

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctfl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 10.08.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

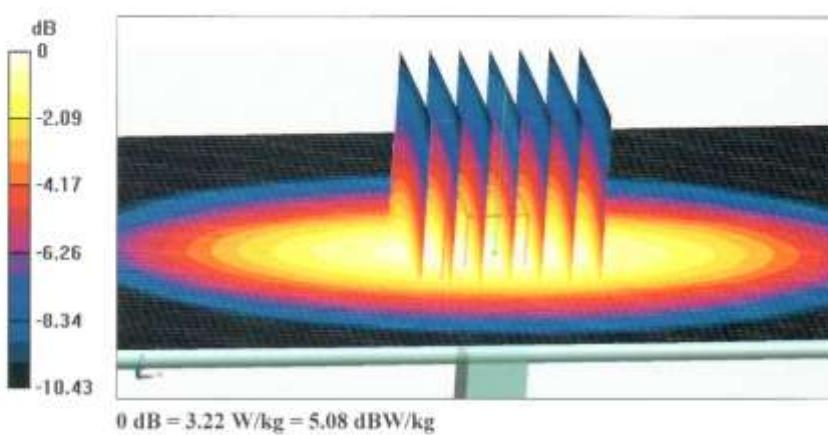
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.912$ S/m; $\epsilon_r = 42.22$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

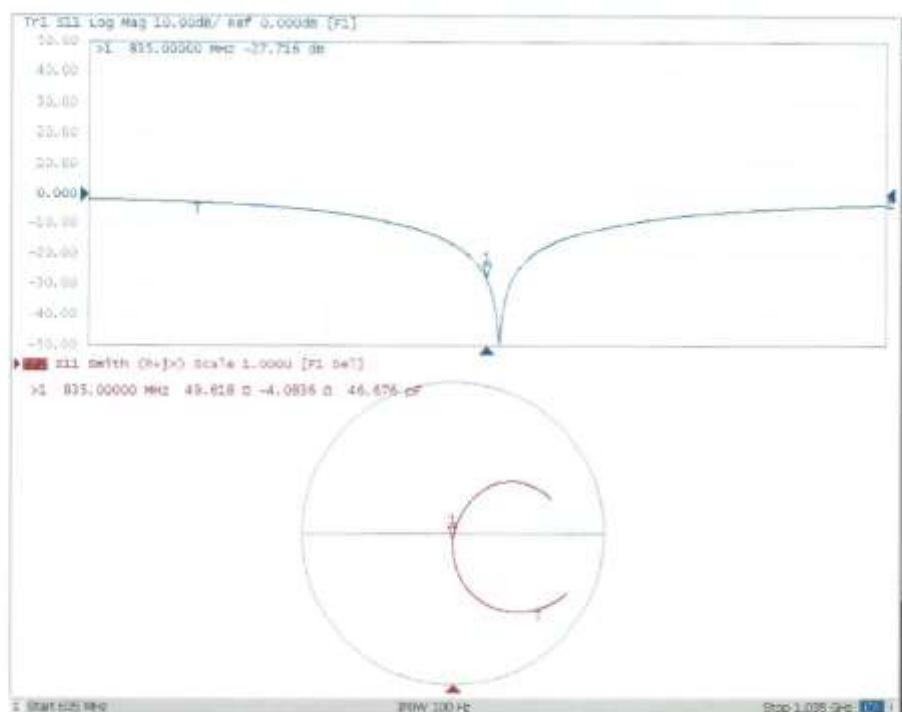
- Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.57 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kg


Maximum value of SAR (measured) = 3.22 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctcl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.08.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

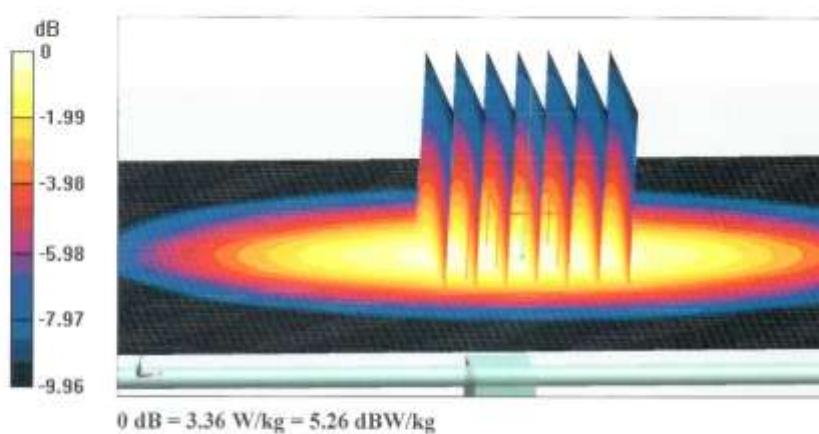
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

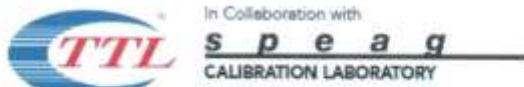
Medium parameters used: $f = 835$ MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 55.93$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

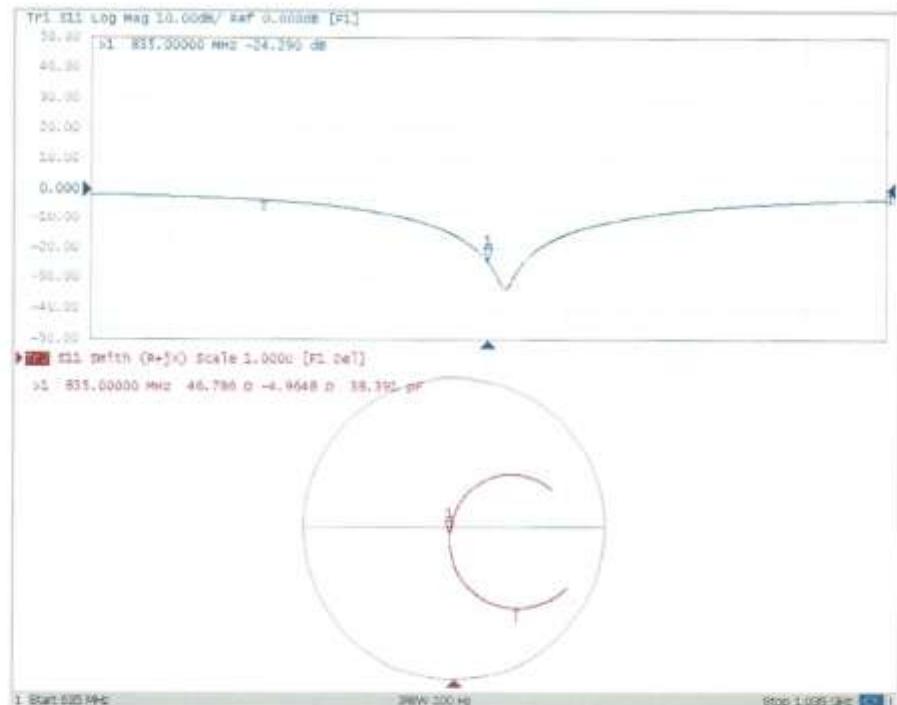
- Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.64 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.83 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.66 W/kg


Maximum value of SAR (measured) = 3.36 W/kg

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cti@chinat1.com <http://www.chinat1.cn>

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60385

Page 8 of 8

1750 MHz Dipole Calibration Certificate (2016)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **TMC-SZ (Auden)**Certificate No: **D1750V2-1152_Sep16****CALIBRATION CERTIFICATE**Object **D1750V2 - SN:1152**Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **September 09, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	19-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Johannes Kurkka	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: September 9, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étaffonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	50.5 Ω - 0.5 $\mu\Omega$
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω - 1.6 $\mu\Omega$
Return Loss	- 27.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.219 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

Date: 09.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

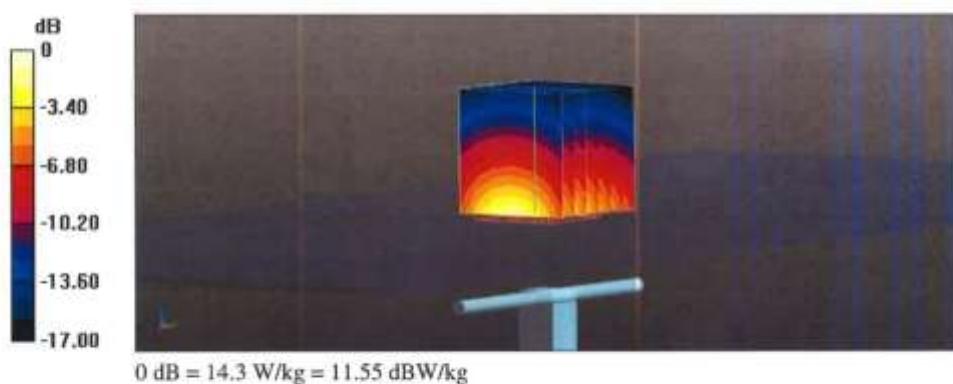
DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1152

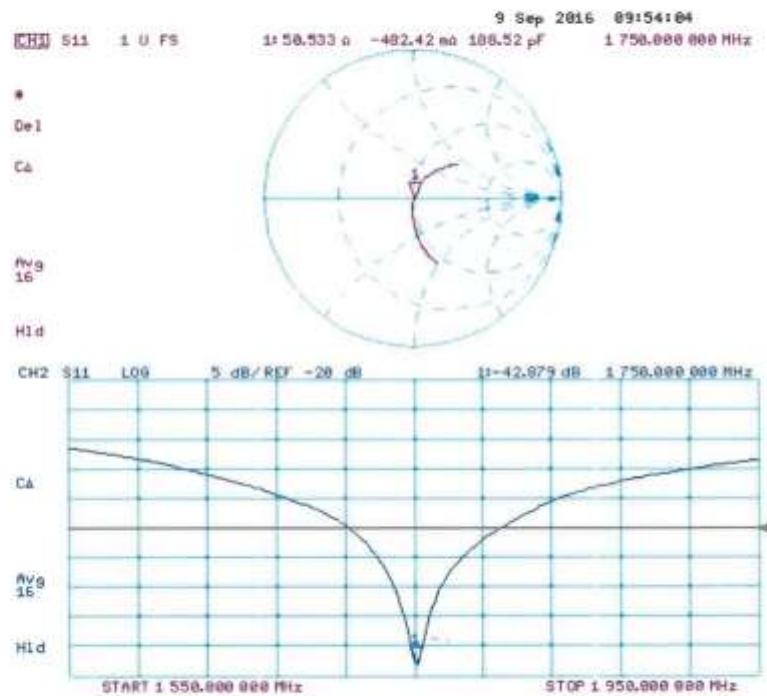
Communication System: UID 0 - CW; Frequency: 1750 MHz
Medium parameters used: $f = 1750$ MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 104.4 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.88 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1152

Communication System: UID 0 - CW; Frequency: 1750 MHz

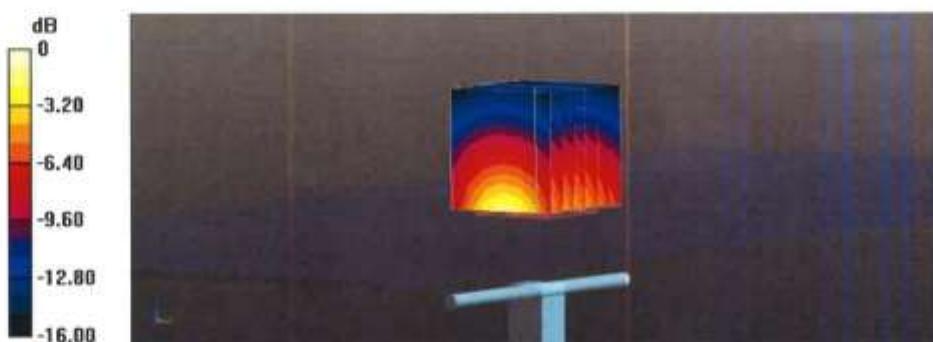
Medium parameters used: $f = 1750 \text{ MHz}$; $\sigma = 1.49 \text{ S/m}$; $\epsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

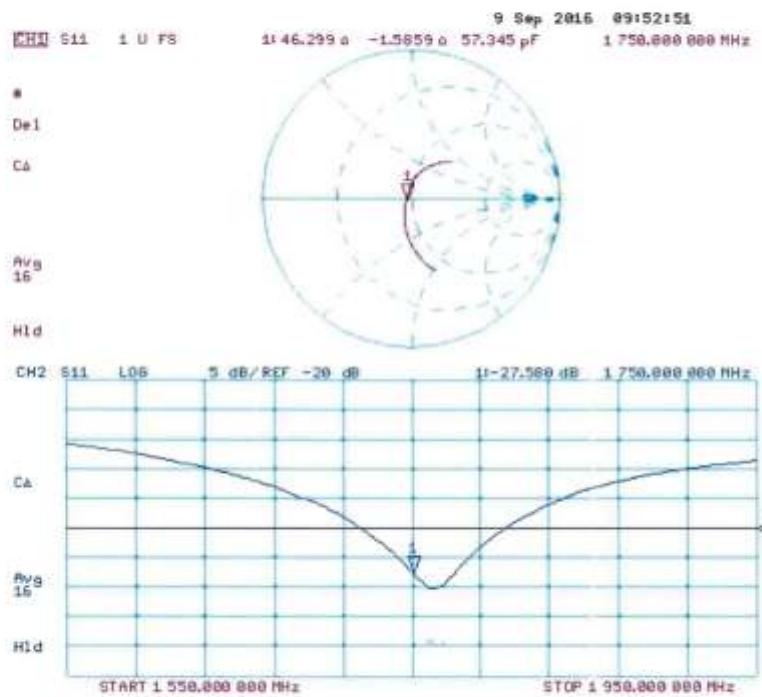
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$


Reference Value = 98.93 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.86 W/kg

Maximum value of SAR (measured) = 13.4 W/kg

Impedance Measurement Plot for Body TSL

1750 MHz Dipole Calibration Certificate (2019)In Collaboration with
S p e a g
CALIBRATION LABORATORYAdd: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com http://www.chinattl.cn中国认可
国际互认
校准
CALIBRATION
CNAS L057D

Client

CTTL(South Branch)

Certificate No: Z19-60292

CALIBRATION CERTIFICATE

Object D1750V2 - SN: 1152

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: August 30, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG, No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: September 2, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60292

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304635-2504
 E-mail: ctt@chinattl.com <http://www.chinattl.com>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

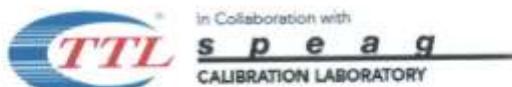
Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 18.7 % (k=2)


Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com <http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1Ω- 0.84 jΩ
Return Loss	- 38.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.2Ω- 1.37 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.084 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

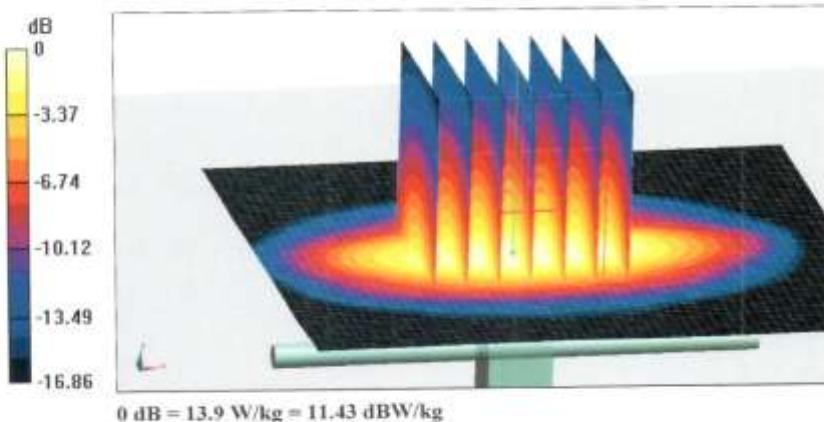
Medium parameters used: $f = 1750$ MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 39.91$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

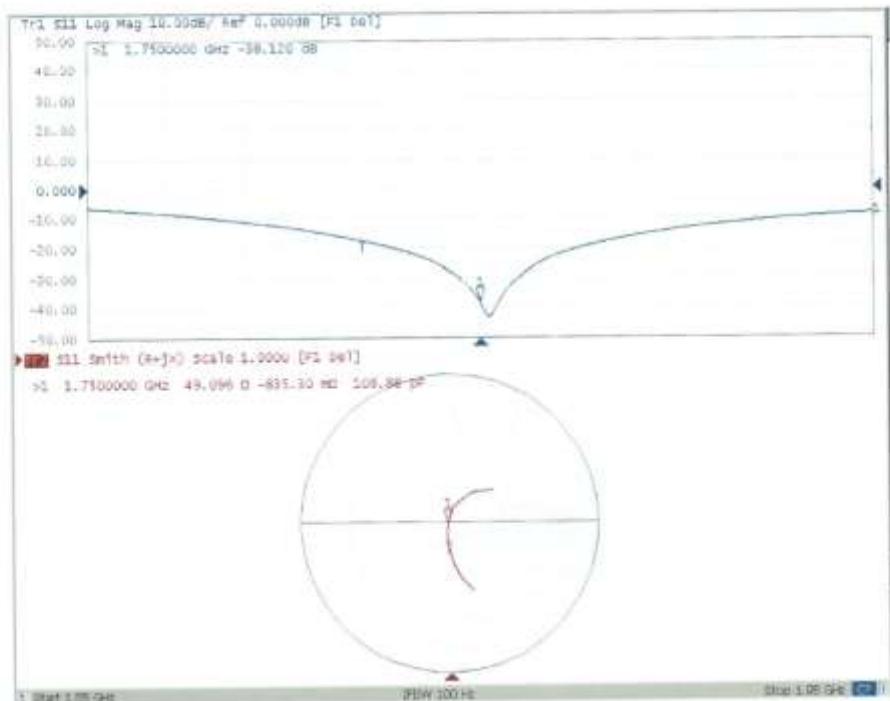
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.38 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.8 W/kg


Maximum value of SAR (measured) = 13.9 W/kg

Add: No.51 Xuguan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60292

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Body TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

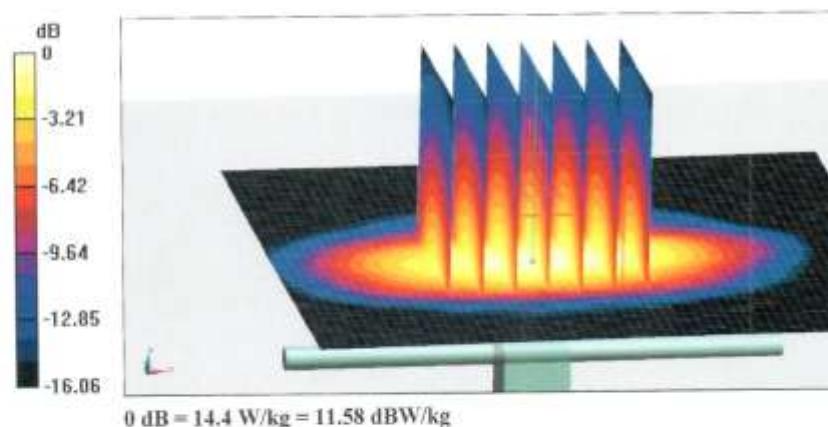
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.516$ S/m; $\epsilon_r = 53.05$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

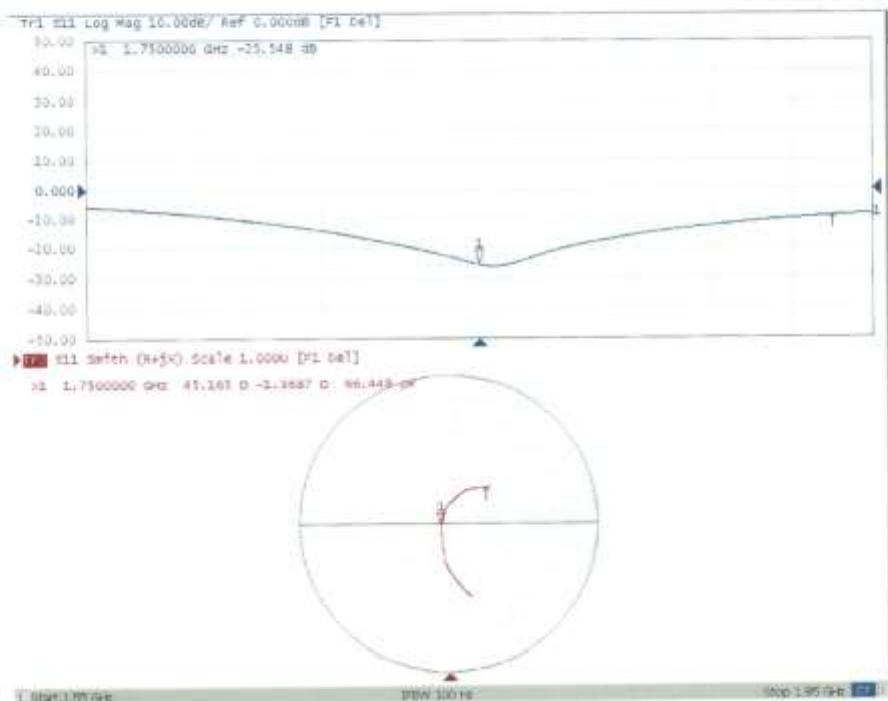
- Probe: EX3DV4 - SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.16 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.05 W/kg


Maximum value of SAR (measured) = 14.4 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ottl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

CAICT

No.I20N00189-SAR

1900 MHz Dipole Calibration Certificate (2018)in Collaboration with
S p e a g
CALIBRATION LABORATORYAdd: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ettl@chinattl.com http://www.chinattl.cn中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

CTTL(South Branch)

Certificate No: Z18-60387

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d088

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: October 24, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRV	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Calibrated by:	Name Zhao Jing	Function SAR Test Engineer	Signature
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: October 28, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60387

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- **Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- **Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- **Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- **Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- **SAR measured:** SAR measured at the stated antenna input power.
- **SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- **SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.1 \pm 6 %	1.37 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.92 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW / g \pm 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW / g \pm 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	52.6 \pm 6 %	1.55 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.6 mW / g \pm 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.41 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g \pm 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

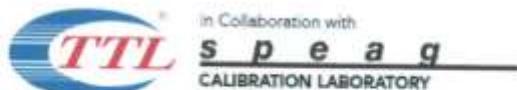
Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω+ 6.63jΩ
Return Loss	- 23.2dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5Ω+ 7.40jΩ
Return Loss	- 22.3dB

General Antenna Parameters and Design


Electrical Delay (one direction)	1.058 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-6234633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 10.24.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

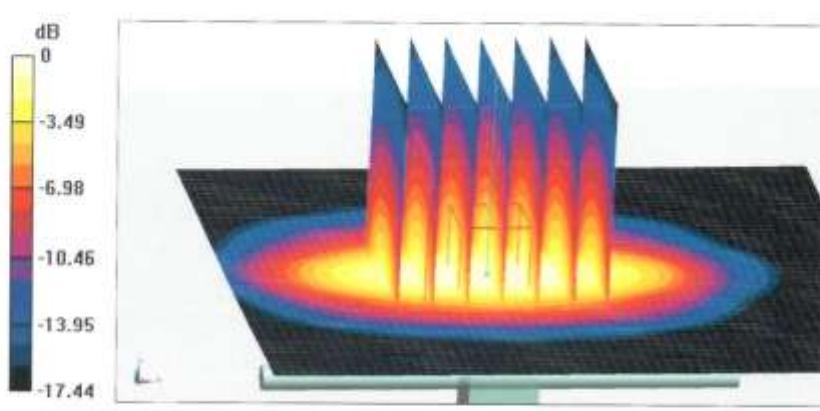
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

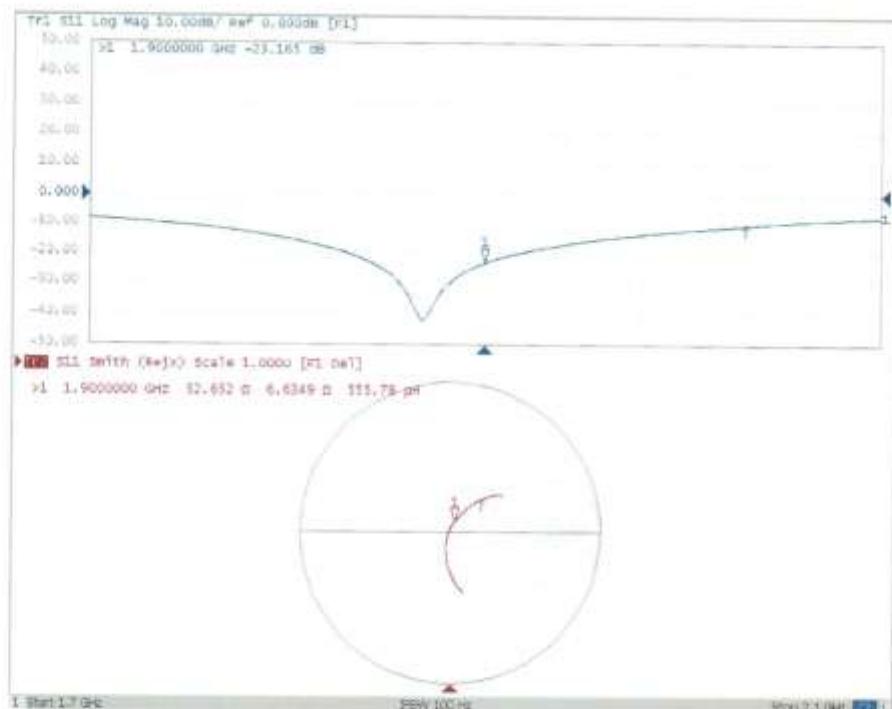

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0; Measurement grid; dx=5mm, dy=5mm, dz=5mm

