Page 1 of 56

COMPLIANCE TESTING REPORT FCC TITLE 47 PART 15 SUBPARTS A & C

Client: Seeley International Pty Ltd

Address: 112 O'Sullivan Beach Road, Lonsdale, SA 5160, Australia

Report Number: 0228SEELEY_MQWC(Receiver)_FCC15C

Date of Testing: 9th March to 7th November 2018

File Number: SEELEY161223

Equipment Name: MaglQtouch Wireless Receiver

Equipment Model Number MQWC

Equipment Serial Numbers Not Supplied Equipment FCC ID: R2ESIA19

Equipment Description: MagIQtouch Wireless Receiver

Result: COMPLIED

Aaron Fan Test Engineer

Tested by: Joel Mulig
Test Engineer

Steve Garnham

Test Engineer
Richard Turner

Report compiled by: Test Engineer

Approved by:

Colin Gan

Assessment Engineer

Date of Issue: 28th February 2019

AUSTEST (NSW) FCC REGISTRATION NUMBER 520620

Results appearing herein relate only to the sample(s) tested.

This report is issued errors and omissions exempt and is subject to withdrawal at Austest Laboratories discretion.

This document shall not be reproduced, except in full

<u>Tab</u>		Contents		
1			VISION HISTORY	
2	REF	ERENCE	S	4
3	TES	T SUMM	ARY	5
4			ONS	
5	EQU	IPMENT	UNDER TEST (EUT) DESCRIPTION	6
6	EUT	TEST SE	ETUP & CONFIGURATION	7
	6.1	Support	ing Equipment	7
	6.2			
7	TES	T SPECII	FICATIONS	8
	7.1		tations & Listings	
	7.2		ons from Standards and/or Accreditations	
	7.3		cility	
	7.4	-	uipment	
	7.5		ement Uncertainties	
8			3 – ANTENNA REQUIREMENT	
9			5 – RESTRICTED BANDS OF OPERATION	
10			7 - CONDUCTED LIMITS	
			st Operating Mode	
			ethod	
			sults	
11			9 - RADIATED EMISSION LIMITS, GENERAL REQUIREMENTS	
			perating Mode	
			ethod	
	11.3	Test Re	sults	
		11.3.1	Radiated Disturbances: 9kHz to 150kHz	
		11.3.2	Radiated Disturbances: 150kHz to 30MHz	
		11.3.3	Radiated Disturbances: 30MHz to 1000MHz	
		11.3.4		21
12			C, Section 15.215 – ADDITIONAL PROVISIONS TO THE GENERAL	
			MISSION LIMITATIONS	
13			C, Section 15.247 – OPERATION WITHIN THE BANDS 902-928MHz, 2400-	
			AND 5725-5850MHzandwidth - Section 15.247(a)(1)(i)	
	13.1	13.1.1	EUT Operating Mode	
		13.1.1	Test Method	
	12.0	13.1.3	Test Results	
	13.2		I Separation - Section 15.247(a)(1)(i)	
		13.2.1	EUT Operating Mode Test Method	
		13.2.2		
		13.2.3	Test Results	3∪

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 3 of 56

13.3 Pse	eudorandom Frequency Hopping Sequence - Section 15.247(a)(1)	31
13.4 Eq	ual Hopping Frequency Use- Section 15.247(a)(1)	32
13.5 Sys	stem Receiver Input Bandwidth- Section 15.247(a)(1)	32
13.6 Sys	stem Receiver Hopping Capability- Section 15.247(a)(1)	32
	mber of Hopping Frequencies - Section 15.247(a)(1)(i)	
	7.1 EUT Operating Mode	
13.	7.2 Test Method	33
13.	7.3 Test Results	34
13.8 Tin	ne of Occupancy (Dwell Time) - Section 15.247(a)(1)(iii)	35
13.	8.1 EUT Operating Mode	35
13.	8.2 Test Method	35
13.	8.3 Test Results	36
13.9 Pea	ak Conducted Output Power - Section 15.247(b)(2)	38
13.	9.1 EUT Operating Mode	38
13.	9.2 Test Method	38
13.	9.3 Directional antenna gain	38
13.	9.4 Test Results	39
13.	9.5 Transmit Power – Supply Voltage Variation	40
13.10Ou	t of band emissions – Section 15.247(d)	41
13.	10.1 EUT Operating Mode	41
13.	10.2 Test Method	41
13.	10.3 Test Results	42
13.11Co	existence with other FHSS systems- Section 15.247(h)	46
	- PHOTOGRAPHIC RECORD OF EUT	
APPENDIX B -	- FCC LABEL & LOCATION	53
APPENDIX C -	- EUT TEST SETUP PHOTOGRAPHS	54

