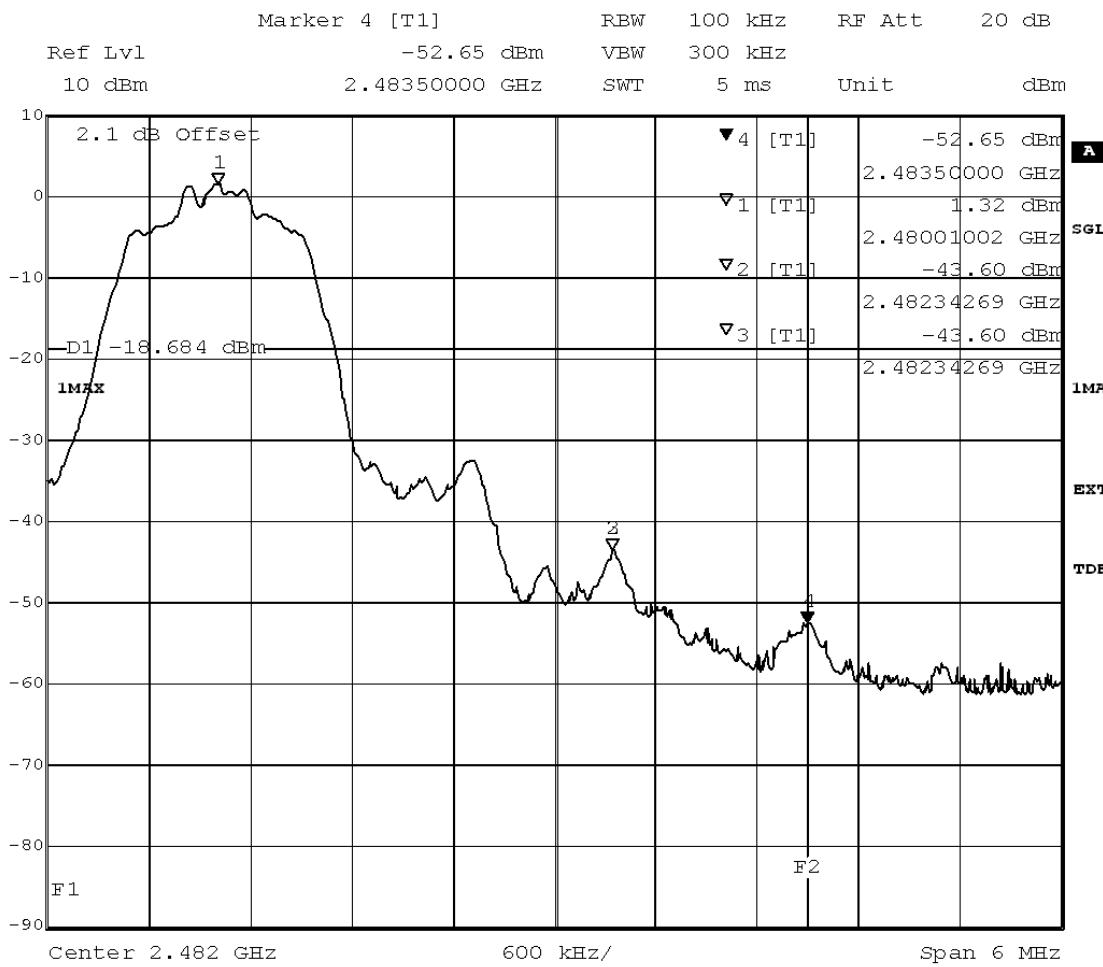


Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

Date: 9.AUG.2011 12:53:31

(determination of reference value for spurious emissions measurement)


Title: spurious emissions
 Comment A: CH M: 2441 MHz
 Date: 9.AUG.2011 13:05:36

(spurious emissions measurement)