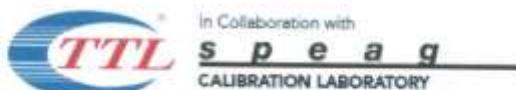
Reference Value = 102.2 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 15.7 W/kg




0 dB = 15.7 W/kg = 11.96 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304653-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China
Tel: +86-10-62304653-2079 Fax: +86-10-62304653-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Body TSL

Date: 10.24.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

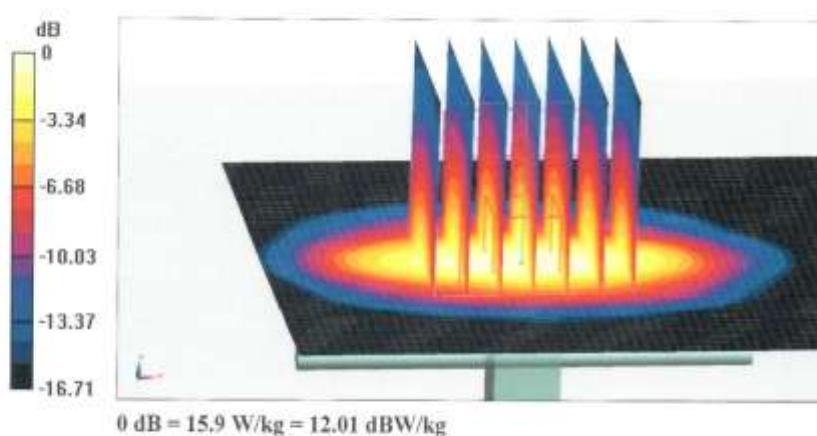
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.551$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

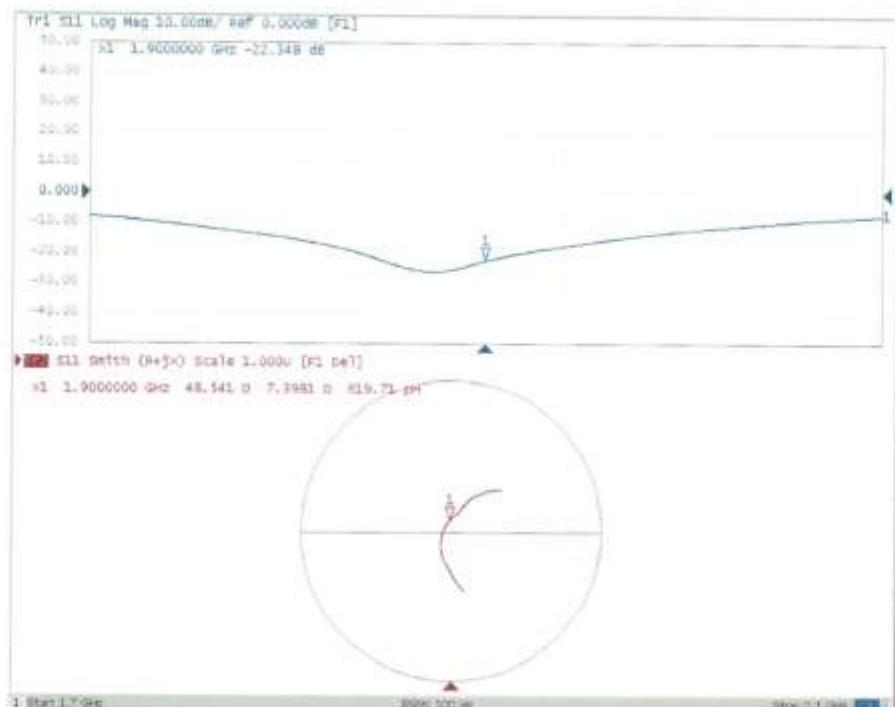
- Probe: EX3DV4 - SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.60 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.41 W/kg


Maximum value of SAR (measured) = 15.9 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinatl.com <http://www.chinatl.cn>

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60387

Page 8 of 8

2450 MHz Dipole Calibration Certificate (2018)

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com http://www.chinattl.cn

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

CTTL(South Branch)

Certificate No: Z18-60388

CALIBRATION CERTIFICATE

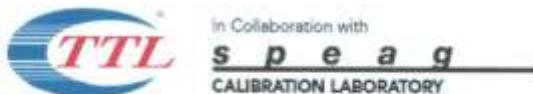
Object D2450V2 - SN: 873

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: October 26, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.


Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG.No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG.No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: October 29, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

in Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	38.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.91 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW /g ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Huidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctd@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 2.11 jΩ
Return Loss	- 28.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3Ω+ 4.51 jΩ
Return Loss	- 26.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.024 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinatl.com <http://www.chinatl.com>

DASY5 Validation Report for Head TSL

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

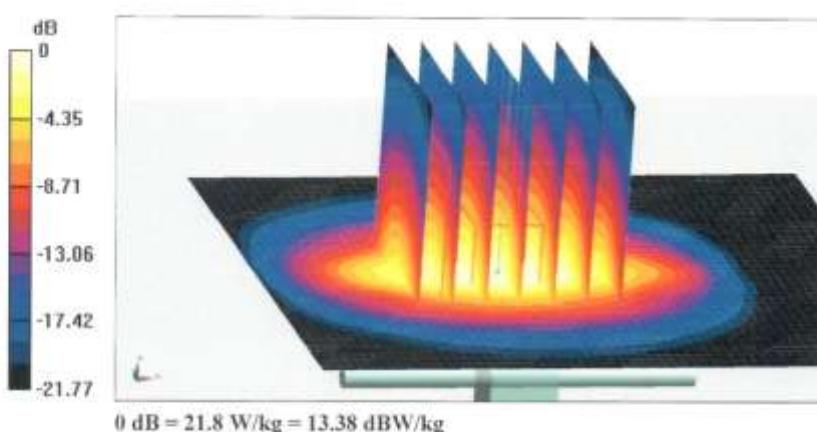
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.802$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

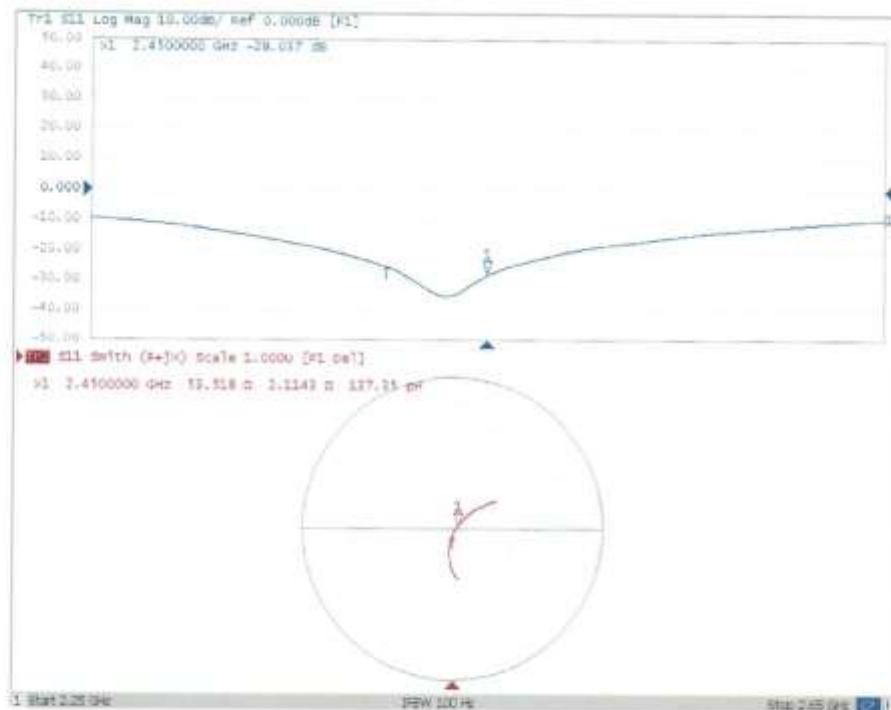
- Probe: EX3DV4 - SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

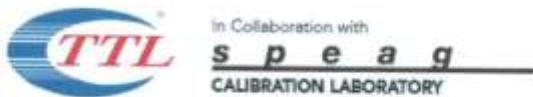

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg


Maximum value of SAR (measured) = 21.8 W/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2564
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Body TSL

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

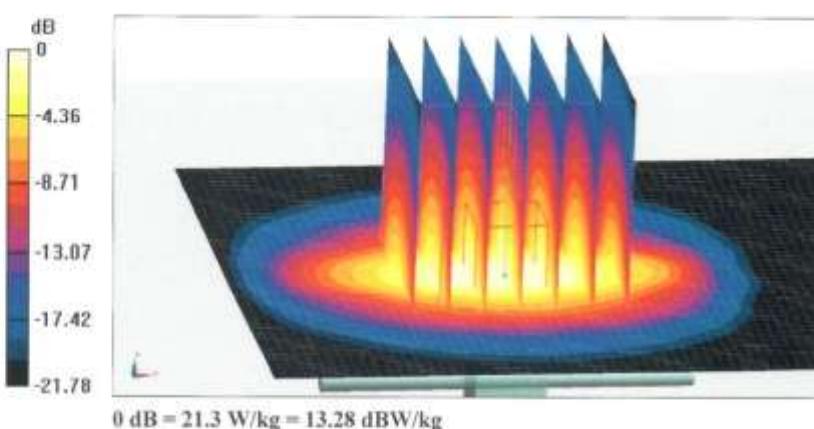
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

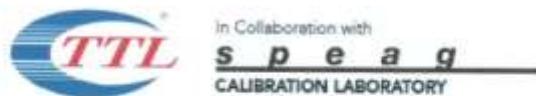
Medium parameters used: $f = 2450$ MHz; $\sigma = 2.008$ S/m; $\epsilon_r = 52.76$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

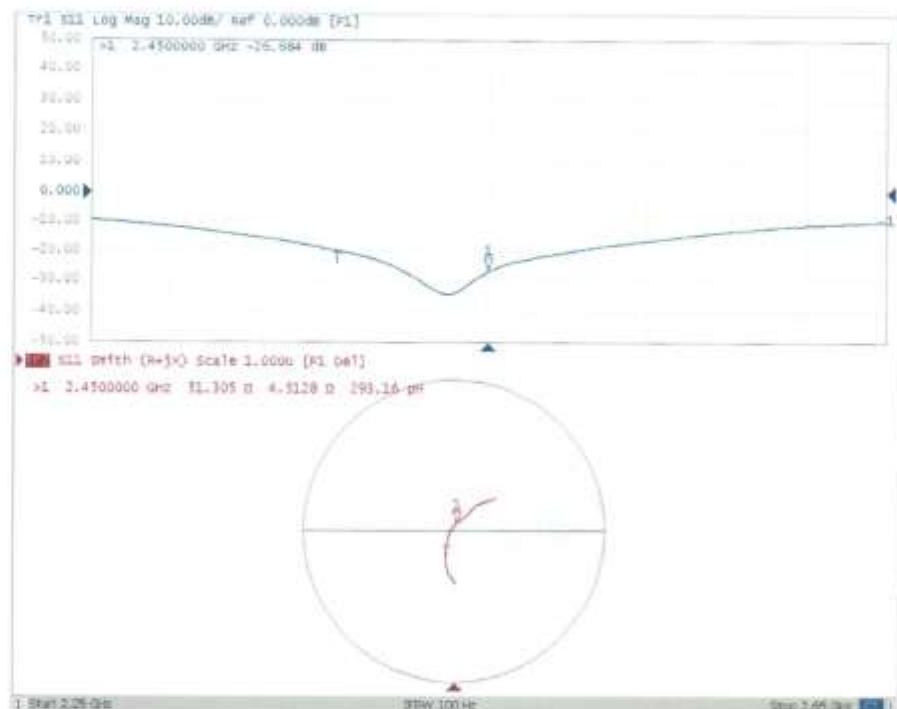
- Probe: EX3DV4 - SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 98.89 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg


Maximum value of SAR (measured) = 21.3 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Body TSL

2550 MHz Dipole Calibration Certificate (2018)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **CTTL (Auden)**Certificate No: **D2550V2-1010_Aug18****CALIBRATION CERTIFICATE**Object **D2550V2 - SN:1010**Calibration procedure(s) **QA CAL-05.v10**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **August 24, 2018**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

Calibrated by:	Name	Function	Signature
	Manu Seitz	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: August 24, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.0 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	54.9 Ω - 2.3 $j\Omega$
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω - 2.0 $j\Omega$
Return Loss	- 33.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 03, 2012

DASY5 Validation Report for Head TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: $f = 2550$ MHz; $\sigma = 1.97$ S/m; $\epsilon_r = 37.3$; $\rho = 1000$ kg/m³

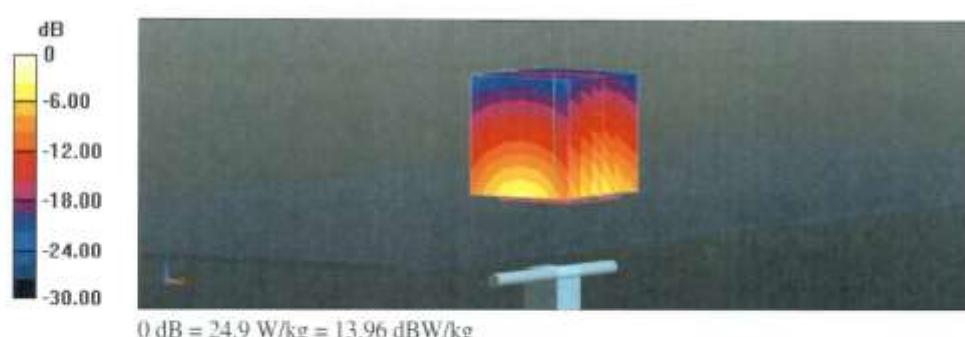
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

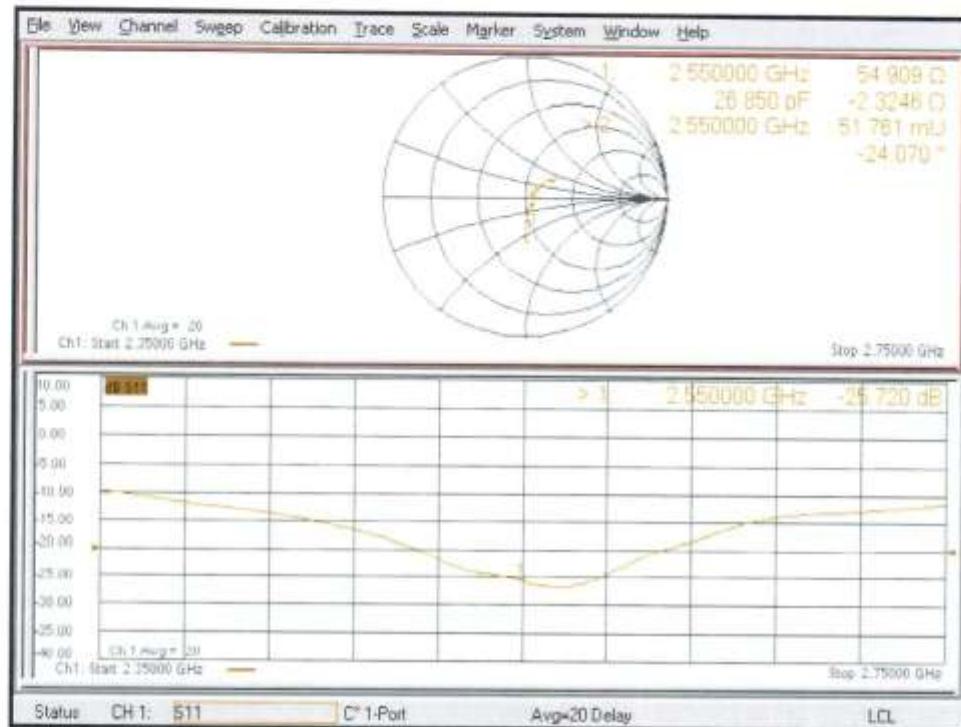
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.43, 7.43, 7.43) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 119.6 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.73 W/kg

Maximum value of SAR (measured) = 24.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: $\epsilon = 2.14$ S/m; $\sigma = 2.14$ S/m; $\rho = 1000$ kg/m³

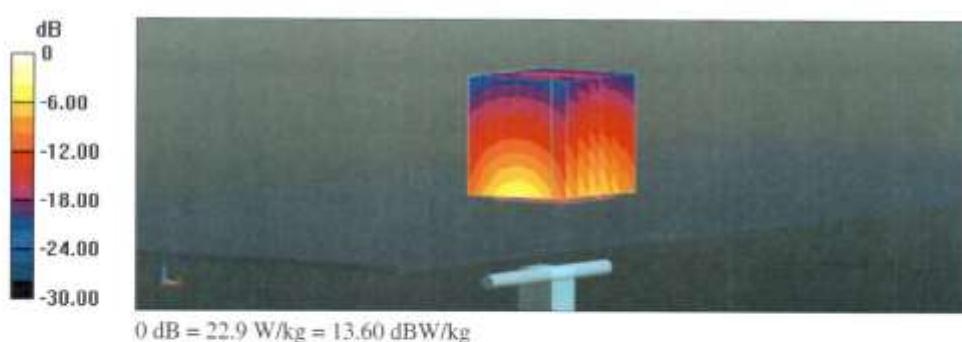
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

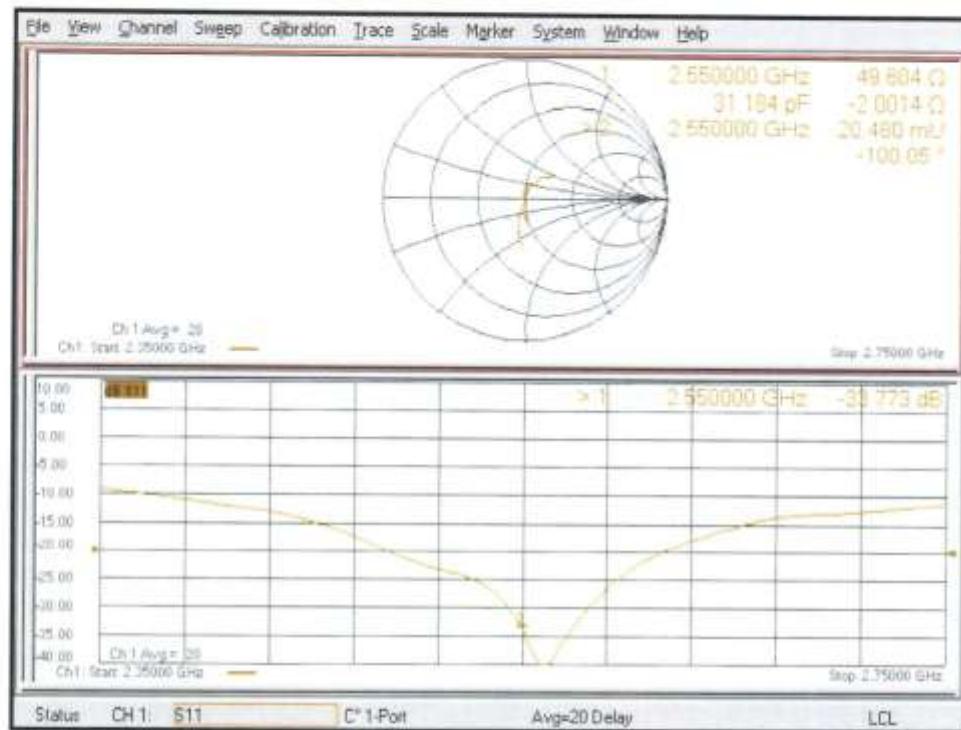
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.2 V/m; Power Drift = -0.03 dB

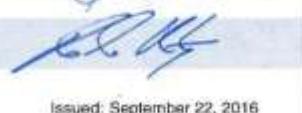

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.22 W/kg

Maximum value of SAR (measured) = 22.9 W/kg

Impedance Measurement Plot for Body TSL

5G Dipole Calibration Certificate (2016)


Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **TMC-SZ (Auden)**Certificate No: **D5GHzV2-1238_Sep16****CALIBRATION CERTIFICATE**

Object	D5GHzV2 - SN:1238					
Calibration procedure(s)	QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz					
Calibration date:	September 21, 2016					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.						
Calibration Equipment used (M&TE critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17			
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17			
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17			
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17			
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17			
Reference Probe EX3DV4	SN: 3503	30-Jun-16 (No. EX3-3503_Jun16)	Jun-17			
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16			
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16			
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature 			
Approved by:	Katja Pokovic	Technical Manager				
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			Issued: September 22, 2016			

Certificate No: D5GHzV2-1238_Sep16

Page 1 of 16

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy = 4.0 \text{ mm}, dz = 1.4 \text{ mm}$	Graded Ratio = 1.4 (Z direction)
Frequency	$5200 \text{ MHz} \pm 1 \text{ MHz}$ $5300 \text{ MHz} \pm 1 \text{ MHz}$ $5500 \text{ MHz} \pm 1 \text{ MHz}$ $5600 \text{ MHz} \pm 1 \text{ MHz}$ $5800 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ °C}$	$34.6 \pm 6 \text{ %}$	$4.54 \text{ mho/m} \pm 6 \text{ %}$
Head TSL temperature change during test	$< 0.5 \text{ °C}$	---	---

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.0 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.59 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL at 5200 MHz**

Impedance, transformed to feed point	$47.1 \Omega - 5.8 j\Omega$
Return Loss	- 23.6 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$50.5 \Omega - 3.2 j\Omega$
Return Loss	- 29.8 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$49.0 \Omega + 2.5 j\Omega$
Return Loss	- 31.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$50.0 \Omega + 0.6 j\Omega$
Return Loss	- 44.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$55.6 \Omega + 1.9 j\Omega$
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	$48.6 \Omega - 3.4 j\Omega$
Return Loss	- 28.6 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	$49.6 \Omega - 2.4 j\Omega$
Return Loss	- 32.3 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$49.5 \Omega + 2.5 j\Omega$
Return Loss	- 31.7 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.8 Ω + 2.5 $j\Omega$
Return Loss	- 31.7 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.0 Ω + 3.0 $j\Omega$
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

DASY5 Validation Report for Head TSL

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 4.54 \text{ S/m}$; $\epsilon_r = 34.6$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5300 \text{ MHz}$; $\sigma = 4.63 \text{ S/m}$; $\epsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5500 \text{ MHz}$; $\sigma = 4.83 \text{ S/m}$; $\epsilon_r = 34.2$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 4.93 \text{ S/m}$; $\epsilon_r = 34.0$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 5.14 \text{ S/m}$; $\epsilon_r = 33.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 30.06.2016, ConvF(5.14, 5.14, 5.14); Calibrated: 30.06.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.35 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.80 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.90 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

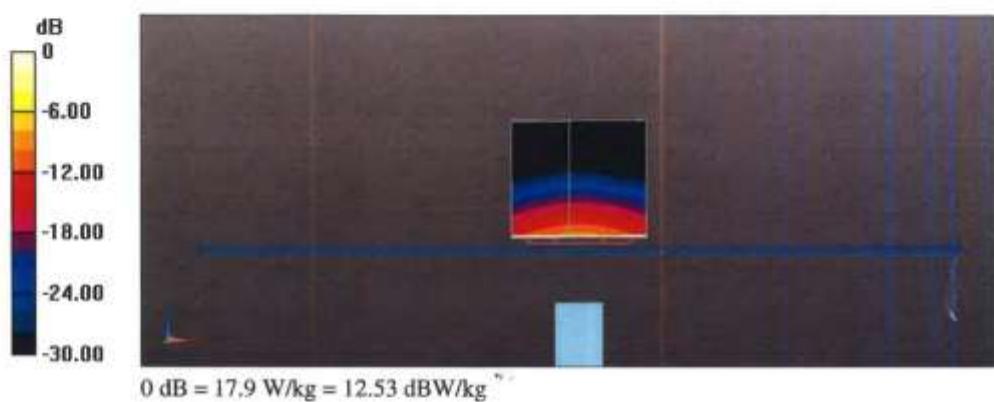
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

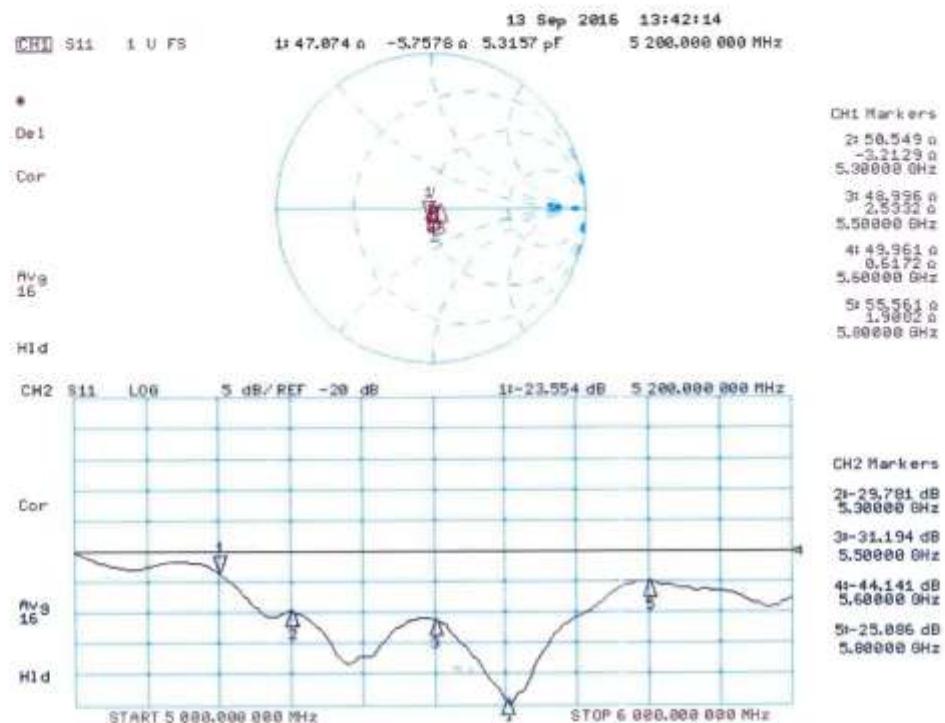
Reference Value = 71.51 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 20.0 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 69.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1238