This document shall not be reproduced, except in full

Page 4 of 56

1 REPORT REVISION HISTORY

Date Report Number		Changes	
4 th Dec. 2018	1204SEELEY_MQWC_FCCPT15C	Original report	
8 th Feb. 2019	0208SEELEY_MQWC(Gateway)_F CC15C	Removed Wall Controller from report.	
22 nd Feb. 2019	0222SEELEY_MQWC(Receiver)_F CC15C	Revised EUT name & description; corrections to EUT Description section; removed reference to professional install; incorrect reference in Section 12 amended; tabulated data added to Section 11; continuous transmission statement added to Section 11.1.	
28 th Feb. 2019	0228SEELEY_MQWC(Receiver)_F CC15C	Amendments to tabulated results in Sections 11.3.2 & 11.3.3. Additional statement added under Section 11.3.2 Table.	

2 REFERENCES

Document	Name	Issue/ Amendments
FCC Title 47 Part 15 – Radio Frequency Devices		Current as of Nov. 2018
ANSI C63.10	Procedures for Compliance Testing of Unlicensed Wireless Devices - PDF (Personal Use)	2013
KDB 558074	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	24 th Aug. 2018

This document shall not be reproduced, except in full

Page 5 of 56

3 TEST SUMMARY

Austest makes no claim regarding the consistency of production versions of the EUT.

The results in this report apply only to the tested EUT described in Section 5 of this report.

FCC Section Test		Result	Notes			
FCC Part 15,	FCC Part 15, Subpart C – Intentional Radiators					
15.203 Antenna Requirement		COMPLIED				
15.205	Restricted Bands of Operation	COMPLIED				
15.207 Conducted Limits		COMPLIED				
15.209 Radiated Emission Limits, General Requirements		COMPLIED	(i)			
15.215	Additional Provisions to the General Radiated Limitations	COMPLIED				
15.247	Operation within the Bands 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz	COMPLIED				

Notes:

(i) EUT complied (the measurement results were below the applicable limits), but some emissions were within the range of measurement uncertainty of the limits.

4 MODIFICATIONS

No modifications were required to achieve compliance.

5 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

EUT Name:	MaglQtouch Wireless Receiver
EUT Description:	MaglQtouch Wireless Receiver
EUT Model:	MQWC
EUT Serial Number:	Not Supplied
EUT FCC ID:	R2ESIA19
Manufacturer:	Seeley International Pty Ltd.
Power Supply & Rating:	4-5.5VDC provided by Modbus connection from supplied cooler controller
Highest Clock/Operating Frequency:	Highest clock, specified by the client – 40MHz Highest possible operating frequency – 927.1MHz (FHSS high channel)
Lowest Internal Frequency source	32.768kHz source
Transmit Frequency Range:	915.1MHz to 927.1MHz
Transmit Power:	12.0 dBm or 15.8mW
Modulation Technique:	50kb/s 2-GFSK
Number of Channels:	61
Antenna Specifications:	Permanently connected wire antenna, approx. 7.5cm long

The equipment under test (EUT) was a Wireless Receiver for use in the remote control of evaporative air coolers.

The Wireless Receiver would be powered by wired connection to a cooler controller module. 915MHz to 928MHz FHSS transceiver, Texas Instruments CC125, used with permanently connected 7.5cm long wire antenna.

This document shall not be reproduced, except in full

Accredited for compliance with ISO / IEC 17025.
Approval Specialists Pty Ltd (ACN: 094 656 354) Trading as Austest Laboratories 2/9 Packard Avenue, Castle Hill NSW 2154 Australia Ph: +612 9680 9990

Page 7 of 56

6 EUT TEST SETUP & CONFIGURATION

Refer to the photographs in APPENDIX C – EUT TEST SETUP PHOTOGRAPHS for the EUT test setup and physical configuration.

