

Schweitzer Engineering Laboratories, Inc.

SEL-RP50

FCC 15.247:2021

902 - 928 MHz Other Wideband (DTS) Transceiver

Report: SCHW0247.1, Issue Date: April 26, 2021

NVLAP LAB CODE: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: April 9, 2021 Schweitzer Engineering Laboratories, Inc. EUT: SEL-RP50

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2021	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions (Transmitter)	No	N/A	Not required because it does not connect to AC mains.
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
11.9.1.1	Output Power	Yes	Pass	
11.9.1.1	Equivalent Isotropic Radiated Power	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

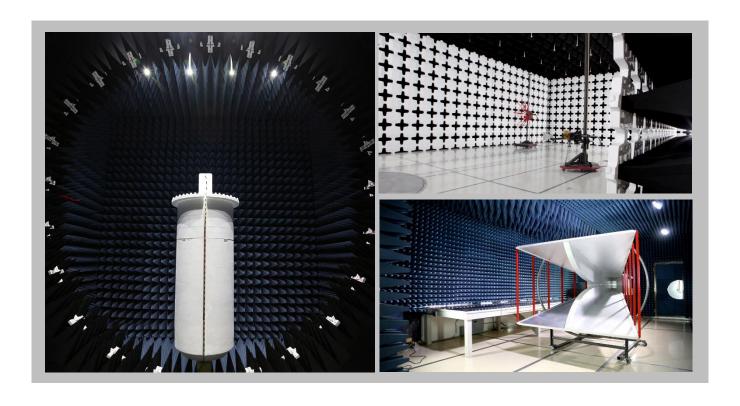
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

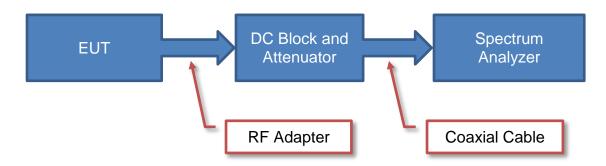
California Labs OC01-17 41 Tesla Irvine, CA 92618	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011			
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600			
		NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
	BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
	VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110			
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

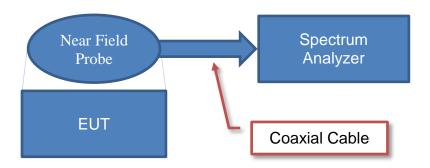
Measurement Uncertainty

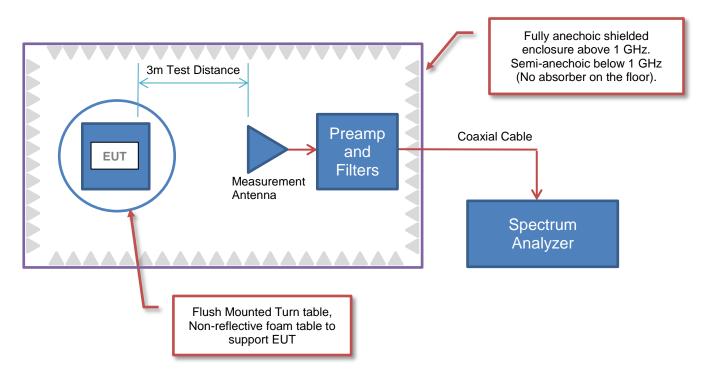
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

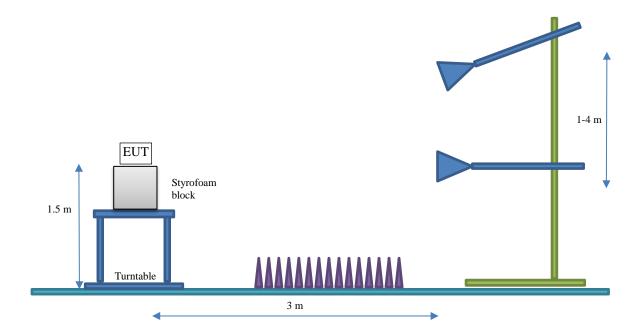
Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions



Test Setup Block Diagrams

Bore Siting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Schweitzer Engineering Laboratories, Inc.
Address:	2350 NE Hopkins Court
City, State, Zip:	Pullman, WA 99163
Test Requested By:	Miralem Cosic
EUT:	SEL-RP50
First Date of Test:	March 11, 2021
Last Date of Test:	April 9, 2021
Receipt Date of Samples:	March 11, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The SEL-RP50 works together with the SEL-FT50 and SEL-FR12 to form a system that provides a mechanism to speed up, thus enhance, protection of electrical utility distribution system.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2021 for operation in the 902 - 928 MHz Band.

