Schweitzer Engineering Laboratories, Inc.

SEL-3031

Report No. SCHW0090

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: October 26, 2009 Schweitzer Engineering Laboratories, Inc. Model: SEL-3031

Emissions				
Test Description	Specification	Test Method	Pass/Fail	
Spurious Radiated Emissions	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Occupied Bandwidth	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Carrier Frequency Separation	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Number of Hopping Frequencies	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Dwell Time	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Peak Output Power	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Band Edge Compliance	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
Spurious Conducted Emissions	FCC 15.247 (FHSS):2009	ANSI C63.4:2003 DA 00-705:2000	Pass	
AC Powerline Conducted Emissions	FCC 15.207:2009	ANSI C63.4:2003	Pass	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (763) 425-2281 Fax: (763) 424-3469

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Tim O'Shea, Operations Manager

NVLAP

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-1658, and R-2318, Irvine: R-1943, C-2766, and T-1659, Sultan: R-871, C-1784, and T-1511, Brooklyn Park: R-3125, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

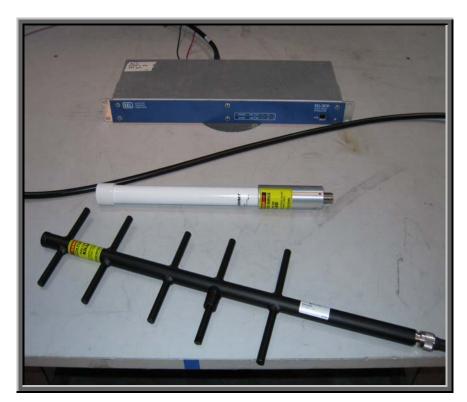
Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Schweitzer Engineering Laboratories, Inc.
Address:	2350 NE Hopkins Court
City, State, Zip:	Pullman, WA 99163
Test Requested By:	Kim Yauchzee
Model:	SEL-3031
First Date of Test:	October 13, 2009
Last Date of Test:	October 26, 2009
Receipt Date of Samples:	October 12, 2009
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):


Frequency Hopping radio used in two different enclosures (rack mount and wall mount) with two different antennas - yagi and dipole (also referred to as unity gain antenna).

Testing Objective:

To demonstrate compliance with FCC 15.247 requirements. Seeking limited modular approval.

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 SCHW0089

Software/Firmware Running during test		
Description	Version	
Firmware	X316	
RTL	X319	
SELBoot	X307	

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT - Rackmount (AC)	Schweitzer Engineering Laboratories, Inc.	SEL3031	2009229219	
Antenna - Yagi	PCTEL	BMOY8905	447925	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.5m	No	EUT	AC Mains
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
Alarm	No	1.8m	No	EUT	Unterminated
USB	Yes	1.8m	No	EUT	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 SCHW0089

Software/Firmware Running during test		
Description	Version	
Firmware	X316	
RTL	X319	
SELBoot	X307	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Rackmount (AC)	Schweitzer Engineering Laboratories, Inc.	SEL3031	2009229219
Antenna - Unity Gain	Maxrad	MFB9150	436169

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.5m	No	EUT	AC Mains
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
Alarm	No	1.8m	No	EUT	Unterminated
USB	Yes	1.8m	No	EUT	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

CONFIGURATION 3 SCHW0089

Software/Firmware Running during test		
Description	Version	
Firmware	X316	
RTL	X319	
SELBoot	X307	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Antenna - Yagi	PCTEL	BMOY8905	447925
EUT - Wallmount	Schweitzer Engineering Laboratories, Inc.	SEL3031	None

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Power Adapter	APX Technologies Inc.	EA1030CR	Engineering Sample	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
USB	Yes	1.8m	No	EUT	Unterminated
DC power	PA	1.5m	No	EUT	Power Adapter
Alarm Leads x2	No	1.0m	No	EUT	Unterminated
PA = Cable is p	ermanently att	ached to the device.	Shielding and	d/or presence of ferrite	may be unknown.

Configurations

CONFIGURATION 4 SCHW0089

Software/Firmware Running during test				
Description	Version			
Firmware	X316			
RTL	X319			
SELBoot	X307			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Antenna - Unity Gain	Maxrad	MFB9150	436169	
EUT - Wallmount	Schweitzer Engineering Laboratories, Inc.	SEL3031	None	

Peripherals in test setup boundary				
Description	escription Manufacturer Model/Part Number Serial Number			
Power Adapter	APX Technologies Inc.	EA1030CR	Engineering Sample	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
USB	Yes	1.8m	No	EUT	Unterminated
DC power	PA	1.5m	No	EUT	Power Adapter
Alarm Leads x2	No	1.0m	No	EUT	Unterminated
PA = Cable is po	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 5 SCHW0090

Software/Firmware Running during test				
Description	Version			
SELBoot	X307			
Firmware	X316			
RTL	X319			
Hyperterminal	5.1			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT - Rackmount (DC)	Schweitzer Engineering Laboratories, Inc.	SEL-3031	2009238196	
Antenna - Yagi	PCTEL	BMOY8905	447925	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
Alarm	No	1.8m	No	EUT	Unterminated
USB	Yes	1.8m	No	EUT	Unterminated (to PC for setup)
DC leads	No	1.0m	No	EUT	24VDC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 9/21/05

CONFIGURATION 6 SCHW0090

Software/Firmware Running during test				
Description	Version			
SELBoot	X307			
Firmware	X316			
RTL	X319			
Hyperterminal	5.1			

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT - Rackmount (DC)	Schweitzer Engineering Laboratories, Inc.	SEL-3031	2009238196		
Antenna - Unity Gain	Maxrad	MFB9150	436169		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Port 1	Yes	1.8m	No	EUT	Unterminated
Port 2	Yes	1.8m	No	EUT	Unterminated
Port 3	Yes	3.0m	No	EUT	Unterminated
Antenna	Yes	3.0m	No	EUT	Antenna
Alarm	No	1.8m	No	EUT	Unterminated
USB	Yes	1.8m	No	EUT	Unterminated (to PC for setup)
DC leads	No	1.0m	No	EUT	24VDC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 7 SCHW0090

Software/Firmware Running during test				
Description	Version			
SELBoot	X307			
Firmware	X316			
RTL	X319			
Hyperterminal	5.1			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Wallmount	Schweitzer Engineering Laboratories, Inc.	SEL-3031	None

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Power Adapter	APX Technologies Inc.	EA1030CR	Engineering Sample			

Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
DC power	PA	1.5m	No	EUT	Power Adapter			
USB	Yes	1.8m	No	EUT	PC			
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.								

	Equipment modifications									
Item	Date	Test	Modification	Note	Disposition of EUT					
1	10/13/2009	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
2	10/20/2009	Peak Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
3	10/20/2009	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
4	10/20/2009	Carrier Frequency Separation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
5	10/20/2009	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
6	10/20/2009	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
7	10/20/2009	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
8	10/20/2009	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.					
9	10/26/2009	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.					

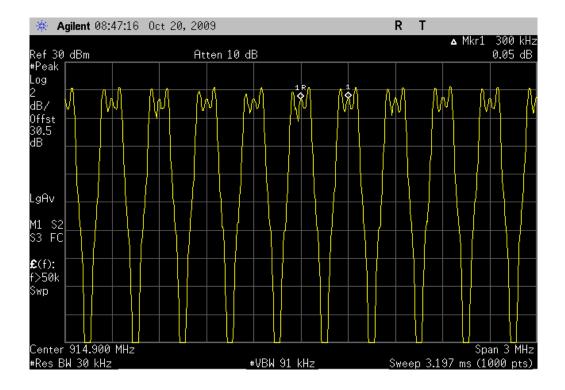
CARRIER FREQUENCY SEPARATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

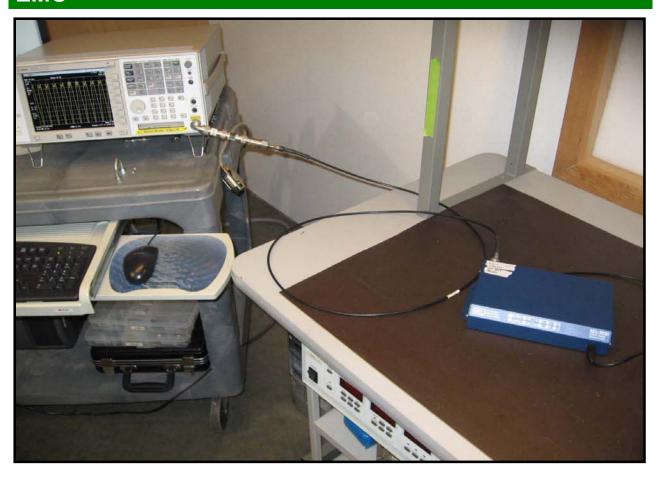
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

The channel carrier frequencies in the 902 MHz – 928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The 20 dB occupied bandwidth was measured at 235 kHz as noted elsewhere in this report. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.


NORTHWEST		OARRIER ERECLU		EDADATIO	<u> </u>			XMit 2009.03.05
EMC		CARRIER FREQUI	ENCY S	EPARATIO	N			
EUT:	SEL-3031					Work Order:	SCHW0090	
Serial Number:	None					Date:	10/20/09	
Customer:	Schweitzer Engineerii	ng Laboratories, Inc.			•	Temperature:	22°C	
Attendees:	None					Humidity:	48%	
Project:	None				Baro	metric Pres.:	30.10 in	
	Rod Peloquin		Power:	120VAC/60Hz		Job Site:	EV06	
TEST SPECIFICATI	IONS			Test Method				
FCC 15.247 (FHSS)	:2009			ANSI C63.4:2003 DA 0	0-705:2000			
COMMENTS								
Wall mount unit. Ty	pical hopping mode							
DEVIATIONS FROM	I TEST STANDARD							
No Deviations								
Configuration #	7	Rochen to	Reling					
Comiguration #	,	Signature	03					
					Value	Lir	nit	Results
Channel Spacing				3	00 kHz	≥ 235	5 kHz	Pass

CARRIER FREQUENCY SEPARATION

	Channel Spacing		
Result: Pass	Value: 300 kHz	Limit:	≥ 235 kHz

CARRIER FREQUENCY SEPARATION

DWELL TIME

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

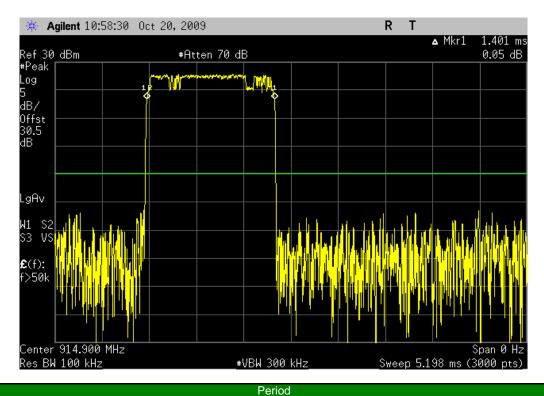
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

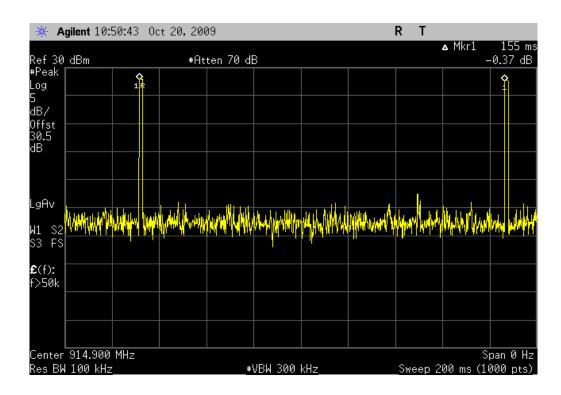
TEST DESCRIPTION

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

The dwell time of the product met the requirements of the following section of 15.247:

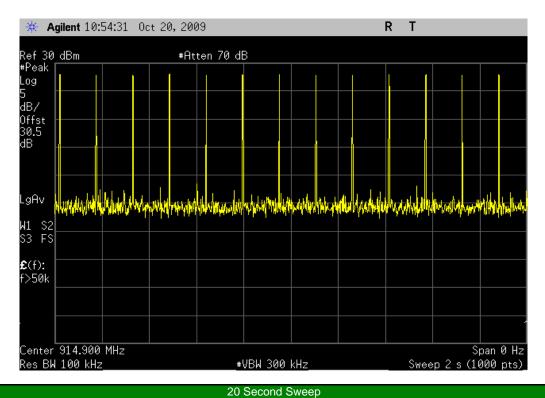

"For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period"

NORTHWEST		DWEL	TIME	-		XMit 2009.03.05
EMC		DWEL	_	=		
EUT:	SEL-3031				Work Order:	SCHW0090
Serial Number:	None					10/20/09
Customer:	Schweitzer Engineering	Laboratories, Inc.			Temperature:	
Attendees:					Humidity:	
Project:					Barometric Pres.:	
	Rod Peloquin		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICAT	IONS			Test Method		
FCC 15.247 (FHSS)):2009			ANSI C63.4:2003 DA 00-7	705:2000	
COMMENTS						
Wall mount unit. Ty	ypical hopping mode. Dwe	ell time = 129 transmissions x 1.4 mS	= 0.18 S in 2	0 second period.		
	M TEST STANDARD					
No Deviations						
		001	D.O			
Configuration #	7	Rochy la	Leting			
		Signature	V			
				Value	Limit	Results
Pulse Width				1.4 mS	0.4 S in 20 S	
Period				155 mS	0.4 S in 20 S	
2 Second Sweep				13 transmiss		
20 Second Sweep				129 Transmis	ssions 0.4 S in 20 S	econds Pass


DWELL TIME

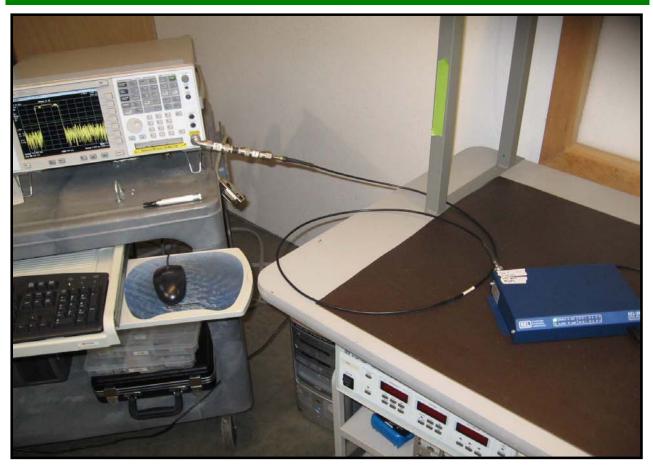
Pulse Width

Result: Pass Value: 1.4 mS Limit: 0.4 S in 20 Seconds


Result: Pass Value: 155 mS Limit: 0.4 S in 20 Seconds

DWELL TIME

2 Second Sweep


Result: Pass Value: 13 transmissions Limit: 0.4 S in 20 Seconds

Result: Pass Value: 129 Transmissions Limit: 0.4 S in 20 Seconds

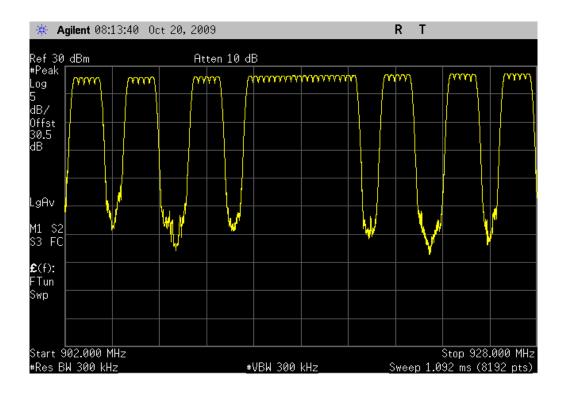
NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
18 GHz DC Block, N	Fairview Microwave	SD3074	AMF	NCR	N/A
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

NORTHWEST	_					XMit 2009.03.05
EMC	ľ	NUMBER OF HOPP	ING FREQUENC	CIES		
EUT	: SEL-3031			Work C	Order: SCHW0090	o o
Serial Number	: None				Date: 10/20/09	
Customer	: Schweitzer Engineering I	_aboratories, Inc.		Tempera	ature: 22°C	
Attendees	: None			Hum	nidity: 48%	
Project	None			Barometric	Pres.: 30.10 in	
	: Rod Peloquin		Power: 120VAC/60Hz	Job	Site: EV06	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.247 (FHSS	5):2009		ANSI C63.4:2003 D	A 00-705:2000		
COMMENTS						
Wall mount unit. T	ransmitting in a typical ho	pping mode with the default hopping	groups of 2,4,6,11,13,and 15 be	ing suppressed.		
DEVIATIONS FRO	M TEST STANDARD					
No Deviations						
Configuration #	7	Rocky le :	Releng			
				Value	Limit	Results
NUMBER OF HOP	PING FREQUENCIES	•	•	50	≤ 50	Pass