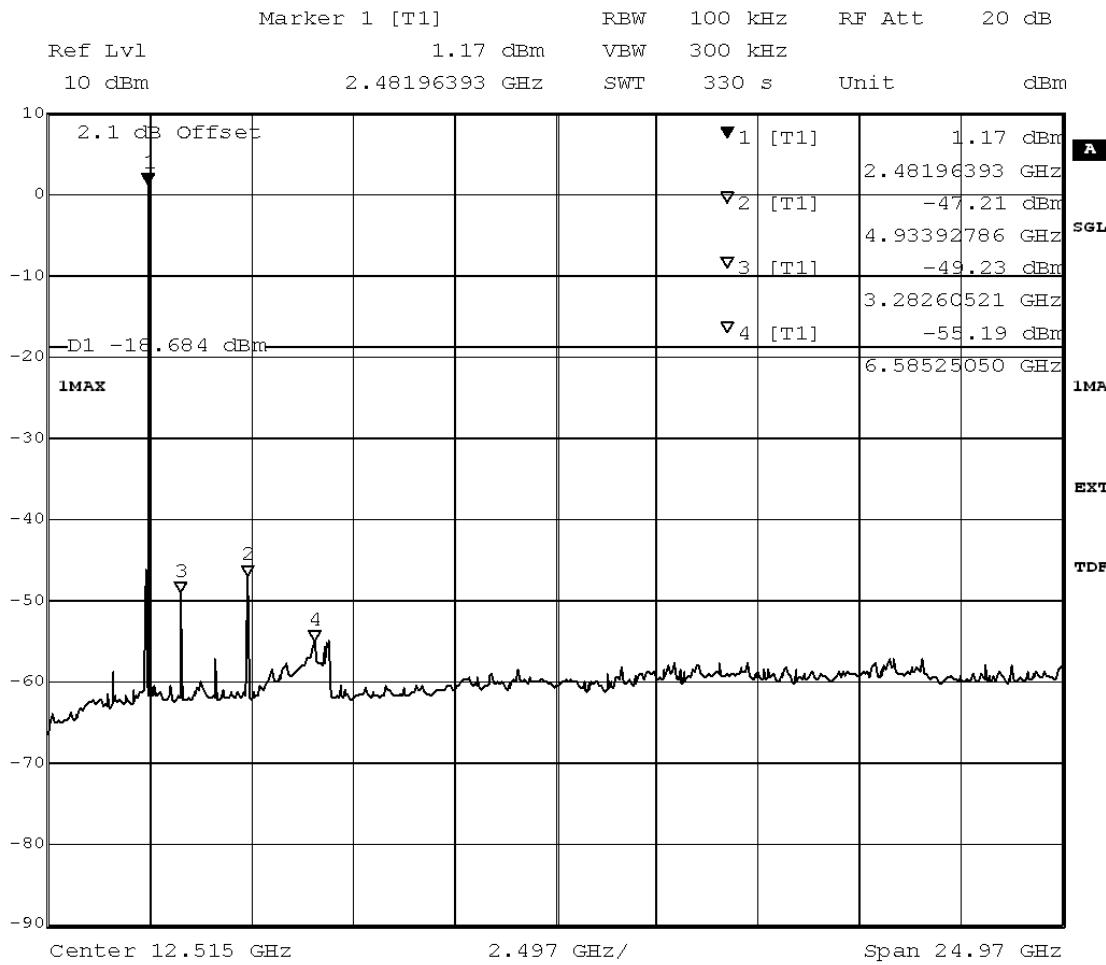
8.4.14 Band edge compliance conducted operating mode 12

Op. Mode

op-mode 12

Title: Band Edge Compliance

Comment A: CH T: 2480 MHz


Date: 9.AUG.2011 13:13:17

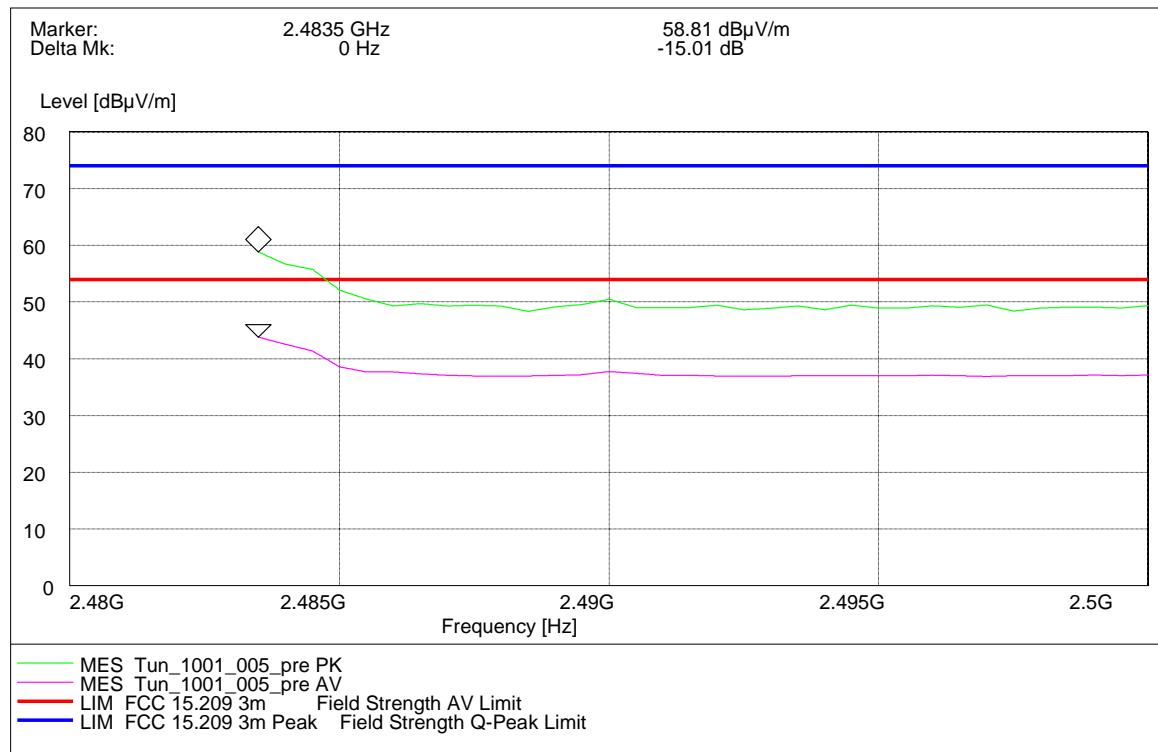
(determination of reference value for spurious emissions measurement)