CONFIGURATIONS

Configuration SCHW0247-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
900 MHz SEL-FT50 Repeater	Schweitzer Engineering Laboratories, Inc.	SEL-RP50	A12838995			

Configuration SCHW0247- 2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
900 MHz SEL-FT50 Repeater	Schweitzer Engineering Laboratories, Inc.	SEL-RP50	A12839004			

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power Supply	TDK Lambda	Z320-2-U	LOC-117B304-0002		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power	No	3.0 m	No	900 MHz SEL-FT50 Repeater	DC Power Supply	
AC Power	No	2.0 m	No	DC Power Supply	AC Mains	

MODIFICATIONS

Equipment Modifications

	l	1 - ,	5.5 PC C	NI (D: :: (EUT
Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-03-11	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2021-03-11	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2021-03-11	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2021-03-11	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2021-03-11	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2021-03-11	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2021-03-12	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT was taken home by the client before the next scheduled test.
8	2021-04-09	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Inverted F	Schweitzer Engineering Laboratories, Inc.	904 - 926	-4

No adjustable power settings were provided. The EUT was tested using power settings pre-defined by the manufacturer.

SPURIOUS RADIATED EMISSIONS

PSA-FSCI 2021 01 22 0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, continuous transmit, DTS, 2-FSK, 300kbps, low channel 904 MHz, mid channel 917 MHz & high channel 926 MHz

POWER SETTINGS INVESTIGATED

9V Battery

CONFIGURATIONS INVESTIGATED

SCHW0247 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 12400 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	None	Standard Gain Horns Cable	EVF	2020-11-18	2021-11-18
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2020-11-18	2021-11-18
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	NCR
Filter - High Pass	Micro-Tronics	HPM50108	HFV	2020-11-17	2021-11-17
Cable	N/A	Double Ridge Horn Cables	EVB	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2020-11-17	2021-11-17
Antenna - Double Ridge	EMCO	3115	AHC	2020-07-01	2022-07-01
Filter - Low Pass	Micro-Tronics	LPM50004	LFD	2021-02-15	2022-02-15
Filter - Low Pass	Micro-Tronics	LPM50003	LFB	2021-02-15	2022-02-15
Attenuator	Coaxicom	3910-10	AWX	2021-02-15	2022-02-15
Attenuator	Coaxicom	3910-20	AXZ	2021-02-15	2022-02-15
Cable	N/A	Bilog Cables	EVA	2020-11-17	2021-11-17
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2020-11-17	2021-11-17
Antenna - Biconilog	EMCO	3141	AXG	2019-07-23	2021-07-23
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2020-06-25	2021-06-25

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

SPURIOUS RADIATED EMISSIONS

				EmiR5 2021.01.08.0 PSA-ESCI 2021.01.22.0
Work Order:	SCHW0247	Date:	2021-03-12	01 211
Project:	None	Temperature: 21.9 °C		the Sugar
Job Site:	EV01	Humidity:	31.6% RH	
Serial Number:	A12838995	Barometric Pres.:	1030 mbar	Tested by: Cole Ghizzone
EUT:	SEL-RP50			_
Configuration:	1			_
Customer:	Schweitzer Engineerir	ng Laboratories, Inc.		_
Attendees:	Miralem Cosic			_
EUT Power:	9V Battery			
Operating Mode:	On, continuous transn	nit, DTS, 2-FSK, 300kbps	s, low channel 904	MHz, mid channel 917 MHz & high channel 926 MHz
Deviations:	None			
Comments:	None			
Test Specifications			Test Met	hod
FCC 15.247:2021			ANSI C6	3.10:2013

Run #	15	Test Distance (m)	Antenna Height(s)	1 to 4(m)	Results	Pass
80						
70						
60				-1		
50						
50			7			
30				•		
20						
10						
0 10		100	1000	10000		10000