NUMBER OF HOPPING FREQUENCIES

	NUMBER OF HOP	PING FRE	EQUENCIES		
Result: Pass	Value:	50	Limit:	≤ 50	

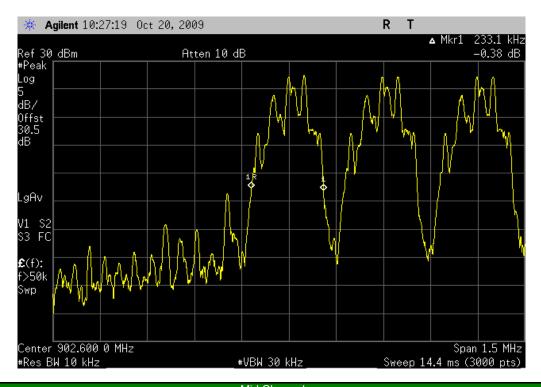
NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
18 GHz DC Block, N	Fairview Microwave	SD3074	AMF	NCR	N/A
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

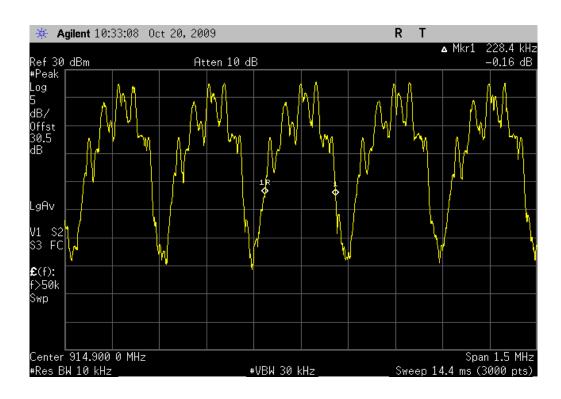
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

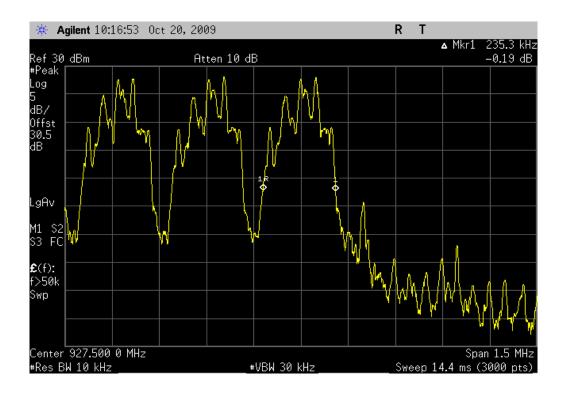

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to transmit in its normal hopping mode, using all 50 channels in its default channel groups. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum output power.

EMC OCCUPIED BANDWIDTH							
EUT:	SEL-3031			Work Order:	SCHW0090		
Serial Number:					10/20/09		
	Schweitzer Engineering L	aboratories, Inc.		Temperature			
Attendees:				Humidity			
Project:				Barometric Pres.			
	Rod Peloquin		Power: 120VAC/60Hz	Job Site:	EV06		
TEST SPECIFICATI	IONS		Test Method				
FCC 15.247 (FHSS)	: 15.247 (FHSS):2009 ANSI C63.4:2003 DA 00						
COMMENTS							
		node at 30 dBm power setting and	default channel groups.				
DEVIATIONS FROM	I TEST STANDARD						
No Deviations							
Configuration #	7	Roeley le Signature	Relig				
				Value Li	mit Results		
Low Channel	_	•	2	33 kHz 250	kHz Pass		
Mid Channel			—		kHz Pass		
High Channel			2	35 kHz 250	kHz Pass		


Low Channel

Result: Pass Value: 233 kHz Limit: 250 kHz


Mid Channel

Result: Pass Value: 228 kHz Limit: 250 kHz

High Channel

Result: Pass Value: 235 kHz Limit: 250 kHz

PEAK OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

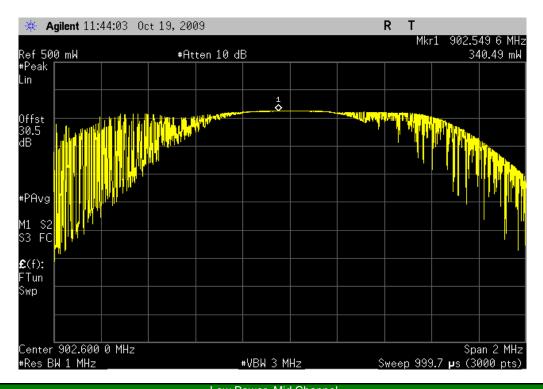
TEST EQUIPMENT					
Description	Manufacturer	Model		Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
18 GHz DC Block, N	Fairview Microwave	SD3074	AMF	NCR	N/A
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A SPL 12/10/2		12/10/2008	13
Signal Generator	Hewlett-Packard	8648A	TGA	12/9/2008	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

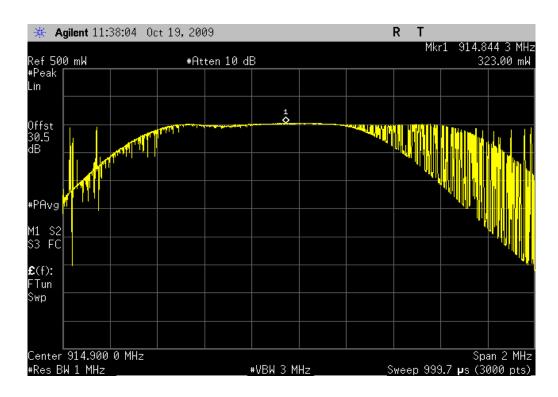
TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

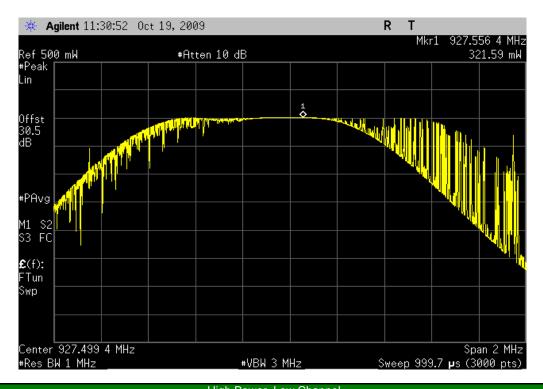
NORTHWEST			NIT D	WED		XMit 2009.03.05
EMC		PEAK OUTF	יטו אל)WEK		
EUT:	SEL-3031				Work Order:	SCHW0090
Serial Number:	None				Date:	10/20/09
Customer:	Schweitzer Engineering Laborator	ies, Inc.			Temperature:	22°C
Attendees:	None				Humidity:	48%
Project:	None				Barometric Pres.:	30.10 in
	Rod Peloquin		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATI	ONS			Test Method		
FCC 15.247 (FHSS)	: 15.247 (FHSS): 2009 ANSI C63.4:2003 DA 00			ANSI C63.4:2003 DA 00-7	05:2000	
COMMENTS						
Wall mount unit. Si	ngle channel mode (tcon), Low pov	wer setting = 27 dBm in Cal	software, Hig	h power setting = 30 dBm	1	
DEVIATIONS FROM	TEST STANDARD					
No Deviations						
Configuration #	7	Poely le	Reling			
		Signature	0			
				Val	ue Lir	mit Results
Low Power				• u	uo En	int itounio
LOW I OWO!	Low Channel			340.5	mW 1	W Pass
	Mid Channel			323.0		
	High Channel			321.6		
High Power	g			02110		1 400
3	Low Channel			608.8	mW 1	W Pass
	Mid Channel			569.9		
	High Channel			565.7		

PEAK OUTPUT POWER

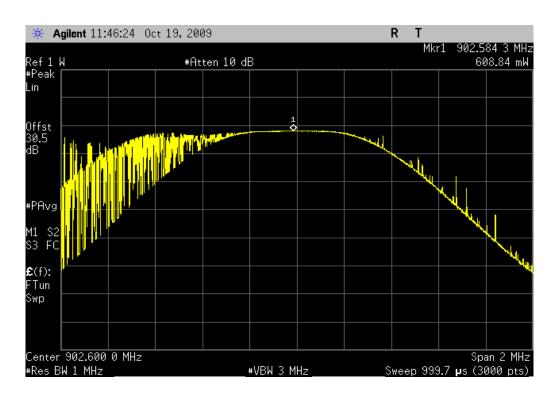

Low Power, Low Channel

Result: Pass Value: 340.5 mW Limit: 1 W

Low Power, Mid Channel

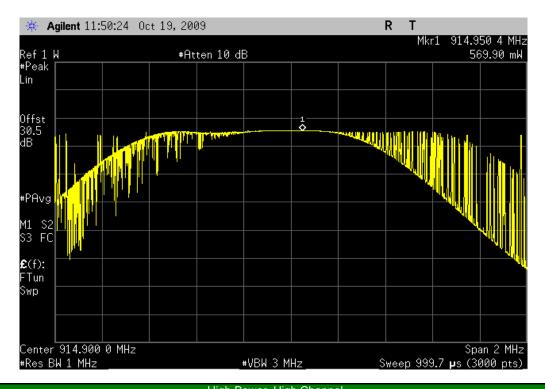

Result: Pass Value: 323.0 mW Limit: 1 W

PEAK OUTPUT POWER

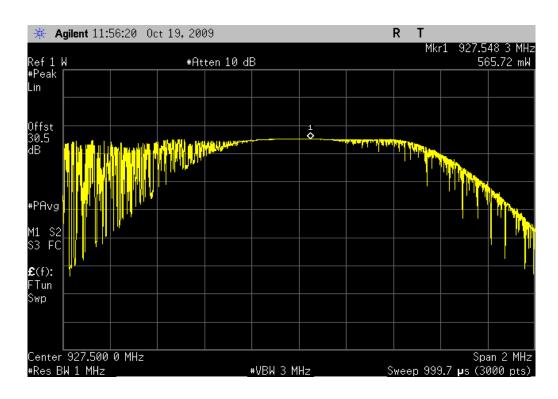

Low Power, High Channel

Result: Pass Value: 321.6 mW Limit: 1 W

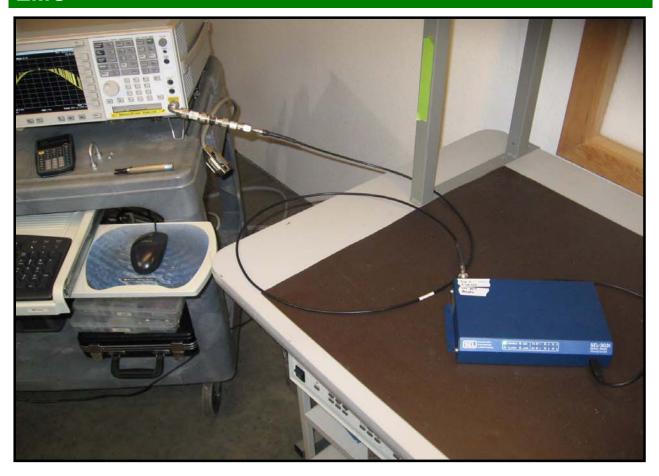
High Power, Low Channel


Result: Pass Value: 608.8 mW Limit: 1 W

PEAK OUTPUT POWER


High Power, Mid Channel

Result: Pass Value: 569.9 mW Limit: 1 W



High Power, High Channel

Result: Pass Value: 565.7 mW Limit: 1 W

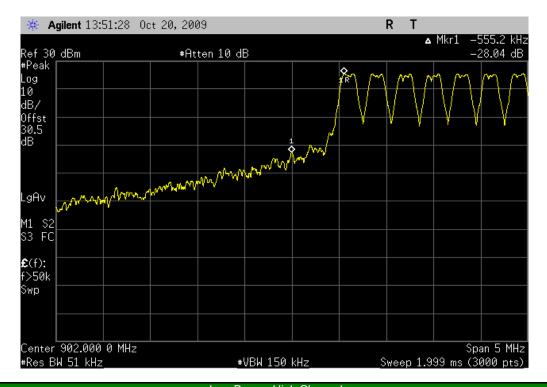
PEAK OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
18 GHz DC Block, N	Fairview Microwave	SD3074	AMF	NCR	N/A
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

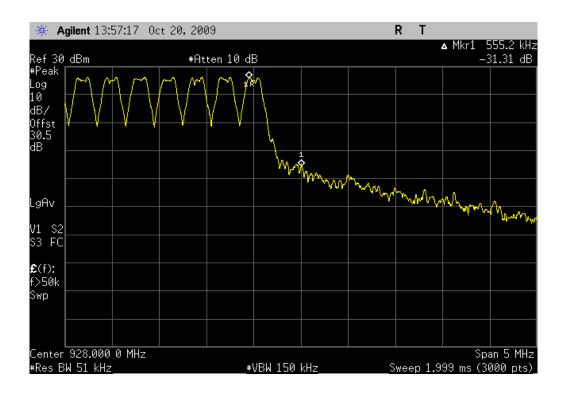
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

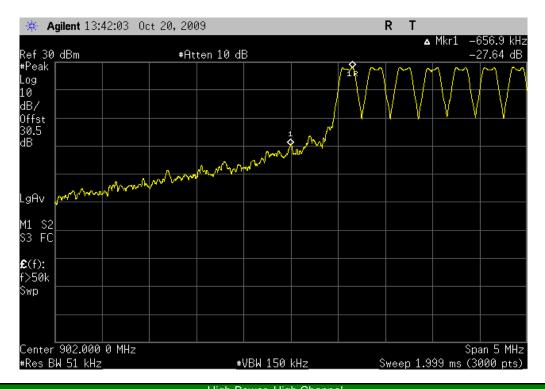

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to operate in a typical hopping mode. The channel groups closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum was scanned across each band edge from 2.5 MHz below the band edge to 2.5 MHz above the band edge.

