XceedID

ADDENDUM TEST REPORT FOR 90569-10

RFID Card Programmer, PG1000 (125kHz & 13.56MHz)

Tested to the following standards:

FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225

Report No.: 90569-10A

Date of issue: August 10, 2010

803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 71 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C – General Information	7
Temperature and Humidity During Testing	7
15.33(a) Frequency Ranges Tested	7
15.203 Antenna Requirements	7
EUT Operating Frequency	7
FCC Part 15 Subpart C – 125 kHZ	8
FCC 15.207 AC Conducted Emissions	8
FCC 15.209 Carrier Measurement	23
FCC 15.209 Bandwidth (20 dB) & RSS-210 Bandwidth (99%)	24
FCC 15.209 Spurious Emissions	27
FCC Part 15 Subpart C – 13.56 MHZ	36
FCC 15.207 AC Conducted Emissions	36
FCC 15.255(a) Carrier Measurement	52
FCC 15.225(a) Bandwidth (20 dB) & RSS-210 Bandwidth (99%)	53
FCC 15.225(b)(c)(d) Emission Mask Plot	
FCC 15.225(b)(c)(d) Spurious Emissions	58
FCC 15.225(e) Frequency Stability	67
Supplemental Information	70
Measurement Uncertainty	70
Emissions Test Details	70

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

XceedID Joyce Walker

500 Golden Ridge Road, Bldg. 1 CKC Laboratories, Inc.
Golden, CO 80401 5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: Bryan Hoff Project Number: 90569*

*Note: Trouble shooting was performed on 90685 and once completed references back to 90569 on the data sheets was not done. Therefore, data sheets reference 90685 but the

data really is for project 90569

Customer Reference Number: 304839

DATE OF EQUIPMENT RECEIPT: May 5, 2010

DATE(S) OF TESTING: May 5 – June 1, 2010

Revision History

Original: Testing was performed on the RFID Card Programmer, PG1000 (125kHz and 13.56MHz) to FCC Part 15 Subpart C Sections 15.207, 15.209 & 15.225.

Addendum A: The conducted data sheet on pages 12-14 contained wrong data and has been replaced with the proper data for this project. Also replaced was the 15.225 Carrier plot which now shows the limit lines.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 27 Bel

Page 3 of 71 Report No.: 90569-10A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Site Registration & Accreditation Information

Location	JAPAN	CANADA	FCC
Mariposa A	R-563, C-578 & T-1492, G-87	3082A-2	90477

Page 4 of 71 Report No.: 90569-10A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

125kHz Mode

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
Carrier Measurement	FCC Part 15 Subpart C Section 15.209 / ANSI C63.4 (2003)	Pass
20dB Bandwidth	FCC Part 15 Subpart C Section 15.209 / ANSI C63.4 (2003)	Pass
Spurious Emissions	FCC Part 15 Subpart C Section 15.209 / ANSI C63.4 (2003)	Pass
99% Bandwidth	RSS-210	Pass

13.56MHz Mode

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
Carrier Measurement	FCC Part 15 Subpart C Section 15.225(a) / ANSI C63.4 (2003)	Pass
20dB Bandwidth	FCC Part 15 Subpart C Section 15.225(a) / ANSI C63.4 (2003)	Pass
Emission Mask Plot	FCC Part 15 Subpart C Section 15.225(b)(c)(d) / ANSI C63.4 (2003)	Pass
Spurious Emissions	FCC Part 15 Subpart C Section 15.225(b)(c)(d) / ANSI C63.4 (2003)	Pass
Frequency Stability	FCC Part 15 Subpart C Section 15.225(e) / ANSI C63.4 (2003)	Pass
99% Bandwidth	RSS-210	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 71 Report No.: 90569-10A

EQUIPMENT UNDER TEST (EUT)

The following model was tested by CKC Laboratories: RFID Card Programmer, PG 1000

Since the time of testing the manufacturer states that the model name has a typo. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets: **RFID Card Programmer, PG1000**

RFID Card Programmer

Manuf: XceedID Model: PG1000 Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop Computer

Manuf: Lenovo Model: SL410

Serial: LR-ZZW25 10/02

Page 6 of 71 Report No.: 90569-10A

FCC PART 15 SUBPART C – GENERAL INFORMATION

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

Temperature and Humidity During Testing

The temperature during testing was within +15°C and + 35°C. The relative humidity was between 20% and 75%.

15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209/15.225/15.247 Radiated Emissions: 9 kHz – 1000 MHz

15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 125 kHz and 13.56 MHz.

Page 7 of 71 Report No.: 90569-10A

FCC PART 15 SUBPART C - 125 KHZ

FCC 15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 6/1/2010
Test Type: Conducted Emissions Time: 09:00:40
Equipment: RFID Card Programmer Sequence#: 44

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

_ rest Equal	pintenti				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
T3	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Page 8 of 71 Report No.: 90569-10A

Test Conditions / Notes:

FCC 15.207 Class B Conducted Emissions

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 125 kHz card.

Transmitter and receiver are on during this run with the integral antenna.

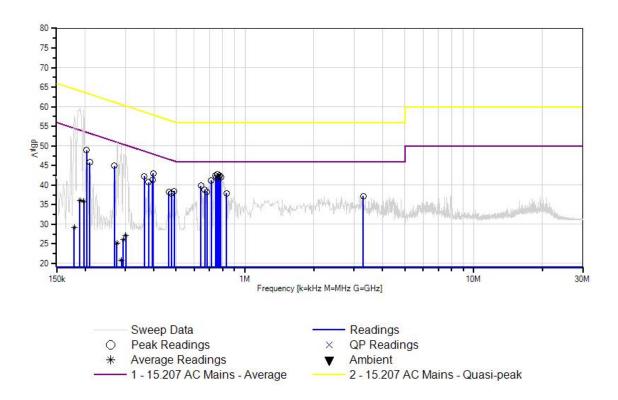
Frequencies of interest: 0.009 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Measui	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	757.216k	32.6	+0.1	+9.9	+0.1		+0.0	42.7	46.0	-3.3	Black
2	775.396k	32.4	+0.1	+9.9	+0.1		+0.0	42.5	46.0	-3.5	Black
3	742.672k	32.4	+0.1	+9.9	+0.0		+0.0	42.4	46.0	-3.6	Black
4	760 1041	22.0	. 0. 1	.0.0	. 0.1		.0.0	40.1	46.0	2.0	D1 1
4	768.124k	32.0	+0.1	+9.9	+0.1		+0.0	42.1	46.0	-3.9	Black
5	784.486k	31.9	+0.1	+9.9	+0.1		+0.0	42.0	46.0	-4.0	Black
	704.400K	31.9	+0.1	⊤ ⊅.⊅	+0.1		+0.0	42.0	40.0	-4.0	Diack
6	746.308k	31.8	+0.1	+9.9	+0.0		+0.0	41.8	46.0	-4.2	Black
	, 10.500H	21.0	10.1	17.7	10.0		10.0	11.0	10.0	2	Bluck
7	202.723k	39.1	+0.0	+9.7	+0.1		+0.0	48.9	53.5	-4.6	Black
8	711.766k	31.2	+0.1	+9.9	+0.0		+0.0	41.2	46.0	-4.8	Black
9	397.250k	33.0	+0.1	+9.8	+0.1		+0.0	43.0	47.9	-4.9	Black
10	642.682k	29.9	+0.1	+9.8	+0.0		+0.0	39.8	46.0	-6.2	Black
1.1	260 1721	25.0	0.1	0.0	0.0		0.0	44.0	51.0		D1 1
11	268.172k	35.0	+0.1	+9.8	+0.0		+0.0	44.9	51.2	-6.3	Black
12	362.708k	32.3	+0.1	+9.8	+0.1		+0.0	42.3	48.7	-6.4	Dlask
12	302.708K	32.3	+0.1	+9.8	+0.1		+0.0	42.3	40.7	-0.4	Black
13	393.614k	31.3	+0.1	+9.8	+0.1		+0.0	41.3	48.0	-6.7	Black
	575.01 /K	31.3	10.1	17.0	10.1		10.0	11.5	10.0	0.7	Diuck
14	668.134k	28.8	+0.1	+9.8	+0.0		+0.0	38.7	46.0	-7.3	Black
		_0.0									
15	209.995k	36.0	+0.0	+9.7	+0.1		+0.0	45.8	53.2	-7.4	Black


Page 9 of 71 Report No.: 90569-10A

16	379.070k	30.7	+0.1	+9.8	+0.1	+0.0	40.7	48.3	-7.6	Black
17	489.969k	28.5	+0.1	+9.8	+0.1	+0.0	38.5	46.2	-7.7	Black
18	682.678k	28.4	+0.1	+9.8	+0.0	+0.0	38.3	46.0	-7.7	Black
19	829.937k	27.8	+0.1	+9.9	+0.1	+0.0	37.9	46.0	-8.1	Black
20	464.517k	28.3	+0.1	+9.8	+0.1	+0.0	38.3	46.6	-8.3	Black
21	477.243k	27.8	+0.1	+9.8	+0.1	+0.0	37.8	46.4	-8.6	Black
22	3.286M	26.9	+0.3	+9.9	+0.1	+0.0	37.2	46.0	-8.8	Black
23	197.269k Ave	26.0	+0.0	+9.7	+0.1	+0.0	35.8	53.7	-17.9	Black
٨	197.269k	49.4	+0.0	+9.7	+0.1	+0.0	59.2	53.7	+5.5	Black
25	189.997k Ave	26.3	+0.0	+9.7	+0.1	+0.0	36.1	54.0	-17.9	Black
٨	189.997k	49.9	+0.0	+9.7	+0.1	+0.0	59.7	54.0	+5.7	Black
27	300.869k Ave	17.3	+0.1	+9.8	+0.0	+0.0	27.2	50.2	-23.0	Black
٨	300.896k	38.6	+0.1	+9.8	+0.0	+0.0	48.5	50.2	-1.7	Black
29	293.624k Ave	16.1	+0.1	+9.8	+0.0	+0.0	26.0	50.4	-24.4	Black
۸	293.624k	38.0	+0.1	+9.8	+0.0	+0.0	47.9	50.4	-2.5	Black
31	179.089k Ave	19.3	+0.0	+9.7	+0.1	+0.0	29.1	54.5	-25.4	Black
٨	179.089k	47.9	+0.0	+9.7	+0.1	+0.0	57.7	54.5	+3.2	Black
33	275.444k Ave	15.3	+0.1	+9.8	+0.0	+0.0	25.2	51.0	-25.8	Black
٨	275.444k	41.1	+0.1	+9.8	+0.0	+0.0	51.0	51.0	+0.0	Black
35	288.170k Ave	10.9	+0.1	+9.8	+0.0	+0.0	20.8	50.6	-29.8	Black
٨	288.170k	40.4	+0.1	+9.8	+0.0	+0.0	50.3	50.6	-0.3	Black
37	173.635k Ave	1.7	+0.0	+9.7	+0.1	+0.0	11.5	54.8	-43.3	Black
٨	173.635k	42.7	+0.0	+9.7	+0.1	+0.0	52.5	54.8	-2.3	Black

CKC Laboratories, Inc. Date: 6/1/2010 Time: 09:00:40 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 44 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: **XceedID**

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 6/1/2010 Test Type: **Conducted Emissions** Time: 19:44:25 Equipment: **Transmitter** Sequence#: 30

Manufacturer: XceedID Tested By: Chuck Kendall Model: 125kHz & 13.56 MHz 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
Т3	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Transmitter*	XceedID	125kHz & 13.56 MHz	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

FCC 15.207 Class B Conducted Emissions

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 125 kHz card.

Transmitter and receiver are on during this run with the integral antenna.