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7007.750	37.6	11.8	0.22	211.0	3.0	0.0	Horz	AV	0.0	49.4	54.0	-4.6	Comments Mid Channel, EUT On Side
7337.750			2.33		3.0		Horz	AV				-4.6 -5.7	High Channel, EUT On Side
7406.250	35.9	12.4	2.44	234.0		0.0			0.0	48.3	54.0		
7406.258	34.7	12.4	2.34	261.0	3.0	0.0	Vert	AV	0.0	47.1	54.0	-6.9	High Channel, EUT Horizontal
7406.250	34.5	12.4	2.39	309.0	3.0	0.0	Horz	AV	0.0	46.9	54.0	-7.1	High Channel, EUT Horizontal
5425.307	39.5	7.2	1.46	212.0	3.0	0.0	Horz	AV	0.0	46.7	54.0	-7.3	Low Channel, EUT On Side
7334.258	34.7	11.8	1.69	317.0	3.0	0.0	Vert	AV	0.0	46.5	54.0	-7.5	Mid Channel, EUT Horizontal
7406.242	33.4	12.4	2.07	15.0	3.0	0.0	Vert	AV	0.0	45.8	54.0	-8.2	High Channel, EUT Vertical
7406.258	30.6	12.4	2.8	19.0	3.0	0.0	Horz	AV	0.0	43.0	54.0	-11.0	High Channel, EUT Vertical
8134.040	31.0	12.0	2.27	238.0	3.0	0.0	Horz	AV	0.0	43.0	54.0	-11.0	Low Channel, EUT On Side
7409.775	30.0	12.4	1.51	300.0	3.0	0.0	Vert	AV	0.0	42.4	54.0	-11.6	High Channel, EUT On Side
5425.307	34.7	7.2	1.5	268.0	3.0	0.0	Vert	AV	0.0	41.9	54.0	-12.1	Low Channel, EUT Horizontal
8134.027	29.3	12.0	2.16	252.0	3.0	0.0	Vert	AV	0.0	41.3	54.0	-12.7	Low Channel, EUT Horizontal
7334.200	48.1	11.8	2.33	211.0	3.0	0.0	Horz	PK	0.0	59.9	74.0	-14.1	Mid Channel, EUT On Side
7409.992	46.9	12.4	2.44	234.0	3.0	0.0	Horz	PK	0.0	59.3	74.0	-14.7	High Channel, EUT On Side
7406.250	45.7	12.4	2.34	261.0	3.0	0.0	Vert	PK	0.0	58.1	74.0	-15.9	High Channel, EUT Horizontal
7406.383	45.5	12.4	2.39	309.0	3.0	0.0	Horz	PK	0.0	57.9	74.0	-16.1	High Channel, EUT Horizontal
7338.225	45.7	11.8	1.69	317.0	3.0	0.0	Vert	PK	0.0	57.5	74.0	-16.5	Mid Channel, EUT Horizontal
7406.275	44.8	12.4	2.07	15.0	3.0	0.0	Vert	PK	0.0	57.2	74.0	-16.8	High Channel, EUT Vertical
5422.627	48.9	7.3	1.46	212.0	3.0	0.0	Horz	PK	0.0	56.2	74.0	-17.8	Low Channel, EUT On Side
7406.317	42.7	12.4	2.8	19.0	3.0	0.0	Horz	PK	0.0	55.1	74.0	-18.9	High Channel, EUT Vertical
7406.450	42.5	12.4	1.51	300.0	3.0	0.0	Vert	PK	0.0	54.9	74.0	-19.1	High Channel, EUT On Side
8137.573	42.1	12.0	2.27	238.0	3.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	Low Channel, EUT On Side

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
8137.347	41.4	12.0	2.16	252.0	3.0	0.0	Vert	PK	0.0	53.4	74.0	-20.6	Low Channel, EUT Horizontal
5425.347	44.7	7.2	1.5	268.0	3.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	Low Channel, EUT Horizontal
3706.417	25.6	3.9	1.5	55.0	3.0	0.0	Horz	AV	0.0	29.5	54.0	-24.5	High Channel, EUT On Side
3706.325	25.6	3.9	1.5	111.0	3.0	0.0	Vert	AV	0.0	29.5	54.0	-24.5	High Channel, EUT Horizontal
3667.142	25.4	3.5	1.5	78.0	3.0	0.0	Vert	AV	0.0	28.9	54.0	-25.1	Mid Channel, EUT Horizontal
3667.400	25.4	3.5	1.5	51.0	3.0	0.0	Horz	AV	0.0	28.9	54.0	-25.1	Mid Channel, EUT On Side
2778.625	27.7	-2.5	2.4	241.0	3.0	0.0	Horz	AV	0.0	25.2	54.0	-28.8	High Channel, EUT On Side
2751.650	27.7	-2.7	1.5	146.0	3.0	0.0	Vert	AV	0.0	25.0	54.0	-29.0	Mid Channel, EUT Horizontal
2751.667	27.7	-2.7	1.5	11.0	3.0	0.0	Horz	AV	0.0	25.0	54.0	-29.0	Mid Channel, EUT On Side
2711.573	27.9	-2.9	1.5	145.0	3.0	0.0	Horz	AV	0.0	25.0	54.0	-29.0	Low Channel, EUT On Side
2711.427	27.9	-2.9	1.5	236.0	3.0	0.0	Vert	AV	0.0	25.0	54.0	-29.0	Low Channel, EUT Horizontal
2778.600	27.3	-2.5	3.61	134.0	3.0	0.0	Vert	AV	0.0	24.8	54.0	-29.2	High Channel, EUT Horizontal
3705.483	40.2	3.9	1.5	55.0	3.0	0.0	Horz	PK	0.0	44.1	74.0	-29.9	High Channel, EUT On Side
3666.683	40.6	3.5	1.5	51.0	3.0	0.0	Horz	PK	0.0	44.1	74.0	-29.9	Mid Channel, EUT On Side
3701.558	40.1	3.8	1.5	111.0	3.0	0.0	Vert	PK	0.0	43.9	74.0	-30.1	High Channel, EUT Horizontal
3667.950	40.2	3.5	1.5	78.0	3.0	0.0	Vert	PK	0.0	43.7	74.0	-30.3	Mid Channel, EUT Horizontal
2752.308	42.4	-2.7	1.5	11.0	3.0	0.0	Horz	PK	0.0	39.7	74.0	-34.3	Mid Channel, EUT On Side
2714.347	42.4	-2.9	1.5	236.0	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	Low Channel, EUT Horizontal
2780.250	41.9	-2.5	3.61	134.0	3.0	0.0	Vert	PK	0.0	39.4	74.0	-34.6	High Channel, EUT Horizontal
2751.967	42.1	-2.7	1.5	146.0	3.0	0.0	Vert	PK	0.0	39.4	74.0	-34.6	Mid Channel, EUT Horizontal
2778.775	41.8	-2.5	2.4	241.0	3.0	0.0	Horz	PK	0.0	39.3	74.0	-34.7	High Channel, EUT On Side
2715.827	42.2	-2.9	1.5	145.0	3.0	0.0	Horz	PK	0.0	39.3	74.0	-34.7	Low Channel, EUT On Side