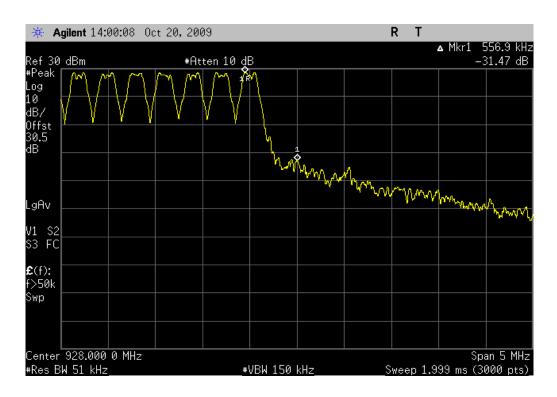
NORTHWEST			20110	LIANOE			XMit 2009.03.05
EMC		BAND EDGE	COMP	LIANCE			
EUT:	SEL-3031				Work Ord	er: SCHW0090	
Serial Number:					Da	te: 10/20/09	
	Schweitzer Engineering	Laboratories, Inc.			Temperatu		
Attendees:						ty: 48%	
Project:					Barometric Pre		
	Rod Peloquin		Power:	120VAC/60Hz	Job Si	te: EV06	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247 (FHSS)):2009			ANSI C63.4:2003 DA 00-7	705:2000		
COMMENTS							
Wall mount unit. Ty	ypical frequency hopping	mode at both 27 dBm and 30 dBm out	tput power s	ettings.			
				_			
DEVIATIONS FROM	M TEST STANDARD						
No Deviations							
Configuration #	7	Rocky le :	Relena				
Comiguration #	,	Signature	0				
				Va	lue	Limit	Results
Law Dawar				Va	iue	LIIIIII	Results
Low Power	Low Channel			-28.0 dBc	-20 dBc		Pass
					-20 dBc		
High Davies	High Channel			-31.3 dBc	-20 dBc		Pass
High Power	Law Obarasal			07.0 -10-	00 -ID-		D
	Low Channel			-27.6 dBc	-20 dBc		Pass
	High Channel			-31.5 dBc	-20 dBc		Pass

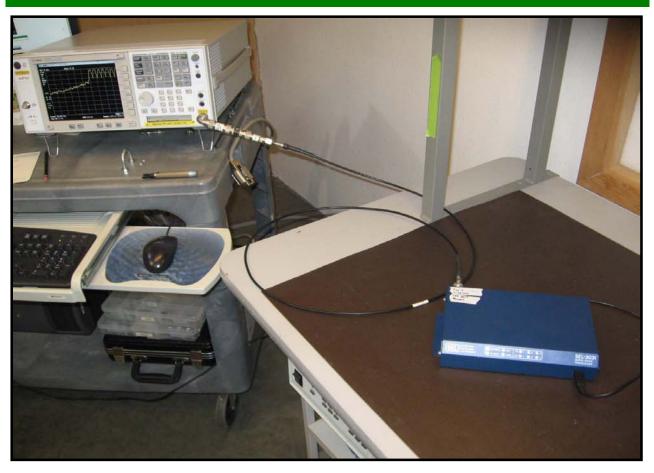

Low Power, Low Channel

Result: Pass Value: -28.0 dBc Limit: -20 dBc


Low Power, High Channel

Result: Pass Value: -31.3 dBc Limit: -20 dBc


High Power, Low Channel


Result: Pass Value: -27.6 dBc Limit: -20 dBc

High Power, High Channel

Result: Pass Value: -31.5 dBc Limit: -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

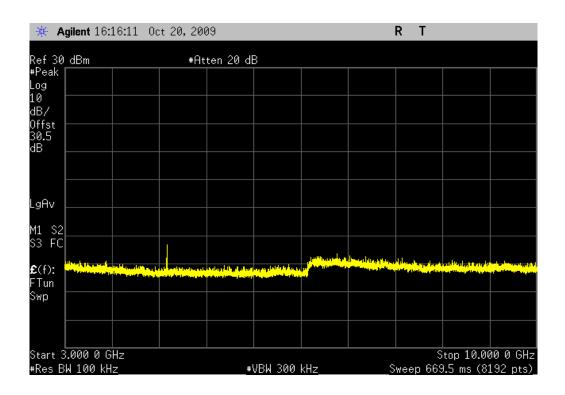
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	13
Attenuator	Coaxicom	66702 5910-20	RBJ	4/29/2009	13
Attenuator	Coaxicom	66702 5910-10	RBI	4/29/2009	13

MEASUREMENT UNCERTAINTY

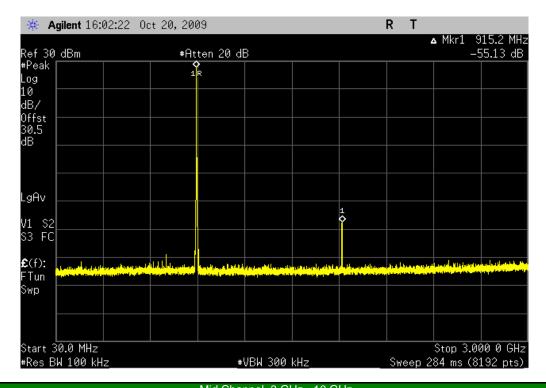

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

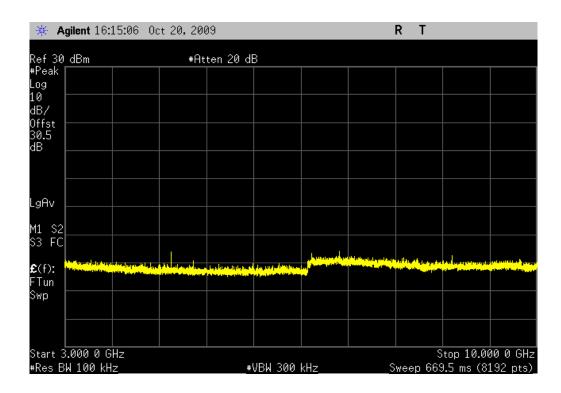
The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.


NORTHWEST			ATED ENIGOIO	NO		XMit 2009.03
EMC	;	SPURIOUS CONDU	ICTED EMISSIO	INS		
EUT:	SEL-3031				Work Order: SCHW009	90
Serial Number:	None				Date: 10/20/09	
Customer:	Schweitzer Engineering L	aboratories, Inc.		T	emperature: 22°C	
Attendees:	None	·			Humidity: 48%	
Project:	None			Baror	netric Pres.: 30.10 in	
Tested by:	Rod Peloguin		Power: 120VAC/60Hz		Job Site: EV06	
EST SPECIFICATI	IONS		Test Method			
CC 15.247 (FHSS)	:2009		ANSI C63.4:2003 D	A 00-705:2000		
			İ			
OMMENTS						
all mount unit Si	nale channel mode at high	nest output power of 30 dBm in softwa	are			
DEVIATIONS EDON	A TECT CTANDARD					
DEVIATIONS FROM No Deviations	// TEST STANDARD					
	M TEST STANDARD	Poely le Signature	Reluy			
o Deviations		Roby le :	Rolling	Value	Limit	Results
o Deviations configuration # ow Channel	7	Signature Signature	Peluz			
o Deviations configuration # ow Channel		Signature	Rolling	Value -53.3 dBc	Limit ≤ -20 dBc	Results Pass
o Deviations configuration #	7	Signature	Releys			
o Deviations onfiguration #	7 30 MHz - 3 GHz	Rocky le : Signature	Reling	-53.3 dBc	≤ -20 dBc	Pass
o Deviations configuration # ow Channel	7 30 MHz - 3 GHz	Signature	Reluy	-53.3 dBc	≤ -20 dBc	Pass
o Deviations onfiguration # ow Channel	7 30 MHz - 3 GHz 3 GHz - 10 GHz	Signature	Relings	-53.3 dBc < -60 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
o Deviations configuration # ow Channel	7 30 MHz - 3 GHz 3 GHz - 10 GHz 30 MHz - 3 GHz	Signature	Relings	-53.3 dBc < -60 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
configuration # ow Channel did Channel	7 30 MHz - 3 GHz 3 GHz - 10 GHz 30 MHz - 3 GHz	Signature	Relay	-53.3 dBc < -60 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass

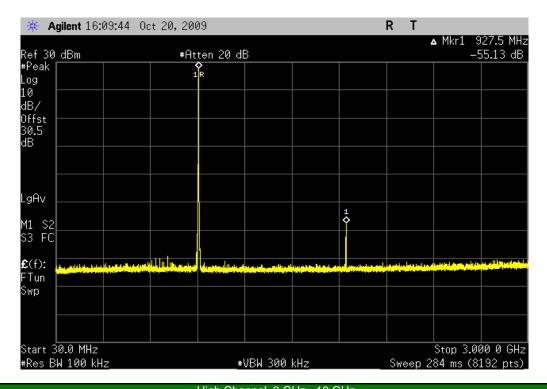
Low Channel, 30 MHz - 3 GHzResult: PassValue: -53.3 dBcLimit: ≤ -20 dBc


 Low Channel, 3 GHz - 10 GHz

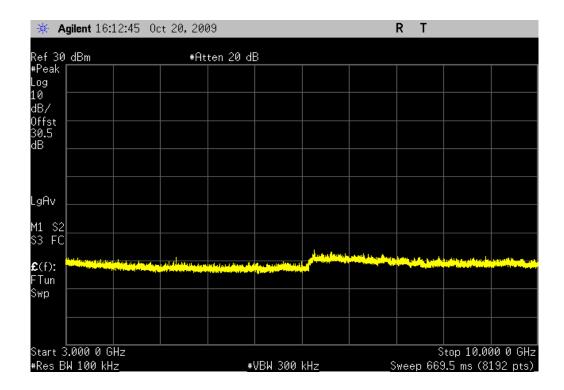
 Result: Pass
 Value: < -60 dBc</th>
 Limit: ≤ -20 dBc


Mid Channel, 30 MHz - 3 GHz

Result: Pass Value: -55.1 dBc Limit: ≤ -20 dBc


 Mid Channel, 3 GHz - 10 GHz

 Result: Pass
 Value: < -60 dBc</th>
 Limit: ≤ -20 dBc


High Channel, 30 MHz - 3 GHz

Result: Pass Value: -55.1 dBc Limit: ≤ -20 dBc

High Channel, 3 GHz - 10 GHz

Result: Pass Value: < -60 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Unity Gain Antenna, See comments for channel and EUT orientation

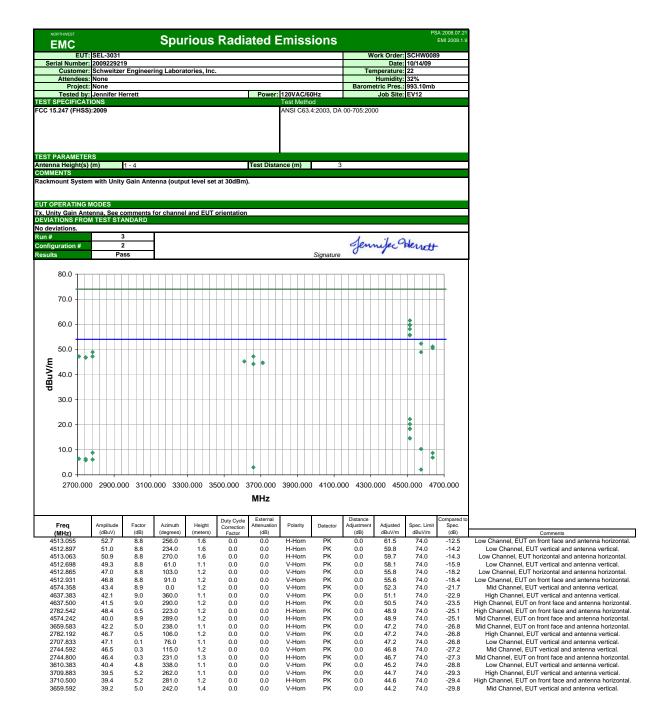
POWER SETTINGS INVESTIGATED

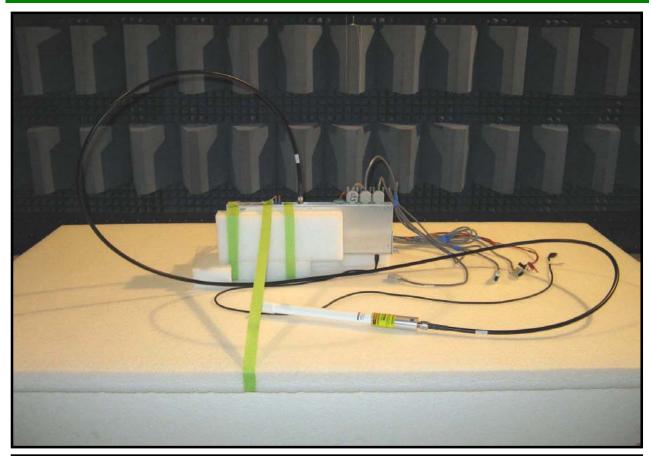
120VAC/60Hz

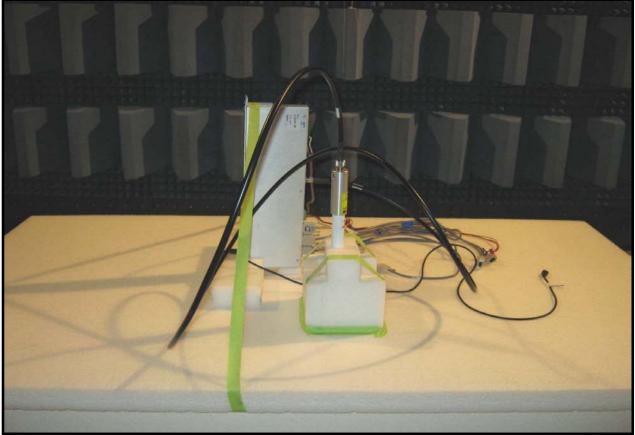
FREQUENCY RANGE INVESTIGATED								
Start Frequency	30MHz	Stop Frequency	12.5GHz					

SAMPLE CALCULATIONS

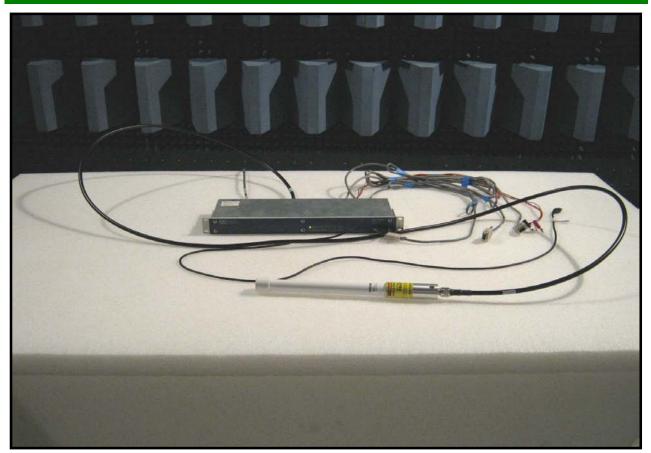
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

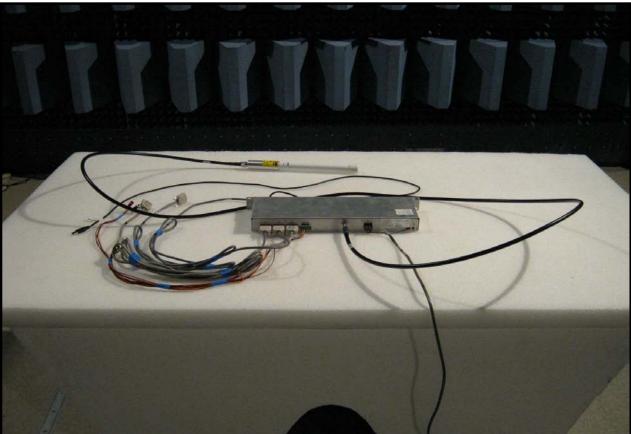

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13


EASUREMENT BANDWIDTHS			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made u	ising the bandwidths and de	tectors specified. No video filter	was used.


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.


TEST DESCRIPTION



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Yagi Antenna, See comments for Channel and EUT Orientation

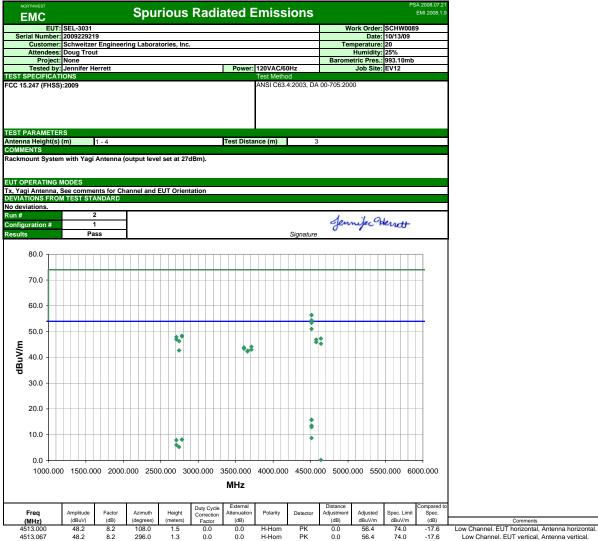
POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED							
Start Frequency	30MHz	Stop Frequency	12.5GHz				

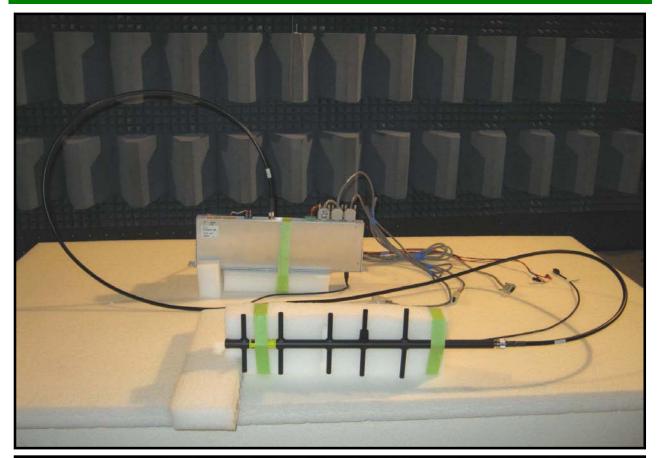
SAMPLE CALCULATIONS

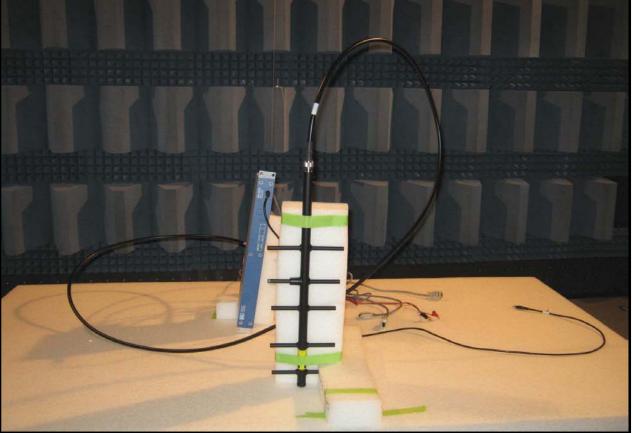
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