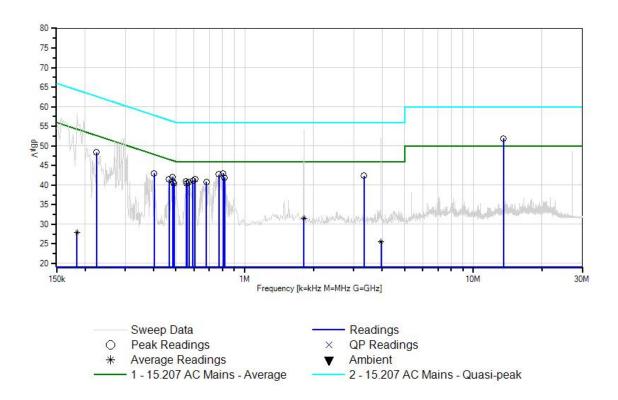
Frequencies of interest: 0.009 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

 $Temp = 72^{\circ}F$ Humidity = 40 % Pressure = 97.7

Report No.: 90569-10A

Ext Attn: 0 dB


Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: White		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	•	dB	Ant
1	13.561M	40.2	+0.8	+9.9	+1.0		+0.0	51.9	50.0	+1.9	White
									Exempt (I		
									exclusion 4.3.1 301		
2	804.485k	32.4	+0.1	+9.9	+0.6		+0.0	43.0	4.3.1 301 4	-3.0	White
2	004.403K	32.4	+0.1	+9.9	+0.0		+0.0	43.0	40.0	-3.0	willte
3	769.942k	32.1	+0.1	+9.9	+0.6		+0.0	42.7	46.0	-3.3	White
	707.71210	32.1	10.1	17.7	10.0		10.0	.2.,	10.0	3.3	***************************************
4	3.331M	31.6	+0.3	+9.9	+0.6		+0.0	42.4	46.0	-3.6	White
5	815.393k	31.3	+0.1	+9.9	+0.6		+0.0	41.9	46.0	-4.1	White
6	482.697k	31.7	+0.1	+9.8	+0.5		+0.0	42.1	46.3	-4.2	White
7	224.539k	38.1	+0.1	+9.8	+0.4		+0.0	48.4	52.6	-4.2	White
- 0	co c 2221	21.2	0.1	0.0	0.5		0.0	41.6	460	4.4	****
8	606.322k	31.2	+0.1	+9.8	+0.5		+0.0	41.6	46.0	-4.4	White
9	400.886k	32.7	+0.1	+9.8	+0.4		+0.0	43.0	47.8	-4.8	White
7	400.00K	32.1	+0.1	+7.0	±0. 4		+0.0	45.0	47.0	-4.0	Willie
10	593.595k	30.8	+0.1	+9.8	+0.5		+0.0	41.2	46.0	-4.8	White
10	575.575K	30.0	10.1	17.0	10.5		10.0	11.2	10.0	1.0	vv mice
11	553.599k	30.6	+0.1	+9.8	+0.5		+0.0	41.0	46.0	-5.0	White
12	466.335k	31.1	+0.1	+9.8	+0.5		+0.0	41.5	46.6	-5.1	White
13	679.042k	30.4	+0.1	+9.8	+0.5		+0.0	40.8	46.0	-5.2	White
14	569.961k	30.4	+0.1	+9.8	+0.5		+0.0	40.8	46.0	-5.2	White
1.5	49.6 2221	20.4	. 0.1	.00	.0.5		.0.0	40.0	16.0	<i>5</i> 4	XX71. *4 .
15	486.333k	30.4	+0.1	+9.8	+0.5		+0.0	40.8	46.2	-5.4	White
16	559.053k	30.0	+0.1	+9.8	+0.5		+0.0	40.4	46.0	-5.6	White
10	339.033K	30.0	+0.1	⊤ 2.0	+0.5		+0.0	40.4	40.0	-5.0	Willia
17	489.969k	30.1	+0.1	+9.8	+0.5		+0.0	40.5	46.2	-5.7	White
1,	107.7071	30.1	10.1	17.0	10.5		10.0	10.5	10.2	3.7	***************************************
18	1.816M	20.9	+0.2	+9.9	+0.6		+0.0	31.6	46.0	-14.4	White
	Ave										
٨	1.816M	43.4	+0.2	+9.9	+0.6		+0.0	54.1	46.0	+8.1	White
20	3.945M	14.7	+0.4	+9.9	+0.6		+0.0	25.6	46.0	-20.4	White
	Ave										
^	3.945M	41.2	+0.4	+9.9	+0.6		+0.0	52.1	46.0	+6.1	White
22	104 7 421	17.0	.00	.07	. 0. 4		. 0. 0	27.0	540	06.4	33.71. **
22	184.543k	17.8	+0.0	+9.7	+0.4		+0.0	27.9	54.3	-26.4	White
<u></u>	Ave										

24 157,273k 1.5 +0.0 +9.7 +0.4 +0.0 11.6 55.6 -44.0 White ^ 157,273k 47.1 +0.0 +9.7 +0.4 +0.0 57.2 55.6 +1.6 White 26 27,124M -21.0 +1.2 +9.9 +1.9 +0.0 -8.0 50.0 -58.0 White Ave -27,124M 35.6 +1.2 +9.9 +1.9 +0.0 48.6 50.0 -1.4 White 28 306,350k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.1 -62.4 White Ave -306,350k -37.4 +0.1 +9.8 +0.4 +0.0 -12.3 50.1 -62.4 White Ave -300,896k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.2 -62.5 White Ave -295,442k -22.6 +0.1 +9.8 <t+0.4< td=""> +0.0 -12.3 <t< th=""><th>^ 184.543k</th><th>48.1</th><th>+0.0</th><th>+9.7</th><th>+0.4</th><th>+0.0</th><th>58.2</th><th>54.3</th><th>+3.9</th><th>White</th></t<></t+0.4<>	^ 184.543k	48.1	+0.0	+9.7	+0.4	+0.0	58.2	54.3	+3.9	White
^ 157.273k	24 157.273k	1.5	+0.0	+9.7	+0.4	+0.0	11.6	55.6	-44.0	White
26 27.124M		47 1	+0.0	+9 7	+0.4	+0.0	57.2	55.6	+1 6	White
Ave ^ 27.124M										
28 306.350k		-21.0	+1.2	+9.9	+1.9	+0.0	-8.0	50.0	-58.0	White
Ave ^ 306.350k	^ 27.124M	35.6	+1.2	+9.9	+1.9	+0.0	48.6	50.0	-1.4	White
^ 306.350k		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.1	-62.4	White
Ave		37.4	+0.1	+9.8	+0.4	+0.0	47.7	50.1	-2.4	White
^ 300.896k		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.2	-62.5	White
Ave 33		40.6	+0.1	+9.8	+0.4	+0.0	50.9	50.2	+0.7	White
33 291.000k		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.4	-62.7	White
^ 295.442k 41.7 +0.1 +9.8 +0.4 +0.0 52.0 50.4 +1.6 White 35 288.170k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.6 -62.9 White ^ 288.170k 41.4 +0.1 +9.8 +0.4 +0.0 51.7 50.6 +1.1 White ^ 291.000k 36.5 +0.1 +9.8 +0.4 +0.0 46.8 50.5 -3.7 White 38 282.716k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.7 -63.0 White Ave - 282.716k 40.4 +0.1 +9.8 +0.4 +0.0 50.7 50.7 +0.0 White 40 277.262k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.9 -63.2 White Ave - 277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White Ave - 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 51.2	33 291.000k	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.5	-62.8	White
Ave ^ 288.170k 41.4 +0.1 +9.8 +0.4 +0.0 51.7 50.6 +1.1 White ^ 291.000k 36.5 +0.1 +9.8 +0.4 +0.0 46.8 50.5 -3.7 White 38 282.716k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.7 -63.0 White ^ 282.716k 40.4 +0.1 +9.8 +0.4 +0.0 50.7 50.7 +0.0 White 40 277.262k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.9 -63.2 White Ave -277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White 42 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 51.1 -63.4 White Ave ^ 269.990k 40.9 +0.1 +9.8		41.7	+0.1	+9.8	+0.4	+0.0	52.0	50.4	+1.6	White
^ 288.170k 41.4 +0.1 +9.8 +0.4 +0.0 51.7 50.6 +1.1 White ^ 291.000k 36.5 +0.1 +9.8 +0.4 +0.0 46.8 50.5 -3.7 White 38 282.716k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.7 -63.0 White Ave - 282.716k 40.4 +0.1 +9.8 +0.4 +0.0 50.7 50.7 +0.0 White 40 277.262k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.9 -63.2 White Ave - 277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White 42 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White Ave - 269.990k 40.9 +0.1 +9.8 +0.4 +0.0 51.2 51.1 +0.1 White Ave - 269.990k 40.9 +0.1 +9.8 +0.4 +0.0		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.6	-62.9	White
38 282.716k		41.4	+0.1	+9.8	+0.4	+0.0	51.7	50.6	+1.1	White
Ave ^ 282.716k	^ 291.000k	36.5	+0.1	+9.8	+0.4	+0.0	46.8	50.5	-3.7	White
^ 282.716k 40.4 +0.1 +9.8 +0.4 +0.0 50.7 50.7 +0.0 White 40 277.262k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 50.9 -63.2 White ^ 277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White 42 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 51.1 -63.4 White Ave ^ 269.990k 40.9 +0.1 +9.8 +0.4 +0.0 51.2 51.1 +0.1 White 44 197.269k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 53.7 -66.2 White Ave ^ 197.269k 46.3 +0.0 +9.7 +0.4 +0.0 56.4 53.7 +2.7 White 46 177.271k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 54.6 -67.1 White		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.7	-63.0	White
Ave ^ 277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White 42 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 51.1 -63.4 White Ave ^ 269.990k 40.9 +0.1 +9.8 +0.4 +0.0 51.2 51.1 +0.1 White 44 197.269k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 53.7 -66.2 White Ave Ave +0.0 +9.7 +0.4 +0.0 56.4 53.7 +2.7 White 46 177.271k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 54.6 -67.1 White Ave		40.4	+0.1	+9.8	+0.4	+0.0	50.7	50.7	+0.0	White
^ 277.262k 40.5 +0.1 +9.8 +0.4 +0.0 50.8 50.9 -0.1 White 42 269.990k -22.6 +0.1 +9.8 +0.4 +0.0 -12.3 51.1 -63.4 White Ave ^ 269.990k 40.9 +0.1 +9.8 +0.4 +0.0 51.2 51.1 +0.1 White 44 197.269k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 53.7 -66.2 White Ave ^ 197.269k 46.3 +0.0 +9.7 +0.4 +0.0 56.4 53.7 +2.7 White 46 177.271k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 54.6 -67.1 White Ave		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.9	-63.2	White
Ave A		40.5	+0.1	+9.8	+0.4	+0.0	50.8	50.9	-0.1	White
^ 269.990k 40.9 +0.1 +9.8 +0.4 +0.0 51.2 51.1 +0.1 White 44 197.269k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 53.7 -66.2 White Ave ^ 197.269k 46.3 +0.0 +9.7 +0.4 +0.0 56.4 53.7 +2.7 White 46 177.271k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 54.6 -67.1 White Ave		-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	51.1	-63.4	White
Ave ^ 197.269k		40.9	+0.1	+9.8	+0.4	+0.0	51.2	51.1	+0.1	White
^ 197.269k 46.3 +0.0 +9.7 +0.4 +0.0 56.4 53.7 +2.7 White 46 177.271k -22.6 +0.0 +9.7 +0.4 +0.0 -12.5 54.6 -67.1 White Ave		-22.6	+0.0	+9.7	+0.4	+0.0	-12.5	53.7	-66.2	White
Ave		46.3	+0.0	+9.7	+0.4	+0.0	56.4	53.7	+2.7	White
		-22.6	+0.0	+9.7	+0.4	+0.0	-12.5	54.6	-67.1	White
		42.9	+0.0	+9.7	+0.4	+0.0	53.0	54.6	-1.6	White

CKC Laboratories, Inc. Date: 6/1/2010 Time: 19:44:25 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 30 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 5/20/2010
Test Type: Conducted Emissions Time: 10:50:27
Equipment: RFID Card Programmer Sequence#: 47

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
T3	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 125 kHz card.

Transmitter and receiver are on during this run and the integral antenna has been replaced by a resistor.

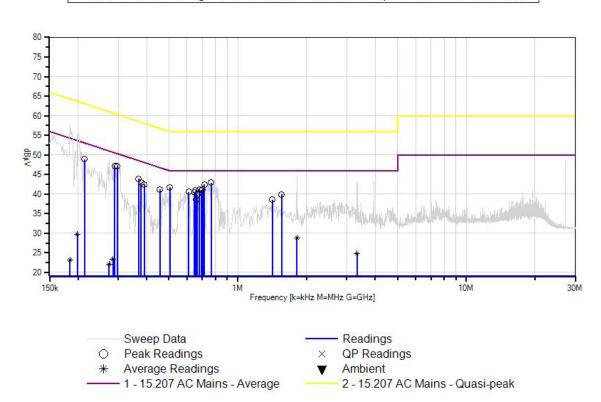
Frequencies of interest: 0.009 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72° Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Black		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	764.488k	32.8	+0.1	+9.9	+0.1		+0.0	42.9	46.0	-3.1	Black
2	297.260k	37.2	+0.1	+9.8	+0.0		+0.0	47.1	50.3	-3.2	Black
3	289.988k	37.3	+0.1	+9.8	+0.0	•	+0.0	47.2	50.5	-3.3	Black