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16

TEST DESCRIPTION

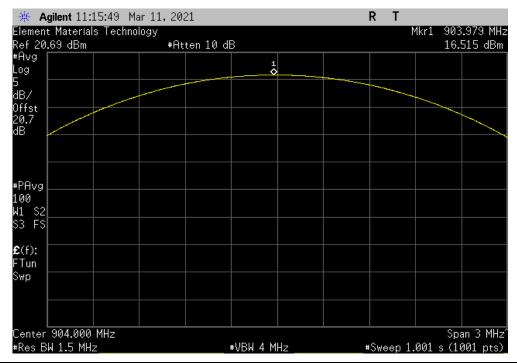
The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

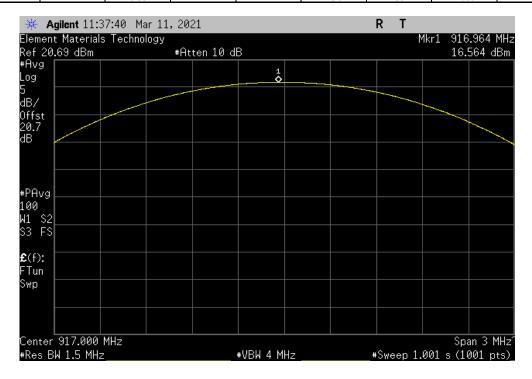
The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement.

The AVGSA-1 method was modified as the emissions bandwidth (B) was less than the available resolution bandwidth (RBw) of the spectrum analyzer. RBw was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

Results
Pass
Pass



900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz


Avg Cond Value Limit

Pwr (dBm) (dBm) (dBm) Results

16.515 16.5 30 Pass

900	MHz DTS, 2-FSK, 300 kbs, M	Mid Channel, 917 MF	·lz	
Avg Cond		Value	Limit	
Pwr (dBm)		(dBm)	(dBm)	Results
16.564		16.6	30	Pass

900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz

Avg Cond

Pwr (dBm)

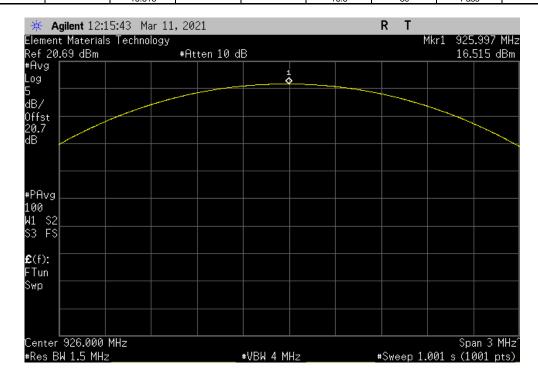
16.515

900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz

Value

Limit

(dBm)


(dBm)

Results

16.5

30

Pass

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16

TEST DESCRIPTION

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

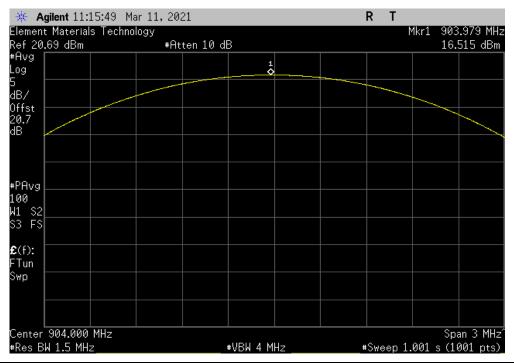
Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement.