8.4.15 Spurious RF conducted emissions operating mode 12

Op. Mode

op-mode 12

Title: spurious emissions
 Comment A: CH T: 2480 MHz
 Date: 9.AUG.2011 13:25:16

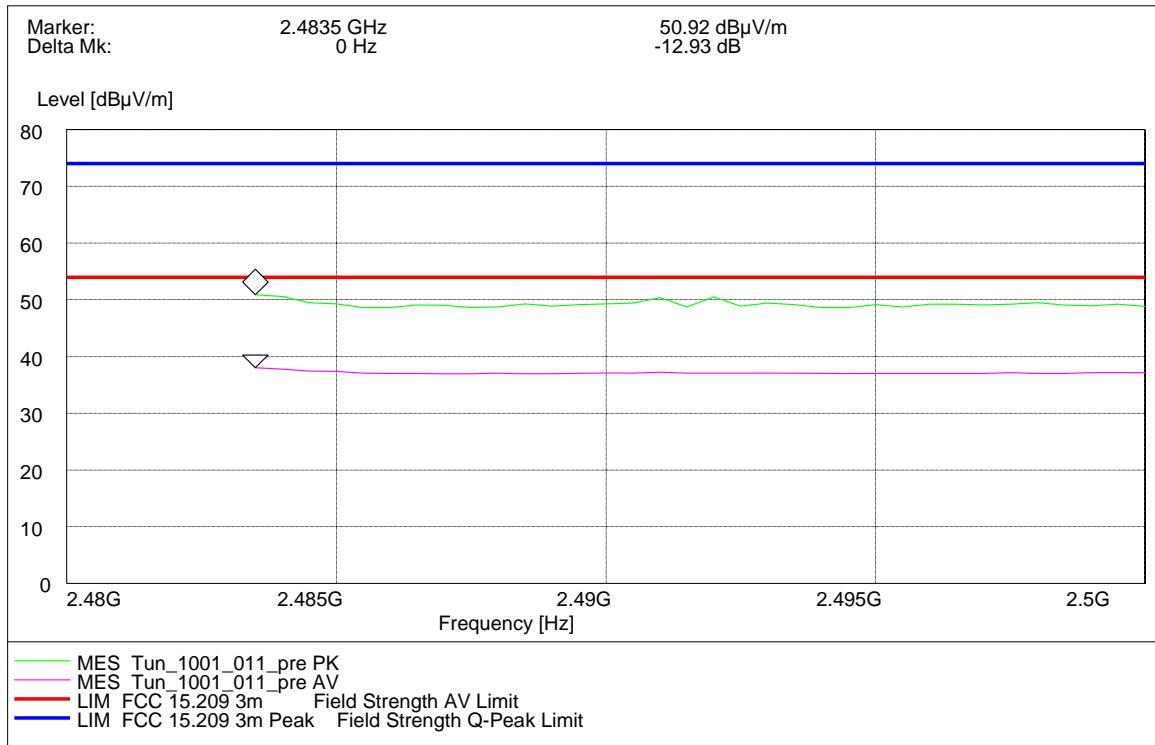

(spurious emissions measurement)