4	715.402k	32.5	+0.1	+9.9	+0.0	+0.0	42.5	46.0	-3.5	Black
5	213.631k	39.1	+0.0	+9.7	+0.1	+0.0	48.9	53.1	-4.2	Black
6	504.513k	31.7	+0.1	+9.8	+0.1	+0.0	41.7	46.0	-4.3	Black
7	368.162k	33.9	+0.1	+9.8	+0.1	+0.0	43.9	48.5	-4.6	Black
8	700.858k	31.3	+0.1	+9.8	+0.0	+0.0	41.2	46.0	-4.8	Black
9	679.042k	31.2	+0.1	+9.8	+0.0	+0.0	41.1	46.0	-4.9	Black
10	693.586k	31.1	+0.1	+9.8	+0.0	+0.0	41.0	46.0	-5.0	Black
11	653.590k	31.0	+0.1	+9.8	+0.0	+0.0	40.9	46.0	-5.1	Black
12	377.252k	32.9	+0.1	+9.8	+0.1	+0.0	42.9	48.3	-5.4	Black
13	609.958k	30.7	+0.1	+9.8	+0.0	+0.0	40.6	46.0	-5.4	Black
14	457.245k	31.2	+0.1	+9.8	+0.1	+0.0	41.2	46.7	-5.5	Black
15	646.318k	30.6	+0.1	+9.8	+0.0	+0.0	40.5	46.0	-5.5	Black
16	389.978k	32.5	+0.1	+9.8	+0.1	+0.0	42.5	48.1	-5.6	Black
17	1.554M	29.7	+0.2	+9.9	+0.1	+0.0	39.9	46.0	-6.1	Black
18	664.498k	29.9	+0.1	+9.8	+0.0	+0.0	39.8	46.0	-6.2	Black
19	659.044k	28.7	+0.1	+9.8	+0.0	+0.0	38.6	46.0	-7.4	Black
20	1.419M	28.4	+0.2	+9.9	+0.1	+0.0	38.6	46.0	-7.4	Black
21	1.816M Ave	18.6	+0.2	+9.9	+0.1	+0.0	28.8	46.0	-17.2	Black
^	1.816M	34.5	+0.2	+9.9	+0.1	+0.0	44.7	46.0	-1.3	Black
23	3.331M Ave	14.6	+0.3	+9.9	+0.1	+0.0	24.9	46.0	-21.1	Black
^	3.331M	33.0	+0.3	+9.9	+0.1	+0.0	43.3	46.0	-2.7	Black
25	199.087k Ave	19.9	+0.0	+9.7	+0.1	+0.0	29.7	53.6	-23.9	Black
^	199.087k	45.5	+0.0	+9.7	+0.1	+0.0	55.3	53.6	+1.7	Black
^	195.451k	41.4	+0.0	+9.7	+0.1	+0.0	51.2	53.8	-2.6	Black
28	284.534k	13.4	+0.1	+9.8	+0.0	+0.0	23.3	50.7	-27.4	Black
^	Ave 284.534k	38.5	+0.1	+9.8	+0.0	+0.0	48.4	50.7	-2.3	Black

30	3.936M Ave	7.6	+0.4	+9.9	+0.2	+0.0	18.1	46.0	-27.9	Black
^	3.936M	32.7	+0.4	+9.9	+0.2	+0.0	43.2	46.0	-2.8	Black
32	273.626k	12.1	+0.1	+9.8	+0.0	+0.0	22.0	51.0	-29.0	Black
_	Ave	12.1	+0.1	±2.6	+0.0	+0.0	22.0	31.0	-29.0	Diack
٨	273.626k	39.1	+0.1	+9.8	+0.0	+0.0	49.0	51.0	-2.0	Black
٨	269.990k	37.9	+0.1	+9.8	+0.0	+0.0	47.8	51.1	-3.3	Black
35	184.543k	13.4	+0.0	+9.7	+0.1	+0.0	23.2	54.3	-31.1	Black
	Ave		10.0	17.7						
٨	184.543k	47.8	+0.0	+9.7	+0.1	+0.0	57.6	54.3	+3.3	Black
37	27.115M	3.2	+1.2	+9.9	+1.3	+0.0	15.6	50.0	-34.4	Black
1	Ave									
٨	27.115M	36.2	+1.2	+9.9	+1.3	+0.0	48.6	50.0	-1.4	Black

CKC Laboratories, Inc. Date: 5/20/2010 Time: 10:50:27 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 47 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 5/20/2010
Test Type: Conducted Emissions Time: 11:00:24
Equipment: RFID Card Programmer Sequence#: 48

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
Т3	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 125 kHz card.

Transmitter and receiver are on during this run and the integral antenna has been replaced by a resistor.

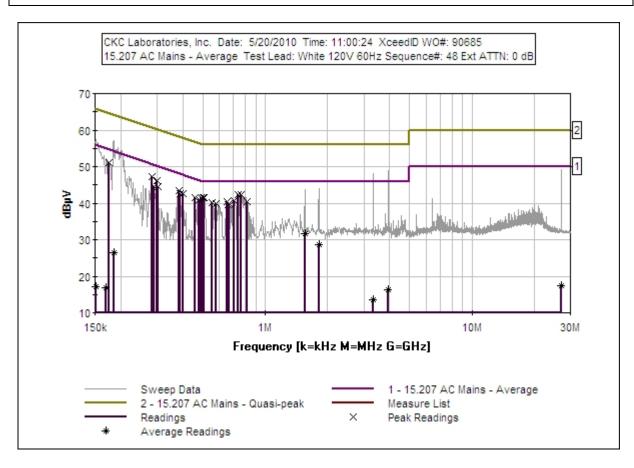
Frequencies of interest: 0.009 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Me	Measurement Data:		Re	Reading listed by margin.					Test Lead: White				
#	‡	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar	
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant	
	1	284.534k	37.0	+0.1	+9.8	+0.4		+0.0	47.3	50.7	-3.4	White	
	2	175.453k	41.1	+0.0	+9.7	+0.4		+0.0	51.2	54.7	-3.5	White	
	3	762.670k	31.7	+0.1	+9.9	+0.6		+0.0	42.3	46.0	-3.7	White	



4	740.854k	31.8	+0.1	+9.9	+0.5	+0.0	42.3	46.0	-3.7	White
5	300.896k	35.8	+0.1	+9.8	+0.4	+0.0	46.1	50.2	-4.1	White
6	506.331k	31.1	+0.1	+9.8	+0.5	+0.0	41.5	46.0	-4.5	White
7	491.787k	31.1	+0.1	+9.8	+0.5	+0.0	41.5	46.1	-4.6	White
8	499.059k	31.0	+0.1	+9.8	+0.5	+0.0	41.4	46.0	-4.6	White
9	382.706k	33.0	+0.1	+9.8	+0.4	+0.0	43.3	48.2	-4.9	White
10	459.063k	31.1	+0.1	+9.8	+0.5	+0.0	41.5	46.7	-5.2	White
11	709.948k	30.3	+0.1	+9.9	+0.5	+0.0	40.8	46.0	-5.2	White
12	400.886k	32.2	+0.1	+9.8	+0.4	+0.0	42.5	47.8	-5.3	White
13	479.061k	30.5	+0.1	+9.8	+0.5	+0.0	40.9	46.4	-5.5	White
14	655.408k	30.1	+0.1	+9.8	+0.5	+0.0	40.5	46.0	-5.5	White
15	815.393k	29.9	+0.1	+9.9	+0.6	+0.0	40.5	46.0	-5.5	White
16	388.160k	32.2	+0.1	+9.8	+0.4	+0.0	42.5	48.1	-5.6	White
17	304.532k	34.1	+0.1	+9.8	+0.4	+0.0	44.4	50.1	-5.7	White
18	555.417k	29.8	+0.1	+9.8	+0.5	+0.0	40.2	46.0	-5.8	White
19	668.134k	29.6	+0.1	+9.8	+0.5	+0.0	40.0	46.0	-6.0	White
20	289.988k	34.1	+0.1	+9.8	+0.4	+0.0	44.4	50.5	-6.1	White
21	580.869k	29.4	+0.1	+9.8	+0.5	+0.0	39.8	46.0	-6.2	White
22	659.044k	29.3	+0.1	+9.8	+0.5	+0.0	39.7	46.0	-6.3	White
23	1.554M Ave	21.0	+0.2	+9.9	+0.6	+0.0	31.7	46.0	-14.3	White
^	1.554M	33.0	+0.2	+9.9	+0.6	+0.0	43.7	46.0	-2.3	White
25	1.816M Ave	17.9	+0.2	+9.9	+0.6	+0.0	28.6	46.0	-17.4	White
^	1.816M	33.3	+0.2	+9.9	+0.6	+0.0	44.0	46.0	-2.0	White
27	184.543k Ave	16.3	+0.0	+9.7	+0.4	+0.0	26.4	54.3	-27.9	White
^	184.543k	47.1	+0.0	+9.7	+0.4	+0.0	57.2	54.3	+2.9	White
29	3.936M Ave	5.3	+0.4	+9.9	+0.6	+0.0	16.2	46.0	-29.8	White
	1110									

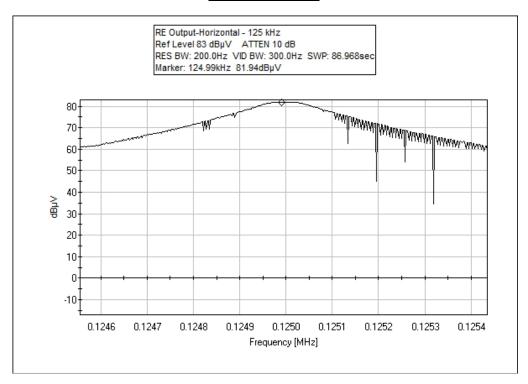
Page 20 of 71 Report No.: 90569-10A

^	3.936M	37.9	+0.4	+9.9	+0.6	+0.0	48.8	46.0	+2.8	White
31	3.331M	2.8	+0.3	+9.9	+0.6	+0.0	13.6	46.0	-32.4	White
1	Ave									
^	3.331M	37.3	+0.3	+9.9	+0.6	+0.0	48.1	46.0	+2.1	White
33	27.115M	4.5	+1.2	+9.9	+1.9	+0.0	17.5	50.0	-32.5	White
		4.3	+1.2	+9.9	+1.9	+0.0	17.3	30.0	-32.3	wille
1	Ave									
^	27.115M	36.3	+1.2	+9.9	+1.9	+0.0	49.3	50.0	-0.7	White
35	169.999k	6.7	+0.0	+9.7	+0.4	+0.0	16.8	55.0	-38.2	White
	Ave									
٨	169.999k	42.2	+0.0	+9.7	+0.4	+0.0	52.3	55.0	-2.7	White
	10,,,,,,		. 0.0			. 0.0	02.0	22.0		***************************************
37	151.819k	6.9	+0.0	+9.7	+0.4	+0.0	17.0	55.9	-38.9	White
1	Ave									
٨	151.819k	47.4	+0.0	+9.7	+0.4	+0.0	57.5	55.9	+1.6	White

Test Setup Photos

FCC 15.209 Carrier Measurement

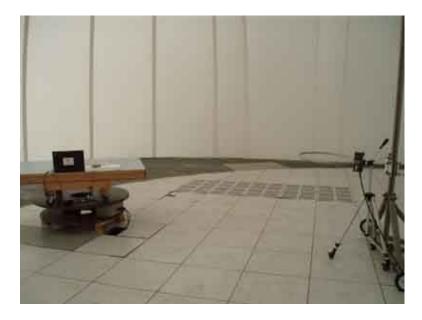
Engineer Name: Chuck Kendall


Test Equipment										
Name Serial Cal Date Cal Due Asset										
Loop Antenna	1074	4/10/2009	4/10/2011	AN00226						
Cable	ANMA10M									
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111						

Test Conditions

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table.

The USB cable being tested is about 3m in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.


Test Data Sheets

Page 23 of 71 Report No.: 90569-10A

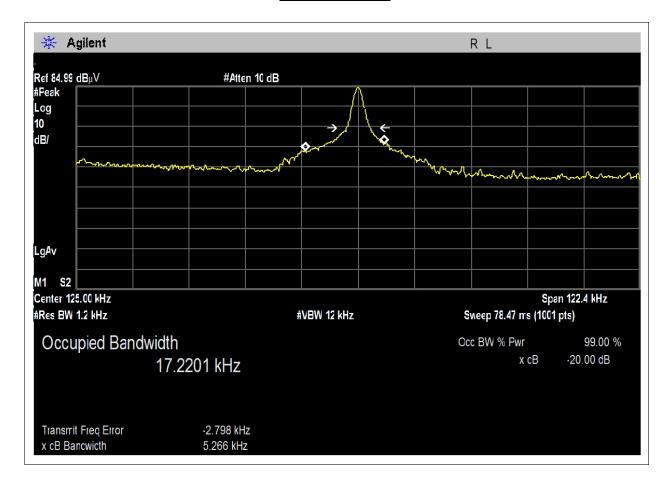
Test Setup Photos

FCC 15.209 Bandwidth (20 dB) & RSS-210 Bandwidth (99%)

Engineer Name: Chuck Kendall

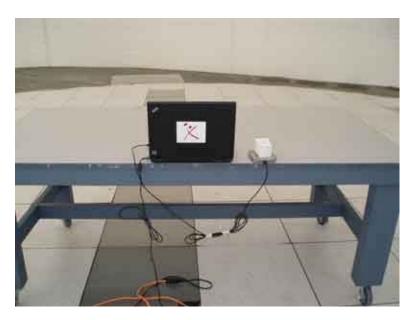
Test Equipment										
Name Serial Cal Date Cal Due Asset										
Loop Antenna	1074	4/10/2009	4/10/2011	AN00226						
Cable	NA	5/10/2009	5/10/2011	ANMA10M						
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111						

Test Conditions


Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table.

The USB cable being tested is about 3m in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Page 24 of 71 Report No.: 90569-10A


Test Data Sheets

Test Setup Photos

FCC 15.209 Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.209 Radiated Emissions

 Work Order #:
 90685
 Date: 5/5/2010

 Test Type:
 Maximized Emissions
 Time: 11:58:20

Equipment: **RFID Card Programmer** Sequence#: 3
Manufacturer: XceedID Tested By: Chuck Kendall

Model: PG 1000 S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00062	Preamp	8447D	6/20/2008	6/20/2010
	AN01992	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	AN01183	Spectrum Analyzer Display	85662A	3/10/2009	3/10/2011
Т3	AN01184	Spectrum Analyzer	8568B	3/10/2009	3/10/2011
T4	AN00069	Quasi Peak Adapter	85650A	3/10/2009	3/10/2011
T5	AN00226	Loop Antenna	6502	4/10/2009	4/10/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position as it is intended to be operated atop a Styrofoam cushion.