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 5.45 \text{ S/m}$; $\epsilon_r = 47.5$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5300 \text{ MHz}$; $\sigma = 5.59 \text{ S/m}$; $\epsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5500 \text{ MHz}$; $\sigma = 5.86 \text{ S/m}$; $\epsilon_r = 47.0$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 6.00 \text{ S/m}$; $\epsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 6.29 \text{ S/m}$; $\epsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 30.06.2016, ConvF(4.75, 4.75, 4.75); Calibrated: 30.06.2016, ConvF(4.4, 4.4, 4.4); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.27, 4.27, 4.27); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.67 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.01 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.4 W/kg

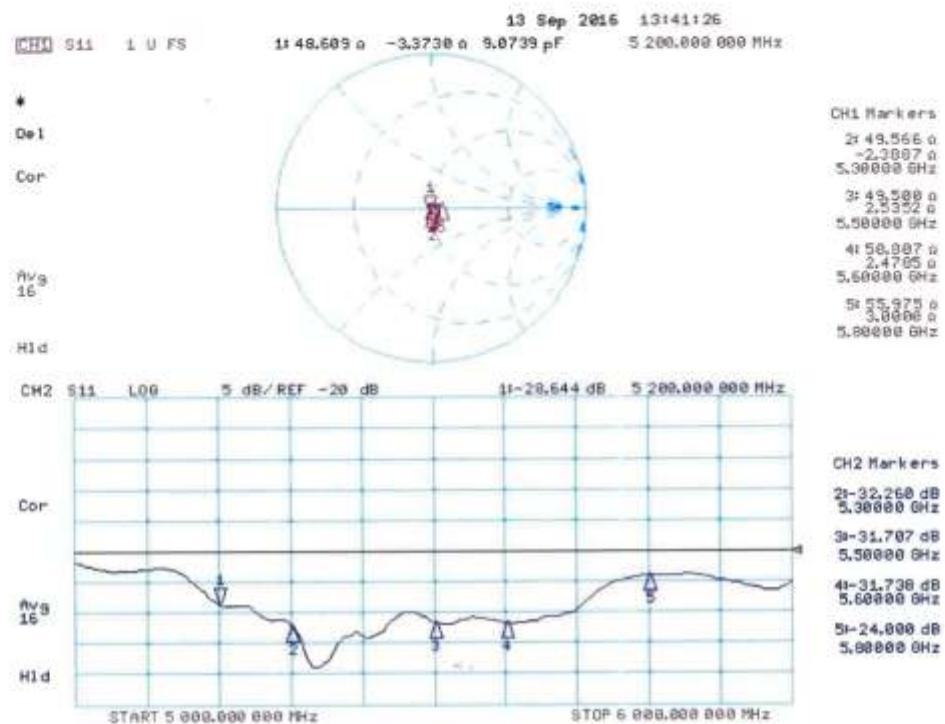
SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.20 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 32.4 W/kg


SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 66.47 V/m; Power Drift = -0.07 dB
Peak SAR (extrapolated) = 32.7 W/kg
 $SAR(1\text{ g}) = 7.95\text{ W/kg}$; $SAR(10\text{ g}) = 2.23\text{ W/kg}$
Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 64.40 V/m; Power Drift = -0.08 dB
Peak SAR (extrapolated) = 33.2 W/kg
 $SAR(1\text{ g}) = 7.66\text{ W/kg}$; $SAR(10\text{ g}) = 2.13\text{ W/kg}$
Maximum value of SAR (measured) = 18.8 W/kg

Impedance Measurement Plot for Body TSL

CAICT

No.I20N00189-SAR

5G Dipole Calibration Certificate (2019)

In Collaboration with

S p e a g
CALIBRATION LABORATORYAdd: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

CTTL(South Branch)

Certificate No: Z19-60293

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1238

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: August 29, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
ReferenceProbe EX3DV4	SN 3617	31-Jan-19(SPEAG No. EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzerE5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

Calibrated by:	Name Zhao Jing	Function SAR Test Engineer	Signature
Reviewed by:	Name Lin Hao	Function SAR Test Engineer	
Approved by:	Name Qi Dianyuan	Function SAR Project Leader	

Issued: September 2, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60293

Page 1 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com <http://www.chinattl.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.69 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2584
E-mail: ctif@chinattl.com http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.89 mho/m ± 8 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com http://www.chinattl.cn

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

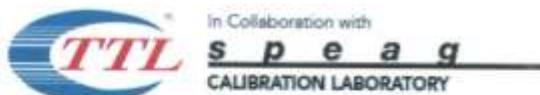
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>


Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.78 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)**Antenna Parameters with Head TSL at 5250 MHz**

Impedance, transformed to feed point	48.8Ω - 4.65jΩ
Return Loss	-26.2dB

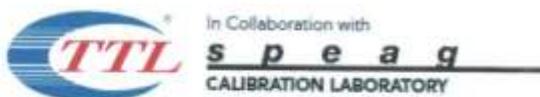
Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	49.2Ω + 0.58jΩ
Return Loss	-40.0dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.3Ω + 1.08jΩ
Return Loss	-39.0dB

Antenna Parameters with Body TSL at 5250 MHz


Impedance, transformed to feed point	48.8Ω - 2.02jΩ
Return Loss	-32.5dB

Antenna Parameters with Body TSL at 5600 MHz

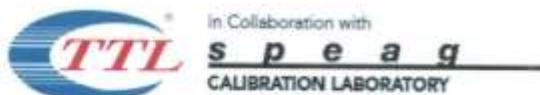
Impedance, transformed to feed point	51.3Ω + 3.94jΩ
Return Loss	-27.8dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.2Ω + 4.77jΩ
Return Loss	-25.8dB

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com <http://www.chinattl.cn>

General Antenna Parameters and Design


Electrical Delay (one direction)	1.059 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Head TSL

Date: 08.28.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.692$ S/m; $\epsilon_r = 35.71$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5600$ MHz; $\sigma = 4.992$ S/m; $\epsilon_r = 35.42$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5750$ MHz; $\sigma = 5.096$ S/m; $\epsilon_r = 35.13$; $\rho = 1000$ kg/m³,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(5.06, 5.06, 5.06) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 69.41 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 32.8 W/kg
SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.23 W/kg
Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 70.02 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 35.7 W/kg
SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.27 W/kg
Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 68.55 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 36.5 W/kg
SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg
Maximum value of SAR (measured) = 18.9 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.com>

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY5 Validation Report for Body TSL

Date: 08.29.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

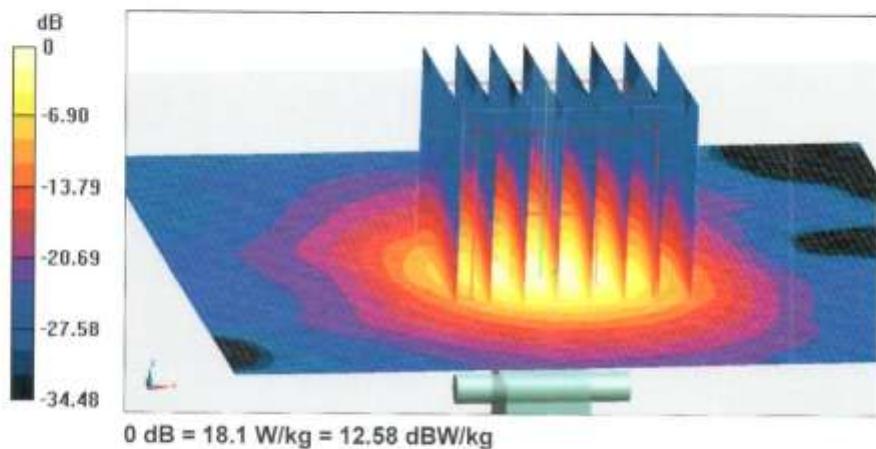
Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,
Frequency: 5750 MHz,

Medium parameters used: $f = 5250$ MHz; $\sigma = 5.402$ S/m; $\epsilon_r = 48.05$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5600$ MHz; $\sigma = 5.703$ S/m; $\epsilon_r = 47.61$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5750$ MHz; $\sigma = 5.782$ S/m; $\epsilon_r = 47.49$; $\rho = 1000$ kg/m³,

Phantom section: Right Section

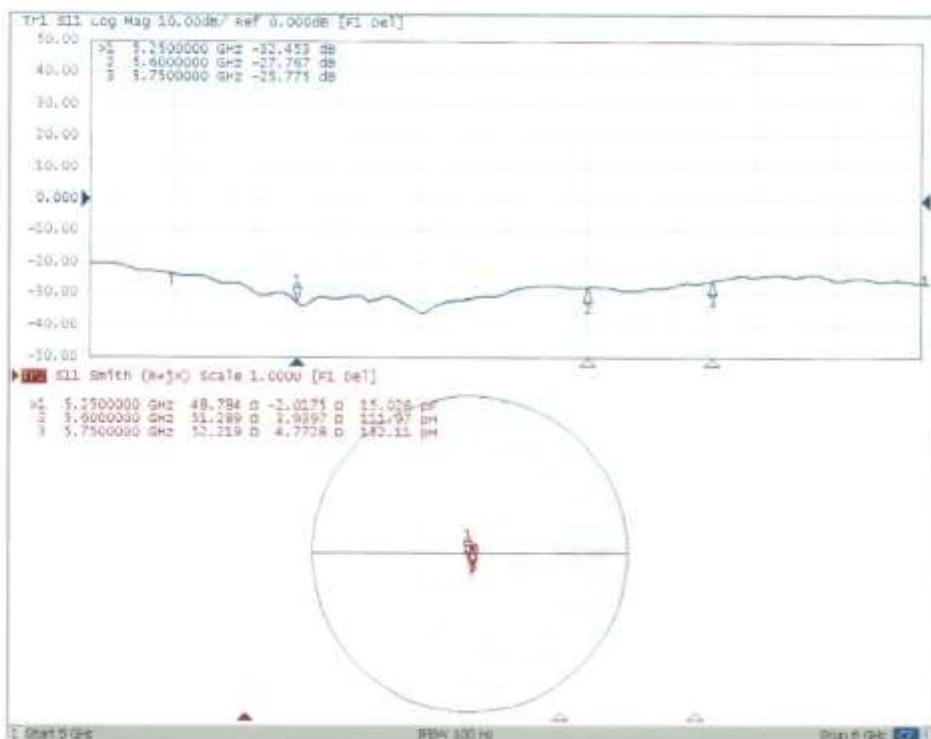
DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; ConvF(4.23, 4.23, 4.23) @ 5600 MHz; ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 54.85 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 27.5 W/kg
SAR(1 g) = 7.17 W/kg; SAR(10 g) = 2.04 W/kg
Maximum value of SAR (measured) = 16.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 56.17 V/m; Power Drift = 0.07 dB
Peak SAR (extrapolated) = 32.3 W/kg
SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg
Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.47 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 33.2 W/kg
SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.1 W/kg
Maximum value of SAR (measured) = 18.1 W/kg


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: ctt@chinattl.com <http://www.chinattl.cn>

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Impedance Measurement Plot for Body TSL

ANNEX K: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D750V3– serial no.1163 (2016)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-09-19	-26.8	/	54.5	/	-1.8	/
2017-09-17	-25.4	5.2	53.2	1.3	-2.5	-0.7
2018-09-15	-24.9	7.6	52.7	1.8	-2.8	-1.0

Justification of Extended Calibration SAR Dipole D835V2– serial no.4d057 (2018)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-09	-27.7	/	49.6	/	-4.08	/
2019-10-06	-26.9	2.9	50.1	0.5	-3.95	0.13

Justification of Extended Calibration SAR Dipole D1750V2– serial no.1152 (2016)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-09-09	-42.9	/	50.5	/	-0.5	/
2017-09-08	-40.6	5.4	48.8	1.7	-0.4	0.1
2018-09-06	-38.7	9.8	46.5	4.0	-0.3	0.2

Justification of Extended Calibration SAR Dipole D1900V2– serial no. 5d088 (2018)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-24	-23.2	/	52.7	/	6.63	/
2019-10-22	-22.9	1.3	53.5	0.8	6.86	0.23

Justification of Extended Calibration SAR Dipole D2450V2– serial no. 873 (2018)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-26	-28.0	/	53.5	/	2.11	/
2019-10-22	-27.3	2.5	54.4	0.9	2.29	0.18

Justification of Extended Calibration SAR Dipole D2550V2– serial no.1010 (2018)

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-08-24	-25.7	/	54.9	/	-2.30	/
2019-08-22	-24.8	3.5	55.8	0.9	-2.22	0.08

Justification of Extended Calibration SAR Dipole D5GHzV2– serial no.1238 (2016)

Head							
Date of Measurement	Frequency	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2016-09-21	5200MHz	-23.6	/	47.1	/	5.80	/
2017-09-20		-21.7	8.1	48.3	1.2	3.38	2.42
2018-09-18		-21.2	10.2	48.7	1.6	3.25	2.55
2016-09-21	5300MHz	-29.8	/	50.5	/	3.20	/
2017-09-20		-27.8	6.7	51.9	1.4	4.51	1.31
2018-09-18		-26.2	12.1	53.3	2.8	4.82	1.62
2016-09-21	5500MHz	-31.2	/	49.0	/	2.50	/
2017-09-20		-29.5	5.4	50.3	1.3	1.24	1.26
2018-09-18		-28.1	9.9	51.4	2.4	1.55	0.95
2016-09-21	5600MHz	-44.1	/	50.0	/	0.60	/
2017-09-20		-42.6	3.4	51.5	1.5	2.55	1.95
2018-09-18		-40.5	8.2	53.3	3.3	3.01	2.41
2016-09-21	5800MHz	-25.1	/	55.6	/	1.90	/
2017-09-20		-23.8	5.2	56.9	1.3	3.04	1.14
2018-09-18		-22.7	9.6	57.3	1.7	2.88	0.98

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended calibration.

ANNEX L: Spot Check Test

As the test lab for cp3705AS from Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd, we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

L.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version
UT02aa	990013493977891	P0	9.0.3705AS.SPRINT.191224.0D

L.2. Measurement results

SAR Values (GSM 850)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
836.6	190	Head	Right Touch	0.183	0.22	0.21		
836.6	190	Body	Rear	0.411	0.51	0.56		

SAR Values (GSM 1900)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1880	661	Head	Left Touch	0.082	0.16	0.12		
1850.2	512	Body	Bottom	1.040	1.13	1.27		

SAR Values (CDMA BC0)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
836.52	384	Head	Right Touch	0.295	0.33	0.27		
836.52	384	Body	Front	0.642	0.70	0.48		

SAR Values (CDMA BC1)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1880	600	Head	Left Touch	0.186	0.22	0.18		
1908.75	1175	Body	Bottom	1.140	1.37	1.37		

SAR Values (CDMA BC10)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
820.5	580	Head	Right Touch	0.223	0.25	0.20		
820.5	580	Body	Front	0.482	0.54	0.38		

SAR Values (WCDMA 850)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
836.4	4182	Head	Right Touch	0.267	0.30	0.27		
836.4	4182	Body	Front	0.451	0.51	0.42		

SAR Values (WCDMA 1900)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1880	9400	Head	Left Touch	0.172	0.21	0.22		
1907.6	9538	Body	Bottom	1.010	1.27	1.28		

SAR Values (WCDMA 1700)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1732.6	1413	Head	Left Touch	0.166	0.20	0.17		
1752.6	1513	Body	Bottom	0.658	0.81	1.01		

SAR Values (LTE Band 2)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1880	18900	Head	Left Touch	0.147	0.20	0.17		
1900	19100	Body	Bottom	1.110	1.32	1.40		

SAR Values (LTE Band 4)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1732.5	20175	Head	Left Touch	0.194	0.22	0.22		
1745	20300	Body	Bottom	0.898	0.97	1.07		

SAR Values (LTE Band 5)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
836.5	20525	Head	Left Touch	0.183	0.20	0.18		
836.5	20525	Body	Rear	0.456	0.50	0.59		

SAR Values (LTE Band 7)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
2535	21100	Head	Left Touch	0.056	0.07	0.15		
2510	20850	Body	Bottom	1.080	1.15	1.24		

SAR Values (LTE Band 12)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
707.5	23095	Head	Left Touch	0.131	0.17	0.13		
707.5	23095	Body	Rear	0.179	0.24	0.31		

SAR Values (LTE Band 13)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
782	23230	Head	Right Touch	0.219	0.26	0.17		
782	23230	Body	Rear	0.358	0.42	0.36		

SAR Values (LTE Band 25)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1882.5	26365	Head	Left Touch	0.164	0.21	0.16		
1905	26590	Body	Bottom	0.916	1.18	1.19		

SAR Values (LTE Band 26)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
831.5	26865	Head	Right Touch	0.246	0.27	0.21		
831.5	26865	Body	Rear	0.445	0.48	0.44		

SAR Values (LTE Band 41)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
2593	40620	Head	Left Touch	0.051	0.07	0.08		
2593	40620	Body	Rear	0.689	0.87	0.79		

SAR Values (LTE Band 66)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
1745	132322	Head	Left Touch	0.187	0.21	0.19		
1745	132322	Body	Bottom	0.909	1.13	1.13		

SAR Values (LTE Band 71)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
683	133322	Head	Right Touch	0.073	0.09	0.03		
683	133322	Body	Front	0.092	0.11	0.09		

SAR Values (WLAN 2.4G)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
2412	1	Head	Left Touch	0.598	0.73	0.78		
2412	1	Body	Top	0.189	0.23	0.30		

SAR Values (WLAN 5G)

Frequency		Test Position		SAR(1g) (W/kg)				
MHz	Ch.			Spot check data		Original data		
				Measured SAR	Reported SAR			
5280	56	Head	Left Touch	0.884	1.10	0.91		
5580	116	Head	Left Touch	0.968	1.15	1.37		
5825	165	Head	Left Touch	0.966	1.10	0.71		
5260	52	Body	Rear	0.177	0.21	0.22		
5700	140	Body	Rear	0.532	0.61	0.49		
5825	165	Body	Rear	0.534	0.61	0.54		

L.3. Graph Results for Spot Check

GSM850 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.625$; $\rho = 1000$ kg/m³

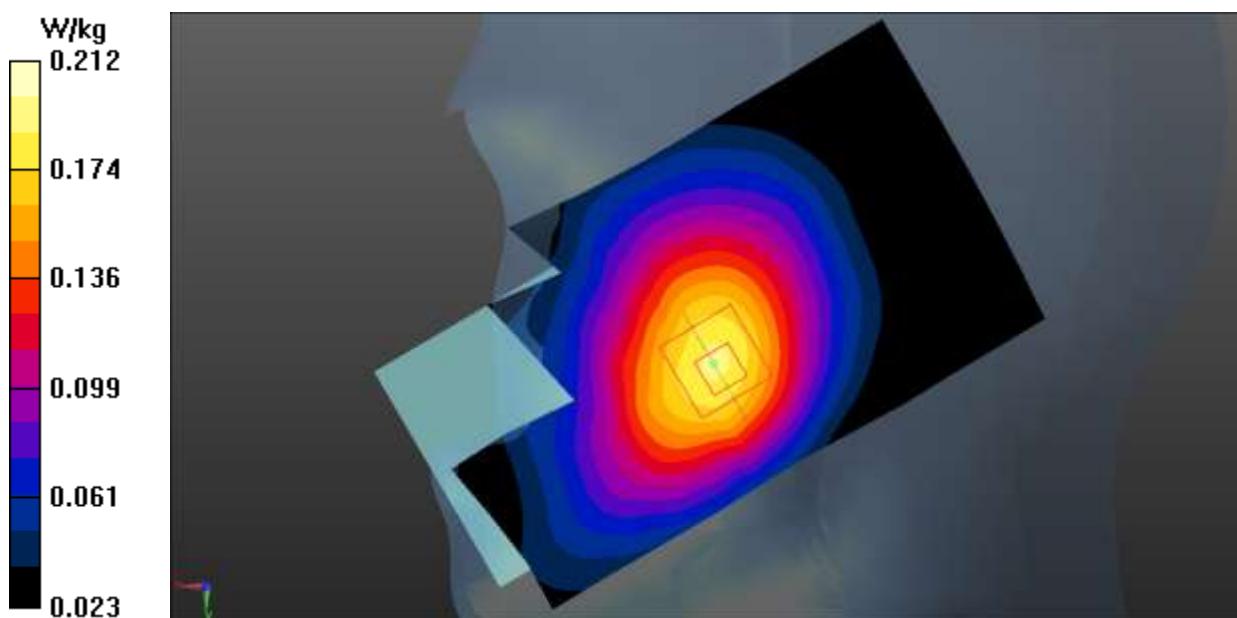
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.190 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.417 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.212 W/kg

GSM850 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.625$; $\rho = 1000$ kg/m³

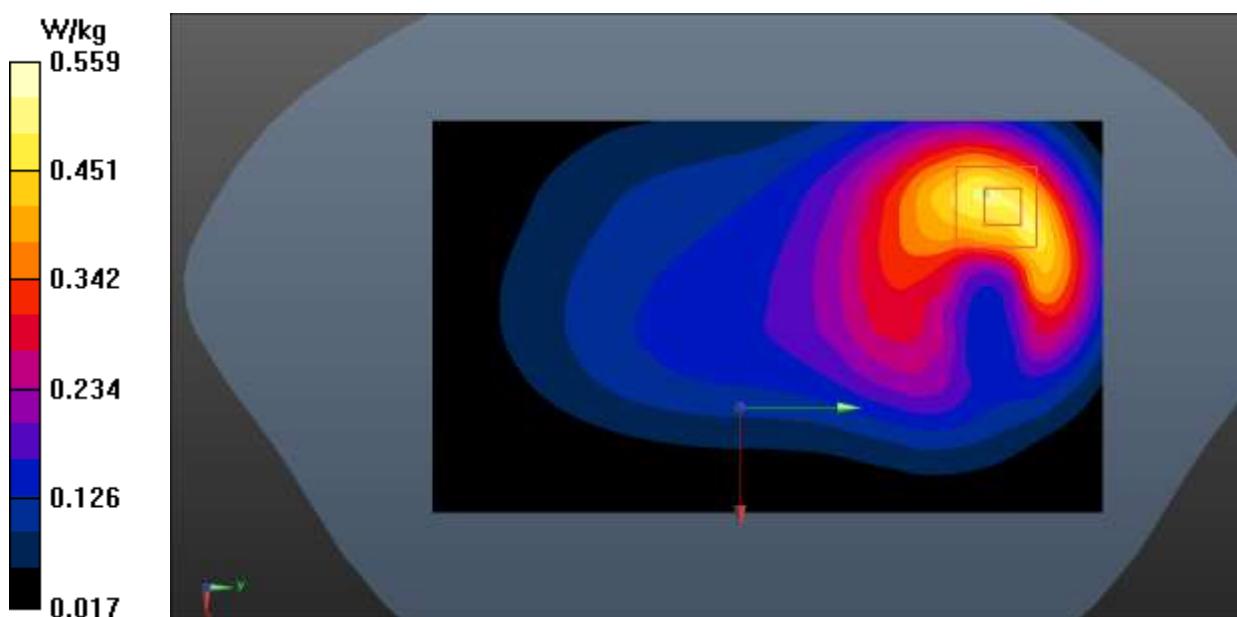
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 4Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Rear Side Middle/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.476 W/kg


Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.33 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.726 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.559 W/kg

GSM1900 Head

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 39.041$; $\rho = 1000$ kg/m³

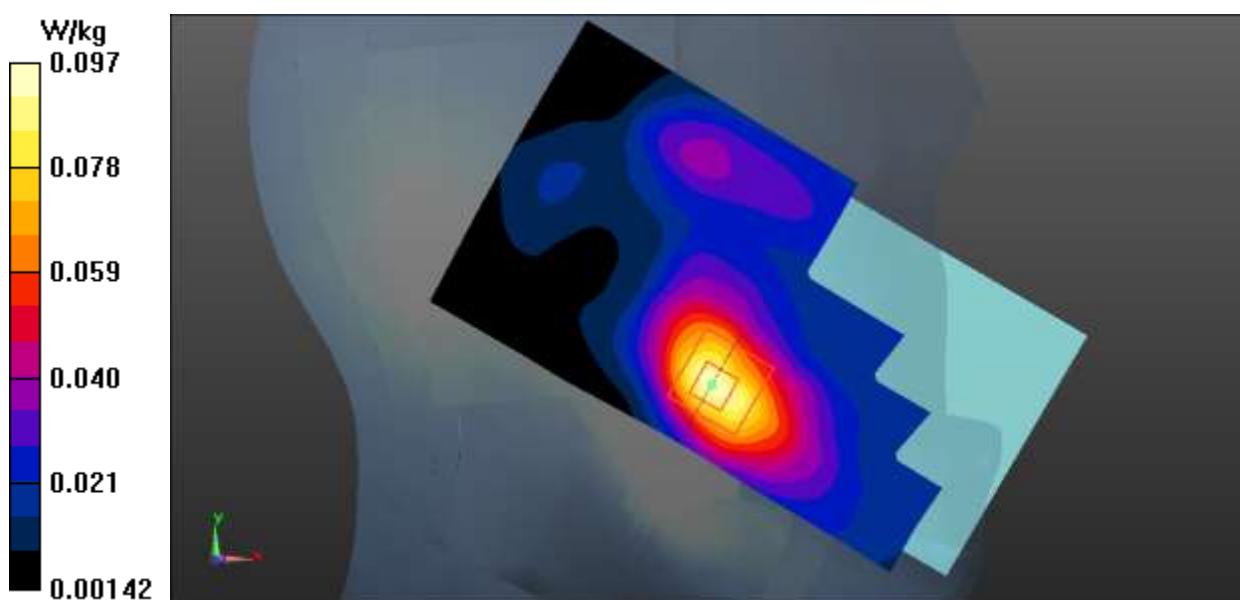
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0947 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.533 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.0975 W/kg