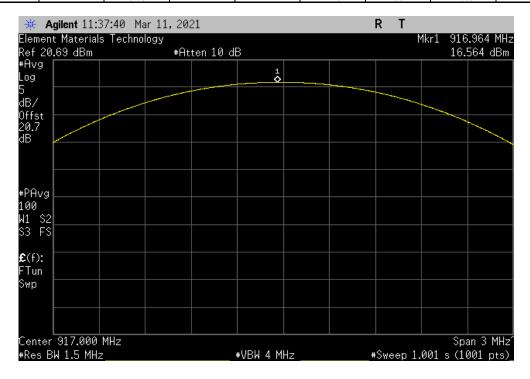
The AVGSA-1 method was modified as the emissions bandwidth (B) was less than the available resolution bandwidth (RBW) of the spectrum analyzer. RBW was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

Work Order: SCHW0247							
	Work Order:)	SEL-RP50	EUT:
Date: 11-Mar-21	Date:				4	A12839004	Serial Number:
Temperature: 23.5 °C	Temperature:			ories, Inc.	er Engineering Laborate	Schweitzer	Customer:
Humidity: 32.3% RH	Humidity:				Cosic	Miralem Co	Attendees:
rometric Pres.: 1026 mbar	Barometric Pres.:					None	Project:
Job Site: EV06	Job Site:	9V Battery	Powers		re	Jeff Alcoke	Tested by:
		Test Method				ONS	EST SPECIFICATION
		ANSI C63.10:2013					CC 15.247:2021
							COMMENTS
			t cable.	enuator, and measurement	•		DEVIATIONS FROM
							lone
			Jeff,	Signature	2		Configuration #
Value Limit	Antenna Value	Avg Cond					
(dBm) (dBm) Results	Gain (dBi) (dBm)	Pwr (dBm)					
	-4 12.5	16.515			Low Channel, 904 MHz	K 200 kbc I	00 MIL DTO 0 FOL
					, LOW CHAINTEN, 304 WINZ	N, 300 KDS, L	100 MHz DTS, 2-FSK
	-4 12.6	16.564			, Mid Channel, 917 MHz		
	Gain (dBi) (dBm)	Pwr (dBm)	t cable.	<u> </u>	ANDARD 2	I TEST STAI	DEVIATIONS FROM None Configuration #



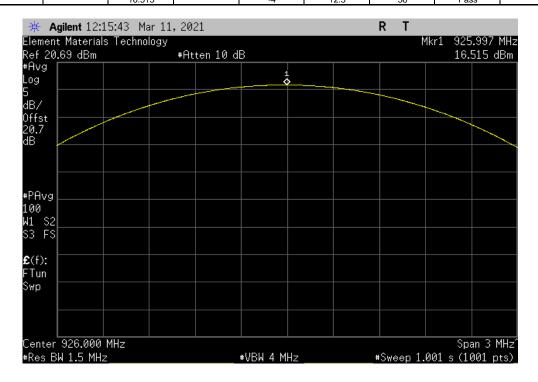
900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz


Avg Cond Antenna Value Limit

Pwr (dBm) Gain (dBi) (dBm) (dBm) Results

16.515 -4 12.5 36 Pass

900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz							
Avg Cond Antenna Value							
Pwr (dBm)	Gain (dBi)	(dBm)	(dBm)	Results			
16.564	-4	12.6	36	Pass			



900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz

Avg Cond Antenna Value Limit

Pwr (dBm) Gain (dBi) (dBm) (dBm) Results

16.515 -4 12.5 36 Pass

BAND EDGE COMPLIANCE

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

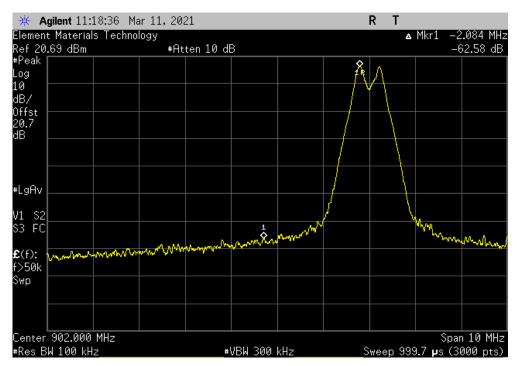
Because Output Power was measured using an RMS detector, the attenuation requirement is for band edge is -30 dBc.