Several samples were supplied for testing:

- 1. Wireless Receiver unit with permanent wire antenna fitted. Configured with normal operating firmware for frequency hopping transmission.
- 2. 3 x Wireless Receiver units with permanent wire antenna fitted. Each unit was configured with test firmware that enabled transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel.
- 3. 3 x Wireless Receiver units with permanent antenna removed and replaced with 50Ω SMA coaxial cable connection at the transceiver output. Each unit was configured with test firmware that enable transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel.

Transmitter power settings were as supplied by the client.

The following cables and auxiliary equipment as supplied by the client were used:

6.1 Supporting Equipment

Equipment	Brand & Model	
Cooler Controller (120VAC)	Client Supplied	

6.2 Cables

Connection/ Port	Cable	Length*	Source/ Load
Modular RJ11	Supplied unshielded RJ11 (6p6c) cable	10.0m	Cooler Controller
Mains Power (cooler controller)	Unshielded 3 core mains lead	1.8m	120VAC 60 Hz mains supply

^{*}Cable length was adjusted by bundling or were cut to length in accordance with the ANSI C63.10.

Page 8 of 56

7 TEST SPECIFICATIONS

7.1 Accreditations & Listings

Austest Laboratories (NSW)'s test facilities are accredited with the FCC under the ACMA-FCC APEC-TEL MRA. Designation Number AU0003 / Registration number 520620.

Austest Laboratories Castle Hill test facilities are accredited by A2LA for CFR 47 FCC Part 15 subparts B and C using ANSI C63.4.2014 and C63.10:2013. The tests reported herein have been performed in accordance with its terms of accreditation.

7.2 Deviations from Standards and/or Accreditations

None.

7.3 Test Facility

Testing was performed at Austest Laboratories, 2/9 Packard Avenue, Castle Hill, NSW 2154, Australia

7.4 Test Equipment

Calibration traceable to Australian National standards or international equivalents. Equipment performance verified prior to use.

Туре	Model	Cal. Date	Cal. Due
Spectrum Analyser	Agilent E4440A	08/02/17	08/02/19
Biconical Array Antenna	EM6912	07/12/16	07/12/18
Log Periodic Array Antenna	EM3146	02/05/17	02/05/19
DRG Horn Antenna	AH Systems SAS-571	17/08/17	17/08/20
Preamp (30MHz – 1GHz)	Rall RE-1200A	07/11/17	07/11/19
Preamp (1GHz – 18.GHz)	Com-Power PAM-118A	21/11/17	21/11/19
High Pass Filter	WHKX1.3/15G-6SS	09/06/16	09/06/19
Semi-Anechoic Chamber	Frankonia SAC3	Verified	

This document shall not be reproduced, except in full

Page 9 of 56

Туре	Model	Cal. Date	Cal. Due
6dB Attenuator	Weinschel Corp	08/09/15	08/09/18
10dB Attenuator	Mini Circuits BW-N10W5	Verified	
AC Source	California Inst. CSW 5500	31/08/17	31/08/19
Close-Field Probe	Com-Power	Verified	
EMI measurement software	Teseq Compliance 5	Verified	

7.5 Measurement Uncertainties

The following uncertainties are for a 95% level of confidence, based on a coverage factor, k=2.

Test	Measurement Uncertainty	
RF Frequency	±5 part in 10 ¹⁰	
RF power conducted	±1.3dB	
RF power radiated	±4.7dB	
Humidity	±2%	
Temperature	±0.8 °C	
Mains Port Conducted Emissions-AMN	±2.6dB	

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19 Page 10 of 56

8 Section 15.203 – ANTENNA REQUIREMENT

The EUT complied with the requirement of this Section since integral wire antenna was used with no end-user accessible coaxial antenna port.

9 Section 15.205 – RESTRICTED BANDS OF OPERATION

The EUT complied with the requirements of this Section since it did not operate within the listed Restricted Bands of Operation. Out of band emissions falling within the Restricted Bands of Operation were found to be below limits specified in section 15.209.