GSM1900 Body

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39.157$; $\rho = 1000$ kg/m³

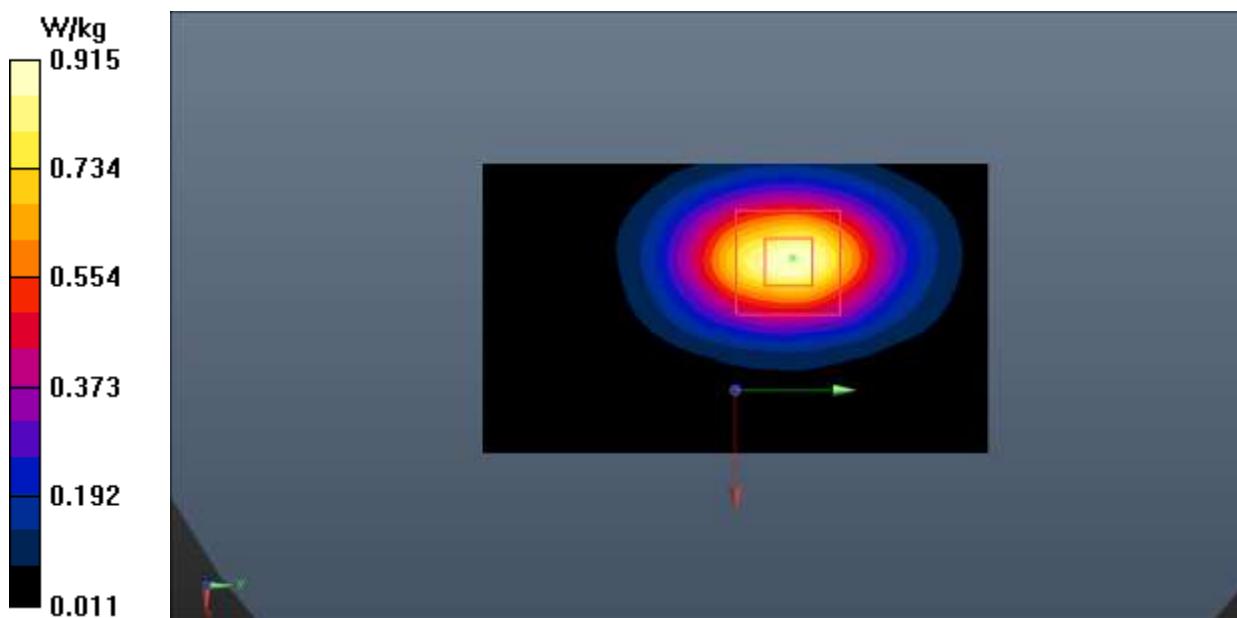
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 4Txslot (0) Frequency: 1850.2 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Bottom Side Low /Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.924 W/kg


Bottom Side Low /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.08 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.555 W/kg

Maximum value of SAR (measured) = 0.915 W/kg

CDMA BC0 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.52$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.626$; $\rho = 1000$ kg/m³

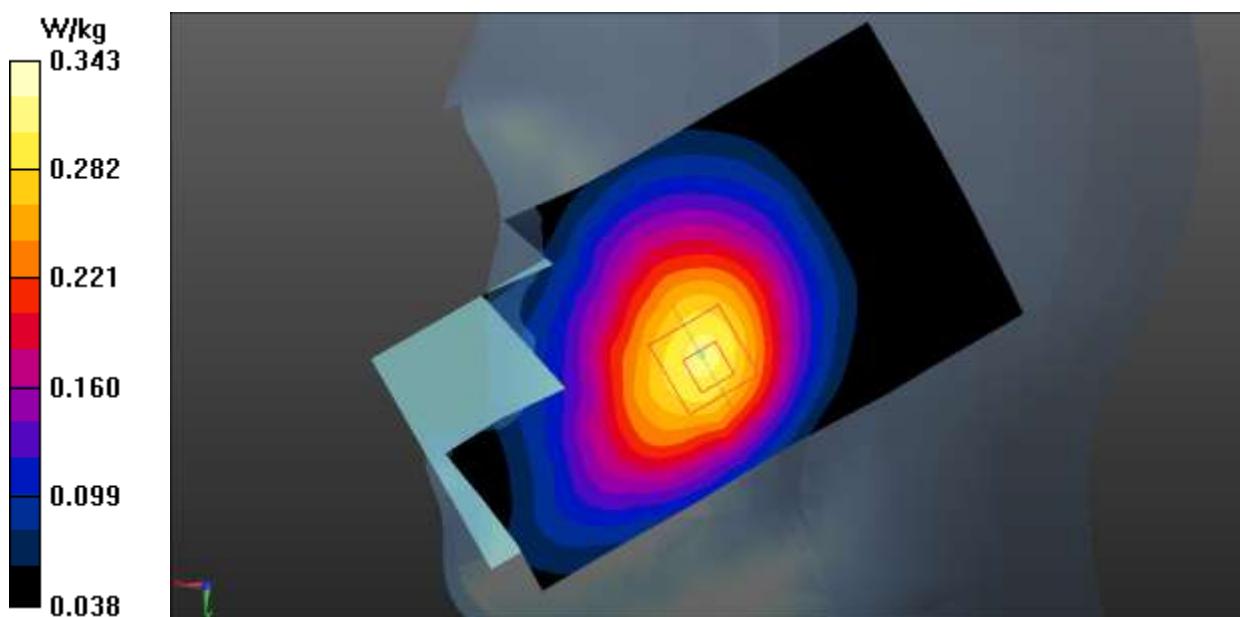
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.310 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.613 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.389 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.219 W/kg

Maximum value of SAR (measured) = 0.343 W/kg

CDMA BC0 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.52$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.626$; $\rho = 1000$ kg/m³

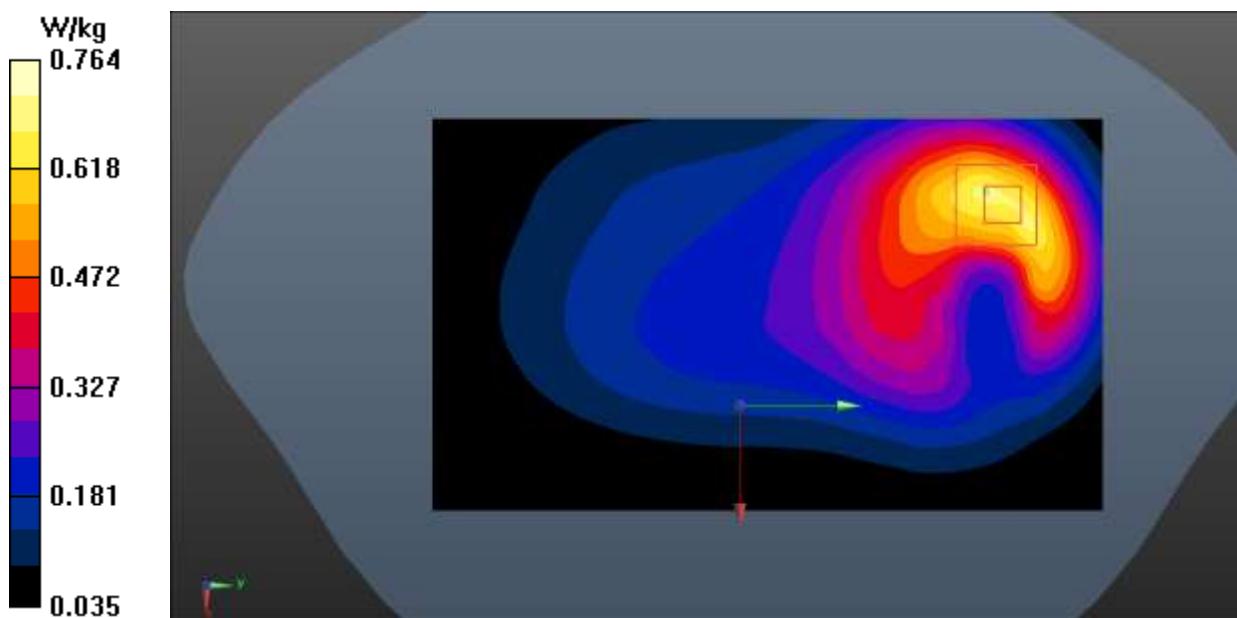
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 836.52 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Front Side Middle /Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.680 W/kg


Front Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.35 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.764 W/kg

CDMA BC1 Head

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 39.041$; $\rho = 1000$ kg/m³

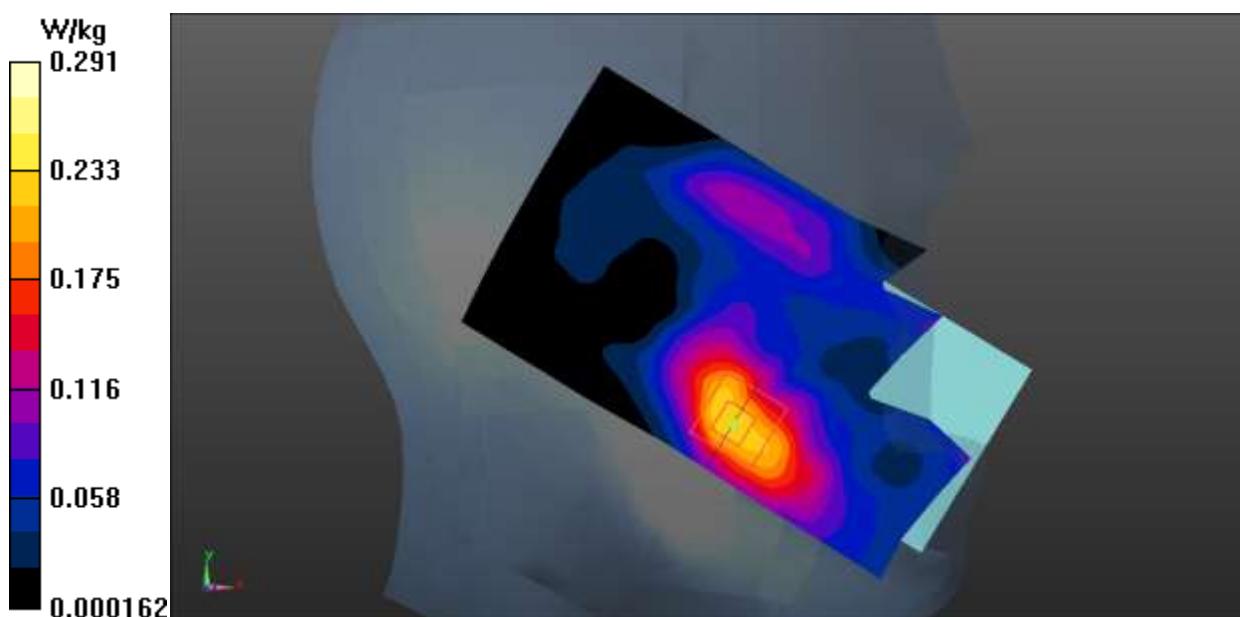
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Left Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.233 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.664 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.186 W/kg; SAR(10 g) = 0.115 W/kg

Maximum value of SAR (measured) = 0.291 W/kg

CDMA BC1 Body

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1909$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 38.928$; $\rho = 1000$ kg/m³

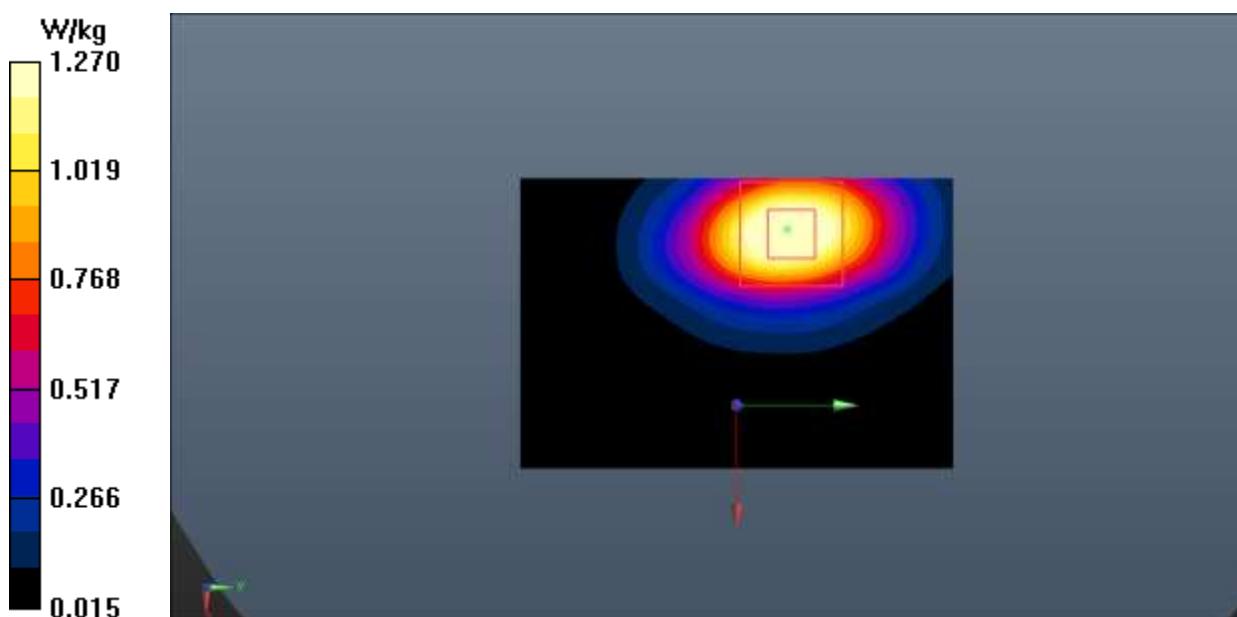
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 1908.75MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Bottom Side High /Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.47 W/kg


Bottom Side High /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.82 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.596 W/kg

Maximum value of SAR (measured) = 1.27 W/kg

CDMA BC10 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 820.5$ MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 40.818$; $\rho = 1000$ kg/m³

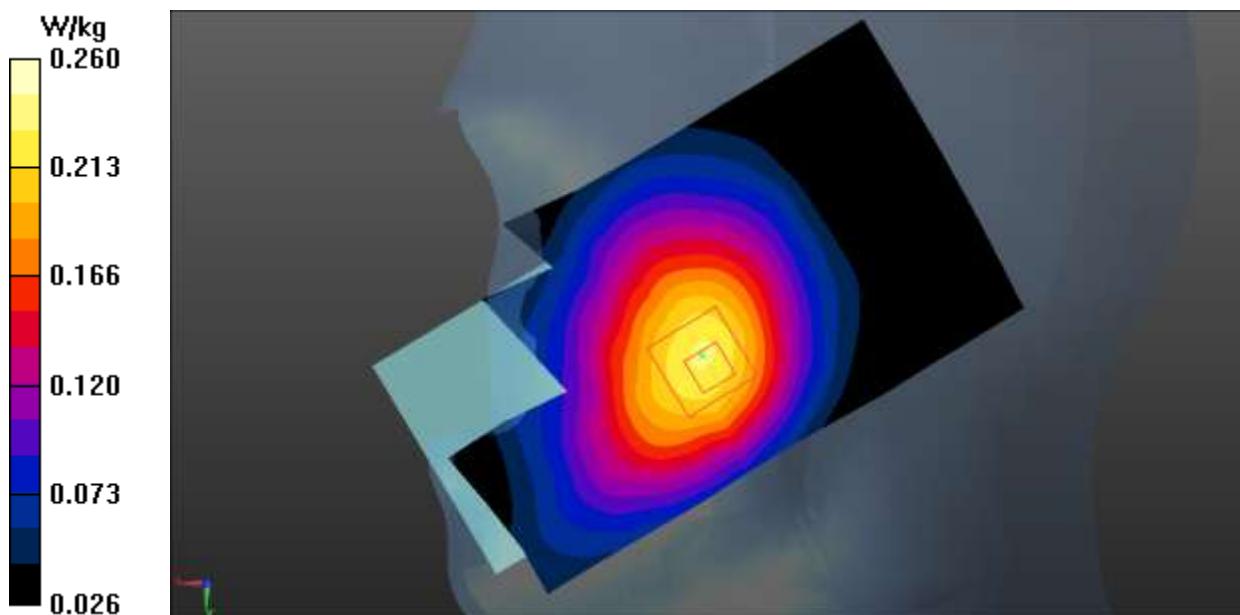
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 820.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.232 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.968 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.295 W/kg

SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.165 W/kg

Maximum value of SAR (measured) = 0.260 W/kg

CDMA BC10 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 820.5$ MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 40.818$; $\rho = 1000$ kg/m³

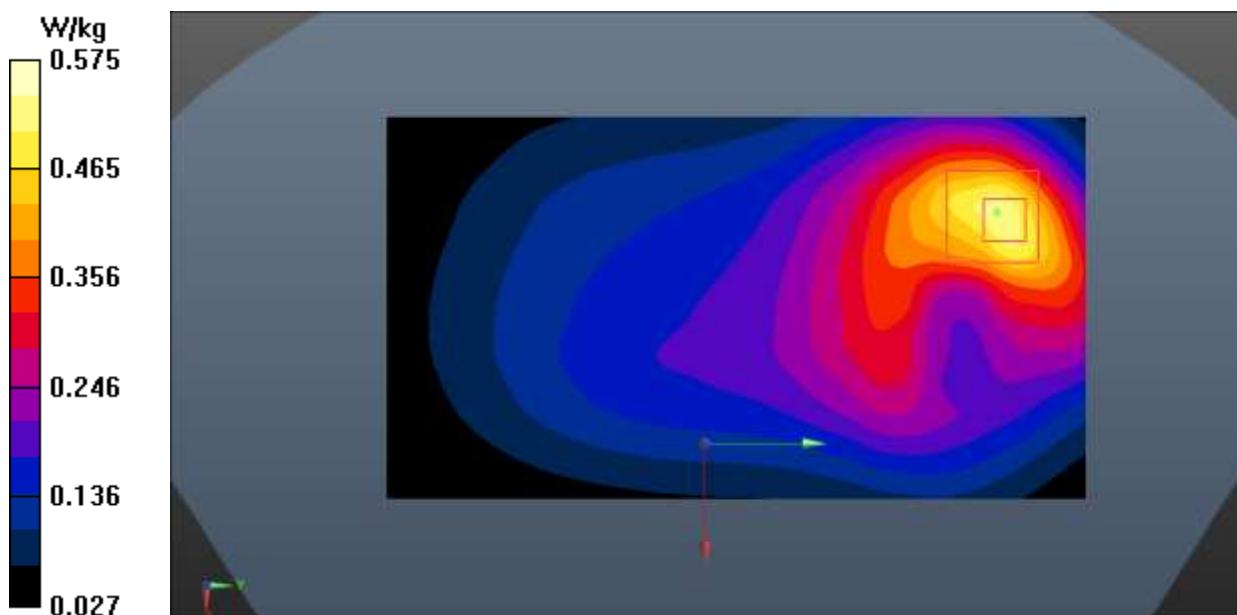
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, CDMA (0) Frequency: 820.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Front Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.530 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.82 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.482 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.575 W/kg

WCDMA 850 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.627$; $\rho = 1000$ kg/m³

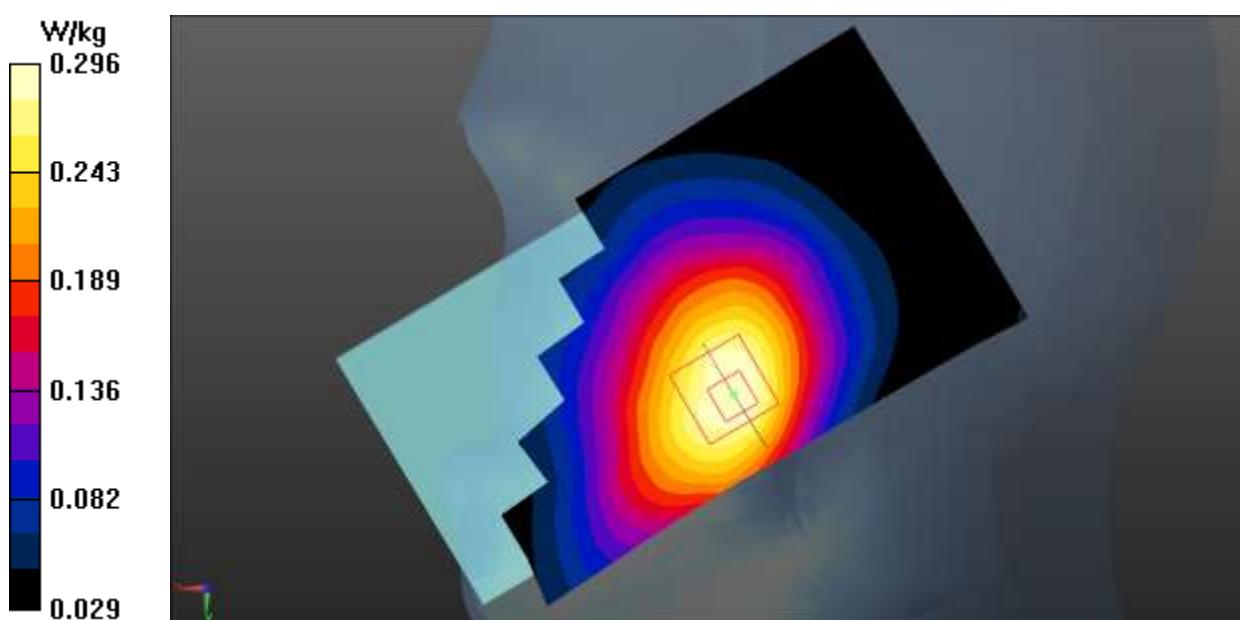
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.304 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.036 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.199 W/kg

Maximum value of SAR (measured) = 0.296 W/kg

WCDMA 850 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.627$; $\rho = 1000$ kg/m³

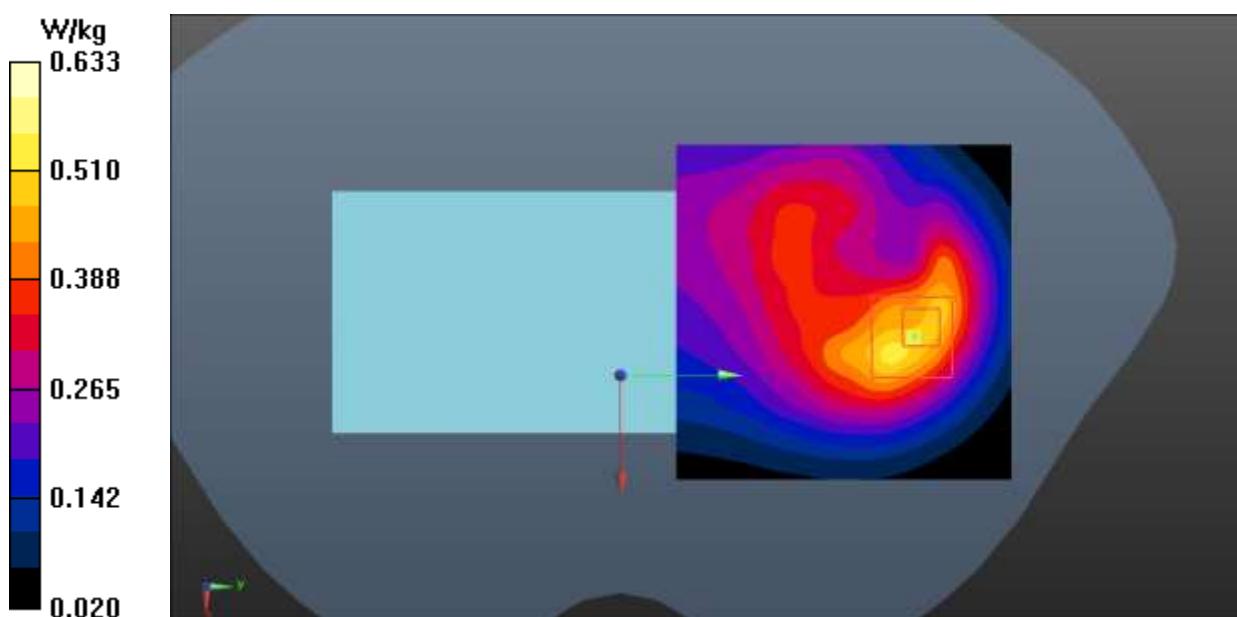
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Front Side Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.531 W/kg


Front Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.811 W/kg

SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.263 W/kg

Maximum value of SAR (measured) = 0.633 W/kg

WCDMA 1900 Head

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 39.041$; $\rho = 1000$ kg/m³