BAND EDGE COMPLIANCE

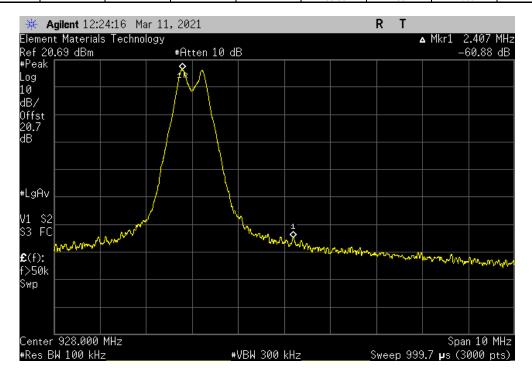
27/42

EUT: SEL-RP50
Serial Number: A12839004
Customer: Schweitzer Engineering Laboratories, Inc.
Attendees: Miralem Cosic
Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Work Order: SCHW0247
Date: 11-Mar-21
Temperature: 23.6 °C Humidity: 32.1% RH
Barometric Pres.: 1026 mbar Power: 9V Battery Test Method Job Site: EV06 FCC 15.247:2021 COMMENTS Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value (dBc) Result ≤ (dBc) 900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz 900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz -60.88 -30 Pass

BAND EDGE COMPLIANCE



900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz


Value Limit

(dBc) ≤ (dBc) Result

-62 58 -30 Pass

900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz						
Value Limit						
				(dBc)	≤ (dBc)	Result
				-60.88	-30	Pass

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	2021-03-10	2022-03-10

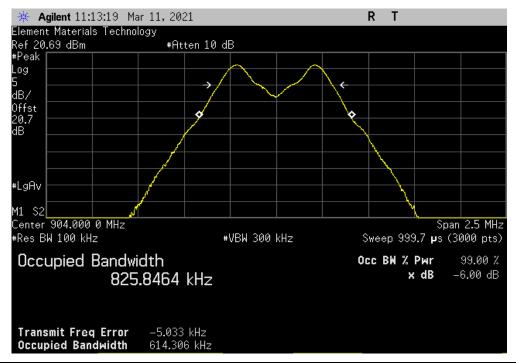
TEST DESCRIPTION

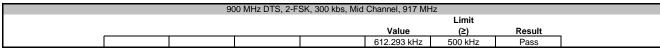
The EUT was set to the channels and modes listed in the datasheet.

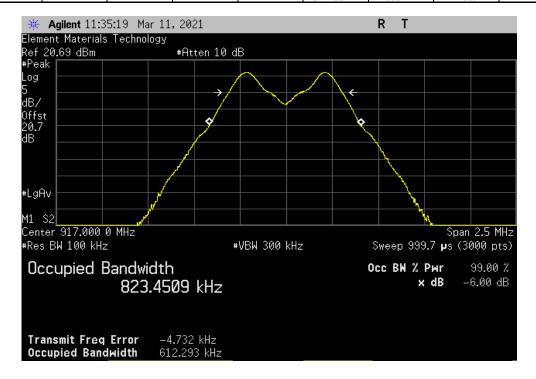
The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

30/42

					TbtTx 2019.08.30.0	XMit 2020.12.30.0
EUT: SEL	RP50			Work Order:	SCHW0247	
Serial Number: A12	2839004			Date:	9-Apr-21	
Customer: Sch	weitzer Engineering Laboratories, Inc.			Temperature:	23.4 °C	
Attendees: Mira	alem Cosic			Humidity:	32.3% RH	
Project: Nor	ne			Barometric Pres.:	1026 mbar	
Tested by: Jeff	f Alcoke	Po	wer: 9V Battery	Job Site:	EV06	
TEST SPECIFICATIONS	3		Test Method			
FCC 15.247:2021			ANSI C63.10:2013			
FCC 15.247:2021 COMMENTS Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. Spectrum analizer AFA was used for data collection on High Channel. DEVIATIONS FROM TEST STANDARD None Configuration # 2 Signature Limit Value (2) Result						
COMMENTS						
	•	irement cable. Spectrum	analizer AFA was used for data collection	in on High Channel.		
	31 STANDARD					
	2 Signature	Jah				
					Limit	
				Value	(≥)	Result
900 MHz DTS, 2-FSK, 30	00 kbs, Low Channel, 904 MHz			614.306 kHz	500 kHz	Pass
900 MHz DTS, 2-FSK, 30	00 kbs, Mid Channel, 917 MHz			612.293 kHz	500 kHz	Pass
000 MHz DTS 2-ESK 30	On the High Channel 926 MHz			610 485 1447	500 kHz	Page