USB cable is bundled-tied in the center of the cable and hanging down off the table by some 40cm in length. I/O Cable (3m) in length.

Since the transmitter cannot be turned off to observe the receive mode, this satisfies 15.109 as well.

125kHz card activated readings.

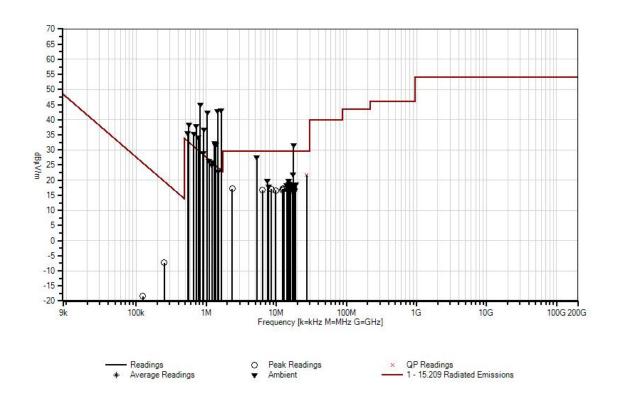
Frequencies of interest: 0.009-30 MHz

From 9 kHz to 150 kHz; RBW = 200 Hz, VBW = 300 Hz; from 150 kHz to 30 MHz: RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

	rement Data:								e: 10 Meter		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
1	MHz	dBμV	dB	dB	dB	dB			dBμV/m	dB	Ant
1	Ambient	51.8	+0.2 +10.1	+0.0	+0.0		-19.0	43.1	23.3 Ambient rastation		Vert
	1.451M Ambient	51.6	+0.2 +10.1	+0.0	+0.0		-19.0	42.9	Ambient rastation		Vert
3	817.029k Ambient	53.7	+0.1 +10.3	+0.0	+0.0		-19.0	45.1	Ambient rastation	dio	Vert
4	Ambient	51.1	+0.1 +10.2	+0.0	+0.0		-19.0	42.4	27.3 Ambient rastation	dio	Vert
	915.306k Ambient	45.2	+0.1 +10.4	+0.0	+0.0		-19.0	36.7	Ambient rastation	dio	Vert
6	720.843k Ambient	46.6	+0.1 +10.3	+0.0	+0.0	+0.0	-19.0	38.0	30.4 Ambient rastation	+7.6 dio	Vert
7	1.304M Ambient	41.2	+0.1 +10.1	+0.0	+0.0	+0.0	-19.0	32.4	25.2 Ambient rastation	+7.2 dio	Vert
	1.361M Ambient	40.6	+0.2 +10.1	+0.0	+0.0		-19.0	31.9	Ambient rastation		Vert
	1.334M Ambient	40.4	+0.2 +10.1	+0.0	+0.0		-19.0	31.7	Ambient rastation	+6.7 dio	Vert
	559.836k Ambient	47.2	+0.1 +10.2	+0.0	+0.0		-19.0	38.5	Ambient rastation		Vert
	771.027k Ambient	42.9	+0.1 +10.3	+0.0	+0.0		-19.0	34.3	Ambient rastation		Vert
	660.204k Ambient	43.9	+10.3	+0.0	+0.0		-19.0	35.3	31.2 Ambient rastation	dio	Vert
	541.017k Ambient	44.5	+0.1 +10.1	+0.0	+0.0		-19.0	35.7	32.9 Ambient ra station	+2.8 dio	Vert
14	17.637M Ambient	39.8	+1.0 +9.8	+0.0	+0.0	+0.0	-19.0	31.6	29.5 Ambient rastation	+2.1 dio	Vert
15	900.669k Ambient	37.4	+0.1 +10.4	+0.0	+0.0	+0.0	-19.0	28.9	28.5 Ambient ra	+0.4 dio	Vert


-									
16 1.223M	34.7	+0.1	+0.0	+0.0	+0.0	-19.0	25.9	25.8 +0.1	Vert
Ambient		+10.1						Ambient radio	
								station	
17 1.093M	35.1	+0.1	+0.0	+0.0	+0.0	-19.0	26.4	26.8 -0.4	Vert
Ambient		+10.2				-,.,		Ambient radio	
7 Hillotont		110.2						station	
18 1.200M	33.6	+0.1	+0.0	+0.0	ι Ο Ο	-19.0	24.0		Vert
	33.0		+0.0	+0.0	+0.0	-19.0	24.9		vert
Ambient		+10.2						Ambient radio	
								station	
19 1.488M	31.5	+0.2	+0.0	+0.0	+0.0	-19.0	22.8	24.1 -1.3	Vert
Ambient		+10.1						Ambient radio	
								station	
20 5.259M	36.8	+0.4	+0.0	+0.0	+0.0	-19.0	27.7	29.5 -1.8	Vert
Ambient		+9.5						Ambient radio	
								station	
21 17.403M	30.1	+1.0	+0.0	+0.0	±0.0	-19.0	21.9		Vert
Ambient	30.1	+9.8	10.0	10.0	10.0	-17.0	21.7	Ambient radio	VCIT
Ambient		+9.0							
22 27 1217 5	22.4		0.0	0.0		10.0	21.0	station	**
22 27.131M	33.4	+1.2	+0.0	+0.0	+0.0	-19.0	21.8	29.5 -7.7	Vert
QP		+6.2							
^ 27.126M	40.3	+1.2	+0.0	+0.0	+0.0	-19.0	28.7	29.5 -0.8	Vert
		+6.2							
24 7.466M	29.0	+0.6	+0.0	+0.0	+0.0	-19.0	19.9	29.5 -9.6	Vert
Ambient		+9.3						Ambient radio	
								station	
25 15.025M	27.3	+0.9	+0.0	+0.0	±0.0	-19.0	19.8		Vert
Ambient	21.3	+10.6	+0.0	+0.0	+0.0	-19.0	19.0	Ambient radio	VCIT
Ambient		+10.0							
26 14 0007	26.4	0.0	0.0	0.0	0.0	10.0	10.0	station	T. 7
26 14.908M	26.4	+0.9	+0.0	+0.0	+0.0	-19.0	18.9		Vert
Ambient		+10.6						Ambient radio	
								station	
27 15.277M	26.3	+0.9	+0.0	+0.0	+0.0	-19.0	18.7	29.5 -10.8	Vert
Ambient		+10.5						Ambient radio	
								station	
28 15.493M	26.4	+0.9	+0.0	+0.0	+0.0	-19.0	18.7		Vert
Ambient		+10.4	. 0.0	. 0.0	. 0.0	17.0	10.,	Ambient radio	, 010
1 miorent		110.1						station	
20 10 75 / 1 / 1	27.2	_ 1 Λ	ι Ο Ο	ι Ο Ο	100	10.0	10 6		Vant
29 18.754M	27.2		+0.0	+0.0	+0.0	-19.0	10.0	29.5 -10.9	Vert
Ambient		+9.4						Ambient radio	
								station	
30 14.088M	26.2	+0.9	+0.0	+0.0	+0.0	-19.0	18.5	29.5 -11.0	Vert
Ambient		+10.4						Ambient radio	
								station	
31 17.574M	26.7	+1.0	+0.0	+0.0	+0.0	-19.0	18.5	29.5 -11.0	Vert
Ambient		+9.8						Ambient radio	
								station	
32 14.863M	25.8	+0.9	+0.0	+0.0	+0.0	-19.0	18.3	29.5 -11.2	Vert
Ambient	23.0	+10.6	10.0	10.0	10.0	17.0	10.5	Ambient radio	v C1 t
Amorent		±10.0							
22 776425	27.0	.0.6	.0.0	.0.0	.00	10.0	17.0	station	T 7 ·
33 7.764M	27.0	+0.6	+0.0	+0.0	+0.0	-19.0	17.9		Vert
Ambient		+9.3						Ambient radio	
								station	

34	15.070M Ambient	25.2	+0.9 +10.6	+0.0	+0.0	+0.0	-19.0	17.7	29.5 Ambient r	-11.8 adio	Vert
									station		
35	15.980M	25.3	+0.9 +10.3	+0.0	+0.0	+0.0	-19.0	17.5	29.5	-12.0	Vert
36	14.358M	25.1	+0.9 +10.4	+0.0	+0.0	+0.0	-19.0	17.4	29.5	-12.1	Vert
37	17.691M	25.7	+1.0 +9.7	+0.0	+0.0	+0.0	-19.0	17.4	29.5	-12.1	Vert
38	2.349M	25.9	+0.3 +10.0	+0.0	+0.0	+0.0	-19.0	17.2	29.5	-12.3	Vert
39	12.322M	25.5	+0.8 +9.9	+0.0	+0.0	+0.0	-19.0	17.2	29.5	-12.3	Vert
40	12.727M	25.3	+0.8 +10.0	+0.0	+0.0	+0.0	-19.0	17.1	29.5	-12.4	Vert
41	17.863M	25.4	+1.0 +9.7	+0.0	+0.0	+0.0	-19.0	17.1	29.5	-12.4	Vert
42	14.673M	24.7	+0.9 +10.5	+0.0	+0.0	+0.0	-19.0	17.1	29.5	-12.4	Vert
43	14.646M	24.7	+0.9 +10.5	+0.0	+0.0	+0.0	-19.0	17.1	29.5	-12.4	Vert
44	8.538M	26.2	+0.6 +9.2	+0.0	+0.0	+0.0	-19.0	17.0	29.5	-12.5	Vert
45	15.367M	24.6	+0.9 +10.5	+0.0	+0.0	+0.0	-19.0	17.0	29.5	-12.5	Vert
46	14.773M	24.5	+0.9 +10.5	+0.0	+0.0	+0.0	-19.0	16.9	29.5	-12.6	Vert
47	17.592M	25.1	+1.0 +9.8	+0.0	+0.0	+0.0	-19.0	16.9	29.5	-12.6	Vert
48	17.007M	25.1	+0.9 +9.9	+0.0	+0.0	+0.0	-19.0	16.9	29.5	-12.6	Vert
49	12.169M	25.2	+0.8 +9.8	+0.0	+0.0	+0.0	-19.0	16.8	29.5	-12.7	Vert
50	6.322M	25.8	+0.5 +9.4	+0.0	+0.0	+0.0	-19.0	16.7	29.5	-12.8	Vert
51	15.917M	24.4	+0.9 +10.3	+0.0	+0.0	+0.0	-19.0	16.6	29.5	-12.9	Vert
52	9.818M	25.8	+0.7 +9.1	+0.0	+0.0	+0.0	-19.0	16.6	29.5	-12.9	Vert
53	250.100k	41.7	+0.1 +9.9	+0.0	+0.0	+0.0	-59.0	-7.3	19.6	-26.9	Vert
54	124.900k	30.9	+0.0 +9.7	+0.0	+0.0	+0.0	-59.0	-18.4	25.7	-44.1	Vert

CKC Laboratories, Inc. Date: 5/5/2010 Time: 11:58:20 XceedID WO#: 90685 15:209 Radiated Emissions Test Distance: 10 Meters Sequence#: 3 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: **XceedID**

Specification: 15.209 Radiated Emissions

Work Order #: 90685 Date: 5/5/2010 Test Type: **Maximized Emissions** Time: 09:40:40

Equipment: **RFID Card Programmer** Sequence#: 1

Manufacturer: XceedID Tested By: Chuck Kendall

Model: PG 1000 S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00062	Preamp	8447D	6/20/2008	6/20/2010
T2	AN01992	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
Т3	ANMA10M	Cable		5/10/2009	5/10/2011
	AN01183	Spectrum Analyzer	85662A	3/10/2009	3/10/2011
		Display			
	AN01184	Spectrum Analyzer	8568B	3/10/2009	3/10/2011
	AN00069	Quasi Peak Adapter	85650A	3/10/2009	3/10/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Programmer is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Programmer that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom resting on the table atop a Styrofoam cushion).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Cable (3m)

Since the transmitter cannot turned off this satisfies 15.109 as well.

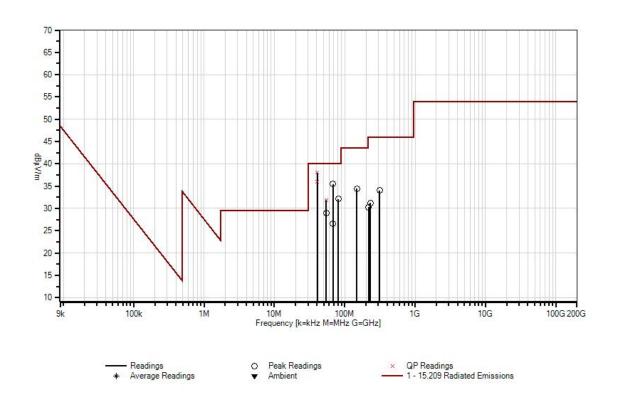
The 125 kHz card is activating the reader which alternatively transmits and receives on both 125kHz & 13.56 MHz frequencies.