Page 11 of 56

10 Section 15.207 - CONDUCTED LIMITS

Test Date: 23/08/2018 Temperature: 16°C Test Officer: Joel Mulig Humidity: 39%

Test Location: Austest Laboratories (Castle Hill)

10.1 EUT Test Operating Mode

Refer to section 5.

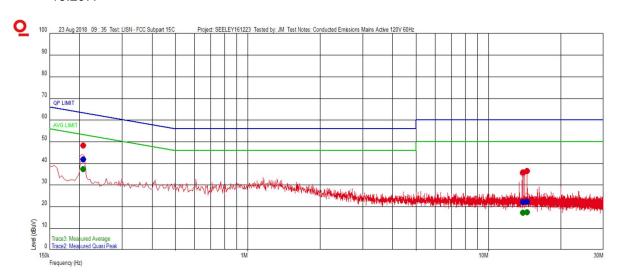
Tests were performed using a Wireless Receiver unit with permanent wire antenna fitted and configured with normal operating firmware for frequency hopping transmission.

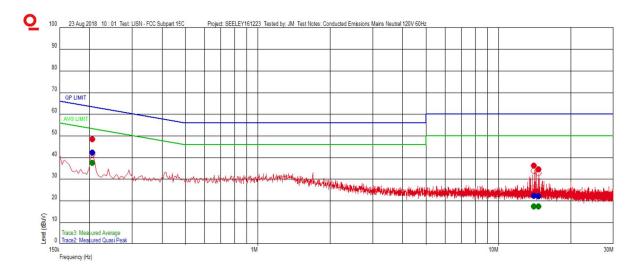
Once powered the Wireless Receiver was continually frequency hopping.

The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

10.2 Test Method

- a) Measurements were performed in accordance with ANSI C63.10:2013.
- b) The measuring receiver BW settings were set to 9kHz.
- c) The EUT was setup on a non-conductive platform, 0.8m above a conductive ground plane, with the rear of the EUT 0.8m away from a conductive vertical reference plane (in electrical contact with the ground plane), and 0.8m away from any other conductive surface.
- d) Where applicable, EUT power was supplied through the EUT AMN. Power for supporting equipment (if any) was supplied through the supporting equipment AMN. Both AMNs were grounded to the ground plane and kept 0.8m away from the EUT test setup.
- e) Power cable length between the EUT and the EUT AMN was maintained between 0.8m to 1m. Any excess power cable lengths were bundled together in the centre of the cable to form a bundle 30cm to 40cm long.
- f) All interconnection cables were draped over the platform edge and kept them at least 40cm above the ground plane. Any excess cable lengths were bundled in the centre of the cable to form a bundle 30cm to 40cm long.
- g) Conducted emission measurements were made on both Active and Neutral lines of the EUT at the respective AMN measurement points.




Page 12 of 56

10.3 Test Results

All measured emissions were greater than 10dB below the limits specified in section 15.207.

Conducted Emissions Plot (Active Line)

Conducted Emissions Plot (Neutral Line)

This document shall not be reproduced, except in full

Page 13 of 56

11 Section 15.209 - RADIATED EMISSION LIMITS, GENERAL REQUIREMENTS

09/03/18, 10/04/18, 17/04/18,

Test Dates: 24/05/18, 05/07/18, 06/07/18, Temperature: 20-26°C

24/10/18

Test Officers: Joel Mulig / Aaron Fan / Steve

Humidity: 54-68%

Garnham

Test Location: Austest Laboratories (Castle Hill and Yarramalong)

Measurements below 30MHz took place at the Austest OATS facility at Yarramalong. Measurements above 30MHz took place at the Austest SAC facility at Castle Hill.

11.1 EUT Operating Mode

Refer to section 5.

Tests were performed on the 3 x Wireless Receiver units with permanent wire antenna fitted. Each unit was configured with test firmware that enabled transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel. Transmission was continuous with >98% duty cycle.