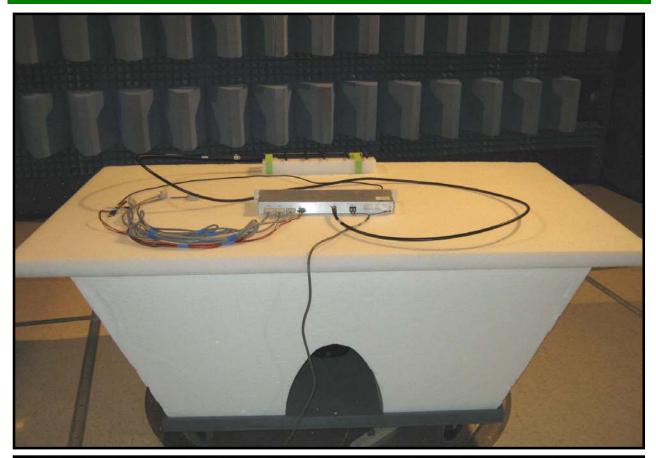

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13

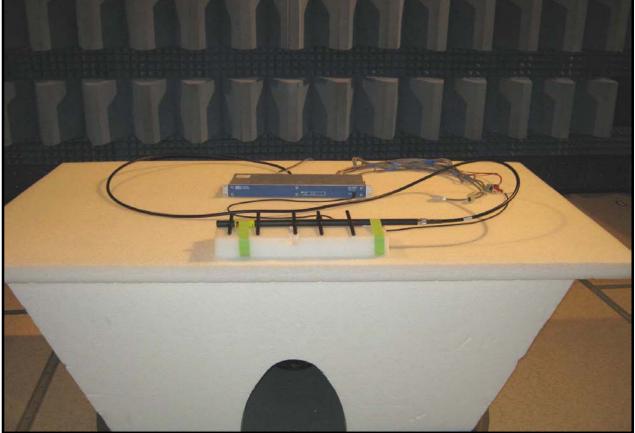
MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
M	Measurements were made using the bandwidths and detectors specified. No video filter was used.								

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.


TEST DESCRIPTION




rieq	Amplitude	ractor	AZIIIIUUI	neigni	Correction	Attenuation	Fulanty	Detector	Aujustinent	Aujusteu	Spec. Limit	apec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Factor	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
4513.000	48.2	8.2	108.0	1.5	0.0	0.0	H-Horn	PK	0.0	56.4	74.0	-17.6
4513.067	48.2	8.2	296.0	1.3	0.0	0.0	H-Horn	PK	0.0	56.4	74.0	-17.6
4512.775	46.2	8.2	115.0	1.7	0.0	0.0	V-Horn	PK	0.0	54.4	74.0	-19.6
4512.642	45.8	8.2	115.0	1.5	0.0	0.0	H-Horn	PK	0.0	54.0	74.0	-20.0
4512.758	45.2	8.2	255.0	1.2	0.0	0.0	V-Horn	PK	0.0	53.4	74.0	-20.6
4512.850	42.8	8.2	74.0	1.5	0.0	0.0	V-Horn	PK	0.0	51.0	74.0	-23.0
2782.558	48.0	0.4	128.0	1.8	0.0	0.0	H-Horn	PK	0.0	48.4	74.0	-25.6
2782.433	47.7	0.4	0.0	1.1	0.0	0.0	V-Horn	PK	0.0	48.1	74.0	-25.9
2708.000	47.9	0.0	202.0	1.8	0.0	0.0	H-Horn	PK	0.0	47.9	74.0	-26.1
4637.283	39.1	8.2	114.0	1.3	0.0	0.0	H-Horn	PK	0.0	47.3	74.0	-26.7
2707.967	47.0	0.0	9.0	1.1	0.0	0.0	V-Horn	PK	0.0	47.0	74.0	-27.0
4575.583	38.7	8.2	160.0	1.6	0.0	0.0	H-Horn	PK	0.0	46.9	74.0	-27.1
2744.833	46.2	0.1	4.0	1.1	0.0	0.0	V-Horn	PK	0.0	46.3	74.0	-27.7
4574.717	37.7	8.2	314.0	1.1	0.0	0.0	V-Horn	PK	0.0	45.9	74.0	-28.1
4638.767	37.1	8.2	323.0	1.1	0.0	0.0	V-Horn	PK	0.0	45.3	74.0	-28.7
3710.008	39.3	4.8	119.0	2.2	0.0	0.0	H-Horn	PK	0.0	44.1	74.0	-29.9
3610.267	39.4	4.4	0.0	1.9	0.0	0.0	V-Horn	PK	0.0	43.8	74.0	-30.2
3611.542	39.0	4.4	232.0	1.3	0.0	0.0	H-Horn	PK	0.0	43.4	74.0	-30.6
3710.192	38.2	4.8	348.0	1.1	0.0	0.0	V-Horn	PK	0.0	43.0	74.0	-31.0
2744.558	42.6	0.1	313.0	1.2	0.0	0.0	H-Horn	PK	0.0	42.7	74.0	-31.3

Low Channel. EUT horizontal, Antenna horizontal.
Low Channel. EUT on front face, Antenna vertical.
Low Channel. EUT on front face, Antenna on side.
Low Channel. EUT on front face, Antenna on side.
Low Channel. EUT horizontal, Antenna vertical.
Low Channel. EUT horizontal, Antenna horizontal.
Ligh Channel. EUT horizontal, Antenna horizontal.
High Channel. EUT horizontal, Antenna horizontal.
High Channel. EUT horizontal, Antenna horizontal.
Low Channel. EUT horizontal, Antenna horizontal.
Low Channel. EUT horizontal, Antenna horizontal.
Mid Channel. EUT horizontal, Antenna on side.
Mid Channel. EUT horizontal, Antenna on side.
High Channel. EUT on front face, Antenna on side.
High Channel. EUT on front face, Antenna on side.
Low Channel. EUT on front face, Antenna on side.
High Channel. EUT on front face, Antenna on side.
High Channel. EUT on front face, Antenna on side.
Low Channel. EUT on front face, Antenna on side.
Low Channel. EUT on front face, Antenna on side.
Ligh Channel. EUT on front face, Antenna on side.
Ligh Channel. EUT on front face, Antenna on side.
Ligh Channel. EUT on front face, Antenna on side.
Ligh Channel. EUT on front face, Antenna on side.
Ligh Channel. EUT on front face, Antenna on side.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Unity Gain Antenna, See comments for channel and EUT orientation

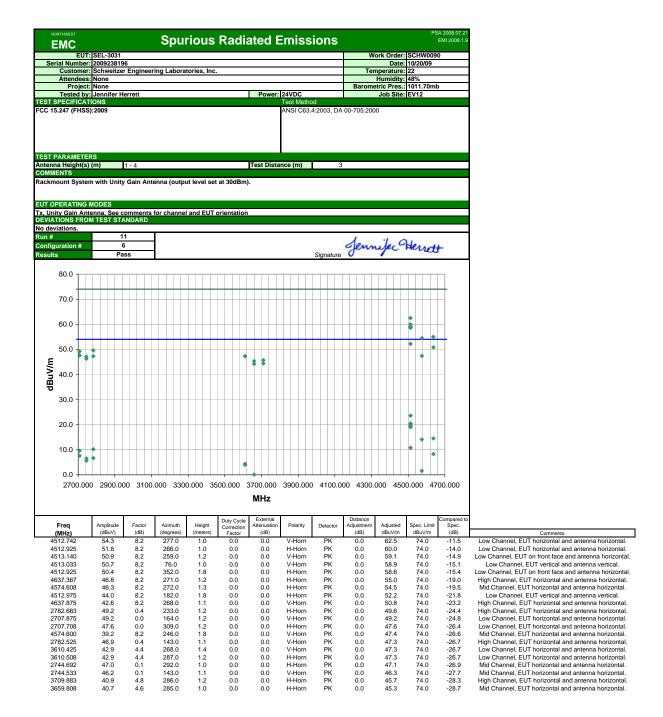
POWER SETTINGS INVESTIGATED

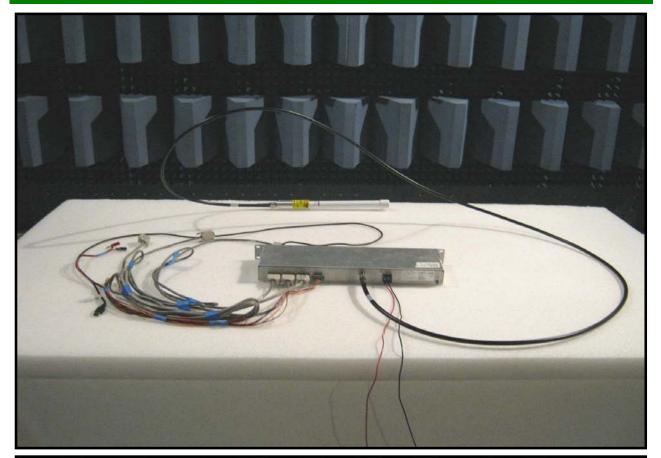
24VDC

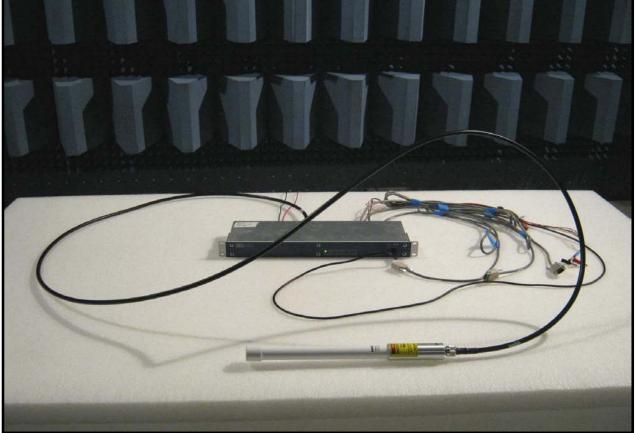
FREQUENCY RANGE INVESTIGATED							
Start Frequency	30MHz	Stop Frequency	12.5GHz				

SAMPLE CALCULATIONS

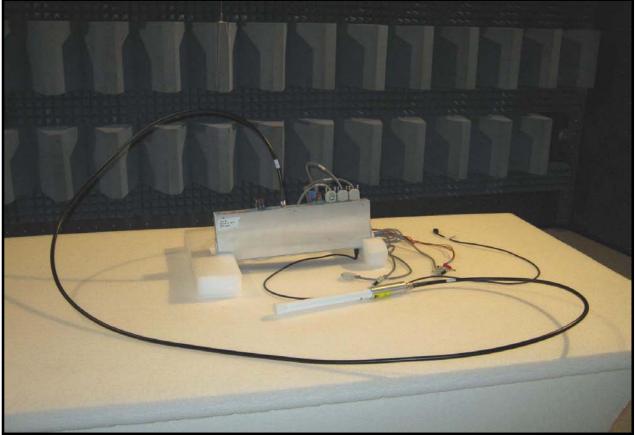
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation


TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13


MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
	Measurements were made usi	ng the bandwidths and dete	ctors specified. No video filte	r was used.			


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.


TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Yagi Antenna, See comments for Channel and EUT Orientation

MODE USED FOR FINAL DATA

Tx, Yagi Antenna, See comments for Channel and EUT Orientation

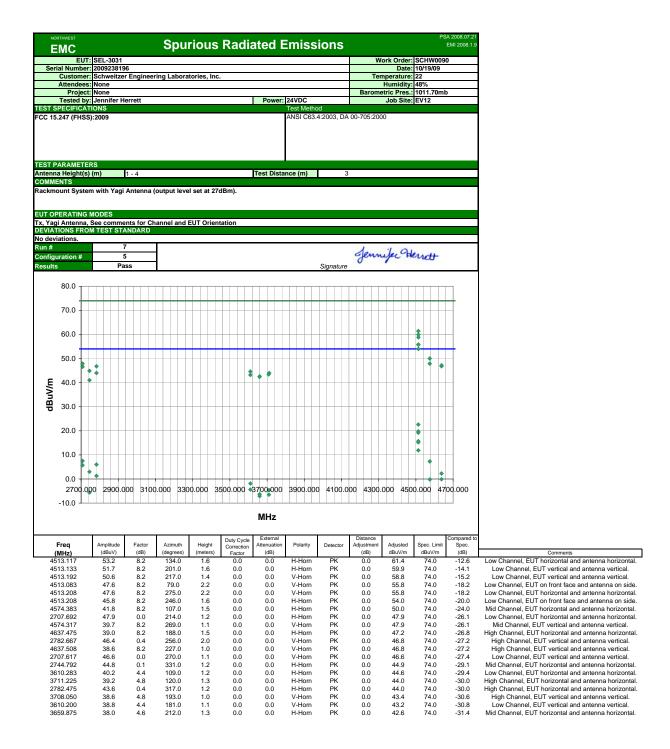
POWER SETTINGS INVESTIGATED

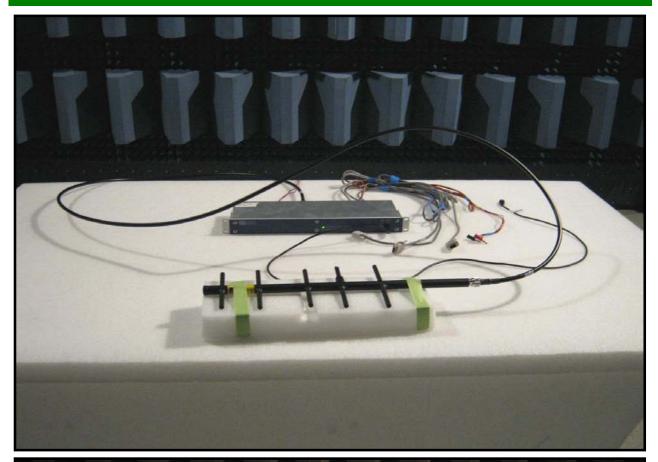
24VDC

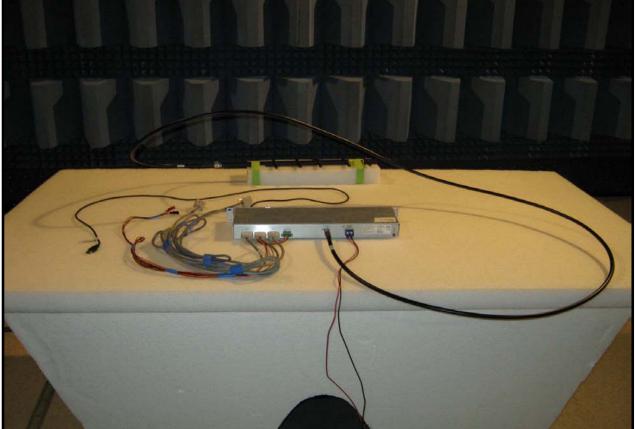
FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	30MHz	Stop Frequency	12.5GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

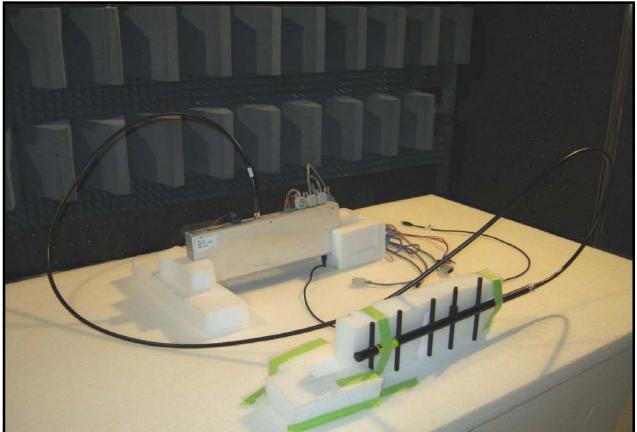

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13


MEASUREMEN	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made us	sing the bandwidths and dete	ctors specified. No video filte	er was used.


MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Unity Gain Antenna, See comments for Channel and EUT Orientation

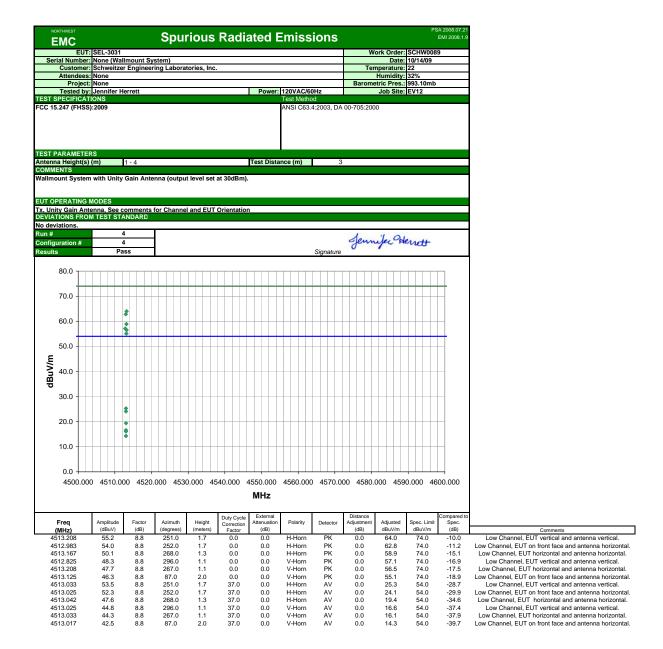
POWER SETTINGS INVESTIGATED

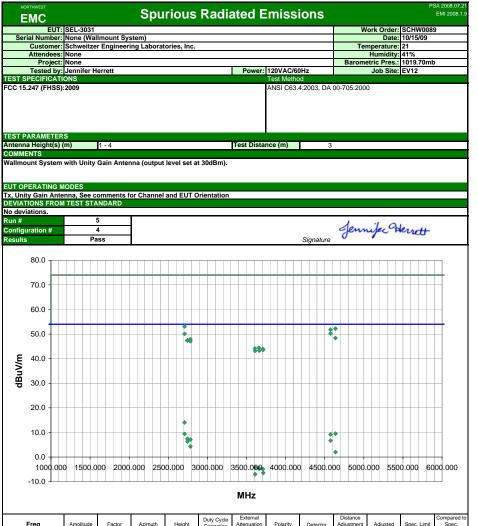
120VAC/60Hz

FREQUENCY RANGE INV	/ESTIGATED		
Start Frequency	30MHz	Stop Frequency	12.5GHz

SAMPLE CALCULATIONS

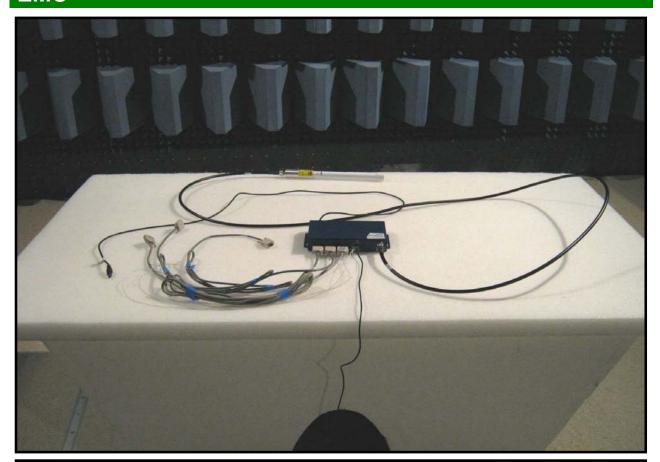
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

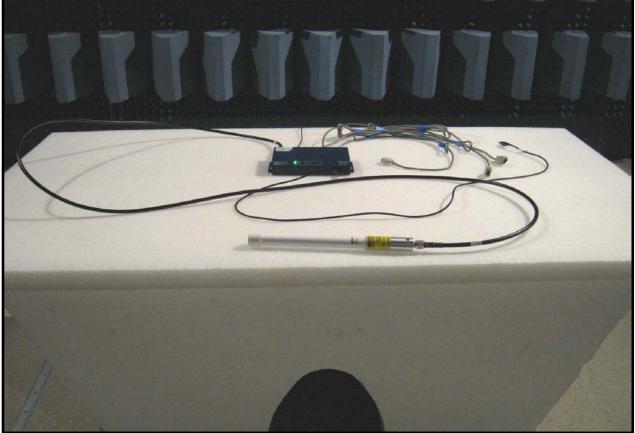

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13

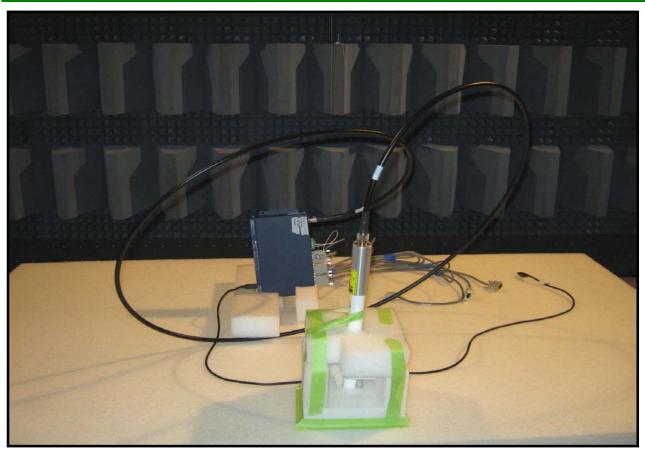

MEASUREMENT	MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				
Ň	leasurements were made us	ing the bandwidths and dete	ectors specified. No video filter	r was used.				

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.


TEST DESCRIPTION





Freq	Amplitude	Factor	Azimuth	Height	Correction	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	Factor	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
2707.858	53.0	0.1	151.0	1.1	0.0	0.0	V-Horn	PK	0.0	53.1	74.0	-20.9
4637.342	43.2	9.0	338.0	1.1	0.0	0.0	V-Horn	PK	0.0	52.2	74.0	-21.8
4574.825	42.9	8.9	288.0	1.1	0.0	0.0	V-Horn	PK	0.0	51.8	74.0	-22.2
4574.283	41.3	8.9	47.0	1.2	0.0	0.0	H-Horn	PK	0.0	50.2	74.0	-23.8
2707.842	50.0	0.1	26.0	1.3	0.0	0.0	H-Horn	PK	0.0	50.1	74.0	-23.9
4637.033	39.4	9.0	34.0	1.2	0.0	0.0	H-Horn	PK	0.0	48.4	74.0	-25.6
2782.625	47.4	0.5	255.0	1.4	0.0	0.0	V-Horn	PK	0.0	47.9	74.0	-26.1
2744.792	47.2	0.3	205.0	1.1	0.0	0.0	V-Horn	PK	0.0	47.5	74.0	-26.5
2744.642	47.0	0.3	23.0	1.3	0.0	0.0	H-Horn	PK	0.0	47.3	74.0	-26.7
2782.417	46.6	0.5	64.0	1.3	0.0	0.0	H-Horn	PK	0.0	47.1	74.0	-26.9
3659.433	39.4	5.0	194.0	1.1	0.0	0.0	V-Horn	PK	0.0	44.4	74.0	-29.6
3608.300	39.3	4.8	320.0	1.1	0.0	0.0	V-Horn	PK	0.0	44.1	74.0	-29.9
3710.258	38.7	5.2	121.0	1.4	0.0	0.0	V-Horn	PK	0.0	43.9	74.0	-30.1
3712.267	38.4	5.2	46.0	1.2	0.0	0.0	H-Horn	PK	0.0	43.6	74.0	-30.4
3661.917	38.3	5.0	72.0	1.2	0.0	0.0	H-Horn	PK	0.0	43.3	74.0	-30.7
3610.342	38.4	4.8	50.0	1.3	0.0	0.0	H-Horn	PK	0.0	43.2	74.0	-30.8
2707.825	50.9	0.1	151.0	1.1	37.0	0.0	V-Horn	AV	0.0	14.0	54.0	-40.0
4637.525	37.5	9.0	338.0	1.1	37.0	0.0	V-Horn	AV	0.0	9.5	54.0	-44.5
2707.867	46.3	0.1	26.0	1.3	37.0	0.0	H-Horn	AV	0.0	9.4	54.0	-44.6
4574.492	37.3	8.9	288.0	1.1	37.0	0.0	V-Horn	AV	0.0	9.2	54.0	-44.8

Low Channel, EUT vertical and antenna vertical. High Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. Low Channel, EUT vertical and antenna vertical. Low Channel, EUT vertical and antenna vertical. High Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. High Channel, EUT vertical and antenna vertical. Low Channel, EUT vertical and antenna vertical. Low Channel, EUT vertical and antenna vertical. High Channel, EUT vertical and antenna vertical. Mid Channel, EUT vertical and antenna vertical. Low Channel, EUT vertical and antenna vertical.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx, Yagi Antenna, See comments for Channel and EUT Orientation

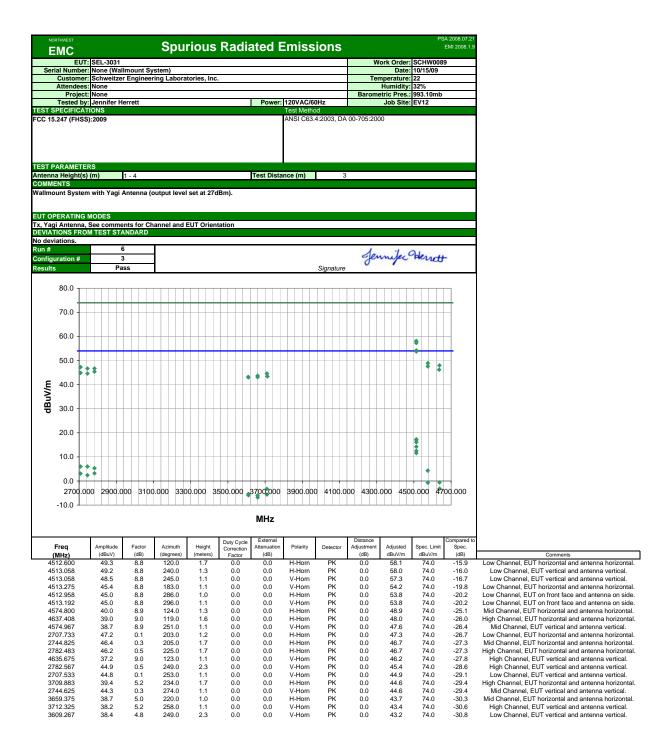
POWER SETTINGS INVESTIGATED

120VAC/60Hz

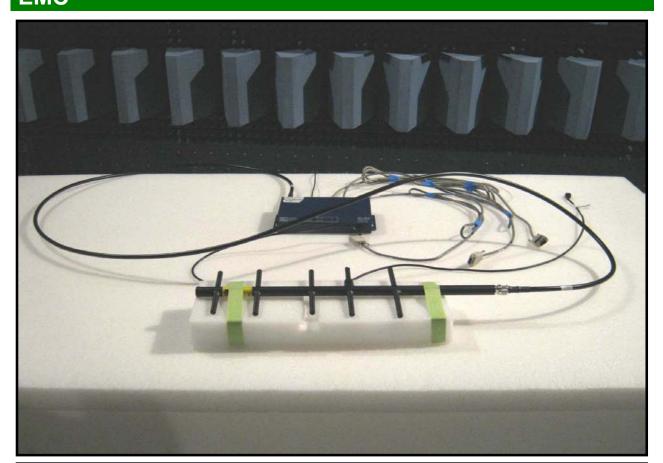
FREQUENCY RANGE IN\	/ESTIGATED		
Start Frequency	30MHz	Stop Frequency	12.5GHz

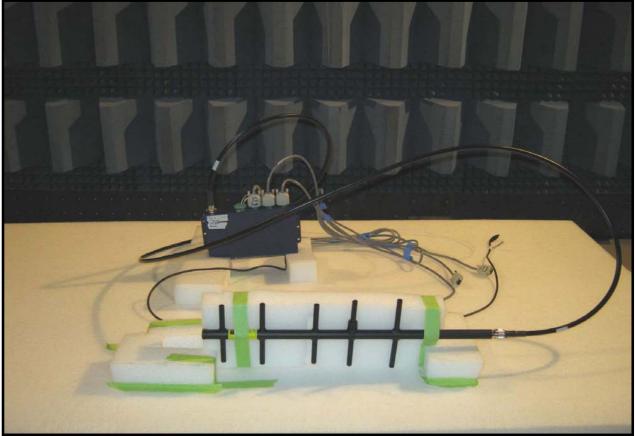
SAMPLE CALCULATIONS

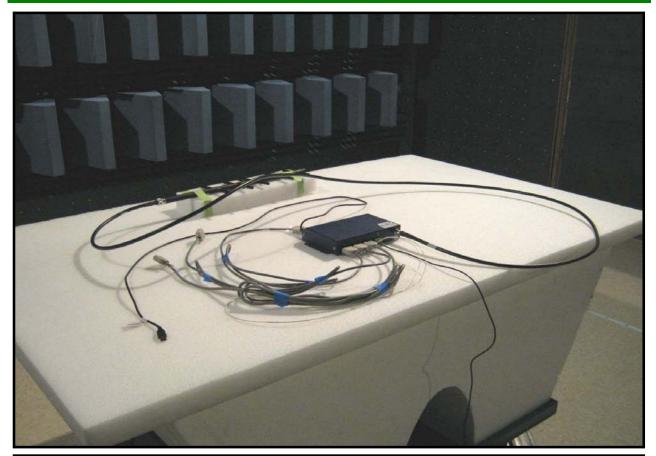
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

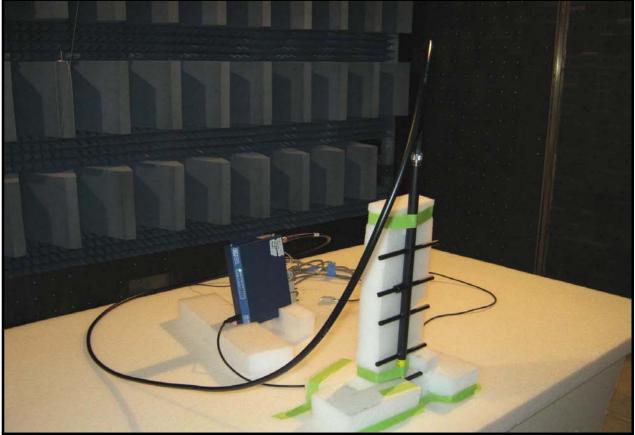

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
EV12 Cables		Standard Gain Horn Cables	EVU	6/25/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	6/26/2009	13
Antenna, Horn	ETS	3160.07	AHZ	10/14/2008	24
High Pass Filter	Micro-Tronics	50111	HGE	6/25/2009	13
High Pass Filter	Micro-Tronics	50108	HGF	6/25/2009	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	6/25/2009	13
Antenna, Horn	ETS	3115	AIB	8/25/2008	24
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	7/2/2008	24
Spectrum Analyzer	Agilent	E44440A	AFA	11/14/2008	12
EV12 Cables		Bilog Cables	EVS	6/25/2009	13
Low Pass Filter	Micro-Tronics	LPM50003	HGL	6/25/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	6/25/2009	13
Antenna, Biconilog	EMCO	3141	AXG	11/4/2008	13

EASUREMENT BANDWIDTHS Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made usi	ng the bandwidths and det	ectors specified. No video filter	was used.


MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.