Frequencies of interest: 30 MHz - 1000 MHz

30 MHz - 1000 MHz : RBW = 120 kHz, VBW = 120 kHz

 $Temp = 72^{\circ}$ Humidity = 40 % Pressure = 97.7

Report No.: 90569-10A



Ext Attn: 0 dB

Measur	rement Data:	Re	ading lis	ted by ma	argin.		Te	st Distance	e: 10 Meter	rs	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	•	dBμV/m	dB	Ant
1	40.790M	38.4	-30.8	+18.9	+1.5		+10.0	38.0	40.0	-2.0	Vert
(QP										
^	40.748M	43.3	-30.8	+19.0	+1.5		+10.0	43.0	40.0	+3.0	Vert
٨	40.758M	42.2	-30.8	+19.0	+1.5		+10.0	41.9	40.0	+1.9	Vert
٨	40.734M	41.2	-30.8	+19.0	+1.5		+10.0	40.9	40.0	+0.9	Vert
5	40.770M QP	36.3	-30.8	+18.9	+1.5		+10.0	36.0	40.0	-4.1	Horiz
٨	40.726M	41.0	-30.8	+19.0	+1.5		+10.0	40.7	40.0	+0.7	Horiz
7	67.853M	48.4	-30.8	+6.0	+1.9		+10.0	35.5	40.0	-4.5	Vert
8	81.464M	42.5	-30.7	+8.2	+2.1		+10.0	32.1	40.0	-7.9	Vert
9	54.317M QP	43.2	-30.7	+7.7	+1.7		+10.0	31.9	40.0	-8.1	Vert
٨	54.337M	44.9	-30.7	+7.7	+1.7		+10.0	33.6	40.0	-6.4	Vert
٨	54.316M	42.2	-30.7	+7.7	+1.7		+10.0	30.9	40.0	-9.1	Vert
12	149.215M	40.0	-30.4	+11.9	+2.9		+10.0	34.4	43.5	-9.1	Vert
13	54.325M	40.3	-30.7	+7.7	+1.7		+10.0	29.0	40.0	-11.0	Horiz
14	311.964M	35.2	-29.7	+14.1	+4.4		+10.0	34.0	46.0	-12.0	Horiz
15	67.884M	39.5	-30.8	+6.0	+1.9		+10.0	26.6	40.0	-13.4	Horiz
16	230.643M	36.0	-29.8	+11.3	+3.7		+10.0	31.2	46.0	-14.8	Vert
17	217.021M	36.3	-29.9	+10.4	+3.5		+10.0	30.3	46.0	-15.7	Vert

CKC Laboratories, Inc. Date: 5/5/2010 Time: 09:40:40 XceedID WO#: 90685 15.209 Radiated Emissions Test Distance: 10 Meters Sequence#: 1 Ext ATTN: 0 dB

Test Setup Photos

FCC PART 15 SUBPART C - 13.56 MHZ

FCC 15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 6/1/2010
Test Type: Conducted Emissions Time: 08:46:31
Equipment: RFID Card Programmer Sequence#: 32

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
Т3	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Page 36 of 71 Report No.: 90569-10A

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 13.561MHz card.

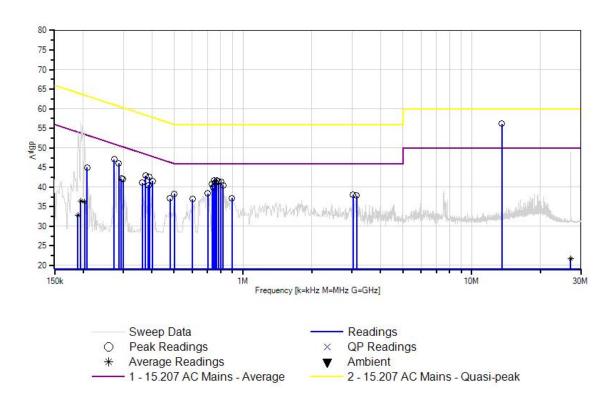
Transmitter and receiver are on during this run.

Frequencies of interest: 0.15 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB


	ulli. U UD	, n.	ading lie	ted by ma	rain			Toot I as	d: Black		
	rement Data:						D: .				D 1
#	Freq	Rdng	T1	T2	T3	175	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.562M	44.9	+0.8	+9.9	+0.6		+0.0	56.2	50.0	+6.2	Black
									Fundamer	ıtal	
2	273.626k	37.2	+0.1	+9.8	+0.0		+0.0	47.1	51.0	-3.9	Black
3	749.944k	31.6	+0.1	+9.9	+0.1		+0.0	41.7	46.0	-4.3	Black
4	768.124k	31.6	+0.1	+9.9	+0.1		+0.0	41.7	46.0	-4.3	Black
5	286.352k	36.2	+0.1	+9.8	+0.0		+0.0	46.1	50.6	-4.5	Black
6	782.668k	31.4	+0.1	+9.9	+0.1		+0.0	41.5	46.0	-4.5	Black
7	802.667k	31.2	+0.1	+9.9	+0.1		+0.0	41.3	46.0	-4.7	Black
8	759.034k	31.1	+0.1	+9.9	+0.1		+0.0	41.2	46.0	-4.8	Black
9	733.582k	30.8	+0.1	+9.9	+0.0		+0.0	40.8	46.0	-5.2	Black
10	375.434k	32.9	+0.1	+9.8	+0.1		+0.0	42.9	48.4	-5.5	Black
11	389.978k	32.6	+0.1	+9.8	+0.1		+0.0	42.6	48.1	-5.5	Black
12	819.029k	30.4	+0.1	+9.9	+0.1		+0.0	40.5	46.0	-5.5	Black
13	742.672k	29.8	+0.1	+9.9	+0.0		+0.0	39.8	46.0	-6.2	Black
14	402.704k	31.6	+0.1	+9.8	+0.1		+0.0	41.6	47.8	-6.2	Black
15	362.708k	31.1	+0.1	+9.8	+0.1		+0.0	41.1	48.7	-7.6	Black
16	386.342k	30.5	+0.1	+9.8	+0.1		+0.0	40.5	48.1	-7.6	Black

17	702.676k	28.5	+0.1	+9.8	+0.0	+0.0	38.4	46.0	-7.6	Black
18	500.877k	28.3	+0.1	+9.8	+0.1	+0.0	38.3	46.0	-7.7	Black
19	3.034M	27.7	+0.3	+9.9	+0.1	+0.0	38.0	46.0	-8.0	Black
20	293.624k	32.3	+0.1	+9.8	+0.0	+0.0	42.2	50.4	-8.2	Black
21	3.142M	27.5	+0.3	+9.9	+0.1	+0.0	37.8	46.0	-8.2	Black
22	208.177k	35.2	+0.0	+9.7	+0.1	+0.0	45.0	53.3	-8.3	Black
23	299.078k	32.1	+0.1	+9.8	+0.0	+0.0	42.0	50.3	-8.3	Black
24	895.250k	27.1	+0.1	+9.9	+0.1	+0.0	37.2	46.0	-8.8	Black
25	602.685k	27.0	+0.1	+9.8	+0.0	+0.0	36.9	46.0	-9.1	Black
26	480.879k	27.1	+0.1	+9.8	+0.1	+0.0	37.1	46.3	-9.2	Black
27	202.723k Ave	26.4	+0.0	+9.7	+0.1	+0.0	36.2	53.5	-17.3	Black
٨	202.723k	44.4	+0.0	+9.7	+0.1	+0.0	54.2	53.5	+0.7	Black
29	195.451k Ave	26.7	+0.0	+9.7	+0.1	+0.0	36.5	53.8	-17.3	Black
٨		46.5	+0.0	+9.7	+0.1	+0.0	56.3	53.8	+2.5	Black
٨	199.087k	45.8	+0.0	+9.7	+0.1	+0.0	55.6	53.6	+2.0	Black
32	189.997k Ave	23.0	+0.0	+9.7	+0.1	+0.0	32.8	54.0	-21.2	Black
	189.997k	44.5	+0.0	+9.7	+0.1	+0.0	54.3	54.0	+0.3	Black
34	27.124M Ave	9.3	+1.2	+9.9	+1.3	+0.0	21.7	50.0	-28.3	Black
٨	27.124M	36.3	+1.2	+9.9	+1.3	+0.0	48.7	50.0	-1.3	Black

CKC Laboratories, Inc. Date: 6/1/2010 Time: 08:46:31 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 32 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 6/1/2010
Test Type: Conducted Emissions Time: 08:42:49
Equipment: RFID Card Programmer Sequence#: 33

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
Т3	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 13.561MHz card.

Transmitter and receiver are on during this run.

Frequencies of interest: 0.15 - 30 MHz

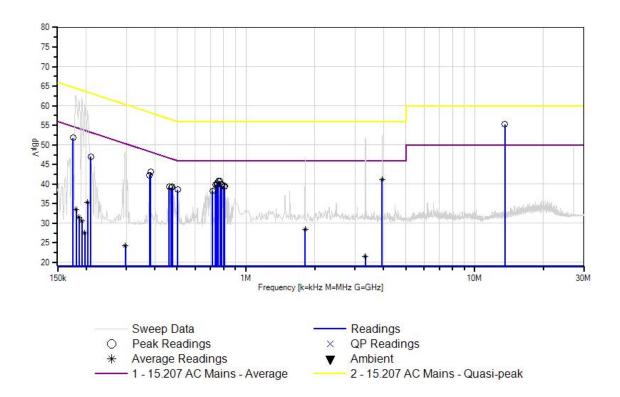
From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.562M	43.6	+0.8	+9.9	+1.0		+0.0	55.3	50.0	+5.3	White
2	175.453k	41.7	+0.0	+9.7	+0.4		+0.0	51.8	54.7	-2.9	White
3	3.936M	30.3	+0.4	+9.9	+0.6	•	+0.0	41.2	46.0	-4.8	White
1	Ave										

Page 40 of 71 Report No.: 90569-10A


٨	3.936M	41.5	+0.4	+9.9	+0.6	+0.0	52.4	46.0	+6.4	White
5	382.706k	32.8	+0.1	+9.8	+0.4	+0.0	43.1	48.2	-5.1	White
6	757.216k	30.1	+0.1	+9.9	+0.6	+0.0	40.7	46.0	-5.3	White
7	769.942k	30.1	+0.1	+9.9	+0.6	+0.0	40.7	46.0	-5.3	White
8	749.944k	29.6	+0.1	+9.9	+0.6	+0.0	40.2	46.0	-5.8	White
9	379.070k	32.0	+0.1	+9.8	+0.4	+0.0	42.3	48.3	-6.0	White
10	746.308k	29.4	+0.1	+9.9	+0.5	+0.0	39.9	46.0	-6.1	White
11	780.850k	29.3	+0.1	+9.9	+0.6	+0.0	39.9	46.0	-6.1	White
12	784.486k	29.3	+0.1	+9.9	+0.6	+0.0	39.9	46.0	-6.1	White
13	209.995k	36.9	+0.0	+9.7	+0.4	+0.0	47.0	53.2	-6.2	White
14	739.036k	29.3	+0.1	+9.9	+0.5	+0.0	39.8	46.0	-6.2	White
15	806.303k	28.9	+0.1	+9.9	+0.6	+0.0	39.5	46.0	-6.5	White
16	800.849k	28.7	+0.1	+9.9	+0.6	+0.0	39.3	46.0	-6.7	White
17	477.243k	29.0	+0.1	+9.8	+0.5	+0.0	39.4	46.4	-7.0	White
18	460.881k	29.0	+0.1	+9.8	+0.5	+0.0	39.4	46.7	-7.3	White
19	471.789k	28.7	+0.1	+9.8	+0.5	+0.0	39.1	46.5	-7.4	White
20	502.695k	28.2	+0.1	+9.8	+0.5	+0.0	38.6	46.0	-7.4	White
21	731.764k	27.9	+0.1	+9.9	+0.5	+0.0	38.4	46.0	-7.6	White
22	713.584k	27.8	+0.1	+9.9	+0.5	+0.0	38.3	46.0	-7.7	White
23	1.816M Ave	17.7	+0.2	+9.9	+0.6	+0.0	28.4	46.0	-17.6	White
^	1.816M	35.9	+0.2	+9.9	+0.6	+0.0	46.6	46.0	+0.6	White
25	202.723k Ave	25.2	+0.0	+9.7	+0.4	+0.0	35.3	53.5	-18.2	White
^	202.723k	48.6	+0.0	+9.7	+0.4	+0.0	58.7	53.5	+5.2	White
27	180.907k	23.5	+0.0	+9.7	+0.4	+0.0	33.6	54.4	-20.8	White
^	Ave 180.907k	52.4	+0.0	+9.7	+0.4	+0.0	62.5	54.4	+8.1	White
29	186.361k	21.4	+0.0	+9.7	+0.4	+0.0	31.5	54.2	-22.7	White
	Ave									

٨	186.361k	51.5	+0.0	+9.7	+0.4	+0.0	61.6	54.2	+7.4	White
31	191.815k	20.6	+0.0	+9.7	+0.4	+0.0	30.7	54.0	-23.3	White
	Ave									
^	191.815k	52.0	+0.0	+9.7	+0.4	+0.0	62.1	54.0	+8.1	White
33	3.331M	10.7	+0.3	+9.9	+0.6	+0.0	21.5	46.0	-24.5	White
	Ave									
^	3.331M	40.9	+0.3	+9.9	+0.6	+0.0	51.7	46.0	+5.7	White
35	297.260k Ave	14.0	+0.1	+9.8	+0.4	+0.0	24.3	50.3	-26.0	White
^	297.260k	38.0	+0.1	+9.8	+0.4	+0.0	48.3	50.3	-2.0	White
^	300.896k	33.7	+0.1	+9.8	+0.4	+0.0	44.0	50.2	-6.2	White
38	197.269k	17.5	+0.0	+9.7	+0.4	+0.0	27.6	53.7	-26.1	White
	Ave									
٨	197.269k	50.4	+0.0	+9.7	+0.4	+0.0	60.5	53.7	+6.8	White
40	27.115M	-60.0	+1.2	+9.9	+1.9	+0.0	-47.0	50.0	-97.0	White
	Ave									
^	27.115M	36.5	+1.2	+9.9	+1.9	+0.0	49.5	50.0	-0.5	White

CKC Laboratories, Inc. Date: 6/1/2010 Time: 08:42:49 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 33 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 5/20/2010
Test Type: Conducted Emissions Time: 09:47:41
Equipment: RFID Card Programmer Sequence#: 45

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
T3	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 13.561 Hz card.