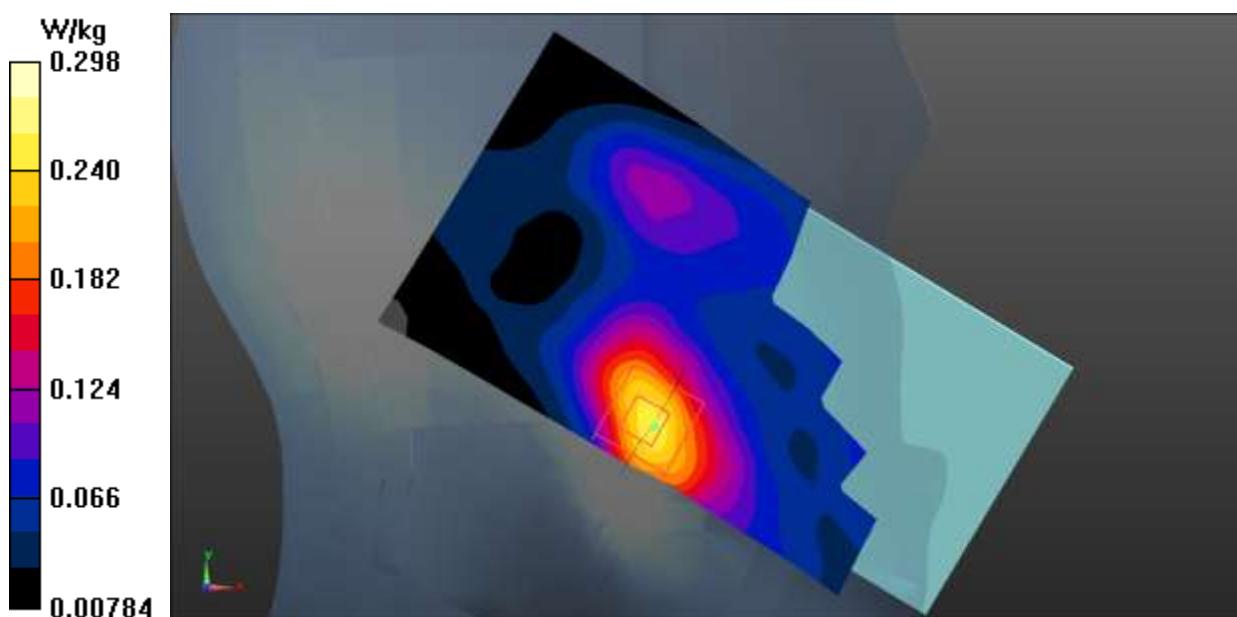
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Left Cheek Middle /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.254 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.969 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.422 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.298 W/kg

WCDMA 1900 Body

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1908$ MHz; $\sigma = 1.421$ S/m; $\epsilon_r = 38.932$; $\rho = 1000$ kg/m³

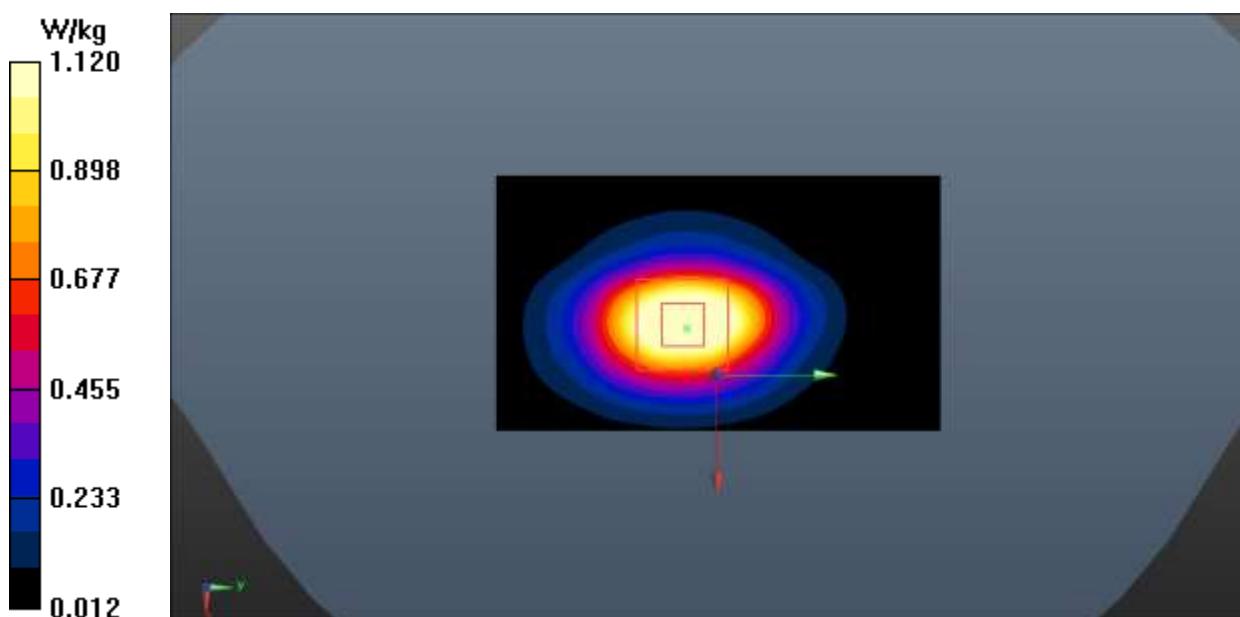
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Bottom Side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.43 W/kg


Bottom Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.60 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

WCDMA 1700 Head

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

Medium parameters used: $f = 1733$ MHz; $\sigma = 1.343$ S/m; $\epsilon_r = 40.812$; $\rho = 1000$ kg/m³

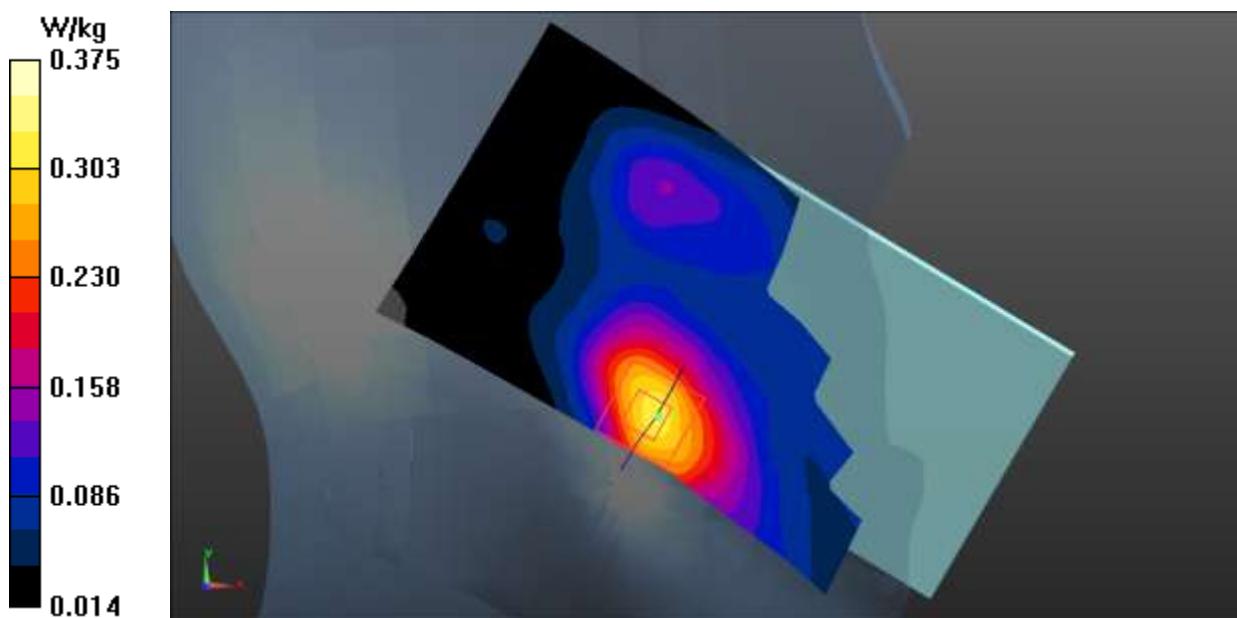
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1732.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.320 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.816 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.166 W/kg; SAR(10 g) = 0.101 W/kg

Maximum value of SAR (measured) = 0.375 W/kg

WCDMA 1700 Body

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

Medium parameters used: $f = 1753$ MHz; $\sigma = 1.361$ S/m; $\epsilon_r = 40.735$; $\rho = 1000$ kg/m³

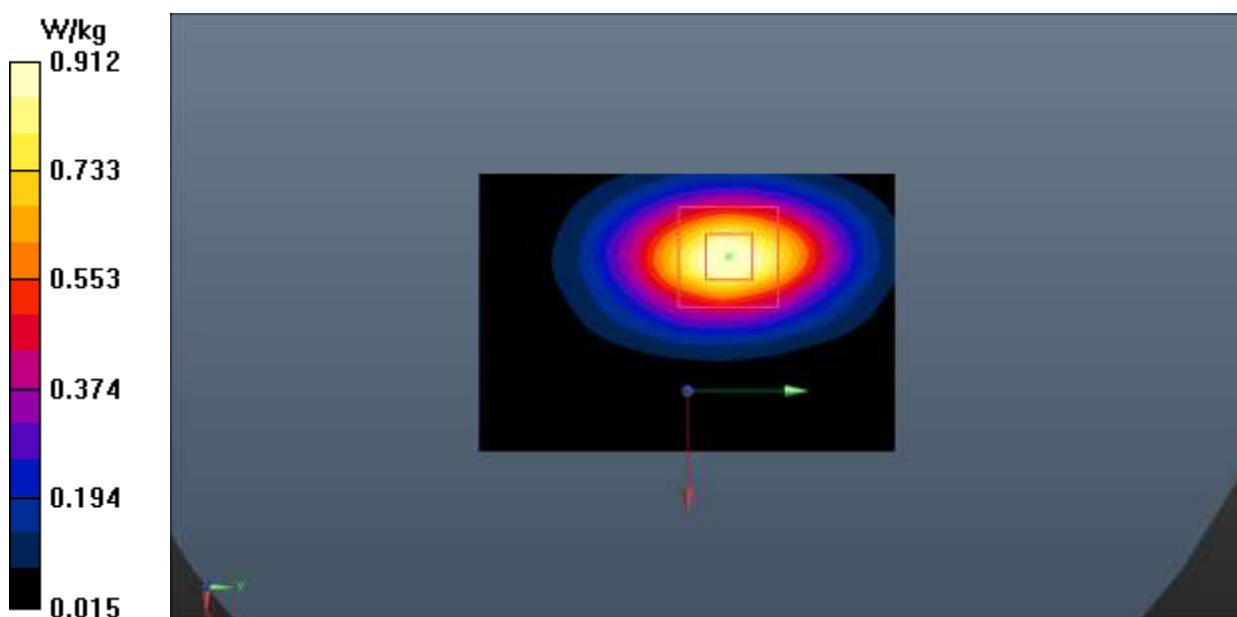
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

Bottom Side High/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.966 W/kg


Bottom Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.29 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 0.912 W/kg

LTE Band 2 Head

Date: 2020-5-15

Electronics: DAE4 Sn786

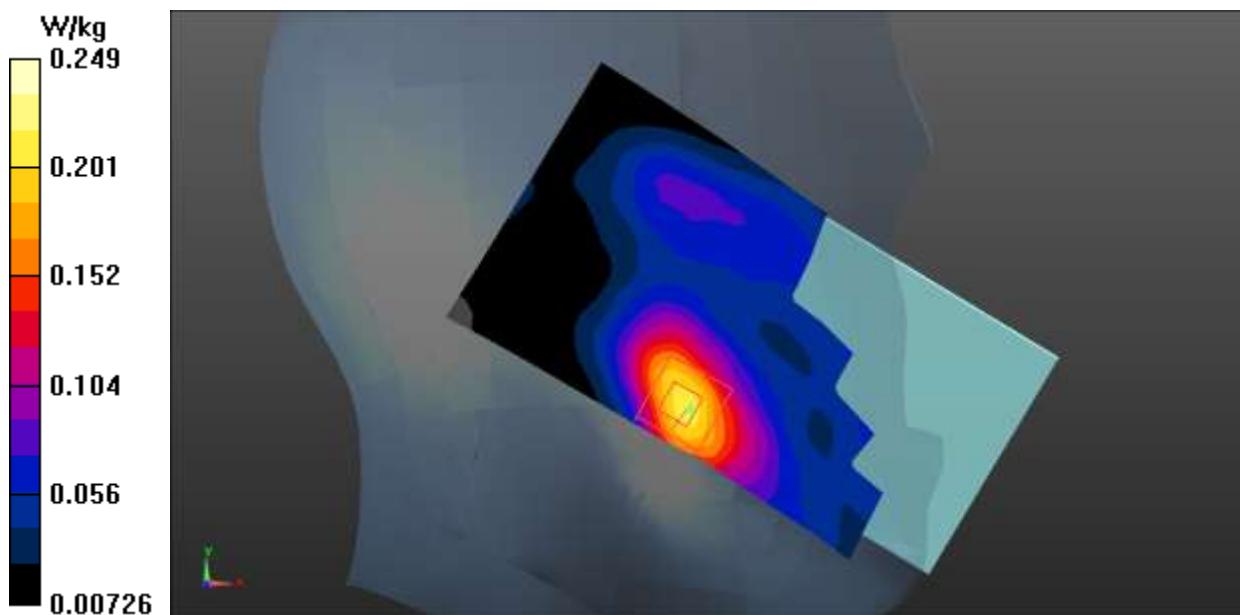
Medium: Head 1900MHz

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 39.041$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);


Left Cheek Middle 1RB_0 /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.211 W/kg**Left Cheek Middle 1RB_0 /Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.794 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.083 W/kg

Maximum value of SAR (measured) = 0.249 W/kg

LTE Band 2 Body

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 38.963$; $\rho = 1000$ kg/m³

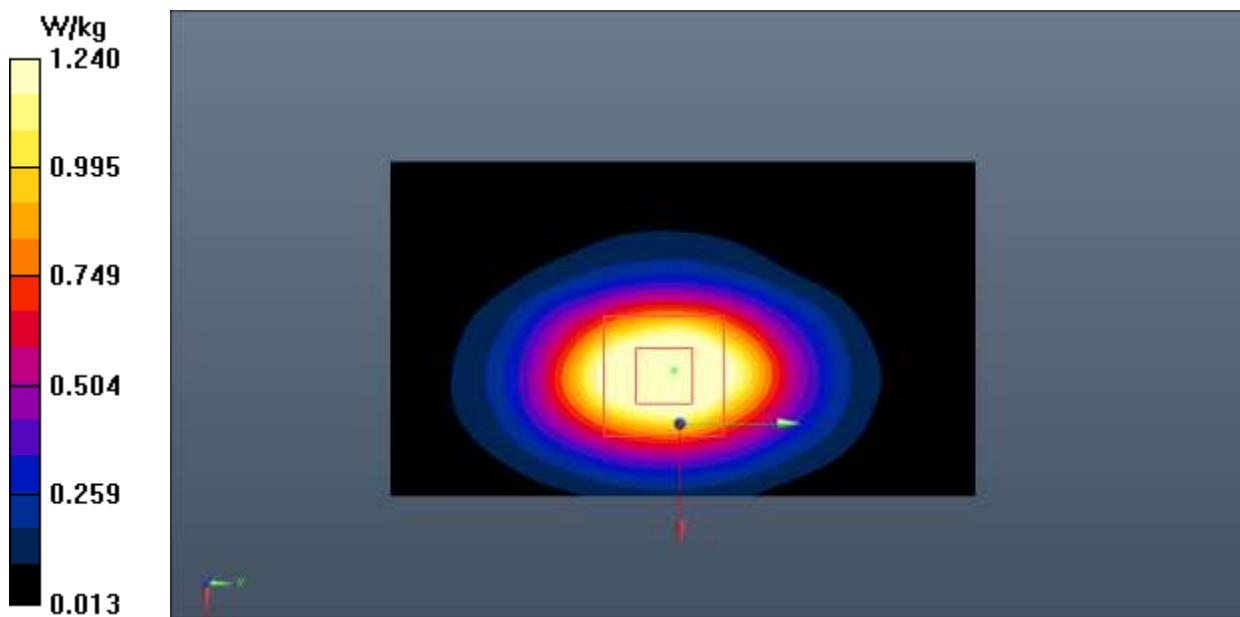
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Bottom Side High 50RB_0 /Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.72 W/kg


Bottom Side High 50RB_0 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.70 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.98 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.578 W/kg

Maximum value of SAR (measured) = 1.24 W/kg

LTE Band 4 Head

Date: 2020-5-14

Electronics: DAE4 Sn786

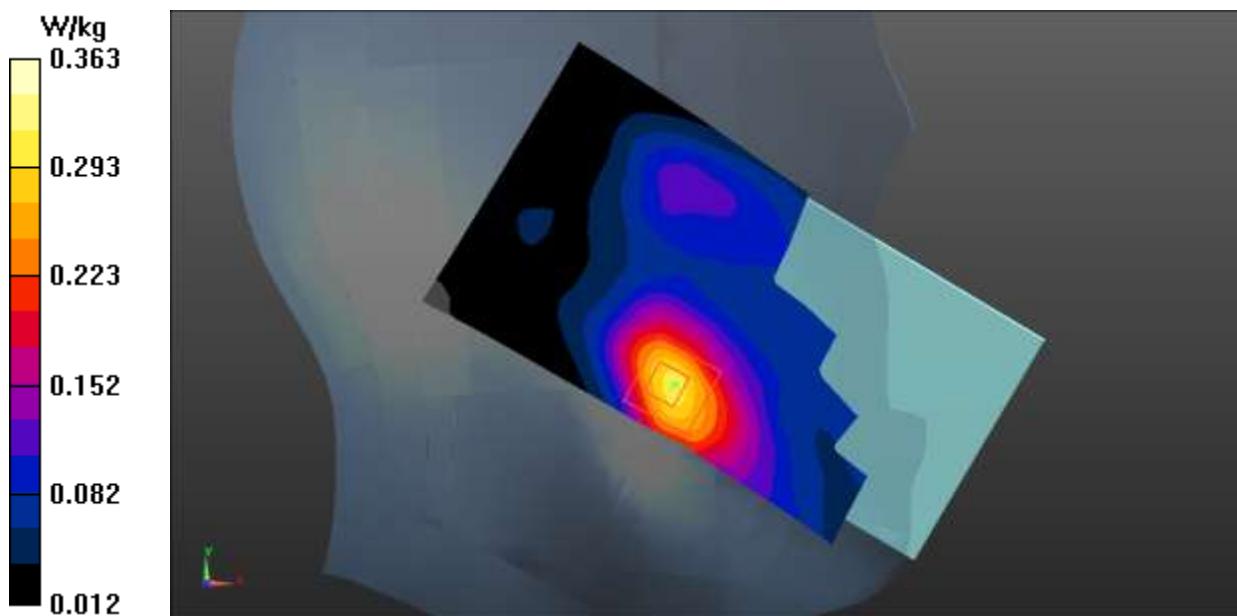
Medium: Head 1750MHz

Medium parameters used (interpolated): $f = 1732.5$ MHz; $\sigma = 1.343$ S/m; $\epsilon_r = 40.814$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);


Left Cheek Middle 1RB_0/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.308 W/kg**Left Cheek Middle 1RB_0/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.053 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.495 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.363 W/kg

LTE Band 4 Body

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

Medium parameters used: $f = 1745$ MHz; $\sigma = 1.354$ S/m; $\epsilon_r = 40.766$; $\rho = 1000$ kg/m³

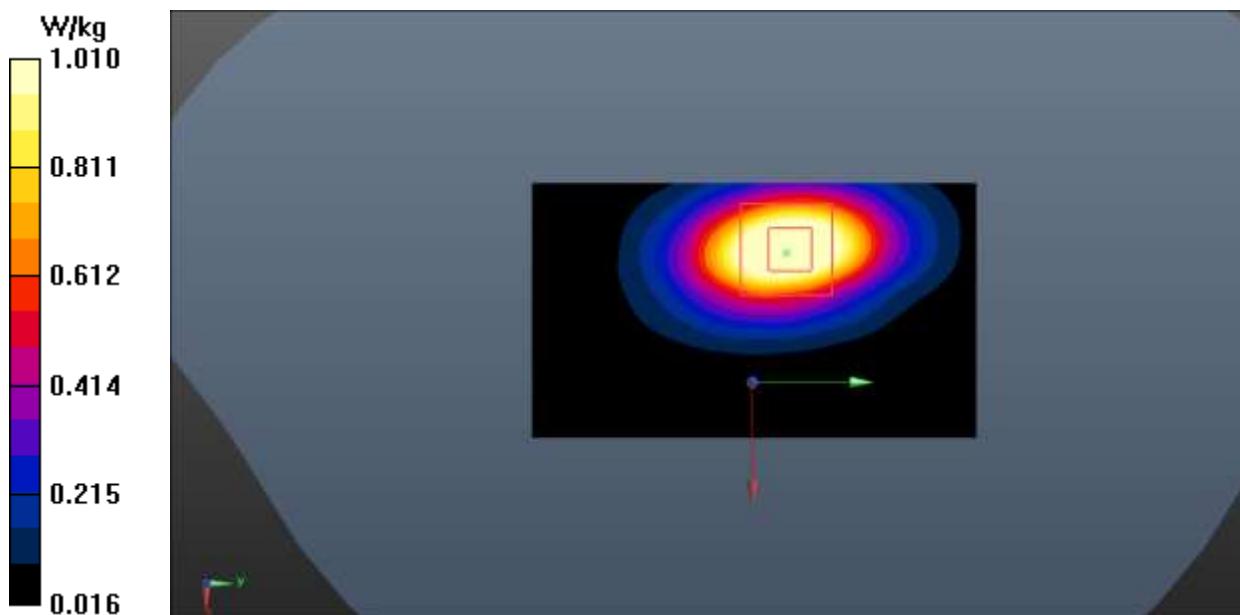
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

Bottom Side High 1RB_0 /Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.24 W/kg


Bottom Side High 1RB_0 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.80 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.898 W/kg; SAR(10 g) = 0.483 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

LTE Band 5 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.5$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.626$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle 1RB_49/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.286 W/kg

Right Cheek Middle 1RB_49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.039 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.087 W/kg

Maximum value of SAR (measured) = 0.282 W/kg

LTE Band 5 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used (interpolated): $f = 836.5$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 40.626$; $\rho = 1000$ kg/m³

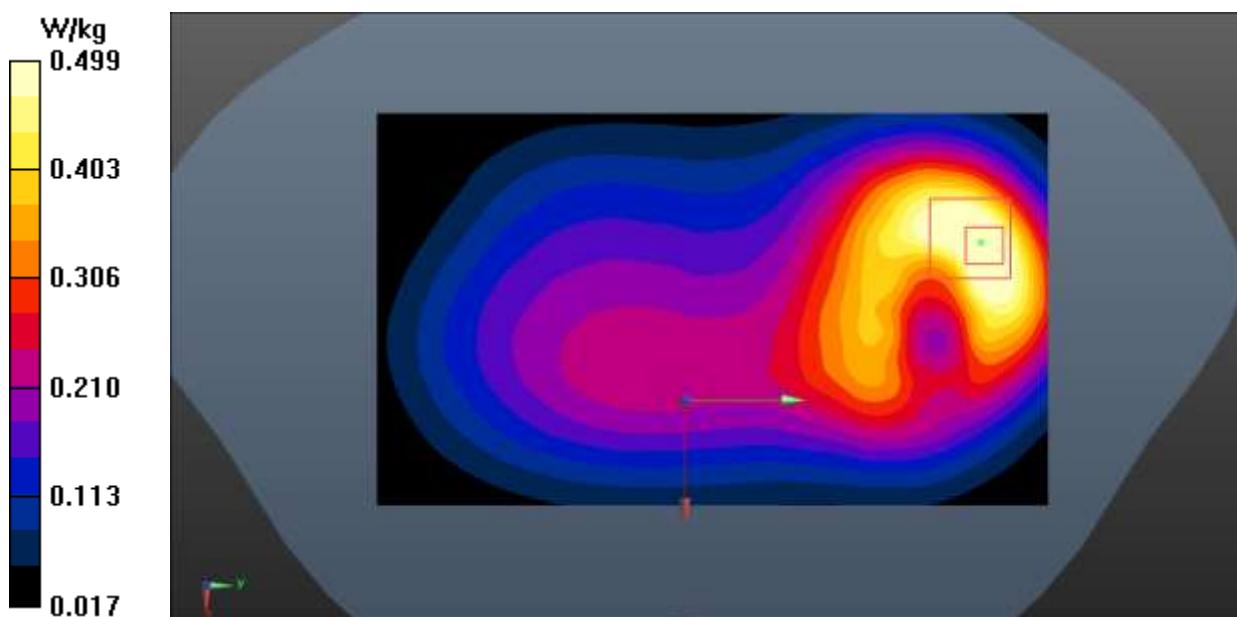
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Rear Side Middle 1RB_49/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.572 W/kg


Rear Side Middle 1RB_49/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.90 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.456 W/kg; SAR(10 g) = 0.273 W/kg

Maximum value of SAR (measured) = 0.499 W/kg

LTE Band 7 Head

Date: 2020-5-11

Electronics: DAE4 Sn786

Medium: Head 2550MHz

Medium parameters used (interpolated): $f = 2535$ MHz; $\sigma = 1.927$ S/m; $\epsilon_r = 38.136$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.43, 7.43, 7.43);

Left Cheek Middle 1RB_0/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0254 W/kg

Left Cheek Middle 1RB_0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.156 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0760 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.0723 W/kg

LTE Band 7 Body

Date: 2020-5-11

Electronics: DAE4 Sn786

Medium: Head 2550MHz

Medium parameters used: $f = 2510$ MHz; $\sigma = 1.898$ S/m; $\epsilon_r = 38.218$; $\rho = 1000$ kg/m³