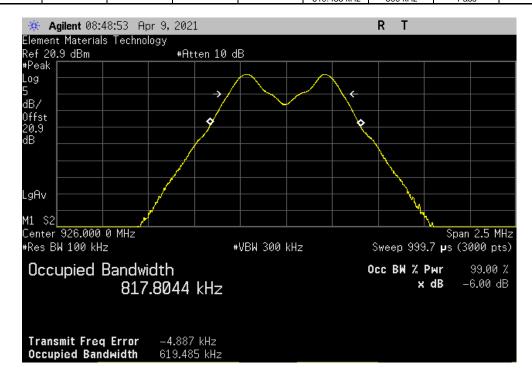



900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz


Limit

Value
(2) Result

614.306 kHz 500 kHz Pass



900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz

Limit

Value (2) Result

619.485 kHz 500 kHz Pass

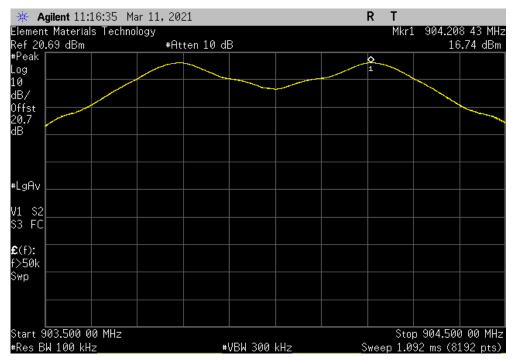
XMit 2020.12.30.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

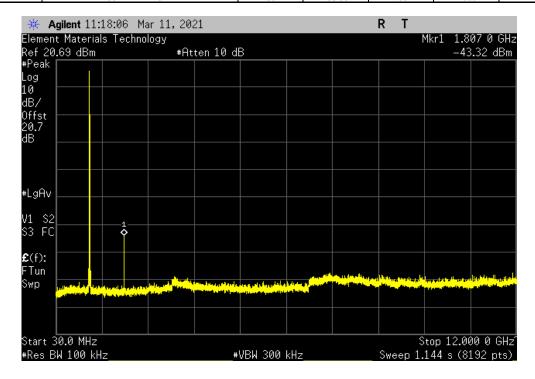
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16

TEST DESCRIPTION

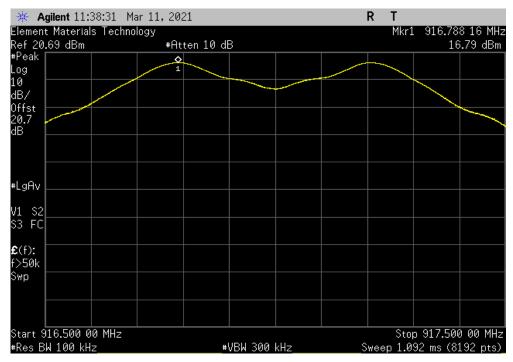

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Because an RMS detector was used to measure Output Power, the attenuation requirement is -30 dBc.

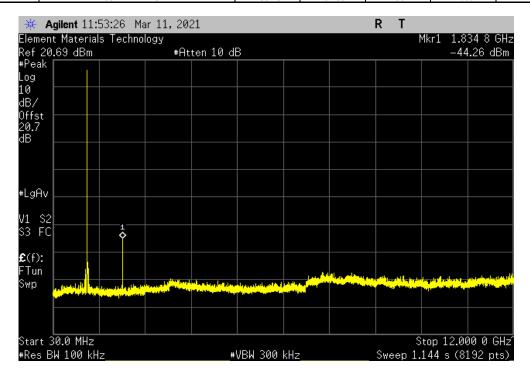


EUT: SEL-RP50
Serial Number: A12839004
Customer: Schweitzer Engineering Laboratories, Inc.
Attendees: Marchalem Cosic
Person Marchalem Cosic Work Order: SCHW0247
Date: 11-Mar-21
Temperature: 23.4 °C Humidity: 32.2% RH Barometric Pres.: 1026 mbar Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 9V Battery Test Method Job Site: EV06 FCC 15.247:2021 COMMENTS Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Measured Freq (MHz) Result Range (dBc) ≤ (dBc) 900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz Fundamental 900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz 900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz 900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz 900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz 900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz Pass N/A 30 MHz - 12 GHz 1807 -60.06 -30 N/A -61.05 N/A N/A -30 Fundamental 916.79 Pass N/A 30 MHz - 12 GHz 1834.8 Fundamental 925.79 N/A 30 MHz - 12 GHz -62.43 900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz 1852.3

	900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz							
	Frequency	Measured	Max Value	Limit				
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result			
ĺ	30 MHz - 12 GHz	1807	-60.06	-30	Pass			