Transmitter and receiver are on during this run and the integral antenna has been replaced by a resistor.

Frequencies of interest: 0.009 - 30 MHz

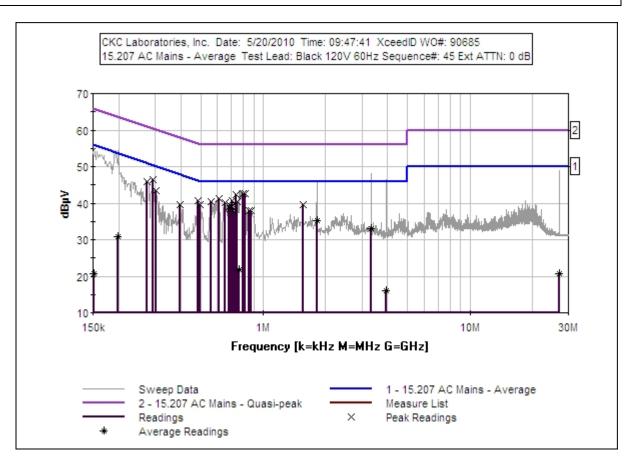
From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Measu	Measurement Data:		eading lis	ted by ma	argin.	. Test Lead: Black					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	797.213k	32.6	+0.1	+9.9	+0.1		+0.0	42.7	46.0	-3.3	Black
2	815.393k	32.5	+0.1	+9.9	+0.1		+0.0	42.6	46.0	-3.4	Black

Page 44 of 71 Report No.: 90569-10A



3	735.400k	32.4	+0.1	+9.9	+0.0	+0.0	42.4	46.0	-3.6	Black
4	293.624k	36.5	+0.1	+9.8	+0.0	+0.0	46.4	50.4	-4.0	Black
5	613.594k	31.3	+0.1	+9.8	+0.0	+0.0	41.2	46.0	-4.8	Black
6	275.444k	36.1	+0.1	+9.8	+0.0	+0.0	46.0	51.0	-5.0	Black
7	708.130k	30.7	+0.1	+9.9	+0.0	+0.0	40.7	46.0	-5.3	Black
8	482.697k	30.8	+0.1	+9.8	+0.1	+0.0	40.8	46.3	-5.5	Black
9	560.871k	30.5	+0.1	+9.8	+0.0	+0.0	40.4	46.0	-5.6	Black
10	748.126k	30.3	+0.1	+9.9	+0.0	+0.0	40.3	46.0	-5.7	Black
11	653.590k	30.2	+0.1	+9.8	+0.0	+0.0	40.1	46.0	-5.9	Black
12	1.554M	29.3	+0.2	+9.9	+0.1	+0.0	39.5	46.0	-6.5	Black
13	493.605k	29.6	+0.1	+9.8	+0.1	+0.0	39.6	46.1	-6.5	Black
14	304.532k	33.5	+0.1	+9.8	+0.0	+0.0	43.4	50.1	-6.7	Black
15	691.768k	29.4	+0.1	+9.8	+0.0	+0.0	39.3	46.0	-6.7	Black
16	684.496k	29.1	+0.1	+9.8	+0.0	+0.0	39.0	46.0	-7.0	Black
17	702.676k	29.1	+0.1	+9.8	+0.0	+0.0	39.0	46.0	-7.0	Black
18	713.584k	28.7	+0.1	+9.9	+0.0	+0.0	38.7	46.0	-7.3	Black
19	688.132k	28.6	+0.1	+9.8	+0.0	+0.0	38.5	46.0	-7.5	Black
20	857.207k	27.8	+0.1	+9.9	+0.1	+0.0	37.9	46.0	-8.1	Black
21	877.205k	27.8	+0.1	+9.9	+0.1	+0.0	37.9	46.0	-8.1	Black
22	397.250k	29.6	+0.1	+9.8	+0.1	+0.0	39.6	47.9	-8.3	Black
23	726.310k	27.6	+0.1	+9.9	+0.0	+0.0	37.6	46.0	-8.4	Black
24	1.816M	25.0	+0.2	+9.9	+0.1	+0.0	35.2	46.0	-10.8	Black
^	Ave 1.816M	35.5	+0.2	+9.9	+0.1	+0.0	45.7	46.0	-0.3	Black
26	3.331M Ave	22.6	+0.3	+9.9	+0.1	+0.0	32.9	46.0	-13.1	Black
^	3.331M	37.9	+0.3	+9.9	+0.1	+0.0	48.2	46.0	+2.2	Black
28	199.087k	21.0	+0.0	+9.7	+0.1	+0.0	30.8	53.6	-22.8	Black
	Ave									

Page 45 of 71 Report No.: 90569-10A

٨	199.087k	44.6	+0.0	+9.7	+0.1	+0.0	54.4	53.6	+0.8	Black
30	766.306k	11.8	+0.1	+9.9	+0.1	+0.0	21.9	46.0	-24.1	Black
F	Ave									
^	766.306k	33.2	+0.1	+9.9	+0.1	+0.0	43.3	46.0	-2.7	Black
32	27.124M	8.4	+1.2	+9.9	+1.3	+0.0	20.8	50.0	-29.2	Black
I A	Ave									
^	27.124M	36.4	+1.2	+9.9	+1.3	+0.0	48.8	50.0	-1.2	Black
34	3.945M	5.6	+0.4	+9.9	+0.2	+0.0	16.1	46.0	-29.9	Black
F	Ave									
^	3.945M	35.9	+0.4	+9.9	+0.2	+0.0	46.4	46.0	+0.4	Black
36	151.819k Ave	10.8	+0.0	+9.7	+0.1	+0.0	20.6	55.9	-35.3	Black
^	151.819k	45.0	+0.0	+9.7	+0.1	+0.0	54.8	55.9	-1.1	Black

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID

Specification: 15.207 AC Mains - Average

Work Order #: 90685 Date: 5/20/2010
Test Type: Conducted Emissions Time: 09:32:03
Equipment: RFID Card Programmer Sequence#: 46

Manufacturer: XceedID Tested By: Chuck Kendall Model: PG 1000 120V 60Hz

S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	ANP02229	Attenuator	PE7010-10	5/20/2009	5/20/2011
Т3	AN00374	50uH LISN-WHITE	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN00374	50uH LISN-BLACK	8028-TS-50-BNC	4/22/2009	4/22/2011
		LEAD			
	AN02111	Spectrum Analyzer	8593EM	3/6/2009	3/6/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Card reader is activated by the 13.561 Hz card.

Transmitter and receiver are on during this run and the integral antenna has been replaced by a resistor.

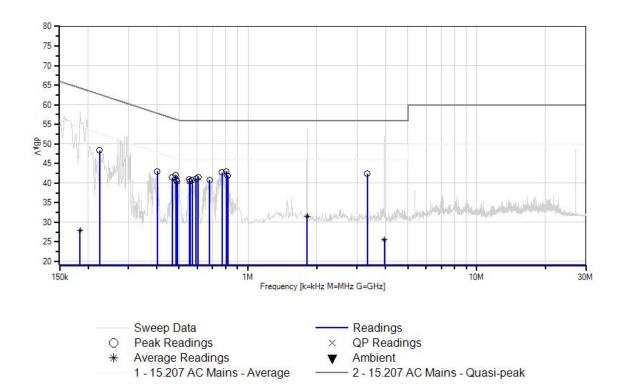
Frequencies of interest: 0.15 - 30 MHz

From: 150 kHz to 30 MHz; RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

Ext Attn: 0 dB

Measur	ement Data:	Re	Reading listed by margin.					Test Lead: White			
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	804.485k	32.4	+0.1	+9.9	+0.6		+0.0	43.0	46.0	-3.0	White
2	769.942k	32.1	+0.1	+9.9	+0.6		+0.0	42.7	46.0	-3.3	White
3	3.331M	31.6	+0.3	+9.9	+0.6		+0.0	42.4	46.0	-3.6	White


4	815.393k	31.3	+0.1	+9.9	+0.6	+0.0	41.9	46.0	-4.1	White
5	224.539k	38.1	+0.1	+9.8	+0.4	+0.0	48.4	52.6	-4.2	White
6	482.697k	31.7	+0.1	+9.8	+0.5	+0.0	42.1	46.3	-4.2	White
7	606.322k	31.2	+0.1	+9.8	+0.5	+0.0	41.6	46.0	-4.4	White
8	400.886k	32.7	+0.1	+9.8	+0.4	+0.0	43.0	47.8	-4.8	White
9	593.595k	30.8	+0.1	+9.8	+0.5	+0.0	41.2	46.0	-4.8	White
10	553.599k	30.6	+0.1	+9.8	+0.5	+0.0	41.0	46.0	-5.0	White
11	466.335k	31.1	+0.1	+9.8	+0.5	+0.0	41.5	46.6	-5.1	White
12	569.961k	30.4	+0.1	+9.8	+0.5	+0.0	40.8	46.0	-5.2	White
13	679.042k	30.4	+0.1	+9.8	+0.5	+0.0	40.8	46.0	-5.2	White
14	486.333k	30.4	+0.1	+9.8	+0.5	+0.0	40.8	46.2	-5.4	White
15	559.053k	30.0	+0.1	+9.8	+0.5	+0.0	40.4	46.0	-5.6	White
16	489.969k	30.1	+0.1	+9.8	+0.5	+0.0	40.5	46.2	-5.7	White
17	1.816M Ave	20.9	+0.2	+9.9	+0.6	+0.0	31.6	46.0	-14.4	White
^	1.816M	43.4	+0.2	+9.9	+0.6	+0.0	54.1	46.0	+8.1	White
19	3.945M Ave	14.7	+0.4	+9.9	+0.6	+0.0	25.6	46.0	-20.4	White
^	3.945M	41.2	+0.4	+9.9	+0.6	+0.0	52.1	46.0	+6.1	White
21	184.543k Ave	17.8	+0.0	+9.7	+0.4	+0.0	27.9	54.3	-26.4	White
^	184.543k	48.1	+0.0	+9.7	+0.4	+0.0	58.2	54.3	+3.9	White
23	157.273k Ave	1.5	+0.0	+9.7	+0.4	+0.0	11.6	55.6	-44.0	White
^	157.273k	47.1	+0.0	+9.7	+0.4	+0.0	57.2	55.6	+1.6	White
25	27.124M Ave	-21.0	+1.2	+9.9	+1.9	+0.0	-8.0	50.0	-58.0	White
^	27.124M	35.6	+1.2	+9.9	+1.9	+0.0	48.6	50.0	-1.4	White
27	306.350k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.1	-62.4	White
٨	306.350k	37.4	+0.1	+9.8	+0.4	+0.0	47.7	50.1	-2.4	White
29	300.896k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.2	-62.5	White

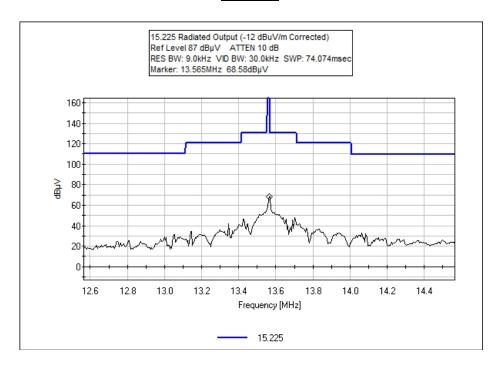
٨	300.896k	40.6	+0.1	+9.8	+0.4	+0.0	50.9	50.2	+0.7	White
31	295.442k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.4	-62.7	White
32	291.000k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.5	-62.8	White
٨	295.442k	41.7	+0.1	+9.8	+0.4	+0.0	52.0	50.4	+1.6	White
34	288.170k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.6	-62.9	White
^		41.4	+0.1	+9.8	+0.4	+0.0	51.7	50.6	+1.1	White
٨	291.000k	36.5	+0.1	+9.8	+0.4	+0.0	46.8	50.5	-3.7	White
37	282.716k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.7	-63.0	White
٨		40.4	+0.1	+9.8	+0.4	+0.0	50.7	50.7	+0.0	White
39	277.262k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	50.9	-63.2	White
٨	277.262k	40.5	+0.1	+9.8	+0.4	+0.0	50.8	50.9	-0.1	White
41	269.990k Ave	-22.6	+0.1	+9.8	+0.4	+0.0	-12.3	51.1	-63.4	White
^		40.9	+0.1	+9.8	+0.4	+0.0	51.2	51.1	+0.1	White
43	197.269k Ave	-22.6	+0.0	+9.7	+0.4	+0.0	-12.5	53.7	-66.2	White
٨		46.3	+0.0	+9.7	+0.4	+0.0	56.4	53.7	+2.7	White
45	177.271k Ave	-22.6	+0.0	+9.7	+0.4	+0.0	-12.5	54.6	-67.1	White
٨	177.271k	42.9	+0.0	+9.7	+0.4	+0.0	53.0	54.6	-1.6	White

CKC Laboratories, Inc. Date: 5/20/2010 Time: 09:32:03 XceedID WO#: 90685 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 46 Ext ATTN: 0 dB

Test Setup Photos

FCC 15.255(a) Carrier Measurement

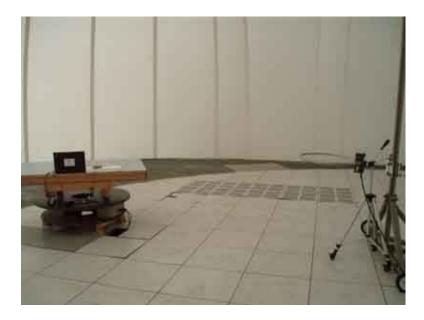
Engineer Name: Chuck Kendall


	Test Equipment									
Name	Serial	Cal Date	Cal Due	Asset						
Loop Antenna	1074	4/10/2009	4/10/2011	AN00226						
Cable	NA	5/10/2009	5/10/2011	ANMA10M						
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111						

Test Conditions

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table.