TEST DESCRIPTION



Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Master, Yagi Antenna Channel 80 Master, Yagi Antenna Channel 40

Master, Yagi Antenna Channel 1

POWER SETTINGS INVESTIGATED

120V/60Hz

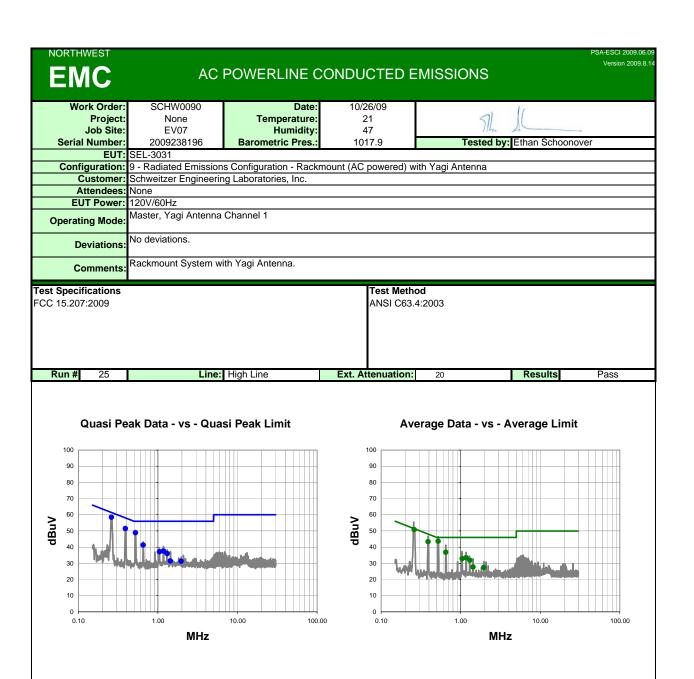
CONFIGURATIONS INVESTIGATED

SCHW0090 - 9

SAMPLE CALCULATIONS

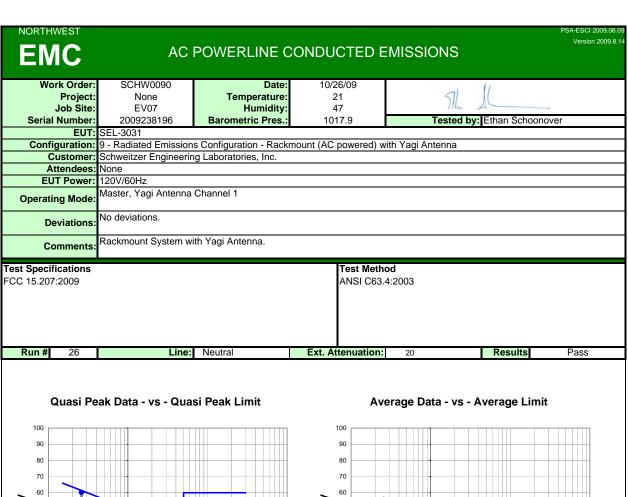
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	5/27/2009	13 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo
Receiver	Rohde & Schwarz	ESCI	ARH	9/25/2009	24 mo

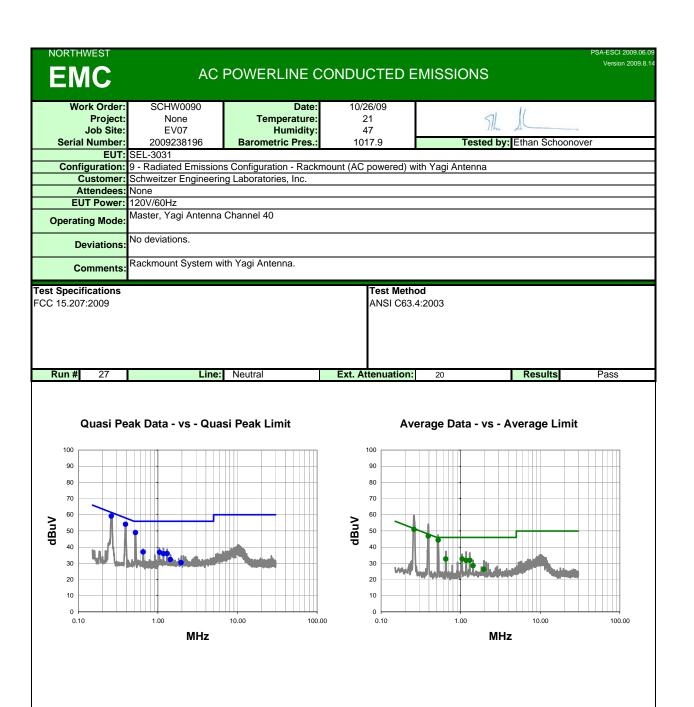

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

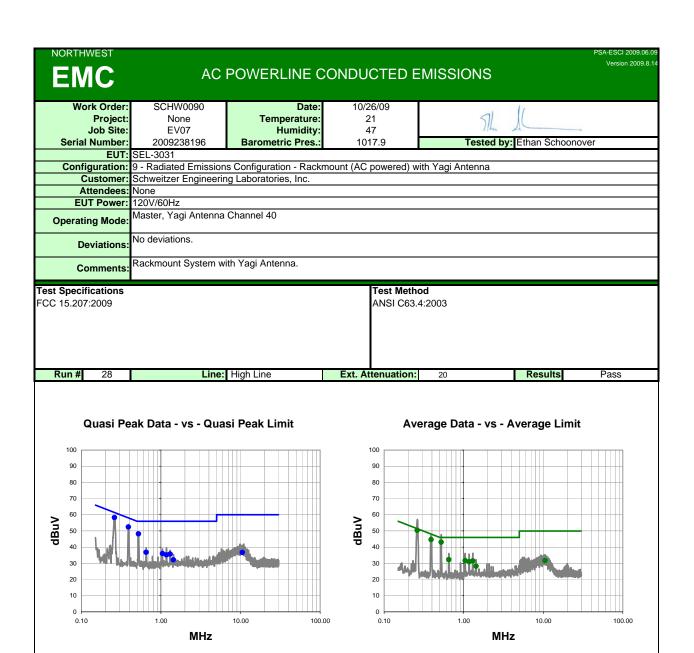
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

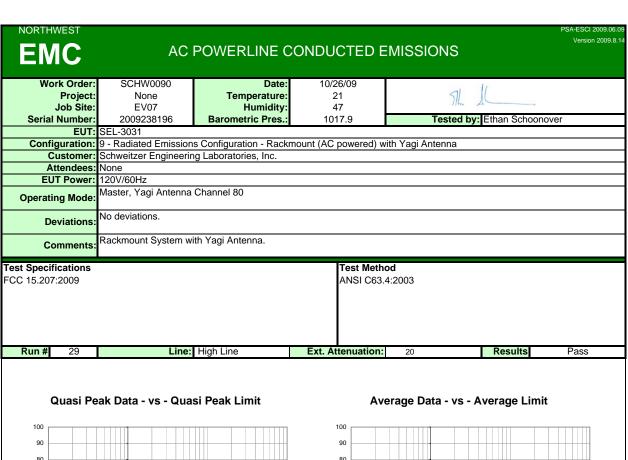
Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.


Average	Data - vs -	Average Limit

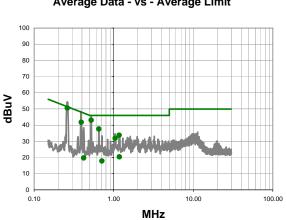
Freq (MHz		Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.26	1 37.6	20.9	58.5	61.4	-2.9	•	0.261	30.0	20.9	50.9	51.4	-0.5
0.390	30.9	20.6	51.5	58.1	-6.6		0.521	23.1	20.5	43.6	46.0	-2.4
0.52	1 28.4	20.5	48.9	56.0	-7.1		0.390	22.8	20.6	43.4	48.1	-4.7
0.652	2 20.8	20.5	41.3	56.0	-14.7		0.652	16.3	20.5	36.8	46.0	-9.2
1.172	2 17.2	20.4	37.6	56.0	-18.4		1.172	13.0	20.4	33.4	46.0	-12.6
1.04	1 16.7	20.4	37.1	56.0	-18.9		1.044	12.5	20.4	32.9	46.0	-13.1
1.304	4 15.6	20.4	36.0	56.0	-20.0		1.304	11.5	20.4	31.9	46.0	-14.1
1.432	2 11.1	20.4	31.5	56.0	-24.5		1.432	7.3	20.4	27.7	46.0	-18.3
1.956	10.9	20.4	31.3	56.0	-24.7		1.956	7.0	20.4	27.4	46.0	-18.6


60 60 dBuV dBuV 50 50 40 40 30 30 20 20 10 10 1.00 100.00 1.00 10.00 100.00 0.10 10.00 0.10 MHz MHz

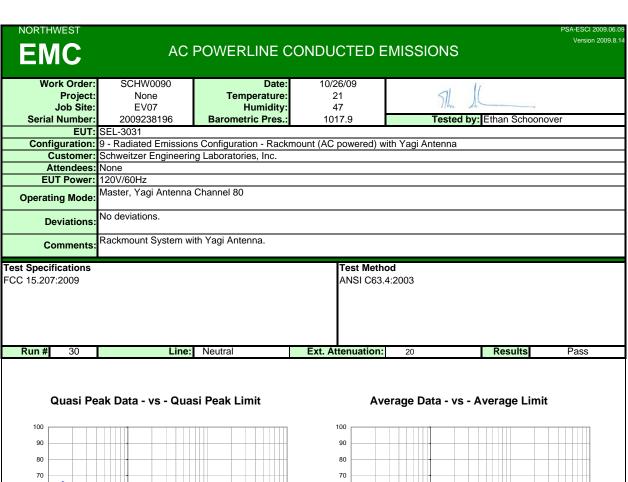
	Quasi	Peak Data -	vs - Quasi Pea	ak Limit			Ave	erage Data - v	s - Average L	imit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.261	39.4	20.9	60.3	61.4	-1.1	0.261	30.1	20.9	51.0	51.4	-0.4
0.390	31.9	20.6	52.5	58.1	-5.6	0.390	26.8	20.6	47.4	48.1	-0.7
0.521	29.3	20.5	49.8	56.0	-6.2	0.521	24.7	20.5	45.2	46.0	-0.8
0.652	21.0	20.5	41.5	56.0	-14.5	0.652	16.8	20.5	37.3	46.0	-8.7
1.172	17.9	20.4	38.3	56.0	-17.7	1.172	13.7	20.4	34.1	46.0	-11.9
1.044	17.0	20.4	37.4	56.0	-18.6	1.044	12.9	20.4	33.3	46.0	-12.7
1.304	15.7	20.4	36.1	56.0	-19.9	1.304	11.6	20.4	32.0	46.0	-14.0
0.911	13.2	20.4	33.6	56.0	-22.4	0.911	9.0	20.4	29.4	46.0	-16.6
1.956	11.3	20.4	31.7	56.0	-24.3	1.956	7.3	20.4	27.7	46.0	-18.3


Average	Data - vs	 Average 	Limit

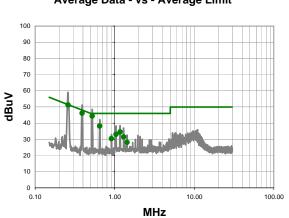
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.259	38.3	20.9	59.2	61.5	-2.3	0.259	30.1	20.9	51.0	51.5	-0.5
0.391	33.5	20.6	54.1	58.0	-4.0	0.391	26.2	20.6	46.8	48.0	-1.3
0.521	28.5	20.5	49.0	56.0	-7.0	0.521	23.8	20.5	44.3	46.0	-1.7
0.653	16.5	20.5	37.0	56.0	-19.0	1.044	12.3	20.4	32.7	46.0	-13.3
1.044	16.4	20.4	36.8	56.0	-19.2	0.653	12.2	20.5	32.7	46.0	-13.3
1.304	15.6	20.4	36.0	56.0	-20.0	1.304	11.5	20.4	31.9	46.0	-14.1
1.176	15.5	20.4	35.9	56.0	-20.1	1.176	11.4	20.4	31.8	46.0	-14.2
1.436	12.0	20.4	32.4	56.0	-23.6	1.436	8.1	20.4	28.5	46.0	-17.5
1.956	10.0	20.4	30.4	56.0	-25.6	1.956	5.9	20.4	26.3	46.0	-19.7


Average	Data - vs	 Average 	Limit

Free (MH:	•	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.26	1 37.4	20.9	58.3	61.4	-3.1	-	0.261	29.5	20.9	50.4	51.4	-1.0
0.39	0 31.9	20.6	52.5	58.1	-5.6		0.522	22.5	20.5	43.0	46.0	-3.0
0.52	2 27.7	20.5	48.2	56.0	-7.8		0.390	24.0	20.6	44.6	48.1	-3.5
0.65	3 16.3	20.5	36.8	56.0	-19.2		0.653	11.8	20.5	32.3	46.0	-13.7
1.04	4 15.6	20.4	36.0	56.0	-20.0		1.044	11.3	20.4	31.7	46.0	-14.3
1.30	4 15.3	20.4	35.7	56.0	-20.3		1.304	11.1	20.4	31.5	46.0	-14.5
1.17	6 14.8	20.4	35.2	56.0	-20.8		1.176	10.6	20.4	31.0	46.0	-15.0
10.5	8 16.2	20.5	36.7	60.0	-23.3		1.436	7.8	20.4	28.2	46.0	-17.8
1.43	6 11.8	20.4	32.2	56.0	-23.8		10.518	11.1	20.5	31.6	50.0	-18.4



0.10 1.00 10.00


MHz

	Quasi	Peak Data - v	<u>/s - Quasi Pea</u>	ık Limit			Ave	erage Data - v	's - Average L	.imit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.262	37.3	20.9	58.2	61.4	-3.2	0.262	29.7	20.9	50.6	51.4	-0.8
0.521	28.0	20.5	48.5	56.0	-7.5	0.521	22.5	20.5	43.0	46.0	-3.0
0.392	29.7	20.6	50.3	58.0	-7.8	0.392	21.2	20.6	41.8	48.0	-6.3
0.652	21.6	20.5	42.1	56.0	-13.9	0.652	17.1	20.5	37.6	46.0	-8.4
1.172	17.6	20.4	38.0	56.0	-18.0	1.172	13.3	20.4	33.7	46.0	-12.3
1.044	15.8	20.4	36.2	56.0	-19.8	1.044	11.5	20.4	31.9	46.0	-14.1
1.180	2.3	20.4	22.7	56.0	-33.3	1.180	0.0	20.4	20.4	46.0	-25.6
0.420	2.5	20.6	23.1	57.4	-34.4	0.420	-0.9	20.6	19.7	47.4	-27.8
0.713	0.7	20.4	21.1	56.0	-34.9	0.713	-2.6	20.4	17.8	46.0	-28.2

0.10 1.00 10.00 MHz

	Quasi	Peak Data -	vs - Quasi Pea	ak Limit			Av	erage Data - v	vs - Average L	.imit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.259	39.3	20.9	60.2	61.5	-1.3	0.259	30.4	20.9	51.3	51.5	-0.2
0.390	30.9	20.6	51.5	58.1	-6.6	0.522	23.8	20.5	44.3	46.0	-1.7
0.522	28.5	20.5	49.0	56.0	-7.0	0.390	25.5	20.6	46.1	48.1	-2.0
0.650	22.1	20.5	42.6	56.0	-13.4	0.650	17.7	20.5	38.2	46.0	-7.8
1.172	18.4	20.4	38.8	56.0	-17.2	1.172	14.1	20.4	34.5	46.0	-11.5
1.040	16.9	20.4	37.3	56.0	-18.7	1.040	12.7	20.4	33.1	46.0	-12.9
1.300	15.3	20.4	35.7	56.0	-20.3	1.300	11.1	20.4	31.5	46.0	-14.5
0.912	14.4	20.4	34.8	56.0	-21.2	0.912	10.0	20.4	30.4	46.0	-15.6
1.432	11.8	20.4	32.2	56.0	-23.8	1.432	7.7	20.4	28.1	46.0	-17.9

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Master, Yagi Antenna Channel 80