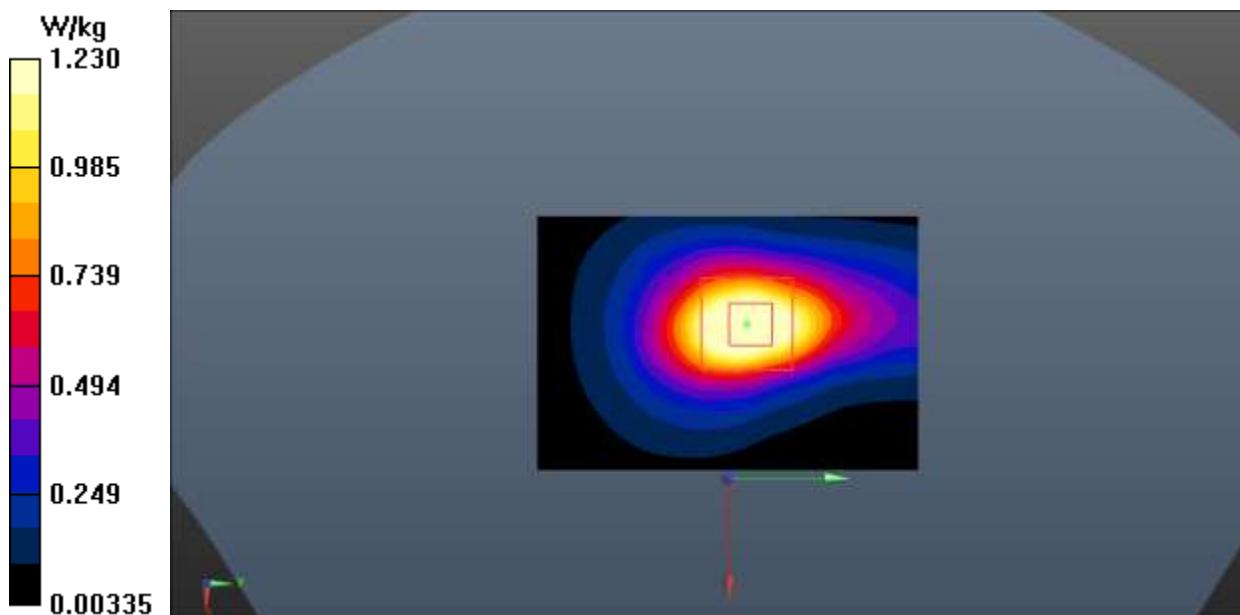
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.43, 7.43, 7.43);

Bottom Side Low 1RB_0/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.59 W/kg


Bottom Side Low 1RB_0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.99 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.530 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

LTE Band 12 Head

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used: $f = 708$ MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 41.685$; $\rho = 1000$ kg/m³

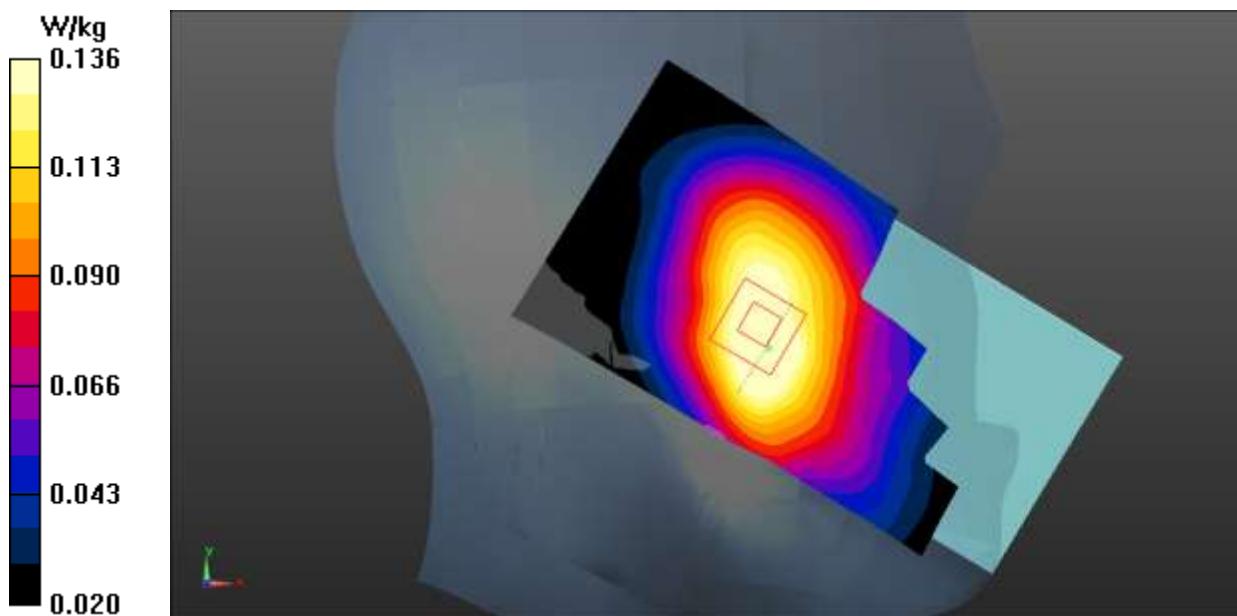
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Left Cheek Middle 1RB_25 /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.153 W/kg


Left Cheek Middle 1RB_25 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.262 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.098 W/kg

Maximum value of SAR (measured) = 0.136 W/kg

LTE Band 12 Body

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used: $f = 708$ MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 41.685$; $\rho = 1000$ kg/m³

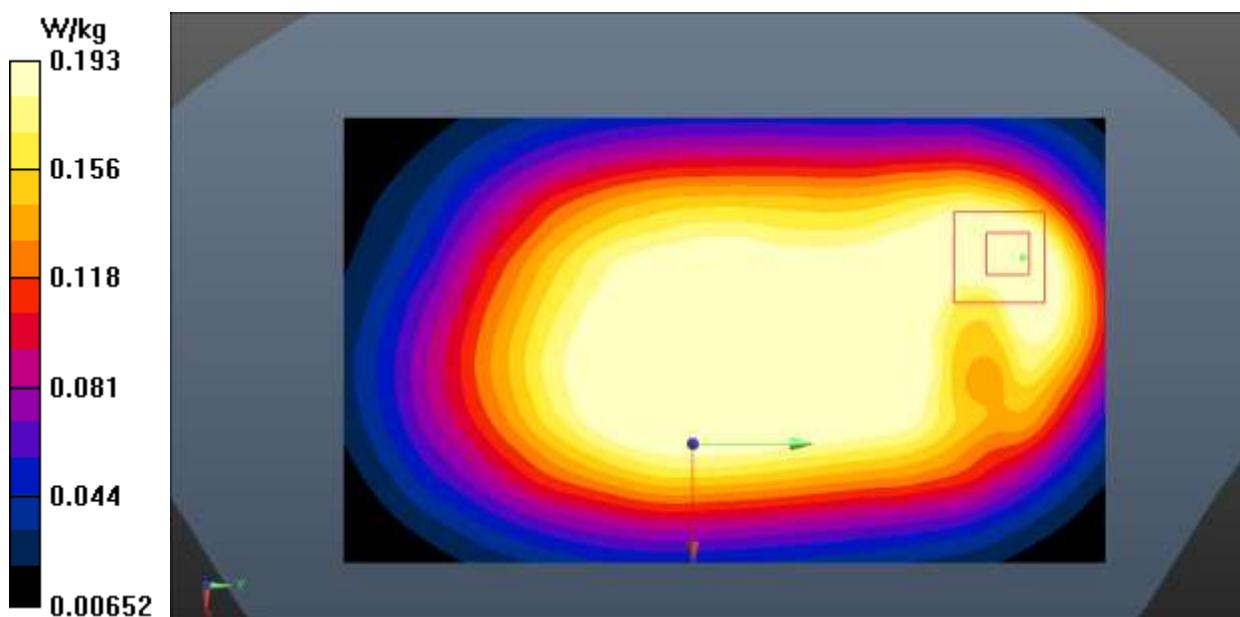
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Rear Side Middle 1RB_25/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.228 W/kg


Rear Side Middle 1RB_25/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.40 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.309 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.110 W/kg

Maximum value of SAR (measured) = 0.193 W/kg

LTE Band 13 Head

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used: $f = 782$ MHz; $\sigma = 0.922$ S/m; $\epsilon_r = 40.847$; $\rho = 1000$ kg/m³

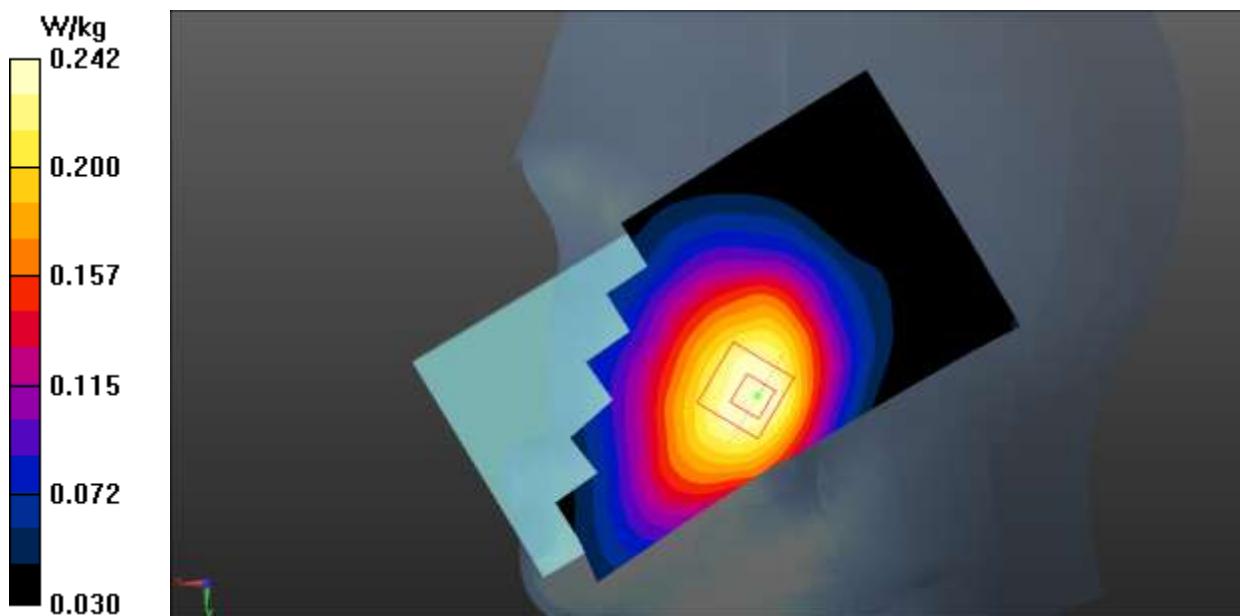
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle 1RB_0/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.249 W/kg


Right Cheek Middle 1RB_0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.391 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.165 W/kg

Maximum value of SAR (measured) = 0.242 W/kg

LTE Band 13 Body

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used: $f = 782$ MHz; $\sigma = 0.922$ S/m; $\epsilon_r = 40.847$; $\rho = 1000$ kg/m³

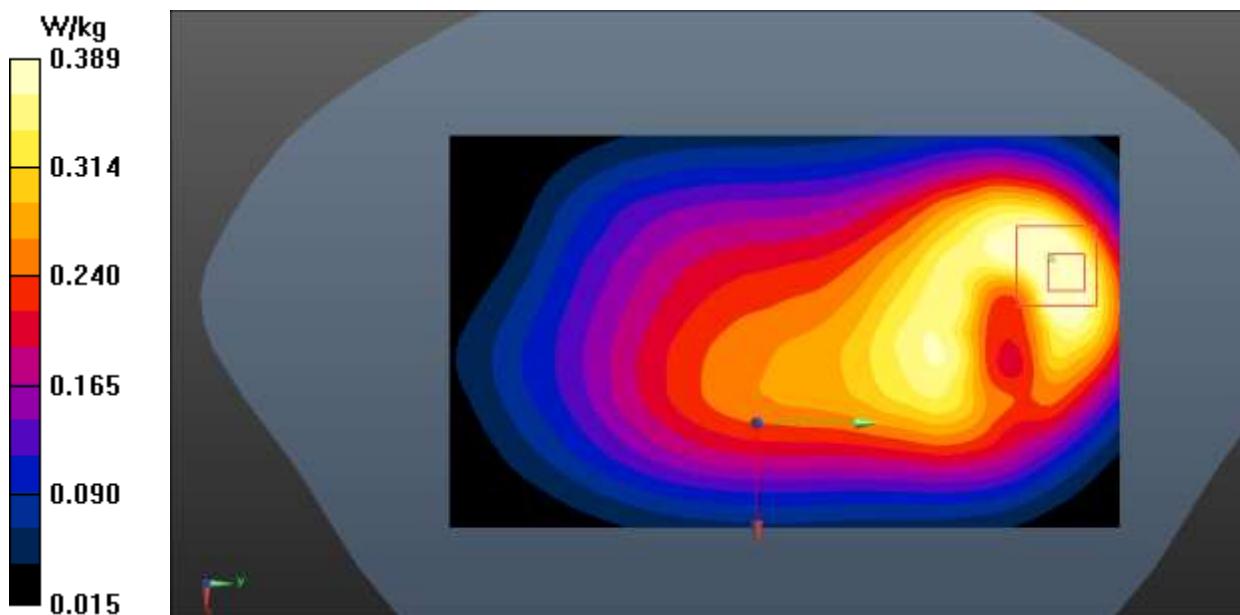
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Rear Side Middle 1RB_0/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.450 W/kg


Rear Side Middle 1RB_0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.35 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.615 W/kg

SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.211 W/kg

Maximum value of SAR (measured) = 0.389 W/kg

LTE Band 25 Head

Date: 2020-5-15

Electronics: DAE4 Sn786

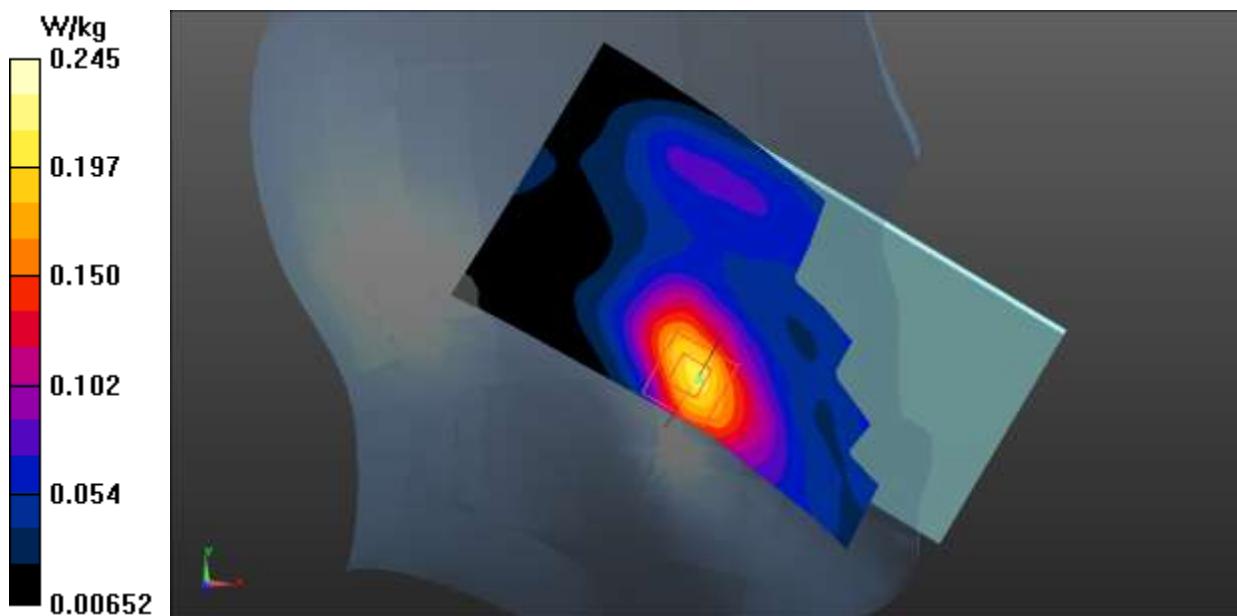
Medium: Head 1900MHz

Medium parameters used (interpolated): $f = 1882.5$ MHz; $\sigma = 1.399$ S/m; $\epsilon_r = 39.031$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1882.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);


Left Cheek Middle 1RB_0/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm
Maximum value of SAR (interpolated) = 0.205 W/kg**Left Cheek Middle 1RB_0/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.973 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.245 W/kg

LTE Band 25 Body

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

Medium parameters used: $f = 1905$ MHz; $\sigma = 1.418$ S/m; $\epsilon_r = 38.944$; $\rho = 1000$ kg/m³

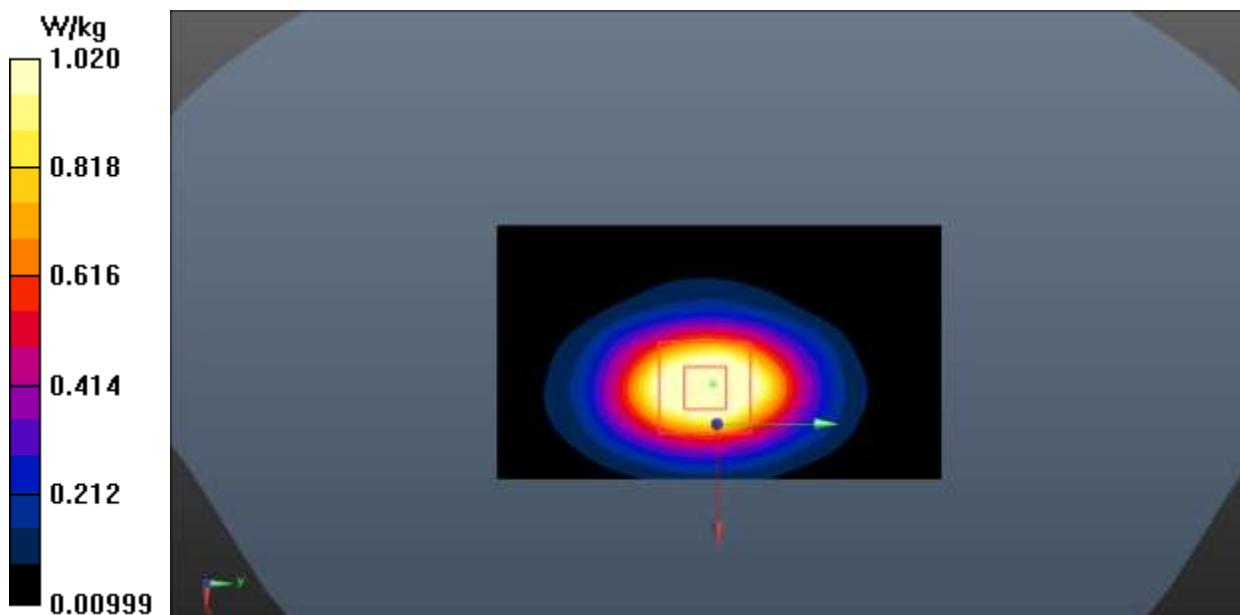
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1905 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

Bottom Side High 50RB_0 /Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.40 W/kg


Bottom Side High 50RB_0 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.22 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.476 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

LTE Band 26 Head

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used: $f = 832$ MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 40.68$; $\rho = 1000$ kg/m³

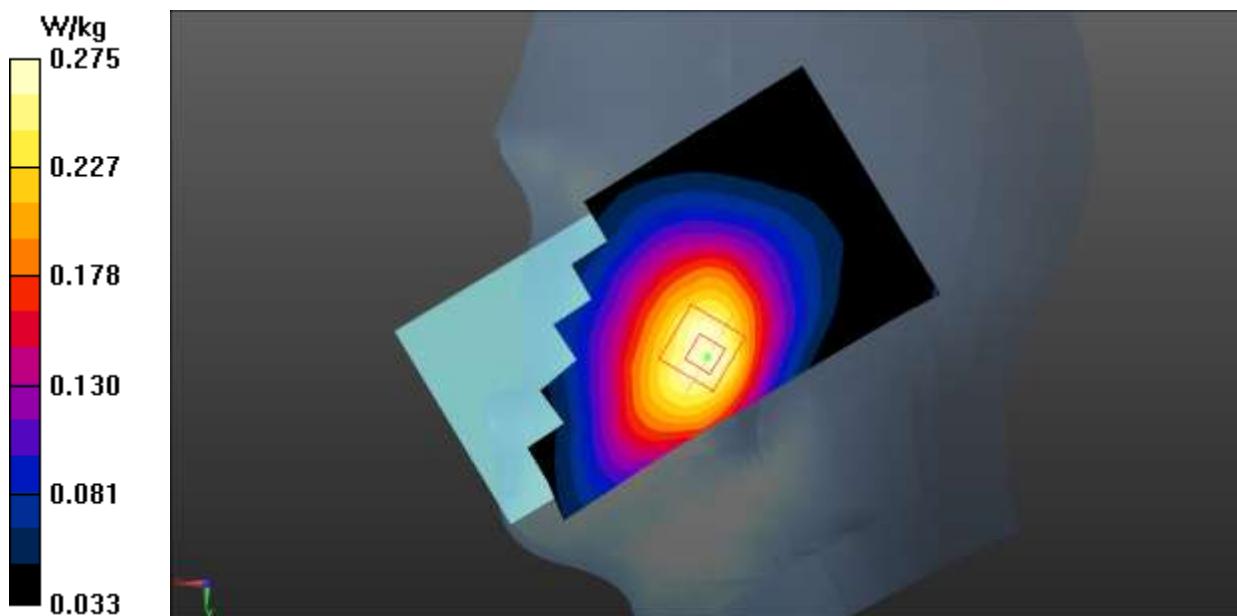
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 831.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle 1RB_74/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.281 W/kg


Right Cheek Middle 1RB_74/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.381 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.182 W/kg

Maximum value of SAR (measured) = 0.275 W/kg

LTE Band 26 Body

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

Medium parameters used: $f = 832$ MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 40.68$; $\rho = 1000$ kg/m³

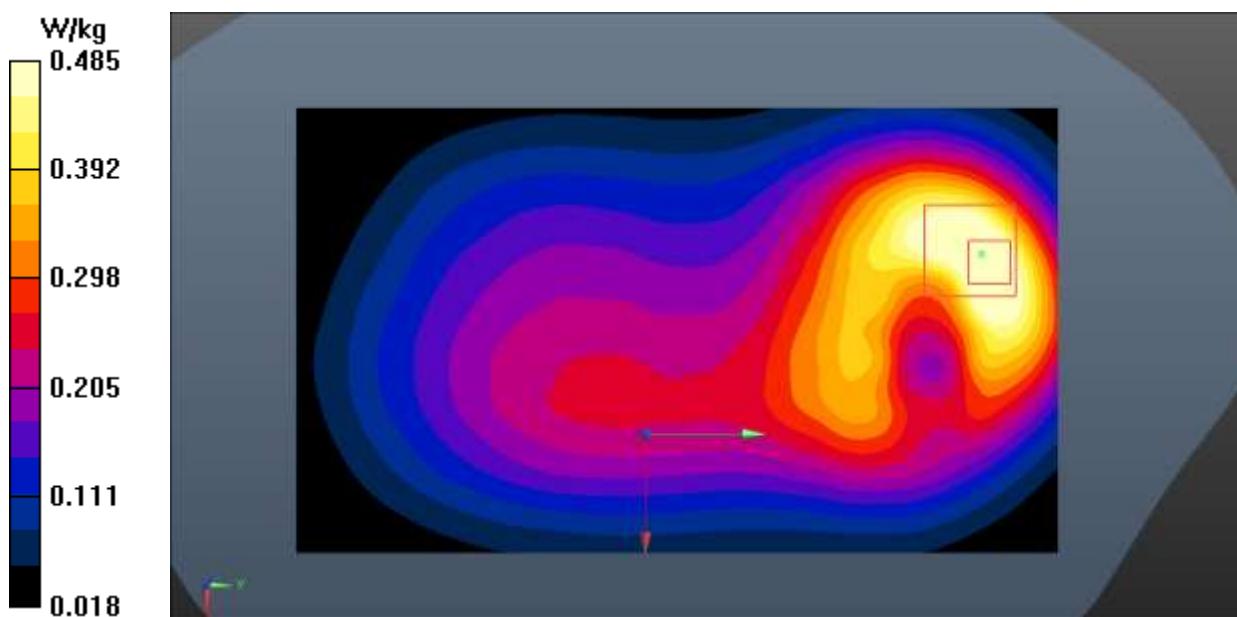
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 831.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Rear Side Middle 1RB_74/Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.558 W/kg


Rear Side Middle 1RB_74/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.39 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.757 W/kg

SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.265 W/kg

Maximum value of SAR (measured) = 0.485 W/kg

LTE Band 41 Head

Date: 2020-5-11

Electronics: DAE4 Sn786

Medium: Head 2550MHz

Medium parameters used (interpolated): $f = 2593$ MHz; $\sigma = 1.996$ S/m; $\epsilon_r = 37.944$; $\rho = 1000$ kg/m³