8.5 Band edge compliance radiated

8.5.1 Band edge compliance radiated operating mode 3

Op. Mode

op-mode 3

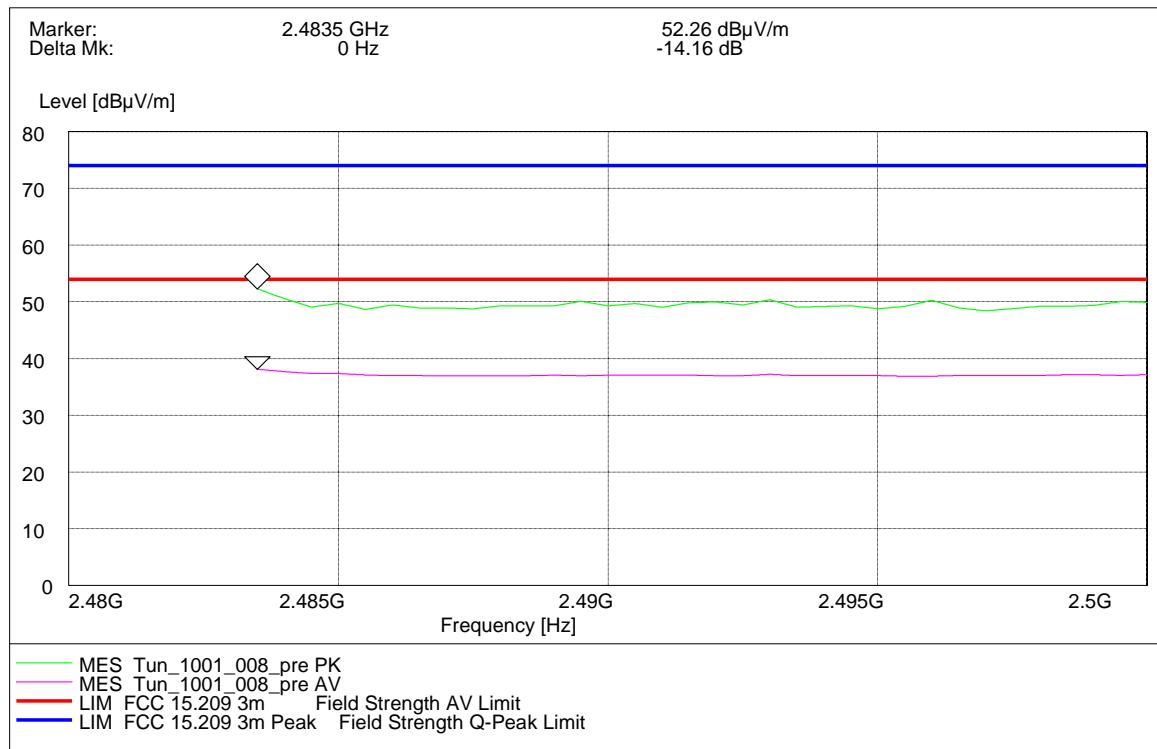


Radiated measurement (higher band edge)

8.5.2 Band edge compliance radiated operating mode 8

Op. Mode

op-mode 8

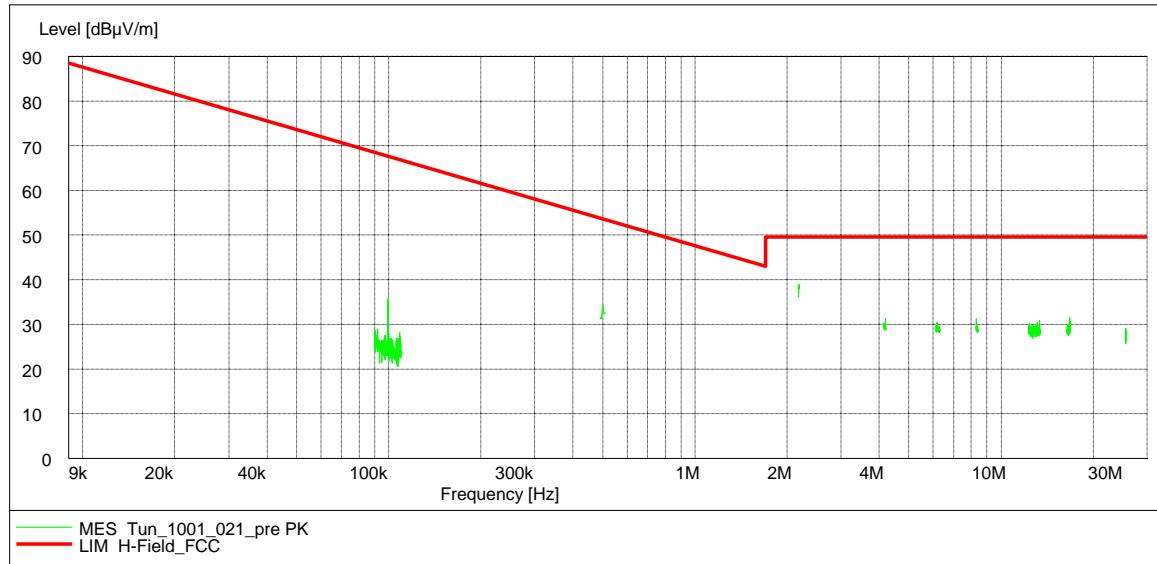


Radiated measurement (higher band edge)