The USB cable being tested is about 3m in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.


Test Plot

Test Setup Photos

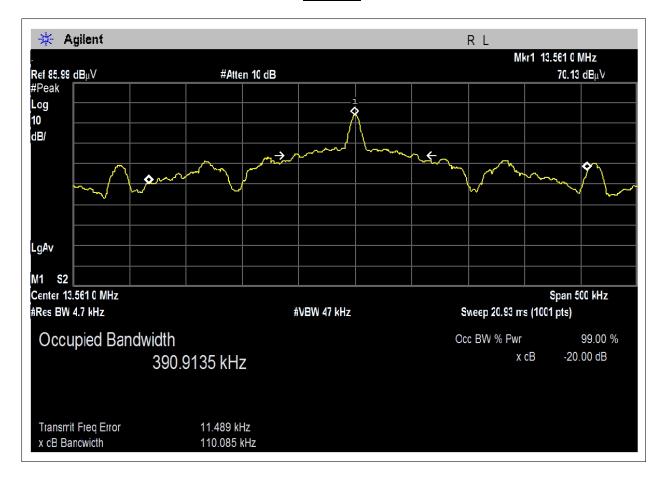
Page 52 of 71 Report No.: 90569-10A

FCC 15.225(a) Bandwidth (20 dB) & RSS-210 Bandwidth (99%)

Engineer Name: Chuck Kendall

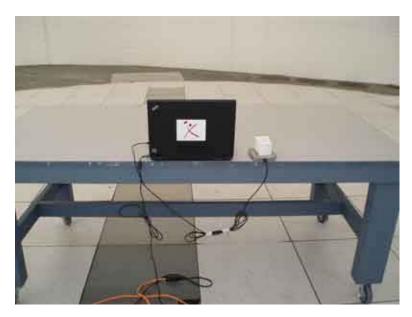
Test Equipment									
Name Serial Cal Date Cal Due Asset									
Loop Antenna	1074	4/10/2009	4/10/2011	AN00226					
Cable	NA	5/10/2009	5/10/2011	ANMA10M					
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111					

Test Conditions


Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table.

The USB cable being tested is about 3m in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

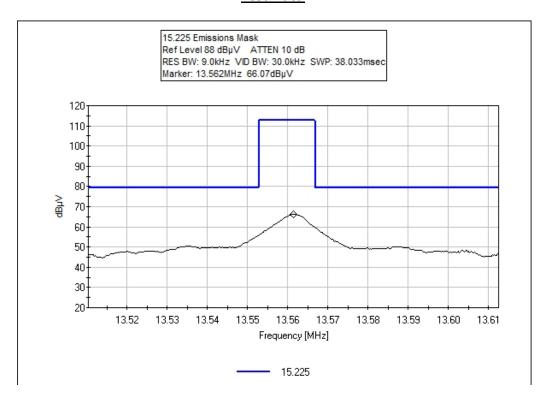
Page 53 of 71 Report No.: 90569-10A


Test Plot

Test Setup Photos

FCC 15.225(b)(c)(d) Emission Mask Plot

Engineer Name: Chuck Kendall

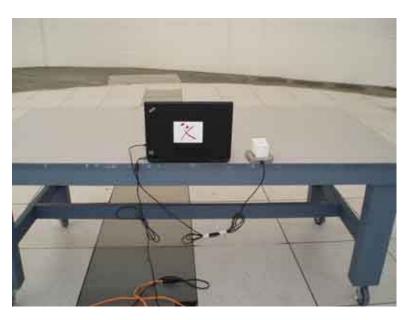

Test Equipment									
Name Serial Cal Date Cal Due Asset									
Loop Antenna	1074	4/10/2009	4/10/2011	AN00226					
Cable	NA	5/10/2009	5/10/2011	ANMA10M					
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111					

Test Conditions

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom atop a Styrofoam cushion on the table.

The USB cable being tested is about 3m in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Test Data



Page 56 of 71 Report No.: 90569-10A

Test Setup Photos

FCC 15.225(b)(c)(d) Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: XceedID Specification: 15.225

 Work Order #:
 90685
 Date:
 5/5/2010

 Test Type:
 Maximized Emissions
 Time:
 11:40:49

Equipment: **RFID Card Programmer** Sequence#: 2

Manufacturer: XceedID Tested By: Chuck Kendall

Model: PG 1000 S/N: Unknown

Test Equipment:

1 1					
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00062	Preamp	8447D	6/20/2008	6/20/2010
	AN01992	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T1	ANMA10M	Cable		5/10/2009	5/10/2011
T2	AN01183	Spectrum Analyzer Display	85662A	3/10/2009	3/10/2011
Т3	AN01184	Spectrum Analyzer	8568B	3/10/2009	3/10/2011
T4	AN00069	Quasi Peak Adapter	85650A	3/10/2009	3/10/2011
T5	AN00226	Loop Antenna	6502	4/10/2009	4/10/2011

Equipment Under Test (* = EUT):

. 1 1	- /-			
Function	Manufacturer	Model #	S/N	
RFID Card Programmer*	XceedID	PG 1000	Unknown	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Reader is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Reader that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom side on the table atop some Styrofoam.

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Cable (3m)

Since the transmitter cannot be turned off this satisfies 15.109 as well.

Activated by the 13.56MHz card readings.

Frequencies of interest: 9 kHz to 30 MHz

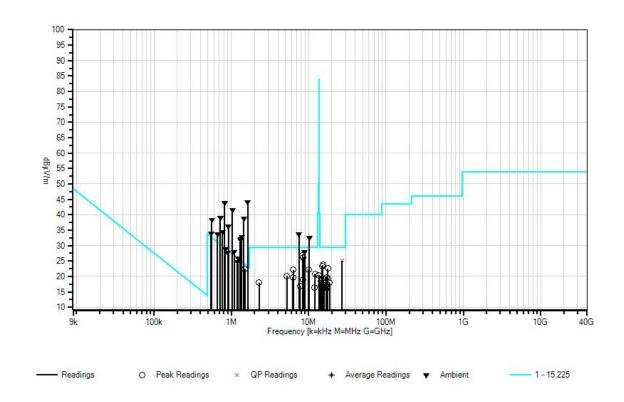
9 kHz to 150 kHz: RBW = 200 Hz, VBW = 300 kHz; 150 kHz to 30 MHz: RBW = 9 kHz, VBW = 30 kHz

Temp = 72°F Humidity = 40 % Pressure = 97.7

> Page 58 of 71 Report No.: 90569-10A

Ext Attn: 0 dB

	rement Data:	D.	ading lie	ted by me	rain	Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
#	rieq	Rung	T5	12	13	14	Dist	Con	Spec	Margin	r Olai
	MHz	dΒμV	dB	dB	dB	dB	Toblo	dDu W/m	$dB\mu V/m$	dB	Ant
1									23.3		
1		52.8	+0.2	+0.0	+0.0	+0.0	-19.0	44.1		+20.8	Vert
	Ambient		+10.1						Ambient ra	.010	
	017 0201	50.5	. 0.1	. 0. 0	. 0. 0	. 0. 0	10.0	42.0	station	.14.6	X 7
II.	817.029k	52.5	+0.1	+0.0	+0.0	+0.0	-19.0	43.9	29.3	+14.6	Vert
	Ambient		+10.3						Ambient ra	.010	
	1 4403 6	47.4	0.2	0.0	0.0	0.0	10.0	20.7	station	111	T
_	1.449M	47.4	+0.2	+0.0	+0.0	+0.0	-19.0	38.7	24.3	+14.4	Vert
	Ambient		+10.1						Ambient ra	.d10	
<u> </u>							100		station		
4		50.2	+0.1	+0.0	+0.0	+0.0	-19.0	41.5		+14.2	Vert
	Ambient		+10.2						Ambient ra	.d10	
_									station		
5		47.7	+0.1	+0.0	+0.0	+0.0	-19.0	39.1	30.5	+8.6	Vert
	Ambient		+10.3						Ambient ra	dio	
									station		
6		41.6	+0.2	+0.0	+0.0	+0.0	-19.0	32.9	24.9	+8.0	Vert
	Ambient		+10.1						Ambient ra	dio	
									station		
7	921.579k	44.7	+0.1	+0.0	+0.0	+0.0	-19.0	36.2	28.3	+7.9	Vert
	Ambient		+10.4						Ambient ra	.dio	
									station		
8		40.8	+0.2	+0.0	+0.0	+0.0	-19.0	32.1	25.0	+7.1	Vert
	Ambient		+10.1						Ambient ra	.dio	
									station		
9	1100 1111	40.6	+0.1	+0.0	+0.0	+0.0	-19.0	31.8	25.2	+6.6	Vert
	Ambient		+10.1						Ambient ra	.dio	
									station		
10		47.1	+0.1	+0.0	+0.0	+0.0	-19.0	38.4	32.6	+5.8	Vert
	Ambient		+10.2						Ambient ra	.dio	
									station		
11		42.9	+0.1	+0.0	+0.0	+0.0	-19.0	34.3	29.8	+4.5	Vert
	Ambient		+10.3						Ambient ra	dio	
									station		
12		42.8	+0.6	+0.0	+0.0	+0.0	-19.0	33.7	29.5	+4.2	Vert
	Ambient		+9.3						Ambient ra	.dio	
									station		
13	10.241M	41.7	+0.7	+0.0	+0.0	+0.0	-19.0	32.6	29.5	+3.1	Vert
	Ambient		+9.2						Ambient ra	.dio	
									station		
14	660.204k	42.4	+0.1	+0.0	+0.0	+0.0	-19.0	33.8	31.2	+2.6	Vert
	Ambient		+10.3						Ambient ra	dio	
									station		
15	547.290k	42.7	+0.1	+0.0	+0.0	+0.0	-19.0	33.9	32.8	+1.1	Vert
	Ambient		+10.1						Ambient ra	dio	
									station		