Master, Yagi Antenna Channel 40

Master, Yagi Antenna Channel 1

POWER SETTINGS INVESTIGATED

24 VDC

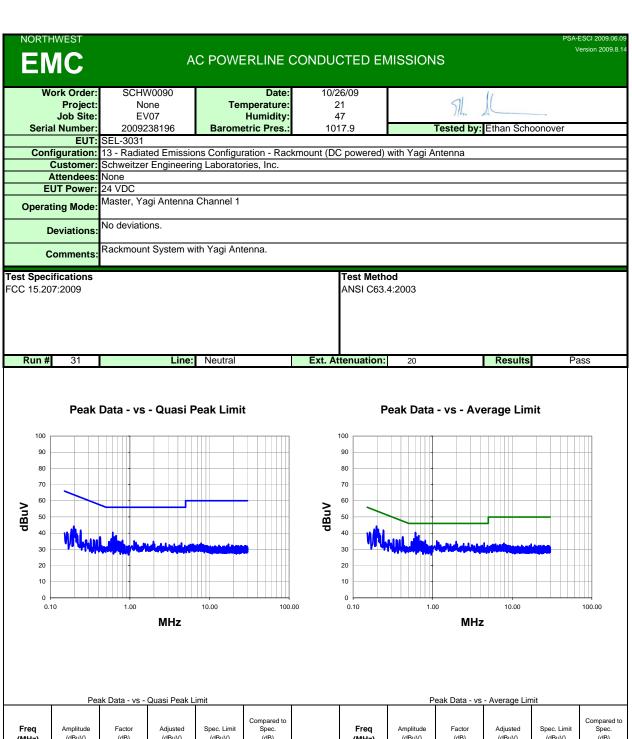
CONFIGURATIONS INVESTIGATED

SCHW0090 - 13

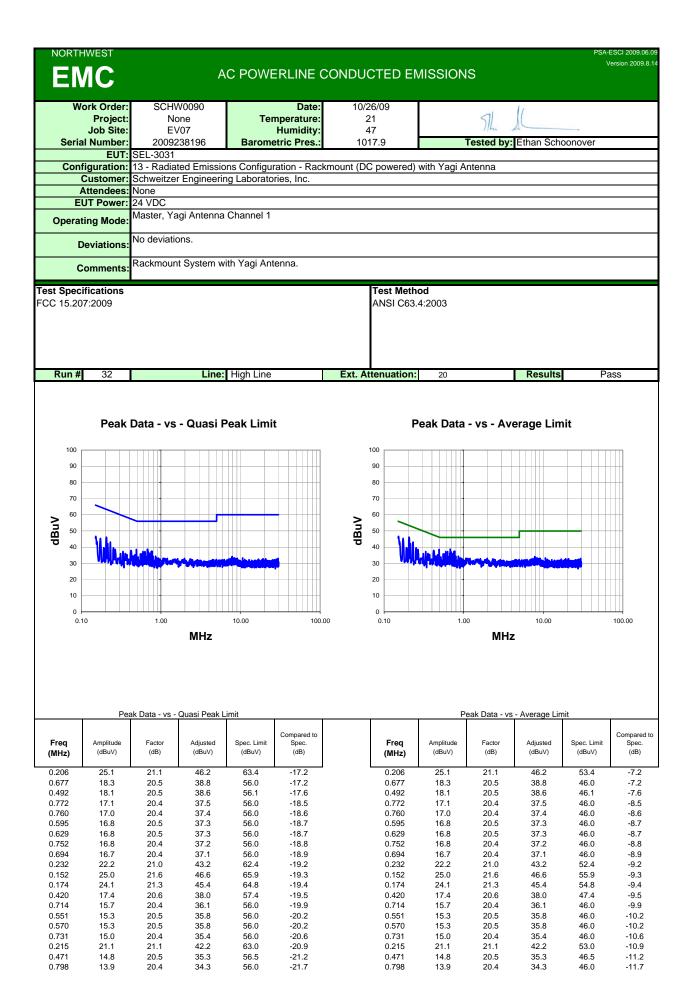
SAMPLE CALCULATIONS

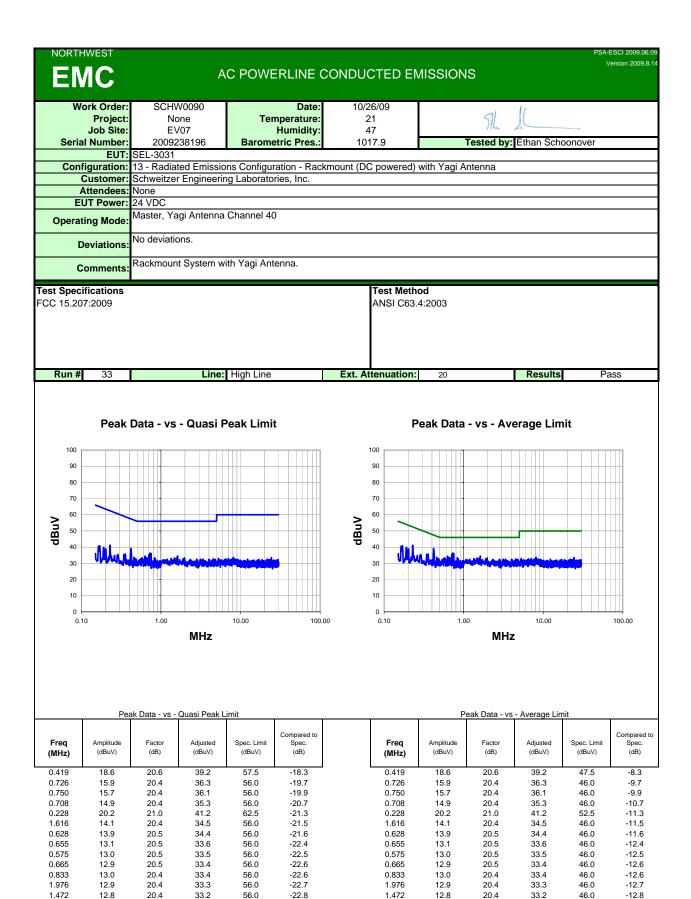
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	5/27/2009	13 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo
Receiver	Rohde & Schwarz	ESCI	ARH	9/25/2009	24 mo


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.607	20.0	20.5	40.5	56.0	-15.5	-	0.607	20.0	20.5	40.5	46.0	-5.5
0.670	18.0	20.5	38.5	56.0	-17.5		0.670	18.0	20.5	38.5	46.0	-7.5
0.635	17.2	20.5	37.7	56.0	-18.3		0.635	17.2	20.5	37.7	46.0	-8.3
0.198	23.1	21.2	44.3	63.7	-19.4		0.198	23.1	21.2	44.3	53.7	-9.4
0.580	16.0	20.5	36.5	56.0	-19.5		0.580	16.0	20.5	36.5	46.0	-9.5
0.420	17.1	20.6	37.7	57.4	-19.8		0.420	17.1	20.6	37.7	47.4	-9.8
0.645	15.5	20.5	36.0	56.0	-20.0		0.645	15.5	20.5	36.0	46.0	-10.0
0.240	20.9	21.0	41.9	62.1	-20.2		0.240	20.9	21.0	41.9	52.1	-10.2
0.806	15.1	20.4	35.5	56.0	-20.5		0.806	15.1	20.4	35.5	46.0	-10.5
1.128	14.8	20.4	35.2	56.0	-20.8		1.128	14.8	20.4	35.2	46.0	-10.8
0.208	21.3	21.1	42.4	63.3	-20.9		0.208	21.3	21.1	42.4	53.3	-10.9
0.706	14.7	20.4	35.1	56.0	-20.9		0.706	14.7	20.4	35.1	46.0	-10.9
1.976	14.4	20.4	34.8	56.0	-21.2		1.976	14.4	20.4	34.8	46.0	-11.2
0.726	14.4	20.4	34.8	56.0	-21.2		0.726	14.4	20.4	34.8	46.0	-11.2
0.687	14.3	20.4	34.7	56.0	-21.3		0.687	14.3	20.4	34.7	46.0	-11.3
0.541	14.2	20.5	34.7	56.0	-21.3		0.541	14.2	20.5	34.7	46.0	-11.3
0.550	14.2	20.5	34.7	56.0	-21.3		0.550	14.2	20.5	34.7	46.0	-11.3
0.747	14.1	20.4	34.5	56.0	-21.5		0.747	14.1	20.4	34.5	46.0	-11.5
0.782	14.0	20.4	34.4	56.0	-21.6		0.782	14.0	20.4	34.4	46.0	-11.6
0.764	13.9	20.4	34.3	56.0	-21.7		0.764	13.9	20.4	34.3	46.0	-11.7

0.687

0.459

1.344

1.552

0.356

0.551

0.621

12.7

13.3

12.6

12.6

15.1

12.3

12.2

20.4

20.5

20.4

20.4

20.6

20.5

20.5

33.1

33.8

33.0

33.0

35.7

32.8

32.7

56.0

56.7

56.0

56.0

58.8

56.0

56.0

-22.9

-22.9

-23.0

-23.0

-23.1

-23.2

-23.3

0.687

0.459

1.344

1.552

0.356

0.551

0.621

12.7

13.3

12.6

12.6

15.1

12.3

12.2

20.4

20.5

20.4

20.4

20.6

20.5

20.5

33.1

33.8

33.0

33.0

35.7

32.8

32.7

46.0

46.7

46.0

46.0

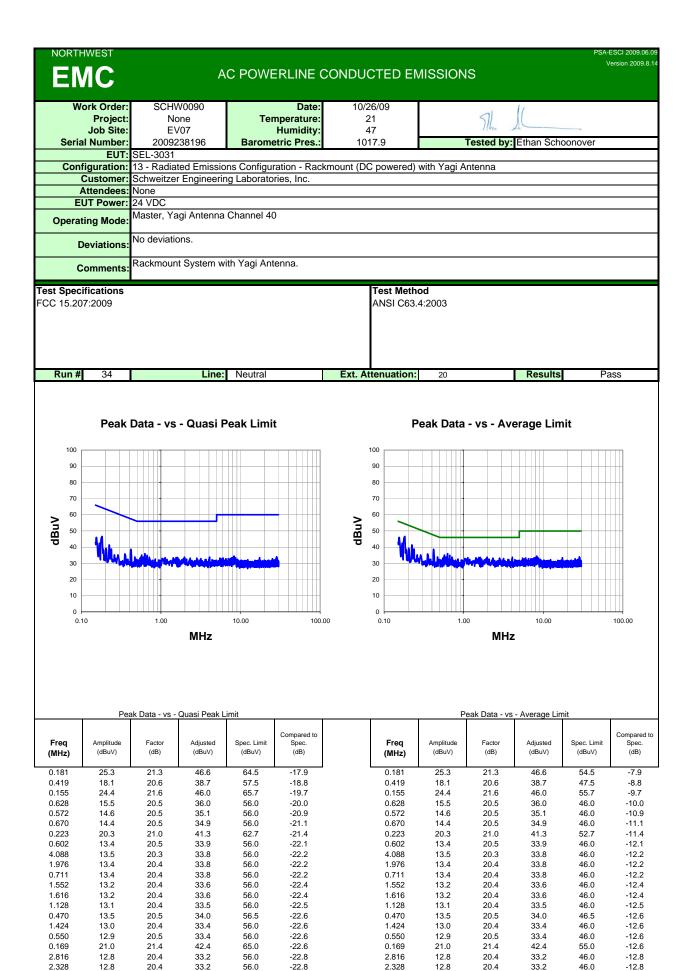
48.8

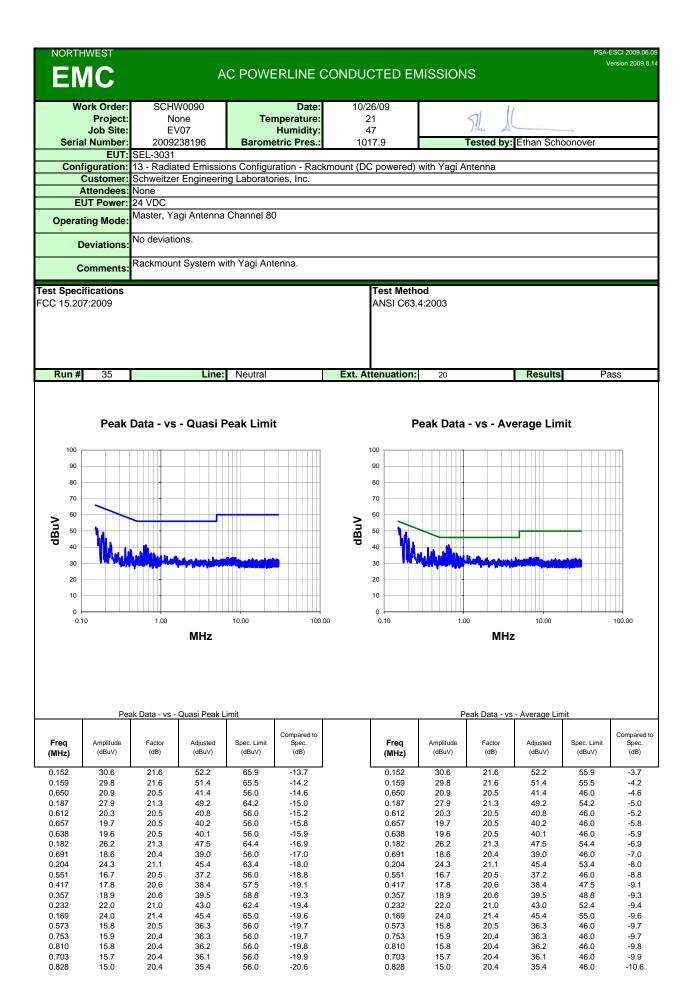
46.0

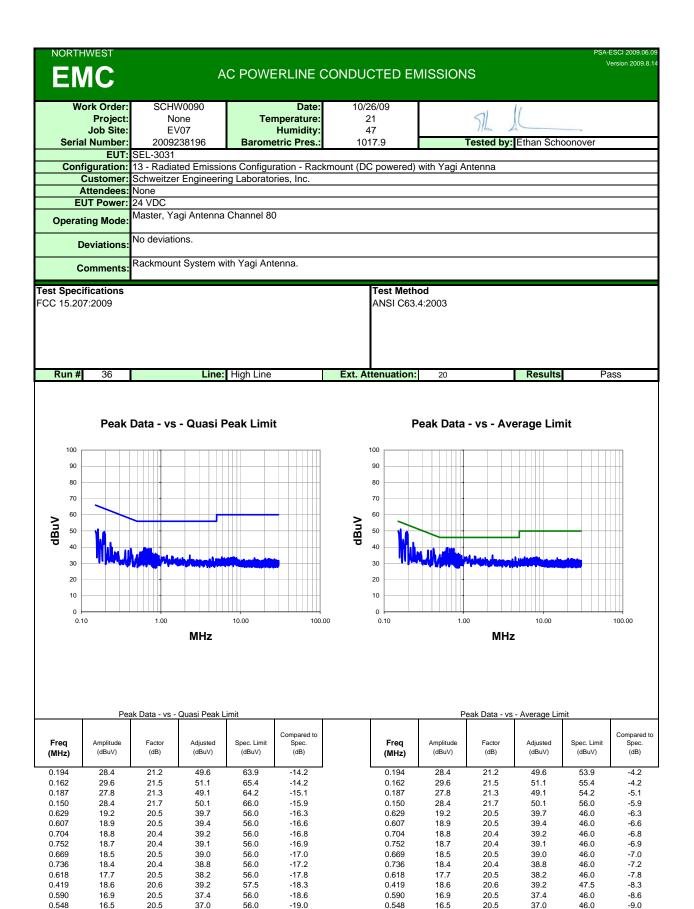
46.0

-12.9

-12.9


-13.0


-13.0


-13.1

-13.2

-13.3

0.577

0.232

0.675

0.787

0.854

0.174

16.4

21.9

15.8

15.8

15.7

23.4

20.5

21.0

20.5

20.4

20.4

21.3

36.9

42.9

36.3

36.2

36.1

44.7

56.0

62.4

56.0

56.0

56.0

64.8

-19.1

-19.5

-19.7

-19.8

-19.9

-20.1

0.577

0.232

0.675

0.787

0.854

0.174

16.4

21.9

15.8

15.8

15.7

23.4

20.5

21.0

20.5

20.4

20.4

21.3

36.9

42.9

36.3

36.2

36.1

44.7

46.0

52.4

46.0

46.0

46.0

54.8

-9.1

-9.5

-9.7

-9.8

-9.9

-10.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Master, Yagi Antenna Channel 80 Master, Yagi Antenna Channel 40 Master, Yagi Antenna Channel 1

POWER SETTINGS INVESTIGATED

24 VDC

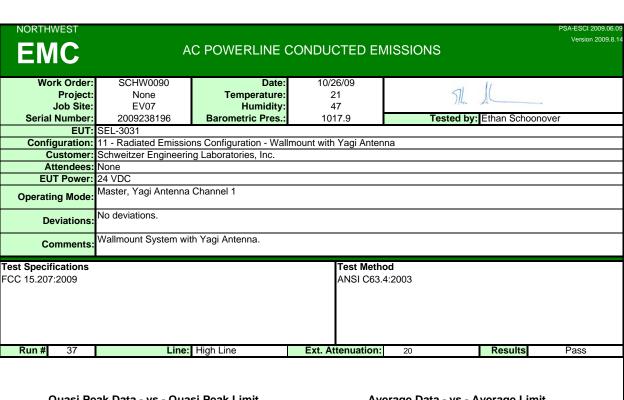
CONFIGURATIONS INVESTIGATED

SCHW0090 - 11

SAMPLE CALCULATIONS

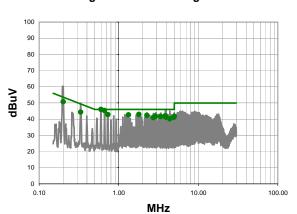
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HFX	5/27/2009	13 mo
EV07 Cables		Conducted Cables	EVG	6/1/2009	13 mo
Receiver	Rohde & Schwarz	ESCI	ARH	9/25/2009	24 mo

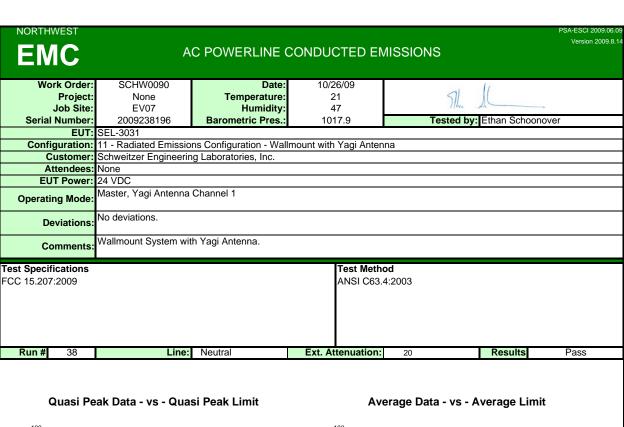

MEASUREMENT BANDWIDTHS											
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data							
	(MHz)	(kHz)	(kHz)	(kHz)							
	0.01 - 0.15	1.0	0.2	0.2							
	0.15 - 30.0	10.0	9.0	9.0							
	30.0 - 1000	100.0	120.0	120.0							
	Above 1000	1000.0	N/A	1000.0							
Mea	asurements were made us	ing the bandwidths and dete	ctors specified. No video filto	er was used.							