900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz

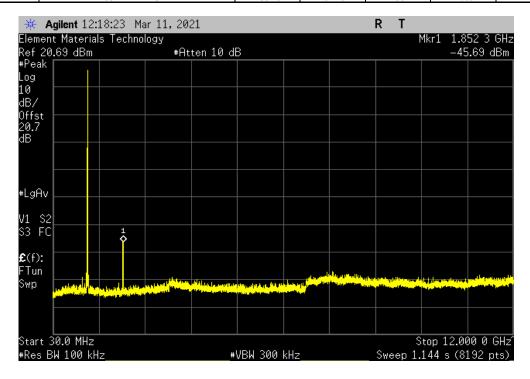

Frequency Measured Max Value Limit

Range Freq (MHz) (dBc) ≤ (dBc) Result

Fundamental 916.79 N/A N/A N/A

	900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz						
	Frequency	Limit					
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result		
1	30 MHz - 12 GHz	1834.8	-61.05	-30	Pass		

900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz


Frequency Measured Max Value Limit

Range Freq (MHz) (dBc) ≤ (dBc) Result

Fundamental 925.79 N/A N/A N/A

	900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz							
	Frequency Measured Max Value Limit							
	Range	Freq (MHz)	(dBc)	≤ (dBc)	Result			
l	30 MHz - 12 GHz	1852.3	-62.43	-30	Pass			

XMit 2020.12.30.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

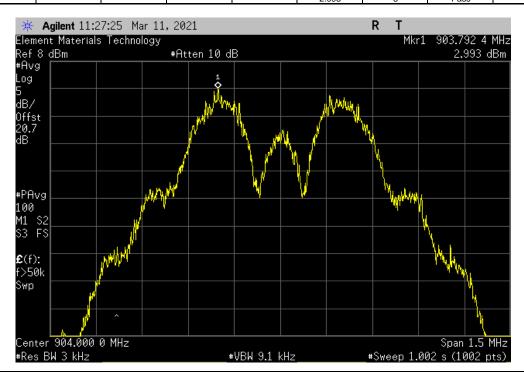
Description Manufacturer		Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Attenuator	S.M. Electronics	SA26B-20	AUY	2020-03-13	2021-03-13
Block - DC	Fairview Microwave	SD3379	AMW	2020-03-13	2021-03-13
Generator - Signal	Agilent	N5181A	TIG	2020-04-16	2023-04-16
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16

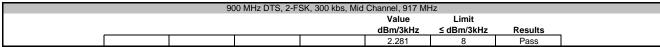
TEST DESCRIPTION

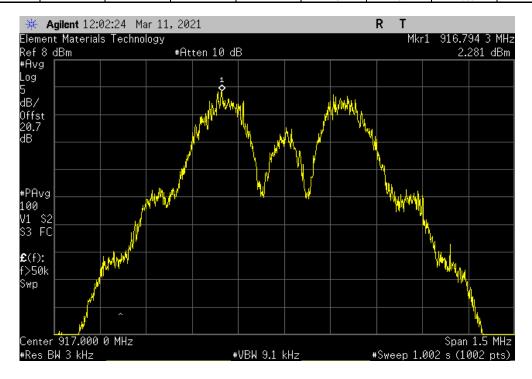
The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.

EUT: SEL-RP50
Serial Number: A12839004
Customer: Schweitzer Engineering Laboratories, Inc.
Attendees: Miralem Cosic
Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Work Order: SCHW0247
Date: 11-Mar-21
Temperature: 23.4 °C Humidity: 32.3% RH
Barometric Pres.: 1026 mbar Power: 9V Battery Test Method Job Site: EV06 FCC 15.247:2021 COMMENTS Reference level offset includes: DC Block, 20 dB attenuator, and measurement cable. DEVIATIONS FROM TEST STANDARD Configuration # 2 Signature Value dBm/3kHz 2.993 Limit ≤ dBm/3kHz Results 900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz 900 MHz DTS, 2-FSK, 300 kbs, Mid Channel, 917 MHz 900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz Pass Pass Pass 2.281 2.87

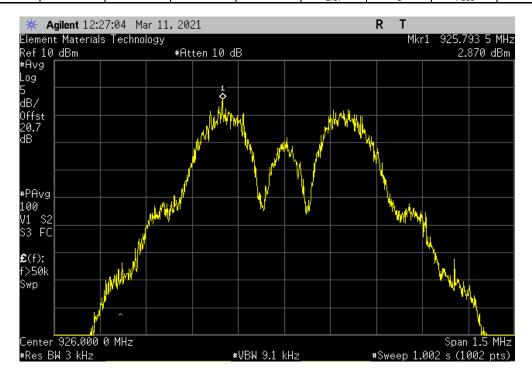



900 MHz DTS, 2-FSK, 300 kbs, Low Channel, 904 MHz


Value Limit

dBm/3kHz ≤ dBm/3kHz Results

2.993 8 Pass



900 MHz DTS, 2-FSK, 300 kbs, High Channel, 926 MHz

Value Limit

dBm/3kHz ≤ dBm/3kHz Results

2.87 8 Pass

End of Test Report