16	1.095M	36.6	+0.1	+0.0	+0.0	+0.0	-19.0	27.9	26.8	+1.1	Vert
1	Ambient		+10.2						Ambient ra	dio	
									station		
17	1.225M	34.7	+0.1	+0.0	+0.0	+0.0	-19.0	25.9	25.8	+0.1	Vert
	Ambient	· · · ·	+10.1			. 0.0	17.0	20.7	Ambient ra		, 010
1	morent		110.1						station	ui0	
10	027 0201	27.4	. 0. 1	. 0. 0	. 0. 0	. 0. 0	10.0	20.0		0.2	X 74
18	837.939k	37.4	+0.1	+0.0	+0.0	+0.0	-19.0	28.8	29.1	-0.3	Vert
1	Ambient		+10.3						Ambient ra	.d10	
									station		
19	896.487k	36.1	+0.1	+0.0	+0.0	+0.0	-19.0	27.6	28.5	-0.9	Vert
1	Ambient		+10.4						Ambient ra	dio	
									station		
20	1.204M	33.4	+0.1	+0.0	+0.0	+0.0	-19.0	24.6	25.9	-1.3	Vert
_	Ambient	33.1	+10.1	10.0	10.0	10.0	17.0	21.0	Ambient ra		V 011
1	Amorem		+10.1							uio	
2.1	0.02.01	27.1	0.7	0.0	0.0	0.0	10.0	20.0	station	1.7	X 7 .
21	8.926M	37.1	+0.7	+0.0	+0.0	+0.0	-19.0	28.0	29.5	-1.5	Vert
1	Ambient		+9.2						Ambient ra	dio	
									station		
22	1.492M	31.1	+0.2	+0.0	+0.0	+0.0	-19.0	22.4	24.1	-1.7	Vert
1			+10.1								
23	8.376M	36.0	+0.6	+0.0	+0.0	+0.0	-19.0	26.8	29.5	-2.7	Vert
	0.570171	50.0	+9.2	10.0	10.0	10.0	17.0	20.0	27.5	2.,	V 011
24	0.52014	25.2		ι Ο Ο	. 0. 0	.00	10.0	26.1	20.5	2.4	17 and
24	8.538M	35.3	+0.6	+0.0	+0.0	+0.0	-19.0	26.1	29.5	-3.4	Vert
			+9.2								
25	27.120M	36.7	+1.2	+0.0	+0.0	+0.0	-19.0	25.1	29.5	-4.4	Vert
(QP		+6.2								
٨	27.120M	39.2	+1.2	+0.0	+0.0	+0.0	-19.0	27.6	29.5	-1.9	Vert
			+6.2								
27	15.277M	31.3	+0.9	+0.0	+0.0	+0.0	-19.0	23.7	29.5	-5.8	Vert
	10.277111	01.0	+10.5			. 0.0	17.0	20	23.0	0.0	, 010
28	14.899M	30.8	+0.9	+0.0	+0.0	+0.0	-19.0	23.3	29.5	-6.2	Vert
20	14.077WI	30.6		+0.0	+0.0	+0.0	-17.0	23.3	29.3	-0.2	V CI t
20	17 (27) (20.0	+10.6	0.0	0.0	0.0	10.0	22.6	20.5		X 7 .
29	17.637M	30.8	+1.0	+0.0	+0.0	+0.0	-19.0	22.6	29.5	-6.9	Vert
			+9.8								
30	10.016M	31.4	+0.7	+0.0	+0.0	+0.0	-19.0	22.2	29.5	-7.3	Vert
			+9.1								
31	6.322M	31.2	+0.5	+0.0	+0.0	+0.0	-19.0	22.1	29.5	-7.4	Vert
			+9.4	. 3.0	. 3.0	. 3.0			_,	,	
32	12.115M	29.2	+0.8	+0.0	+0.0	→ ∩ ∩	-19.0	20.8	29.5	-8.7	Vert
32	12.113111	<i>L7.L</i>		+0.0	±0.0	+0.0	-17.U	20.0	47.3	-0.7	V CI l
	5.0503.5	20.2	+9.8	0.0	0.0	0.0	10.0	20.1	20. 7	0.1	T 7
33	5.259M	29.2	+0.4	+0.0	+0.0	+0.0	-19.0	20.1	29.5	-9.4	Vert
			+9.5								
34	6.250M	28.8	+0.5	+0.0	+0.0	+0.0	-19.0	19.7	29.5	-9.8	Vert
			+9.4								
35	17.007M	27.9	+0.9	+0.0	+0.0	+0.0	-19.0	19.7	29.5	-9.8	Vert
		=	+9.9	. 5.0	. 3.0	. 3.0		->••	_,	2.0	
26	17 601M	27.8		+0.0	+0.0	٦ ٨ ٨	-19.0	19.5	20.5	-10.0	Vort
36	17.691M	21.8	+1.0	+0.0	+0.0	+0.0	-19.0	19.5	29.5	-10.0	Vert
	4 - 0		+9.7				40 -				• •
37	15.025M	27.0	+0.9	+0.0	+0.0	+0.0	-19.0	19.5	29.5	-10.0	Vert
			+10.6								
38	8.466M	28.1	+0.6	+0.0	+0.0	+0.0	-19.0	18.9	29.5	-10.6	Vert
1			+9.2								
1											

39 14.349M 26.1 +0.9 +0.0 +0.0 +0.0 -19.0 18.4 29.5 -11.1 +10.4 40 15.493M 25.6 +0.9 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +10.4 41 2.286M 26.6 +0.3 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +10.0 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8 44 15.989M 24.8 +0.9 +0.0 +0.0 +0.0 -19.0 17.0 29.5 -12.5	T.7.
40 15.493M 25.6 +0.9 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 41 2.286M 26.6 +0.3 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	Vert
+10.4 41 2.286M 26.6 +0.3 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +10.0 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	
41 2.286M 26.6 +0.3 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	Vert
+10.0 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	
+10.0 42 18.745M 26.5 +1.0 +0.0 +0.0 +0.0 -19.0 17.9 29.5 -11.6 +9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	Vert
+9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	
+9.4 43 17.601M 25.6 +1.0 +0.0 +0.0 +0.0 -19.0 17.4 29.5 -12.1 +9.8	Vert
+9.8	
+9.8	Vert
	Vert
+10.3	
45 14.268M 24.7 +0.9 +0.0 +0.0 +0.0 -19.0 17.0 29.5 -12.5	Vert
+10.4	
46 7.773M 26.0 +0.6 +0.0 +0.0 +0.0 -19.0 16.9 29.5 -12.6	Vert
+9.3	
47 17.574M 25.0 +1.0 +0.0 +0.0 +0.0 -19.0 16.8 29.5 -12.7	Vert
+9.8	
48 17.529M 24.8 +1.0 +0.0 +0.0 +0.0 -19.0 16.6 29.5 -12.9	Vert
+9.8	
49 12.016M 24.9 +0.8 +0.0 +0.0 +0.0 -19.0 16.5 29.5 -13.0	Vert
+9.8	
50 17.313M 24.3 +1.0 +0.0 +0.0 +0.0 -19.0 16.2 29.5 -13.3	Vert
+9.9	
51 17.097M 24.4 +0.9 +0.0 +0.0 +0.0 -19.0 16.2 29.5 -13.3	Vert
+9.9	
52 13.567M 28.4 +0.8 +0.0 +0.0 +0.0 -19.0 20.4 84.0 -63.6	Vert
+10.2	

CKC Laboratories, Inc. Date: 5/5/2010 Time: 11:40:49 XceedID WO#: 90685 15.225 Test Distance: 10 Meters Sequence#: 2 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • 209-966-5240

Customer: **XceedID** Specification: 15.225

Work Order #: 90685 Date: 5/5/2010 Test Type: **Maximized Emissions** Time: 09:40:40

Equipment: **RFID Card Programmer** Sequence#: 1

Manufacturer: XceedID Tested By: Chuck Kendall

Model: PG 1000 S/N: Unknown

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00062	Preamp	8447D	6/20/2008	6/20/2010
T2	AN01992	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
Т3	ANMA10M	Cable		5/10/2009	5/10/2011
	AN01183	Spectrum Analyzer	85662A	3/10/2009	3/10/2011
		Display			
	AN01184	Spectrum Analyzer	8568B	3/10/2009	3/10/2011
	AN00069	Quasi Peak Adapter	85650A	3/10/2009	3/10/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Card Programmer*	XceedID	PG 1000	Unknown

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Lenovo	SL410	LR-ZZW25 10/02

Test Conditions / Notes:

Card Programmer is setup on a wooden table 80cm above the flush-mounted turntable 10 cm away from a Laptop computer. It is connected via a USB cable to the laptop computer. Program is running in Notebook mode and receiving alphanumeric streams of data from the Card Programmer that is being activated by a card placed some 5 cm away from the reader. The Card Reader is in the Horizontal position (with its bottom resting on the table atop a Styrofoam cushion).

The USB cable being tested is about 3m (10') in length. The USB cable is bundled tied in the center of the cable and hanging down off the table by some 40cm in length.

Cable (3m)

Since the transmitter cannot turned off this satisfies 15.109 as well.

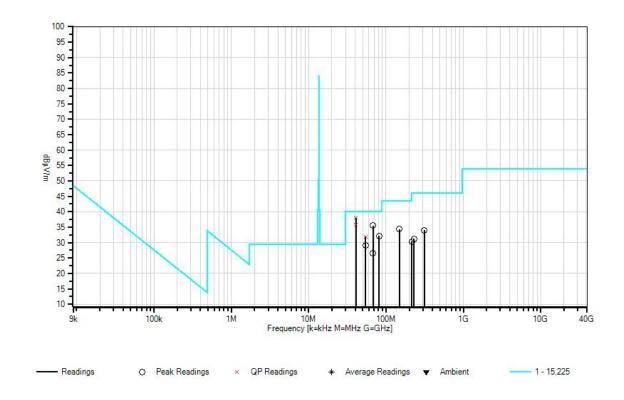
The 13.56MHz card is activating the reader which alternatively transmits and receives on both 125kHz & 13.56 MHz frequencies.

Frequencies of interest: 30 MHz - 1000 MHz

30 MHz - 1000 MHz : RBW = 120 kHz, VBW = 120 kHz

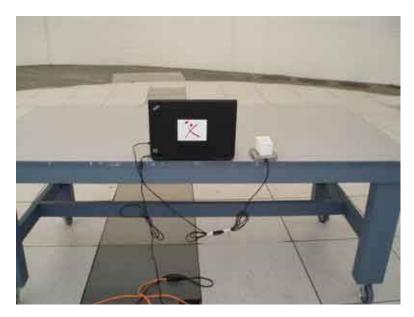
 $Temp = 72^{\circ}F$ Humidity = 40 % Pressure = 79.7

Report No.: 90569-10A



Ext Attn: 0 dB

Measur	rement Data:		ading lis	ted by ma	argin.		Te	est Distance	e: 10 Meter		
#	Freq	Rdng	T1	T2	T3	1D	Dist	Corr	Spec	Margin	Polar
	MHz	dBμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	40.790M	38.4	-30.8	+18.9	+1.5		+10.0	38.0	40.0	-2.0	Vert
	QP										
^	40.748M	43.3	-30.8	+19.0	+1.5		+10.0	43.0	40.0	+3.0	Vert
٨	40.758M	42.2	-30.8	+19.0	+1.5		+10.0	41.9	40.0	+1.9	Vert
۸	40.734M	41.2	-30.8	+19.0	+1.5		+10.0	40.9	40.0	+0.9	Vert
5	40.770M QP	36.3	-30.8	+18.9	+1.5		+10.0	35.9	40.0	-4.1	Horiz
٨	40.726M	41.0	-30.8	+19.0	+1.5		+10.0	40.7	40.0	+0.7	Horiz
7	67.853M	48.4	-30.8	+6.0	+1.9		+10.0	35.5	40.0	-4.5	Vert
8	81.464M	42.5	-30.7	+8.2	+2.1		+10.0	32.1	40.0	-7.9	Vert
9	54.317M QP	43.2	-30.7	+7.7	+1.7		+10.0	31.9	40.0	-8.1	Vert
٨	54.337M	44.9	-30.7	+7.7	+1.7		+10.0	33.6	40.0	-6.4	Vert
^	54.316M	42.2	-30.7	+7.7	+1.7		+10.0	30.9	40.0	-9.1	Vert
12	149.215M	40.0	-30.4	+11.9	+2.9		+10.0	34.4	43.5	-9.1	Vert
13	54.325M	40.3	-30.7	+7.7	+1.7		+10.0	29.0	40.0	-11.0	Horiz
14	311.964M	35.2	-29.7	+14.1	+4.4		+10.0	34.0	46.0	-12.0	Horiz
15	67.884M	39.5	-30.8	+6.0	+1.9		+10.0	26.6	40.0	-13.4	Horiz
16	230.643M	36.0	-29.8	+11.3	+3.7		+10.0	31.2	46.0	-14.8	Vert
17	217.021M	36.3	-29.9	+10.4	+3.5		+10.0	30.3	46.0	-15.7	Vert


CKC Laboratories, Inc. Date: 5/5/2010 Time: 09:40:40 XceedID WO#: 90685 15.225 Test Distance: 10 Meters Sequence#: 1 Ext ATTN: 0 dB

Test Setup Photos

FCC 15.225(e) Frequency Stability

Engineer Name: Chuck Kendall

Test Equipment								
Name	Serial	Cal Date	Cal Due	Asset				
Spectrum Analyzer	3624A00159	3/6/2009	3/6/2011	02111				
Temp Chamber	11899	12/16/08	12/16/10	01879				
Power Stat Variac	None	7/17/09	7/17/11	02038				
Multimeter	2905006	3/5/2009	3/5/2011	02369				

Test Conditions

RFID Card Programmer was placed into the temperature chamber with the USB Cable attached to the computer which was on the outside of the test chamber. A small antenna was placed into the environmental chamber also adjacent to the EUT. This antenna was connected with a coax cable, then passed through a hole in the chamber, and routed to a spectrum analyzer where the signal was being measured for variations in Output Power and Frequency Drifts due to extreme temperature changes and extreme voltage changes.

Page 67 of 71 Report No.: 90569-10A

Test Data

Frequency Stability

Customer: XceedID

WO#:

Date:12-May-10Test Engineer:C Kendall

Test Specification

RFID Card

Device Model #: Programmer

Operating Voltage: 120 VDC/VAC Frequency Limit: 0.01% PPM/%

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel Freq	uency:	13561000	
Temp (C)	Voltage		
-20	120.0	13561450	0.000450
-10	120.0	13561250	0.000250
0	120.0	13561350	0.000350
10	120.0	13561150	0.000150
20	120.0	13560950	-0.000050
30	120.0	13561350	0.000350
40	120.0	13561300	0.000150
50	120.0	13561250	0.000300
55	120.0	13561000	-0.000350

Voltage Variations (±15%)

120	138.0	13561200.00000	0.00020
120	120.0	13561200.00000	0.00020
120	102.0	13561050.00000	-0.00040

Max Deviation (MHz)	0.000450
Max Deviation (PPM)	

Max Deviation (MHz)	
Max Deviation (%)	0.00332%

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 70 of 71 Report No.: 90569-10A

SAMPLE CALCULATIONS		
	Meter reading	(dBμV)
+	Antenna Factor	(dB)
+	Cable Loss	(dB)
-	Distance Correction	(dB)
-	Preamplifier Gain	(dB)
=	Corrected Reading	(dBμV/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 71 of 71 Report No.: 90569-10A