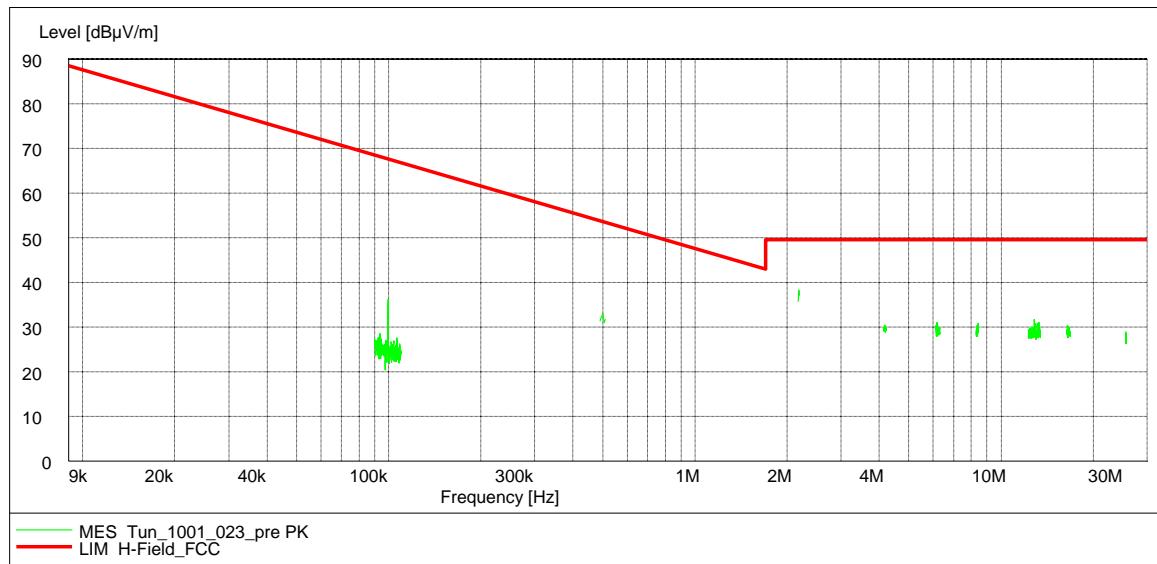
8.5.3 Band edge compliance radiated operating mode 12