MEASUREMENT UNCERTAINTY

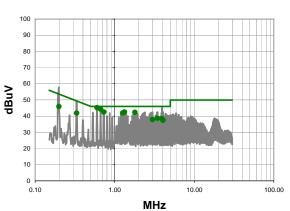
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

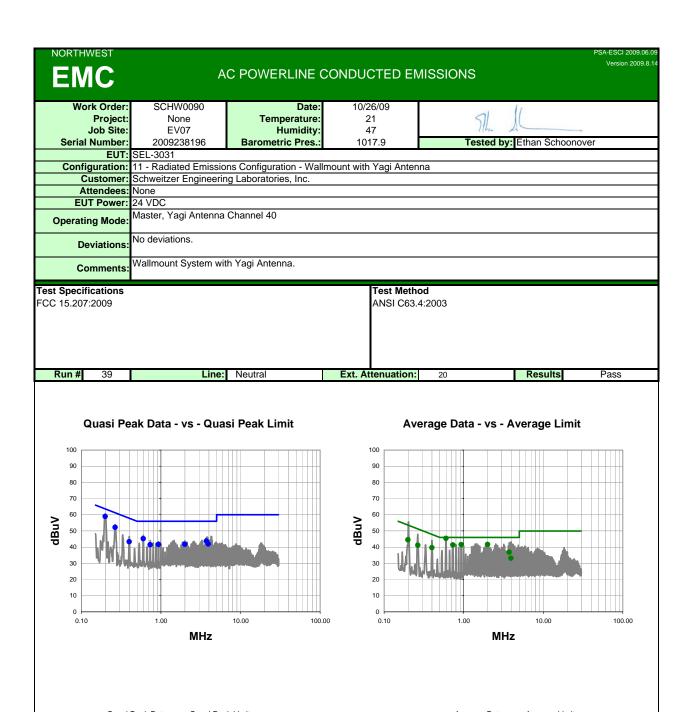

100 90 80 70 60 dBuV 50 40 30 20 10 1.00 100.00 0.10 10.00 MHz

Average Data - vs - Average Limit

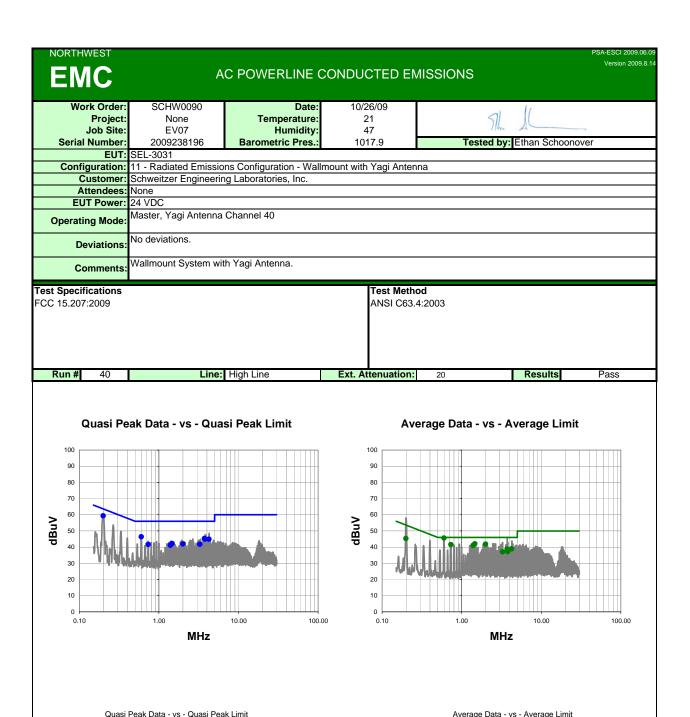


Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

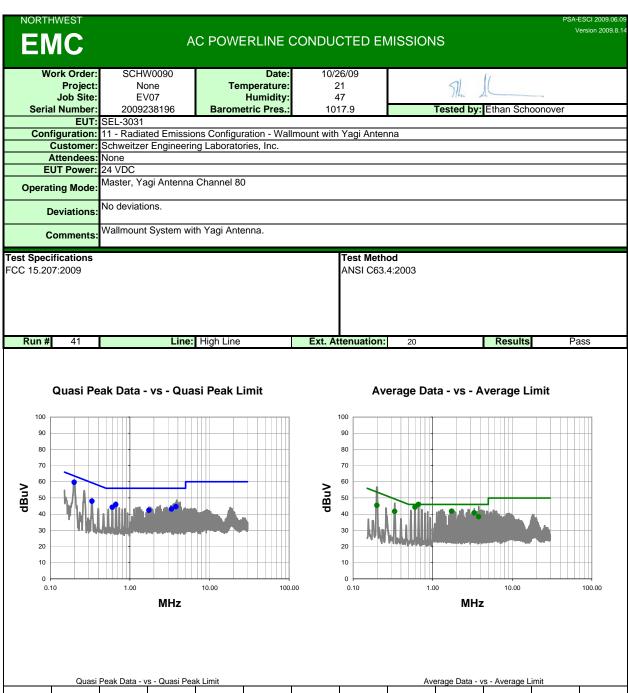
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.201	42.0	21.2	63.2	63.6	-0.4	0.599	25.5	20.5	46.0	46.0	0.0
3.928	27.1	20.3	47.4	56.0	-8.6	0.665	24.8	20.5	45.3	46.0	-0.7
3.860	26.7	20.3	47.0	56.0	-9.0	0.201	29.6	21.2	50.8	53.6	-2.8
0.334	28.8	20.7	49.5	59.4	-9.9	1.796	22.5	20.4	42.9	46.0	-3.1
0.599	25.4	20.5	45.9	56.0	-10.1	0.731	22.4	20.4	42.8	46.0	-3.2
4.392	25.4	20.3	45.7	56.0	-10.3	1.332	22.2	20.4	42.6	46.0	-3.4
0.665	24.9	20.5	45.4	56.0	-10.6	2.264	21.9	20.4	42.3	46.0	-3.7
4.992	24.0	20.4	44.4	56.0	-11.6	3.860	21.7	20.3	42.0	46.0	-4.0
4.924	23.0	20.4	43.4	56.0	-12.6	2.864	21.4	20.4	41.8	46.0	-4.2
3.396	23.1	20.3	43.4	56.0	-12.6	2.928	21.3	20.4	41.7	46.0	-4.3
2.264	23.0	20.4	43.4	56.0	-12.6	4.992	21.2	20.4	41.6	46.0	-4.4
2.928	22.9	20.4	43.3	56.0	-12.7	3.396	21.2	20.3	41.5	46.0	-4.5
2.728	22.8	20.4	43.2	56.0	-12.8	3.928	20.8	20.3	41.1	46.0	-4.9
1.796	22.8	20.4	43.2	56.0	-12.8	4.924	20.6	20.4	41.0	46.0	-5.0
0.731	22.5	20.4	42.9	56.0	-13.1	0.334	23.6	20.7	44.3	49.4	-5.1
1.332	22.4	20.4	42.8	56.0	-13.2	2.728	20.5	20.4	40.9	46.0	-5.1
2.864	22.0	20.4	42.4	56.0	-13.6	4.392	19.8	20.3	40.1	46.0	-5.9



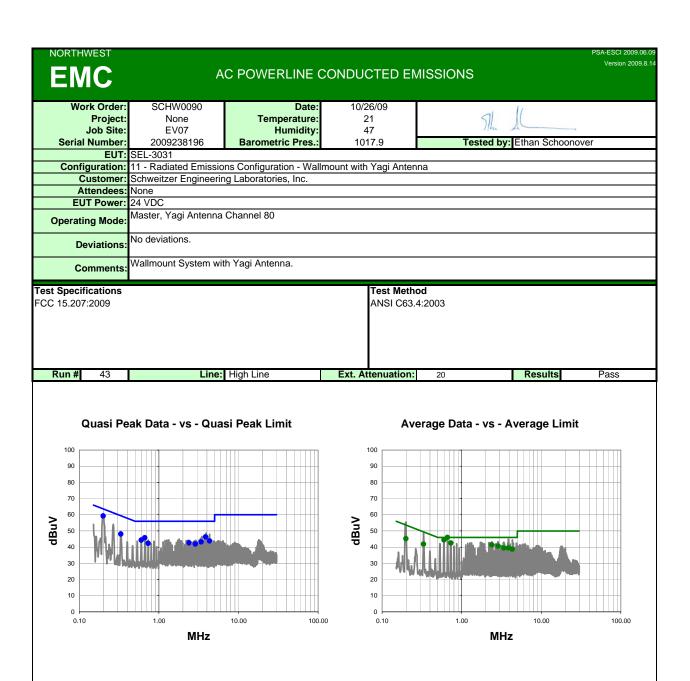
100 90 80 70 60 dBuV 50 40 30 20 10 1.00 100.00 0.10 10.00 MHz


Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.199	39.4	21.2	60.6	63.7	-3.1	0.599	24.7	20.5	45.2	46.0	-0.8
3.928	25.5	20.3	45.8	56.0	-10.2	0.667	23.8	20.5	44.3	46.0	-1.7
0.334	28.2	20.7	48.9	59.4	-10.5	0.731	22.2	20.4	42.6	46.0	-3.4
0.599	24.5	20.5	45.0	56.0	-11.0	1.332	22.1	20.4	42.5	46.0	-3.5
4.060	24.4	20.3	44.7	56.0	-11.3	1.796	21.9	20.4	42.3	46.0	-3.7
0.667	23.8	20.5	44.3	56.0	-11.7	1.264	21.5	20.4	41.9	46.0	-4.1
3.460	23.0	20.3	43.3	56.0	-12.7	3.460	18.4	20.3	38.7	46.0	-7.3
1.796	22.1	20.4	42.5	56.0	-13.5	0.334	21.2	20.7	41.9	49.4	-7.5
1.332	22.1	20.4	42.5	56.0	-13.5	3.928	18.0	20.3	38.3	46.0	-7.7
0.731	22.1	20.4	42.5	56.0	-13.5	0.199	24.7	21.2	45.9	53.7	-7.8
1.264	21.6	20.4	42.0	56.0	-14.0	2.996	17.5	20.4	37.9	46.0	-8.1
2.996	21.3	20.4	41.7	56.0	-14.3	4.060	17.0	20.3	37.3	46.0	-8.7


Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.199	37.8	21.2	59.0	63.7	-4.7	0.599	24.9	20.5	45.4	46.0	-0.6
0.266	31.4	20.8	52.2	61.2	-9.0	1.996	21.2	20.4	41.6	46.0	-4.4
0.599	24.7	20.5	45.2	56.0	-10.8	0.932	21.2	20.4	41.6	46.0	-4.4
3.728	23.4	20.3	43.7	56.0	-12.3	0.731	21.0	20.4	41.4	46.0	-4.6
3.928	21.6	20.3	41.9	56.0	-14.1	0.400	19.1	20.6	39.7	47.9	-8.2
1.996	21.3	20.4	41.7	56.0	-14.3	3.728	16.6	20.3	36.9	46.0	-9.1
0.932	21.3	20.4	41.7	56.0	-14.3	0.199	23.3	21.2	44.5	53.7	-9.2
0.400	22.8	20.6	43.4	57.9	-14.5	0.266	20.3	20.8	41.1	51.2	-10.1
0.731	21.1	20.4	41.5	56.0	-14.5	3.928	12.8	20.3	33.1	46.0	-12.9



*****	age Data	vo	/ Wordgo Emili				

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.199	38.2	21.2	59.4	63.7	-4.3	 0.599	25.1	20.5	45.6	46.0	-0.4
0.599	25.9	20.5	46.4	56.0	-9.6	1.464	21.6	20.4	42.0	46.0	-4.0
3.728	25.0	20.3	45.3	56.0	-10.7	1.996	21.4	20.4	41.8	46.0	-4.2
4.260	24.6	20.3	44.9	56.0	-11.1	0.733	21.2	20.4	41.6	46.0	-4.4
3.796	24.6	20.3	44.9	56.0	-11.1	1.396	20.7	20.4	41.1	46.0	-4.9
1.464	21.8	20.4	42.2	56.0	-13.8	4.260	18.5	20.3	38.8	46.0	-7.2
1.996	21.5	20.4	41.9	56.0	-14.1	3.728	18.4	20.3	38.7	46.0	-7.3
3.260	21.4	20.4	41.8	56.0	-14.2	0.199	24.1	21.2	45.3	53.7	-8.4
0.733	21.3	20.4	41.7	56.0	-14.3	3.796	16.9	20.3	37.2	46.0	-8.8
1.396	20.8	20.4	41.2	56.0	-14.8	3.260	16.7	20.4	37.1	46.0	-8.9



Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.199	38.5	21.2	59.7	63.7	-4.0	0.665	25.5	20.5	46.0	46.0	0.0
0.665	25.4	20.5	45.9	56.0	-10.1	0.599	23.8	20.5	44.3	46.0	-1.7
3.796	24.3	20.3	44.6	56.0	-11.4	1.732	21.3	20.4	41.7	46.0	-4.3
0.334	27.3	20.7	48.0	59.4	-11.4	3.328	20.4	20.3	40.7	46.0	-5.3
0.599	23.7	20.5	44.2	56.0	-11.8	3.796	18.0	20.3	38.3	46.0	-7.7
3.328	22.8	20.3	43.1	56.0	-12.9	0.334	21.0	20.7	41.7	49.4	-7.7
1.732	21.9	20.4	42.3	56.0	-13.7	0.199	24.2	21.2	45.4	53.7	-8.3

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.199	38.1	21.2	59.3	63.7	-4.4	0.665	25.5	20.5	46.0	46.0	0.0
3.860	26.0	20.3	46.3	56.0	-9.7	0.599	23.9	20.5	44.4	46.0	-1.6
0.665	25.3	20.5	45.8	56.0	-10.2	0.733	22.2	20.4	42.6	46.0	-3.4
0.332	27.4	20.7	48.1	59.4	-11.3	2.396	20.9	20.4	41.3	46.0	-4.7
0.599	23.8	20.5	44.3	56.0	-11.7	2.864	20.2	20.4	40.6	46.0	-5.4
4.328	23.5	20.3	43.8	56.0	-12.2	3.860	19.1	20.3	39.4	46.0	-6.6
3.396	22.9	20.3	43.2	56.0	-12.8	3.396	19.1	20.3	39.4	46.0	-6.6
2.396	22.2	20.4	42.6	56.0	-13.4	4.328	18.3	20.3	38.6	46.0	-7.4
0.733	22.0	20.4	42.4	56.0	-13.6	0.332	21.2	20.7	41.9	49.4	-7.5
2.864	21.5	20.4	41.9	56.0	-14.1	0.199	24.0	21.2	45.2	53.7	-8.5

