
MPE Calculations

R33TSG38C11

1.0	SCOPE	3
2.0	REVISION LEVEL	4
3.0	REFERENCE DOCUMENTS	4
4.0	CALCULATIONS	5
5.0	CONCLUSION	6

1.0 SCOPE:

This Report Demonstrates Evaluation and Compliance for Human Exposure to Electromagnetic Fields as Outlined by the Federal Communications Commission Office of Engineering and Technology Bulletin 65.

2.0 REVISION LEVEL:

DATE	COMMENTS	REVISION
6/22/2005	Created.	1.0

3.0 REFERANCE DOCUMENTS:

- (A) **Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 1.1310**
- (B) **Limits for Maximum Permissible Exposure (MPE). Code of Federal Regulations Title 47, Volume 1, Sections 2.1093**
- (C) **Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. OET Bulletin 67 Edition 97-01.**

4.0 CALCULATIONS:

The following worst case emissions are based on a PPt (Peak Power Total) measurement of 10.40 dBm into the antenna. And the worst case antenna gain on axis is found to be 0.0 dBi.

Total power into antenna:

$$A) \quad Pt = 10.40 \text{ dBm} = 10^{(10.40 \text{ dBm}/10)} = 10.96 \text{ mW}$$

Total effective isotropic radiated power at the Transmitter:

$$B) \quad EIRP = 10.40 \text{ dBm} + 0.0 \text{ dBi} = 10.4 \text{ dBm}$$

$$10.4 \text{ dBm} = 11.0 \text{ mW}$$

Power density at a distance of 20 centimeters is:

$$C) \quad S = \frac{EIRP}{4\pi R^2} = 2.2 \mu\text{W/cm}^2$$

Where S = Power density (mW/cm²), EIRP = Equivalent isotropic radiated power (mW), R = Distance to the center of radiation of the antenna (cm)

5.0 CONCLUSION:

Based on the FCC Limits for Maximum Permissible Exposure (MPE) given in Table 1 of reference document (A) as 1 mW/cm² this device falls under the required limits.