Op. Mode

op-mode 12

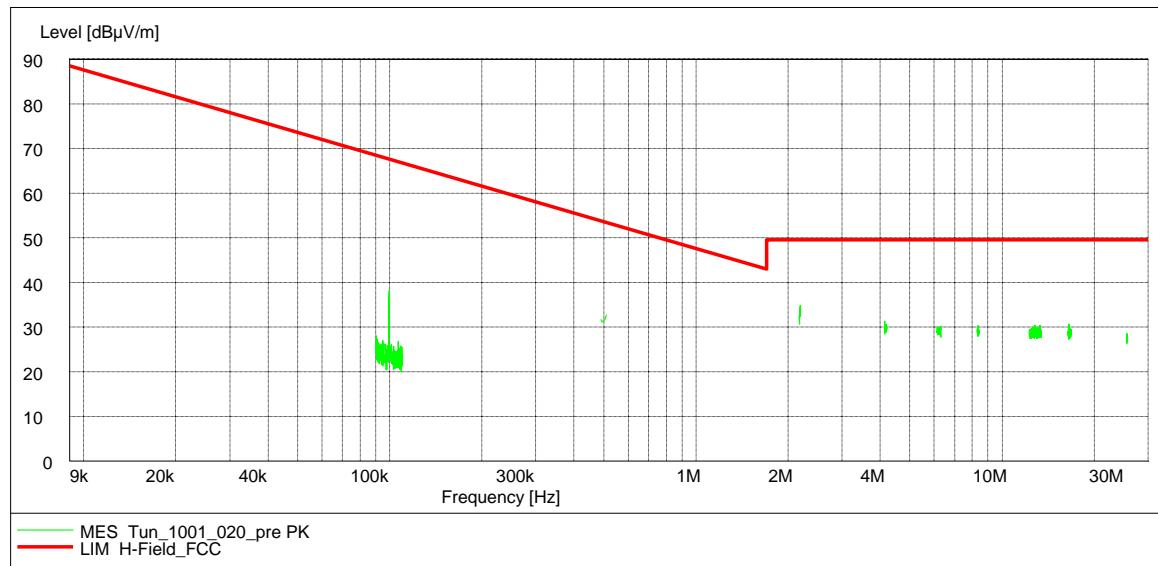


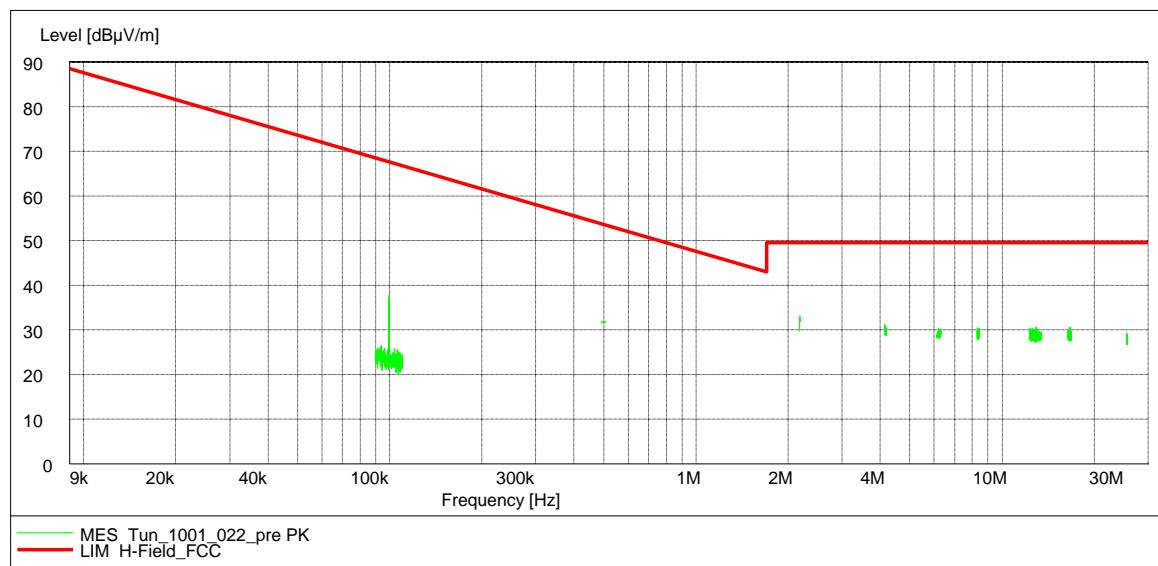
Radiated measurement (higher band edge)