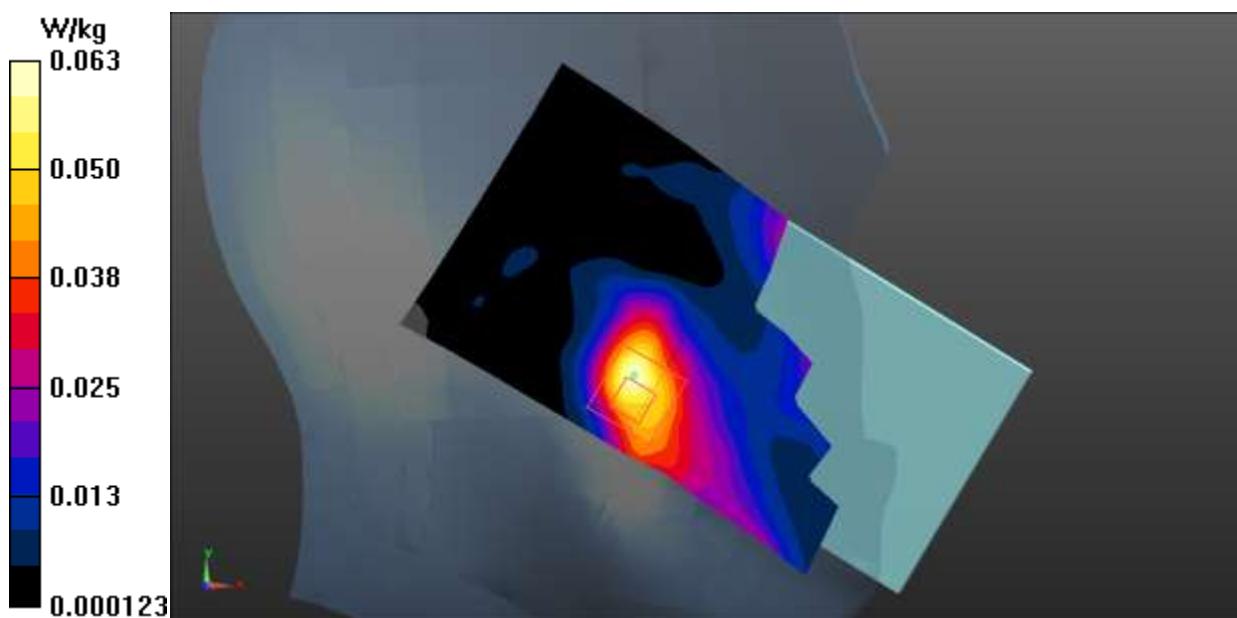
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_TDD (0) Frequency: 2593 MHz Duty Cycle: 1:1.58

Probe: EX3DV4 – SN3633 ConvF (7.20, 7.20, 7.20);

Left Cheek Middle 1RB_50/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0622 W/kg


Left Cheek Middle 1RB_50/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.123 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.099 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.027 W/kg

Maximum value of SAR (measured) = 0.0629 W/kg

LTE Band 41 Body

Date: 2020-5-11

Electronics: DAE4 Sn786

Medium: Head 2550MHz

Medium parameters used (interpolated): $f = 2593$ MHz; $\sigma = 1.996$ S/m; $\epsilon_r = 37.944$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

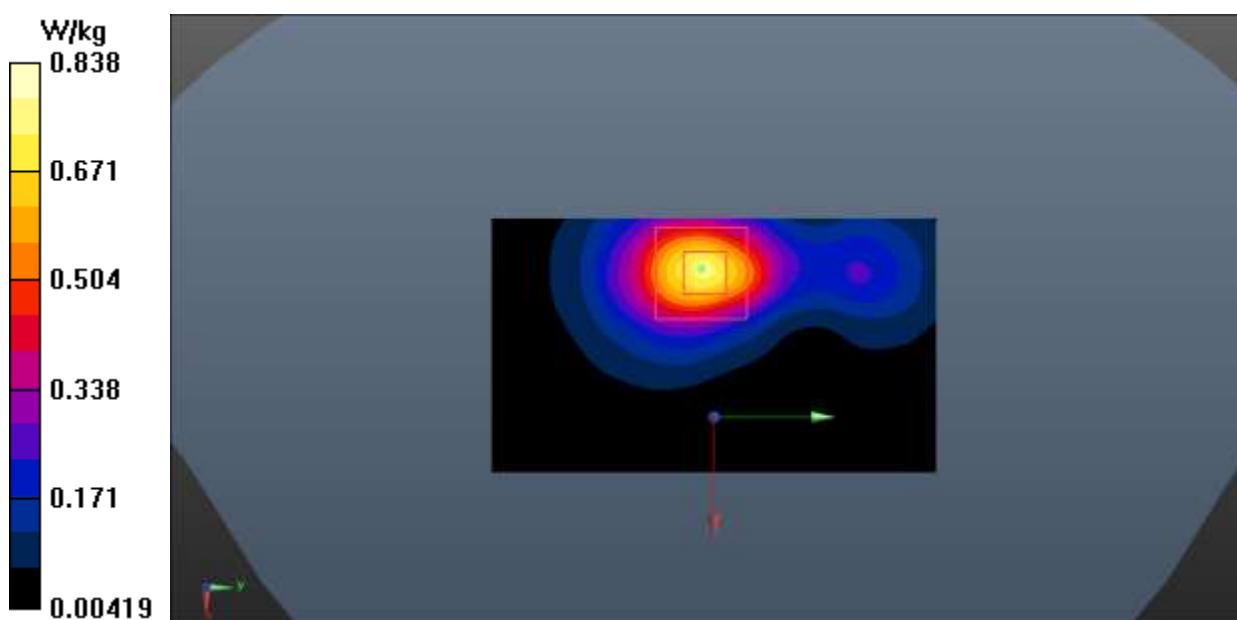
Communication System: UID 0, LTE_TDD (0) Frequency: 2593 MHz Duty Cycle: 1:1.58

Probe: EX3DV4 – SN3633 ConvF (7.20, 7.20, 7.20);

Bottom Side Middle 50RB_25/Area Scan (71x111x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 0.746 W/kg


Bottom Side Middle 50RB_25/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.385 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.330 W/kg

Maximum value of SAR (measured) = 0.838 W/kg

LTE Band 66 Head

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

Medium parameters used: $f = 1745$ MHz; $\sigma = 1.354$ S/m; $\epsilon_r = 40.766$; $\rho = 1000$ kg/m³

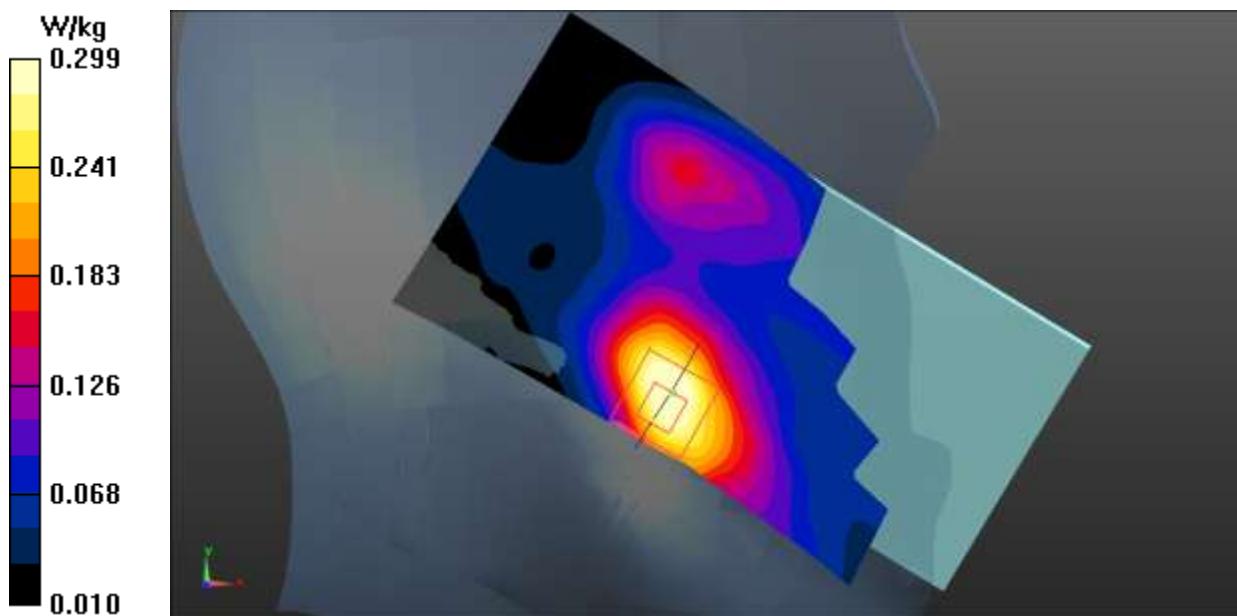
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

Left Cheek Middle 1RB_99/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.320 W/kg


Left Cheek Middle 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.768 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.187 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.299 W/kg

LTE Band 66 Body

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

Medium parameters used: $f = 1745$ MHz; $\sigma = 1.354$ S/m; $\epsilon_r = 40.766$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

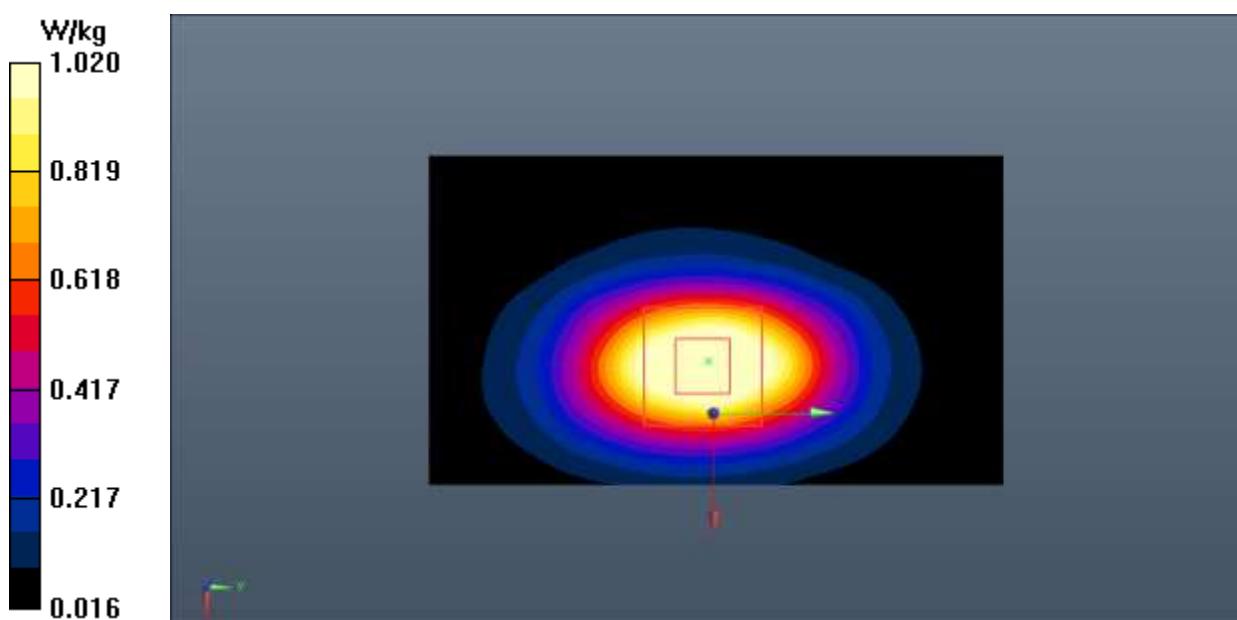
Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

Bottom Side Middle 50RB_50 /Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 1.38 W/kg


Bottom Side Middle 50RB_50 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.92 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 0.909 W/kg; SAR(10 g) = 0.484 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

LTE Band 71 Head

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used (extrapolated): $f = 683$ MHz; $\sigma = 0.864$ S/m; $\epsilon_r = 41.982$; $\rho = 1000$ kg/m³

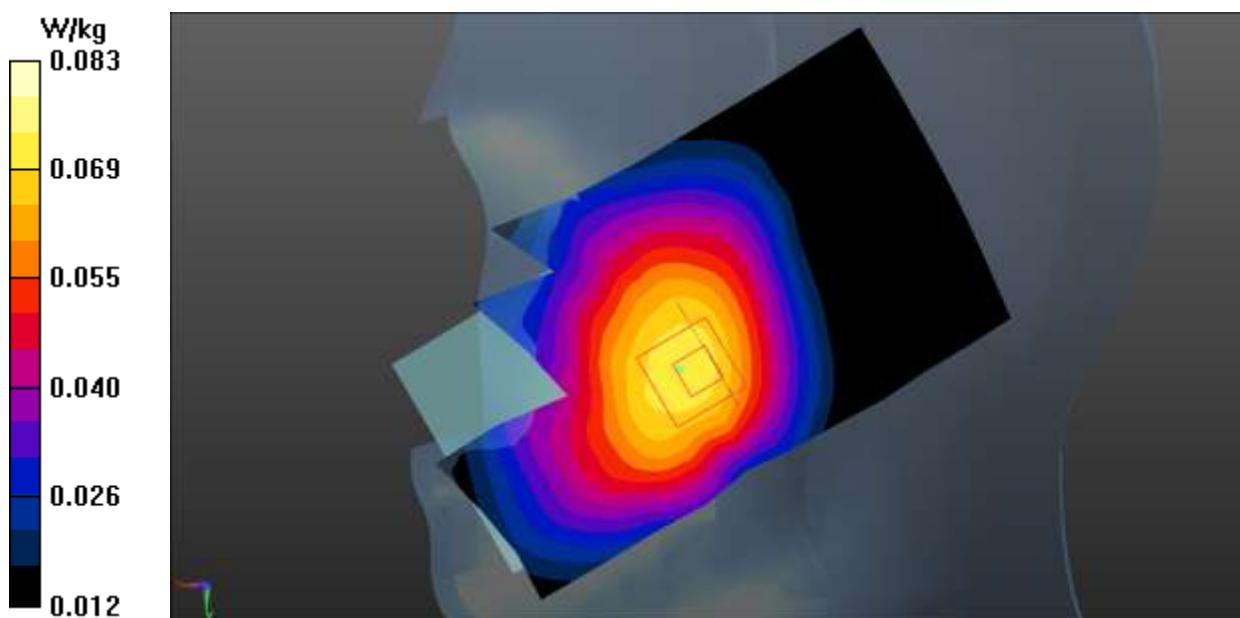
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 683 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Right Cheek Middle 1RB_0/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0737 W/kg


Right Cheek Middle 1RB_0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.693 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.0930 W/kg

SAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.056 W/kg

Maximum value of SAR (measured) = 0.0833 W/kg

LTE Band 71 Body

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used (extrapolated): $f = 683$ MHz; $\sigma = 0.864$ S/m; $\epsilon_r = 41.982$; $\rho = 1000$ kg/m³

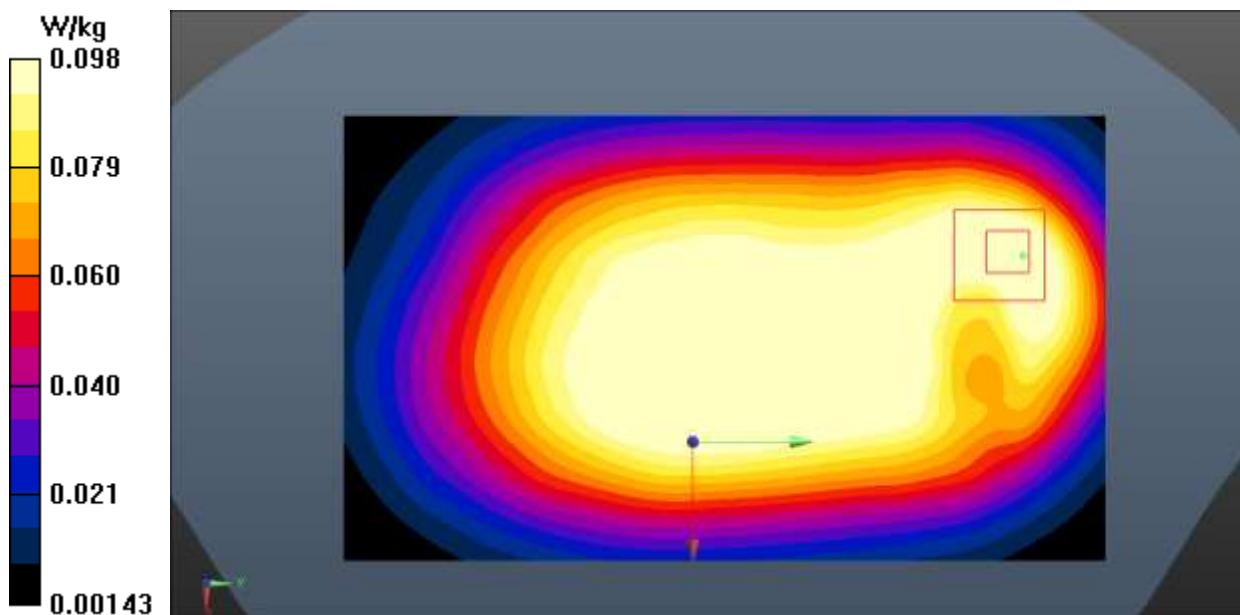
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 683 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

Front Side Middle 1RB_0 /Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.127 W/kg


Front Side Middle 1RB_0 /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.091 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.0983 W/kg

WLAN 2.4G Head

Date: 2020-4-20

Electronics: DAE4 Sn786

Medium: Head 2450MHz

Medium parameters used: $f = 2412$ MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 38.455$; $\rho = 1000$ kg/m³

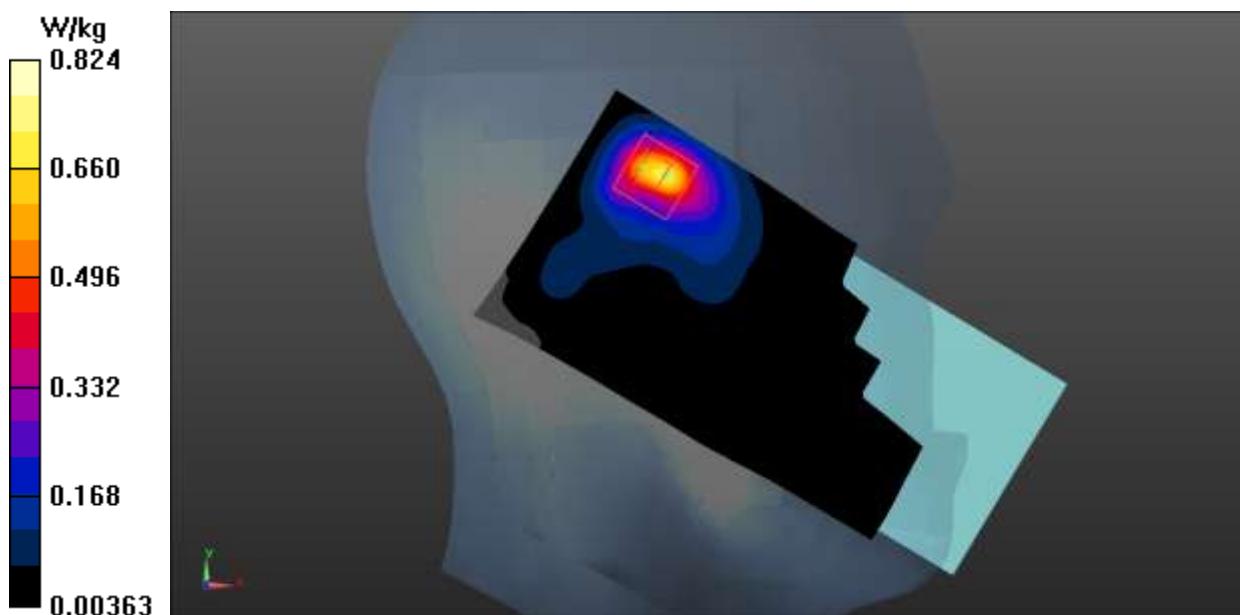
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2412 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.43, 7.43, 7.43);

Left Cheek Low/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.700 W/kg


Left Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.750 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.598 W/kg; SAR(10 g) = 0.257 W/kg

Maximum value of SAR (measured) = 0.824 W/kg

WLAN 2.4G Body

Date: 2020-4-20

Electronics: DAE4 Sn786

Medium: Head 2450MHz

Medium parameters used: $f = 2412$ MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 38.455$; $\rho = 1000$ kg/m³

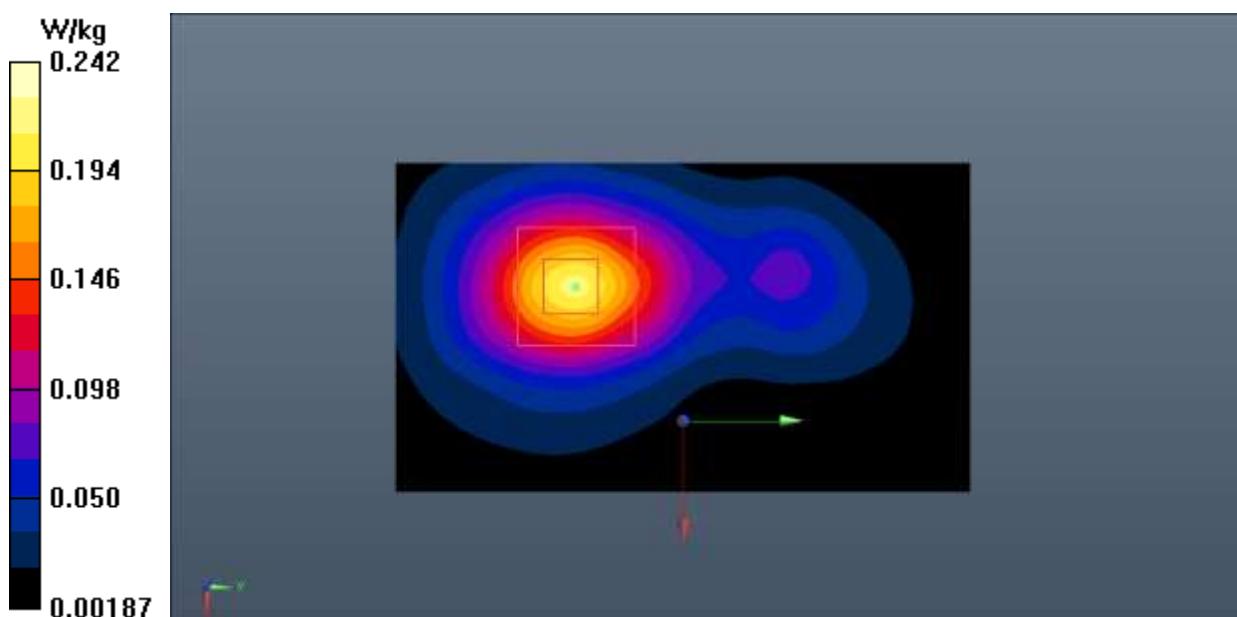
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2412 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (7.43, 7.43, 7.43);

Top Side Low/Area Scan (71x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.216 W/kg


Top Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.237 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.095 W/kg

Maximum value of SAR (measured) = 0.242 W/kg

WLAN 5G Head

Date: 2020-4-18

Electronics: DAE4 Sn786

Medium: Head 5600MHz

Medium parameters used: $f = 5580$ MHz; $\sigma = 5.162$ S/m; $\epsilon_r = 34.839$; $\rho = 1000$ kg/m³

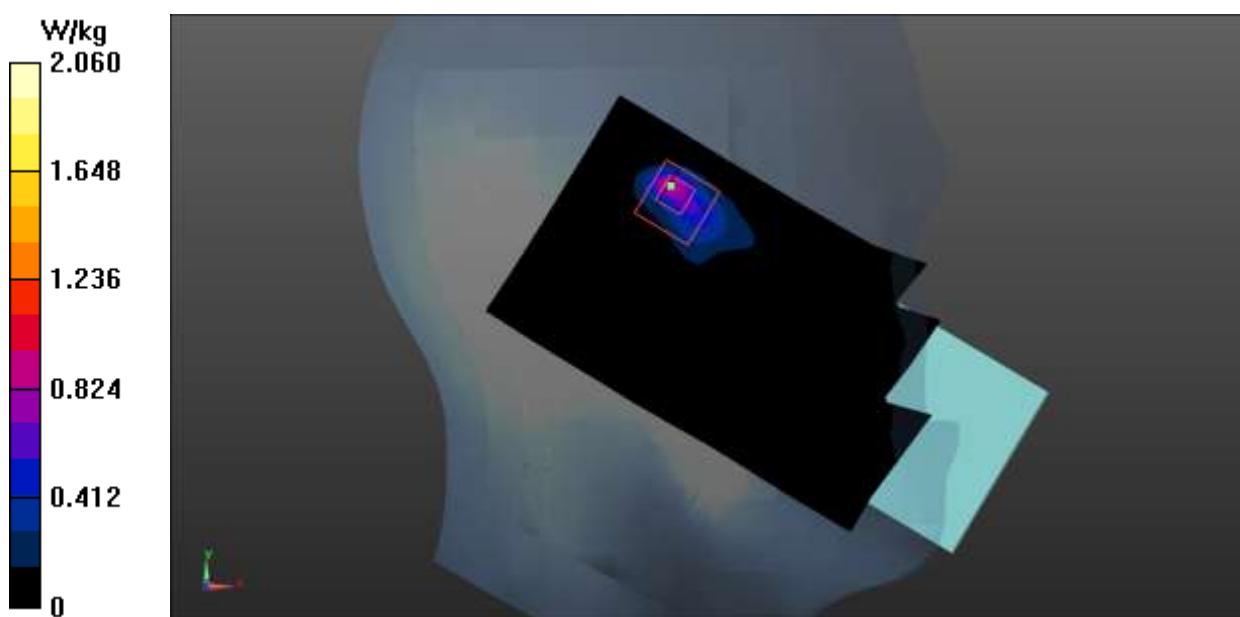
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 5580 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (4.72, 4.72, 4.72);

Left Cheek CH116/Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.946 W/kg


Left Cheek CH116/Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.725 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.26 W/kg

SAR(1 g) = 0.968 W/kg; SAR(10 g) = 0.262 W/kg

Maximum value of SAR (measured) = 2.06 W/kg

WLAN 5G Body

Date: 2020-4-18

Electronics: DAE4 Sn786

Medium: Head 5750MHz

Medium parameters used: $f = 5825$ MHz; $\sigma = 5.224$ S/m; $\epsilon_r = 35.708$; $\rho = 1000$ kg/m³