8.6 Radiated emissions (f < 30 MHz)

Op. Mode

op-mode 1

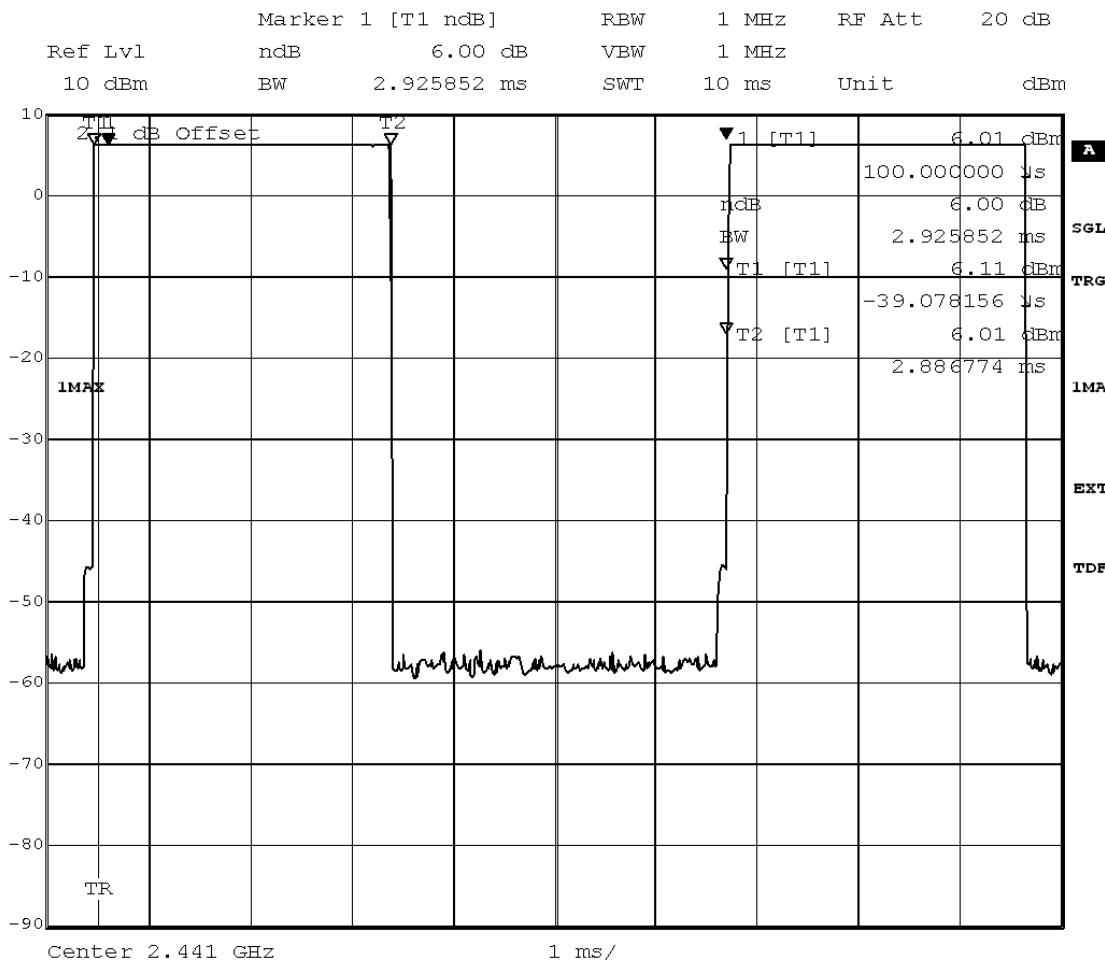

Antenna position 90°
EUT position front side


Antenna position 90°
EUT position right side

Op. Mode

op-mode 1

Antenna position 0°
EUT position front side

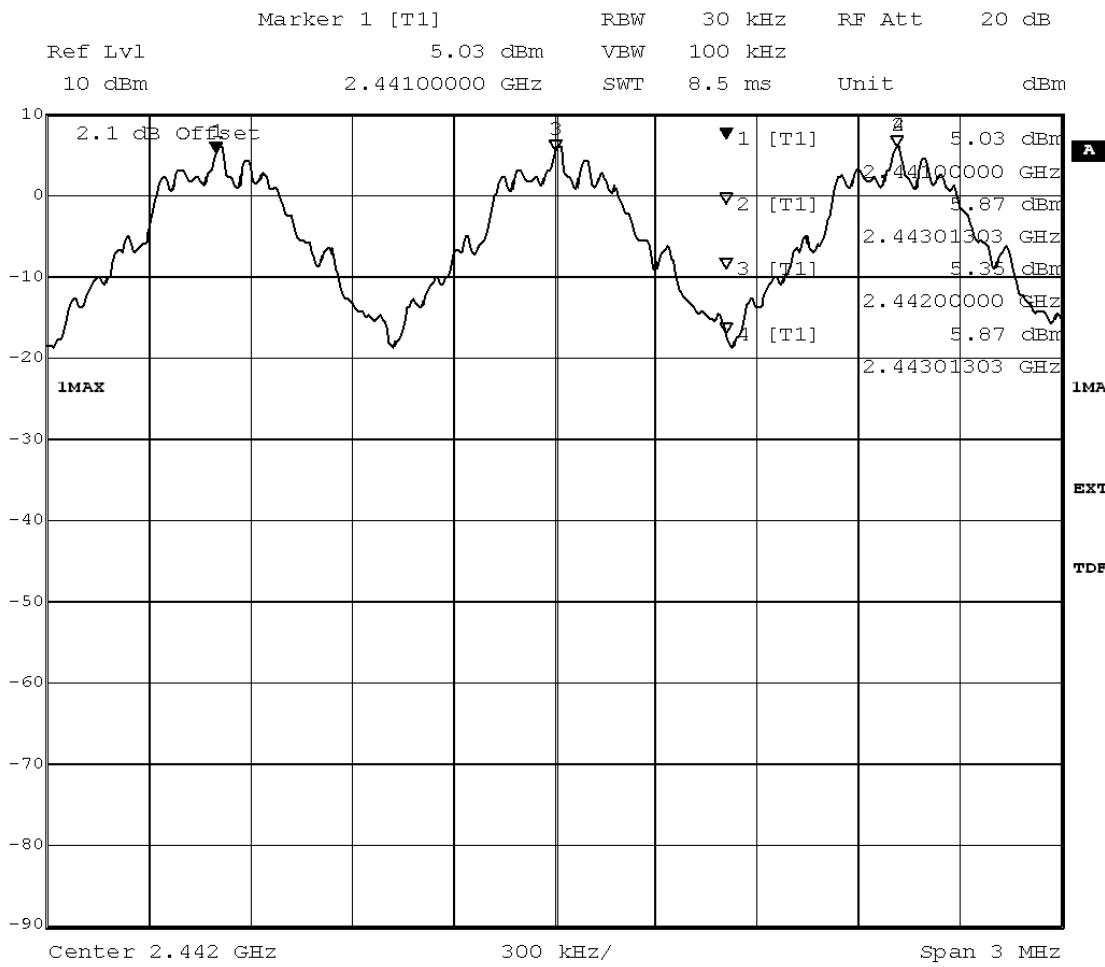


Antenna position 0°
EUT position right side

8.7 Dwell time

Op. Mode

op-mode 2 Time slot measurement of a DH5 packet



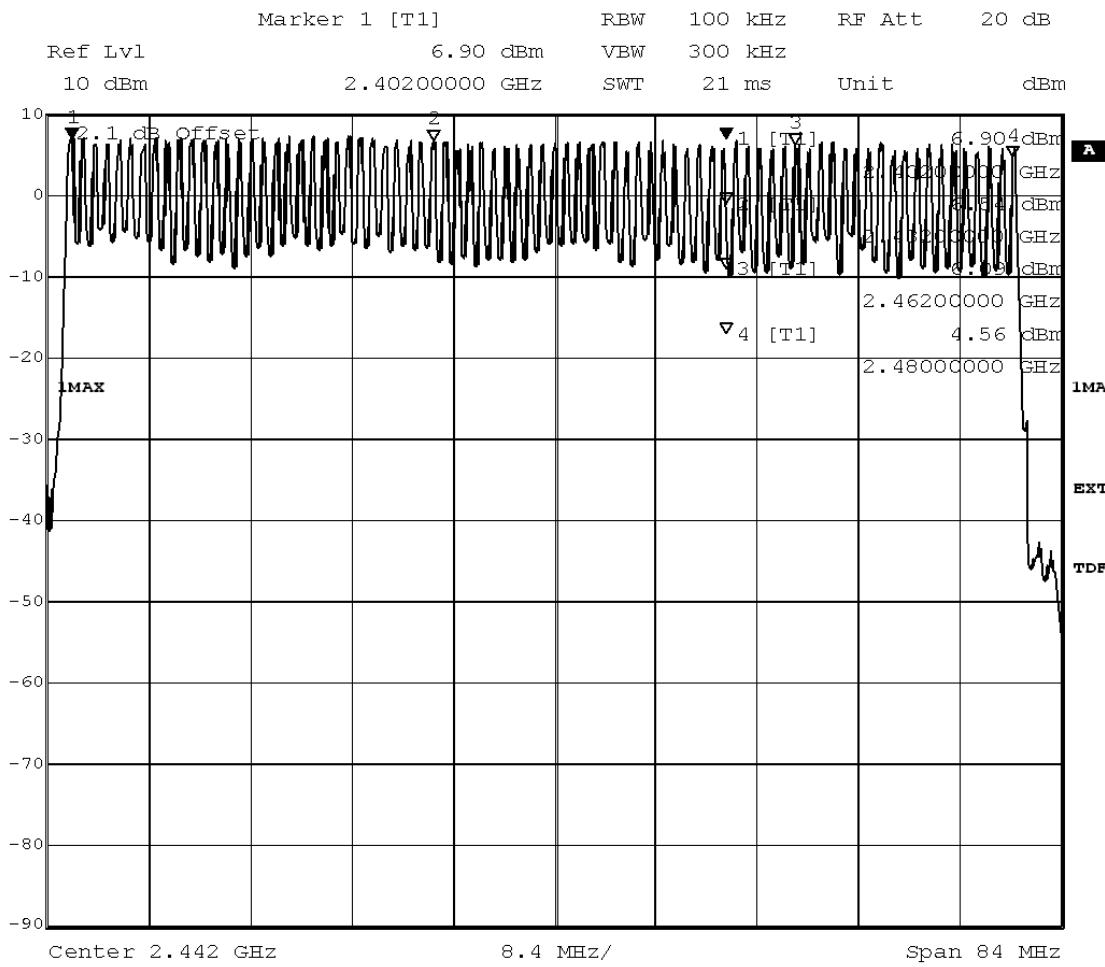
Title: Dwell time
 Comment A: CH M: 2441 MHz
 Date: 9.AUG.2011 11:34:56

8.8 Channel separation

Op. Mode

op-mode 4

Title: Number of hopping frequencies


Comment A: CH H: Hopping

Date: 9.AUG.2011 12:11:29

8.9 Number of hopping frequencies

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping

Date: 9.AUG.2011 12:13:49