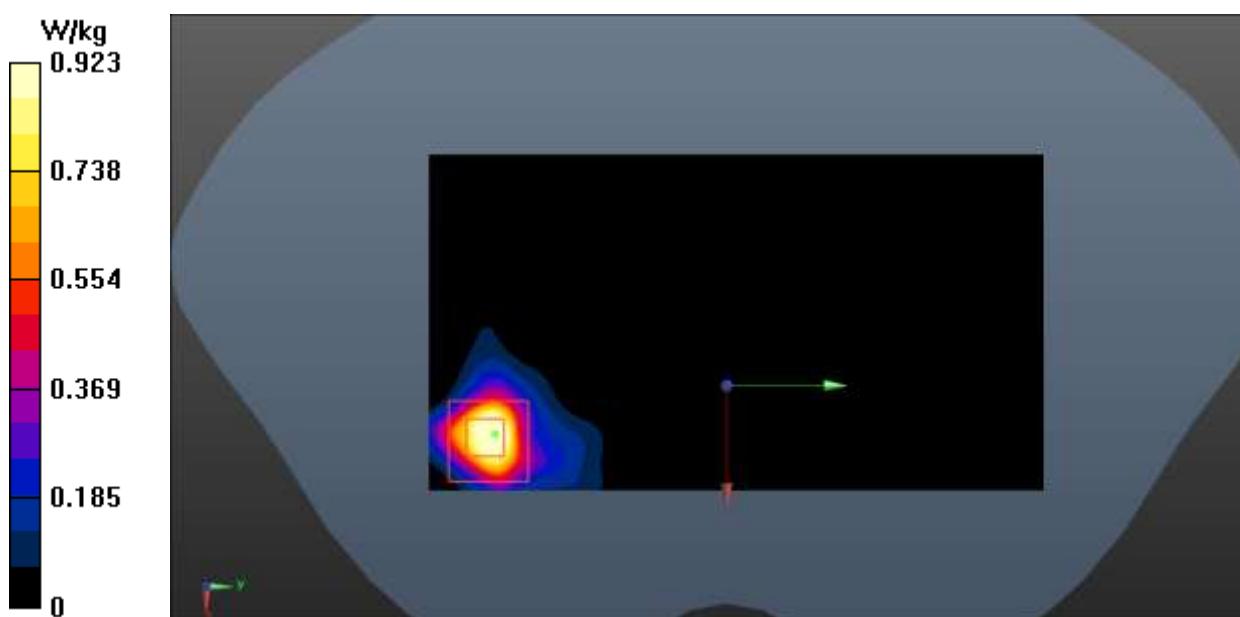
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 5825 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3633 ConvF (4.73, 4.73, 4.73);

Rear Side CH165/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.16 W/kg


Rear Side CH165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.504 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.534 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.923 W/kg

ANNEX M: System Verification Results

750MHz

Date: 2020-4-14

Electronics: DAE4 Sn786

Medium: Head 750MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 41.181.$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

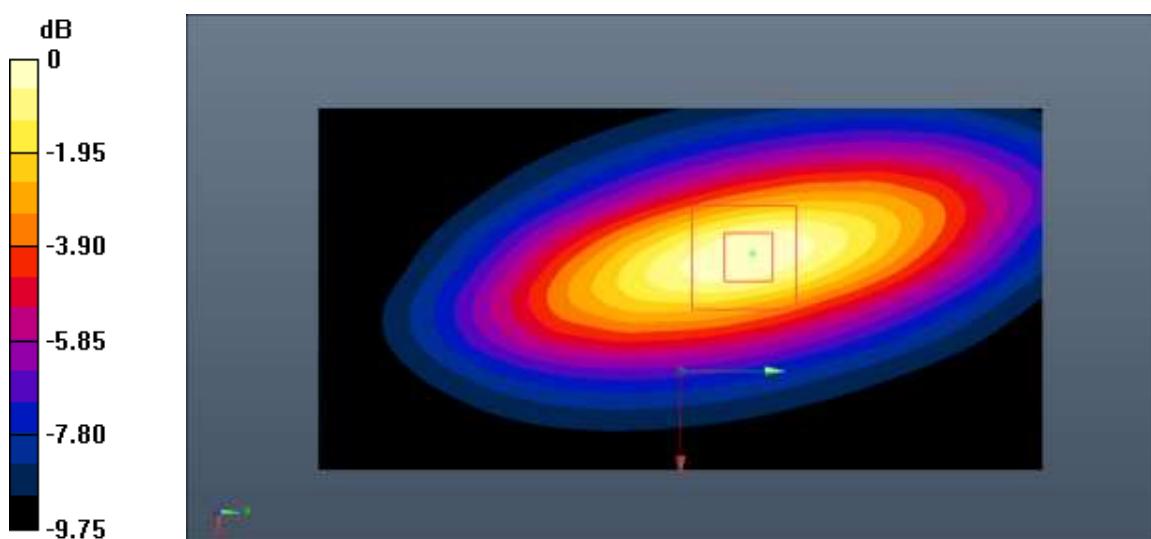
Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

System Validation /Area Scan (81x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.123 V/m; Power Drift = 0.05 dB

SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (interpolated) = 2.46 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.123 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.95 W/kg

SAR(1 g) = 2.22 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 2.49 W/kg

0 dB = 2.49 W/kg = 3.96 dB W/kg

Fig.M.1. Validation 750MHz 250mW

835MHz

Date: 2020-4-15

Electronics: DAE4 Sn786

Medium: Head 835MHz

 Medium parameters used: $f = 835$ MHz; $\sigma = 0.919$ S/m; $\epsilon_r = 40.644$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

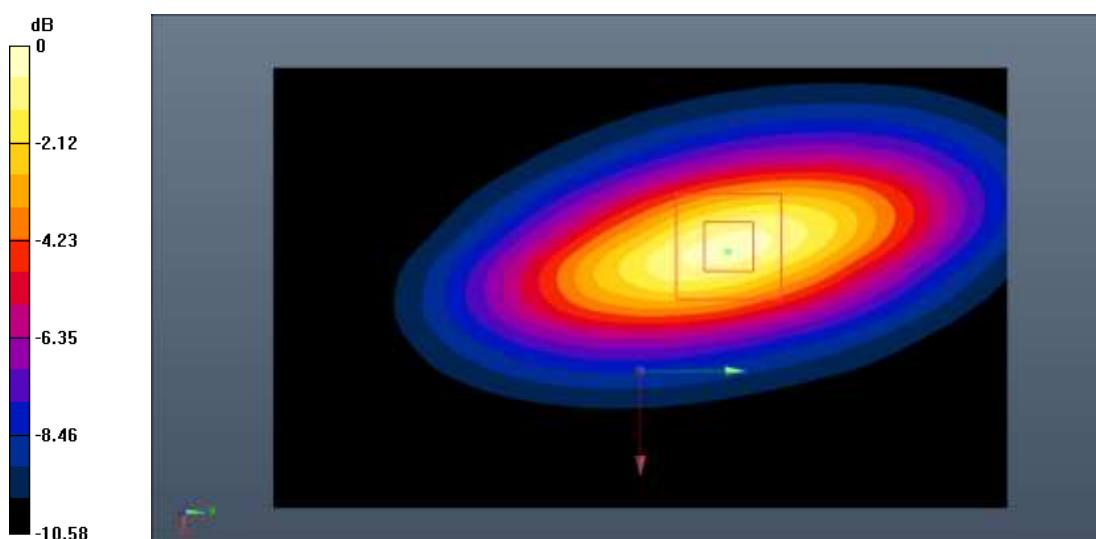
Probe: EX3DV4 – SN3633 ConvF (9.59, 9.59, 9.59);

System Validation /Area Scan (81x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 61.785 V/m; Power Drift = 0.02 dB

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.60 W/kg

Maximum value of SAR (interpolated) = 2.73 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.785 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.78 W/kg

0 dB = 2.78 W/kg = 4.44 dB W/kg

Fig.M.2. Validation 835MHz 250mW

1750MHz

Date: 2020-5-14

Electronics: DAE4 Sn786

Medium: Head 1750MHz

 Medium parameters used: $f = 1750$ MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 40.746$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

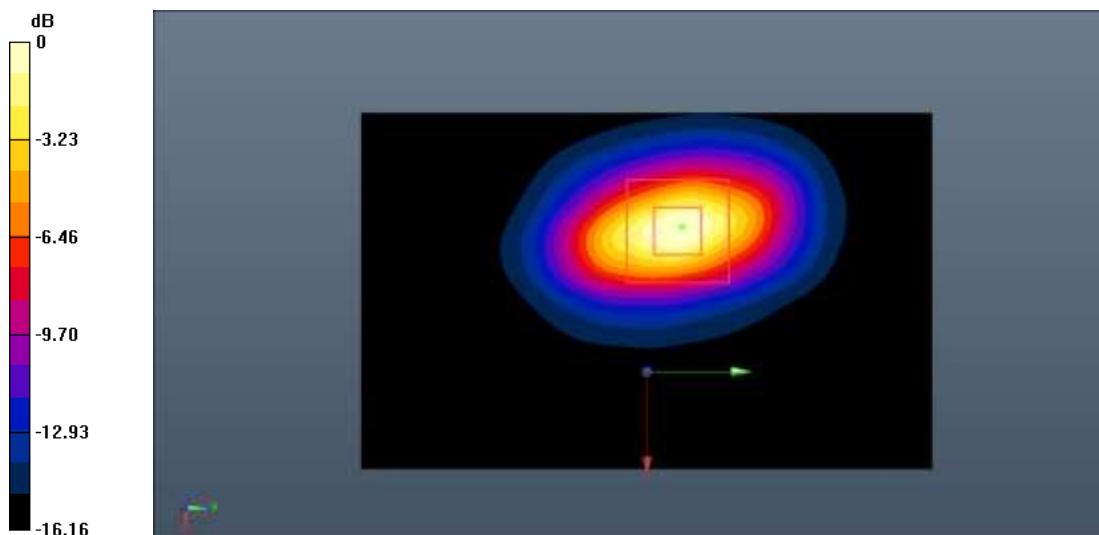
Probe: EX3DV4 – SN3633 ConvF (8.09, 8.09, 8.09);

System Validation/Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 78.686 V/m; Power Drift = -0.09 dB

SAR(1 g) = 8.92 W/kg; SAR(10 g) = 4.77 W/kg

Maximum value of SAR (interpolated) = 11.1 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.686 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 8.74 W/kg; SAR(10 g) = 4.70 W/kg

Maximum value of SAR (measured) = 10.8 W/kg

0 dB = 10.8 W/kg = 10.33 dB W/kg

Fig.M.3. Validation 1750MHz 250mW

1900MHz

Date: 2020-5-15

Electronics: DAE4 Sn786

Medium: Head 1900MHz

 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.414$ S/m; $\epsilon_r = 38.963$; $\rho = 1000$ kg/m 3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

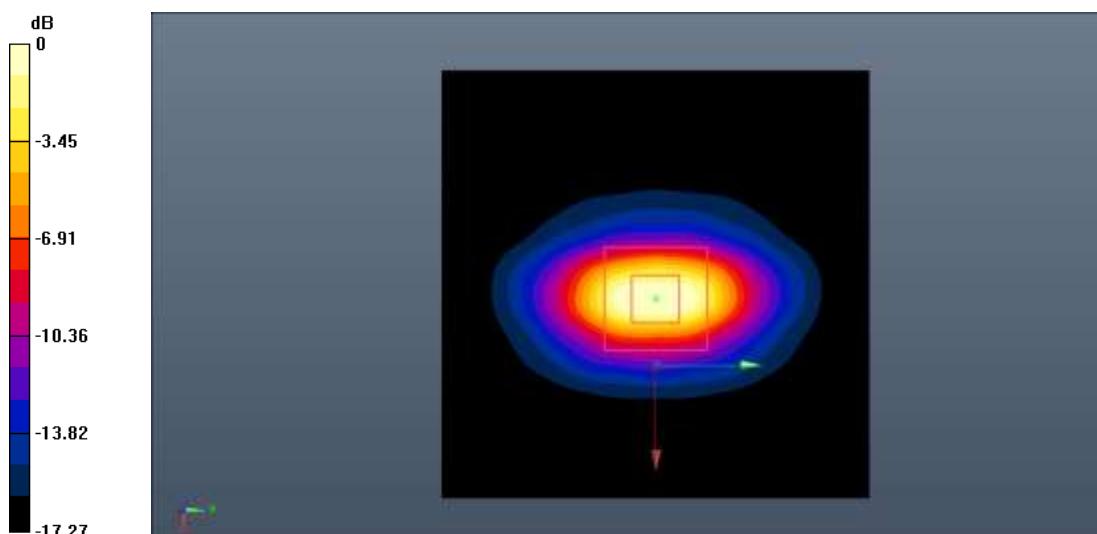
Probe: EX3DV4 – SN3633 ConvF (7.76, 7.76, 7.76);

System Validation /Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 91.456 V/m; Power Drift = 0.03 dB

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (interpolated) = 13.1 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.456 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 22.7 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

$$0 \text{ dB} = 13.6 \text{ W/kg} = 11.34 \text{ dB W/kg}$$

Fig.M.4. Validation 1900MHz 250mW

2450MHz

Date: 2020-4-20

Electronics: DAE4 Sn786

Medium: Head 2450MHz

 Medium parameters used: $f = 2450$ MHz; $\sigma = 1.846$ S/m; $\epsilon_r = 38.33$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

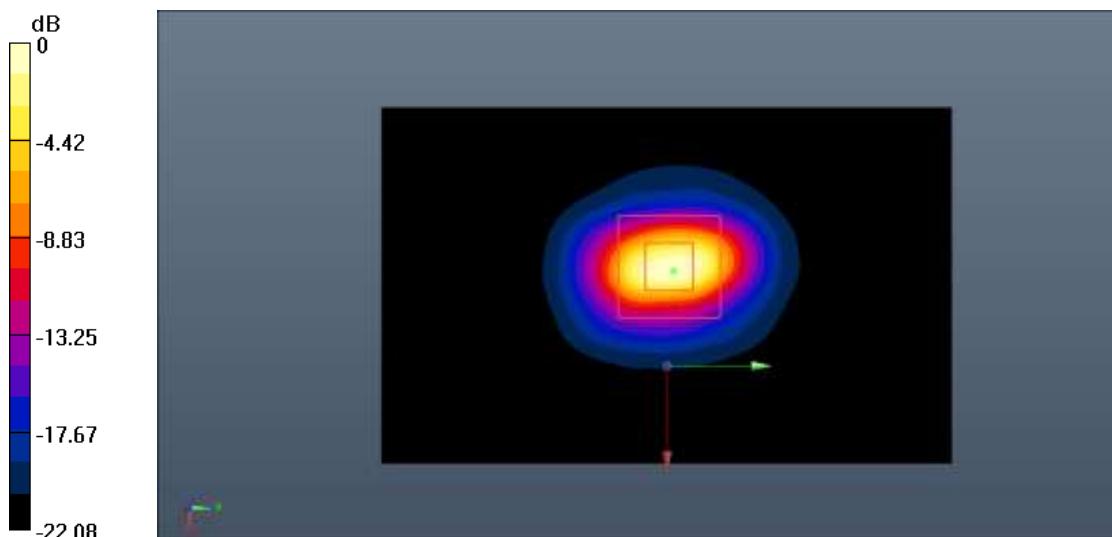
Probe: EX3DV4 – SN3633 ConvF (7.43, 7.43, 7.43);

System Validation /Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.118 V/m; Power Drift = 0.05 dB

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (interpolated) = 15.1 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.118 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dB W/kg

Fig.M.5. Validation 2450MHz 250mW

2550MHz

Date: 2020-5-11

Electronics: DAE4 Sn786

Medium: Head 2550MHz

 Medium parameters used: $f = 2550$ MHz; $\sigma = 1.945$ S/m; $\epsilon_r = 38.086$; $\rho = 1000$ kg/m 3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW_TMC Frequency: 2550 MHz Duty Cycle: 1:1

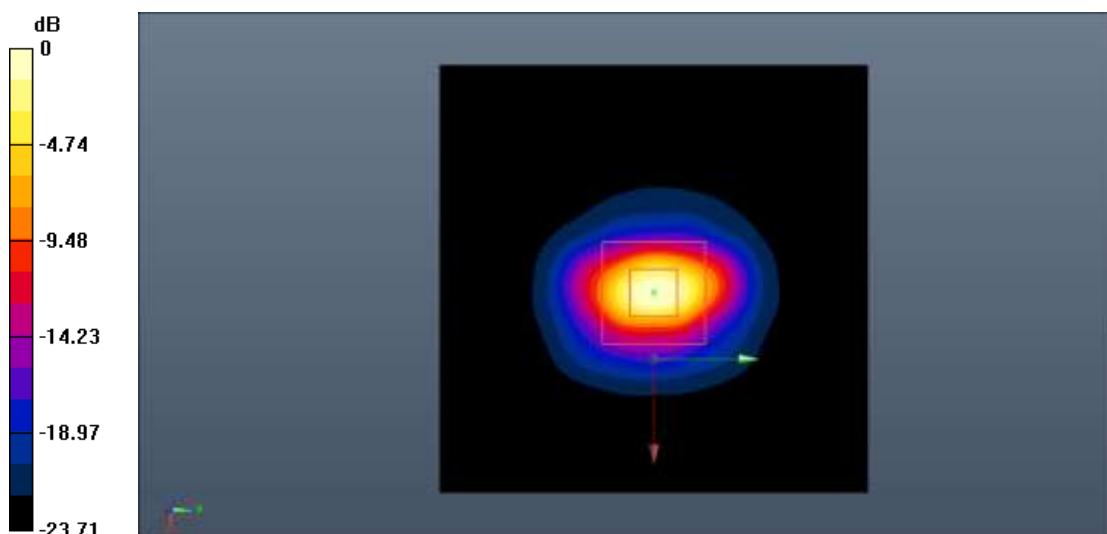
Probe: EX3DV4 – SN3633 ConvF (7.20, 7.20, 7.20);

System Validation/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 94.059 V/m; Power Drift = 0.12 dB

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.70 W/kg

Maximum value of SAR (interpolated) = 16.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.059 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 15.1 W/kg; SAR(10 g) = 6.82 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dB W/kg

Fig.M.6. Validation 2550MHz 250mW

5250MHz

Date: 2020-4-18

Electronics: DAE4 Sn786

Medium: Head 5250MHz

 Medium parameters used: $f = 5250$ MHz; $\sigma = 4.662$ S/m; $\epsilon_r = 36.269$; $\rho = 1000$ kg/m 3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1

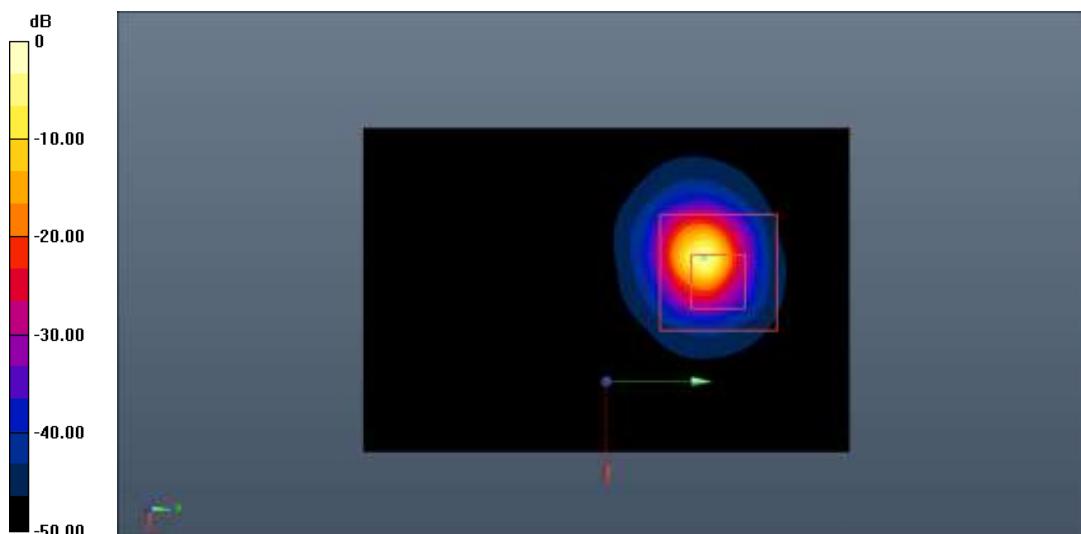
Probe: EX3DV4 – SN3633 ConvF (5.47, 5.47, 5.47);

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 61.891 V/m; Power Drift = -0.05 dB

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.20 W/kg

Maximum value of SAR (interpolated) = 9.25 W/kg


System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.891 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 22.5 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 9.20 W/kg

0 dB = 9.20 W/kg = 9.64 dB W/kg

Fig.M.7. Validation 5750MHz 100mW

5600MHz

Date: 2020-4-18

Electronics: DAE4 Sn786

Medium: Head 5600MHz

Medium parameters used: $f = 5600$ MHz; $\sigma = 5.189$ S/m; $\epsilon_r = 34.784$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1

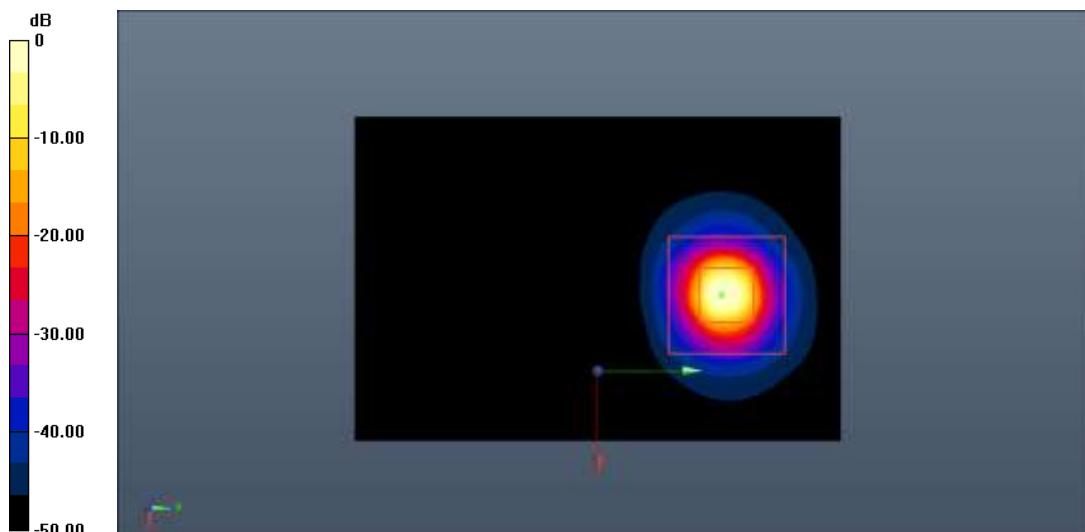
Probe: EX3DV4 – SN3633 ConvF (4.72, 4.72, 4.72);

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 64.228 V/m; Power Drift = 0.10 dB

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (interpolated) = 9.96 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 64.228 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.M.8. Validation 5600MHz 100mW

5750MHz

Date: 2020-4-18

Electronics: DAE4 Sn786

Medium: Head 5750MHz

Medium parameters used: $f = 5750$ MHz; $\sigma = 5.123$ S/m; $\epsilon_r = 35.911$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1

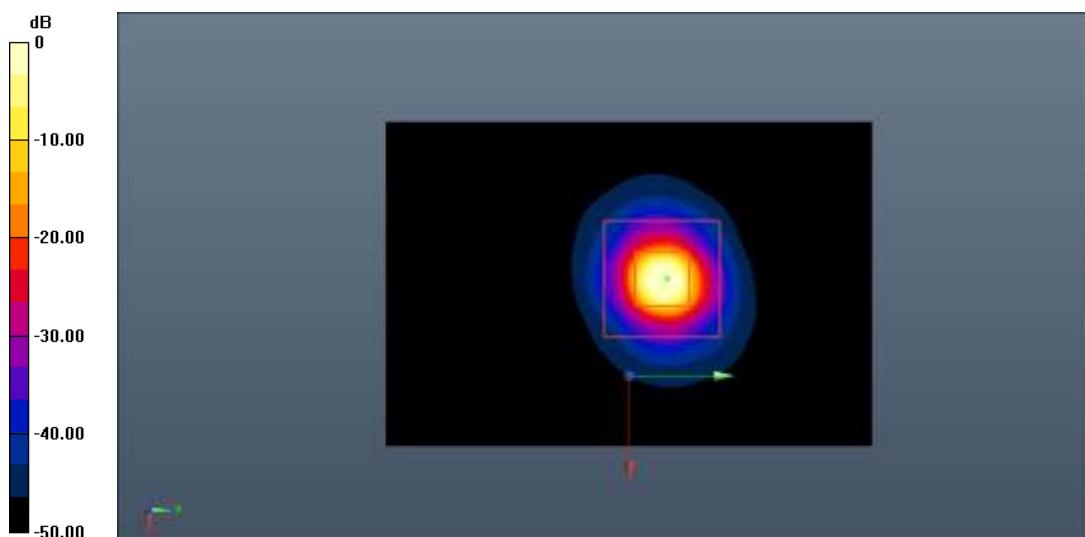
Probe: EX3DV4 – SN3633 ConvF (4.73, 4.73, 4.73);

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.775 V/m; Power Drift = -0.08 dB

SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (interpolated) = 8.72 W/kg


System Validation/Zoom Scan (8x8x8)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 60.775 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 20.4 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 8.58 W/kg

0 dB = 8.58 W/kg = 9.33 dB W/kg

Fig.M.9. Validation 5750MHz 100mW

ANNEX N: Accreditation Certificate**Accredited Laboratory**

A2LA has accredited

**SHENZHEN ACADEMY OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY**

Shenzhen, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 30th day of October 2019.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 4353.01
Valid to November 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*****END OF REPORT*****