The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

11.2 Test Method

- a. Measurements were performed in accordance with ANSI C63.10-2013.
- b. The measuring receiver BW settings were:
 - i. 9kHz (150kHz to 30MHz) EMI Receiver RBW.
 - ii. 120kHz (30MHz to 1GHz) EMI Receiver RBW.
 - iii. 1MHz (above 1GHz) RBW, 1MHz or more VBW, using a Spectrum Analyser for Peak measurements.
 - iv. 1MHz (above 1GHz) RBW, 10Hz VBW with linear detection, using a Spectrum Analyser for Average measurements.
- c. The EUT was positioned on a non-conductive turntable, 0.8m (for measurements up to 1GHz) and 1.5m (for measurements above 1GHz) above a conductive ground plane and at the indicated test distance away from the measuring antenna.
- d. Emissions were maximised by rotating the EUT through 360° and varying the measuring antenna height between 1m to 4m in the following antenna orientations:
 - i. Loop antenna (150kHz to 30MHz) Coaxial and coplanar orientations.
 - ii. Biconical and Log-Periodic antennas (30MHz to 1GHz) Both vertical and horizontal polarizations.
 - iii. Horn antenna (above 1GHz) Both vertical and horizontal polarizations.

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 14 of 56

- e. The maximised emission levels were measured and the above process repeated for all measurement frequencies.
- f. Average level measurements were not made where the peak level did not exceed the average limit.
- g. The linearity of the measuring system was checked, reducing gain when required.

11.3 Test Results

11.3.1 Radiated Disturbances: 9kHz to 150kHz

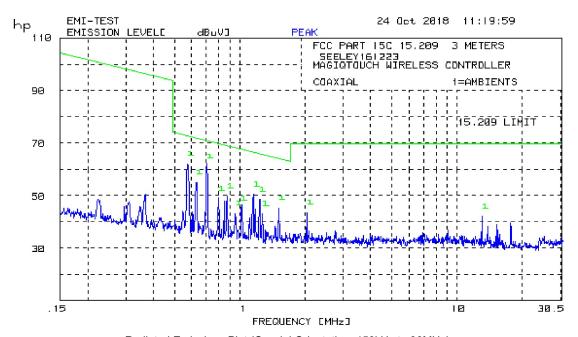
Preliminary measurements indicated no significant intentional emission levels below 150kHz. All intentional radiation emission levels were greater than 20dB below the limits specified in section 15.209.

11.3.2 Radiated Disturbances: 150kHz to 30MHz

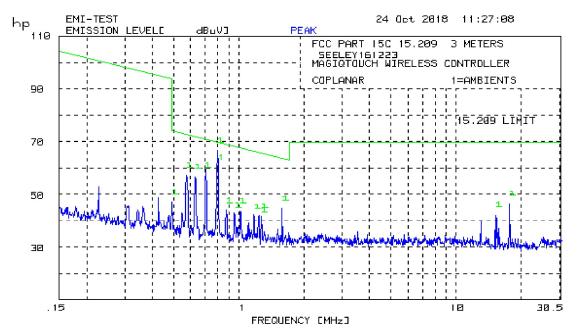
The Wireless Receiver was tested with a supporting Wireless Smart Controller with both being placed on the test table.

Measurement distance 3m.

Note: Limit lines on the following plots reflect use of a 40dB/decade correction, as per section 15.31 (f) (2).


Frequency	Antenna Pol.	Measured QP Level @ 3m	QP Limit @ 30m	QP Pass Margin	
(MHz)		(dBμV/m)	(dBμV/m)	(dB)	
All measured emission levels were greater than 20dB below limits specified in section 15.209.					

Since no emissions were found below 30MHz, comparison of Open Field Site (OFS) and OATS measurements yield noise floor profiles only, giving similar results when addressing comparison of OFS and OATS per KDB 414788.

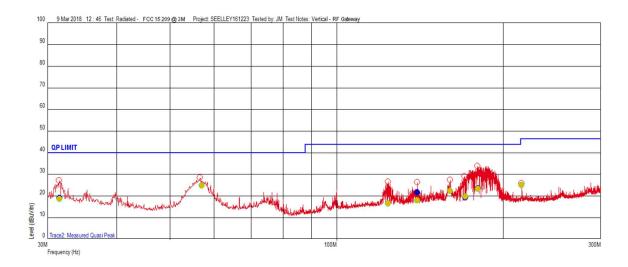


Page 15 of 56

Radiated Emissions Plot (Coaxial Orientation, 150kHz to 30MHz)

Radiated Emissions Plot (Coplanar Orientation, 150kHz to 30MHz)

This document shall not be reproduced, except in full

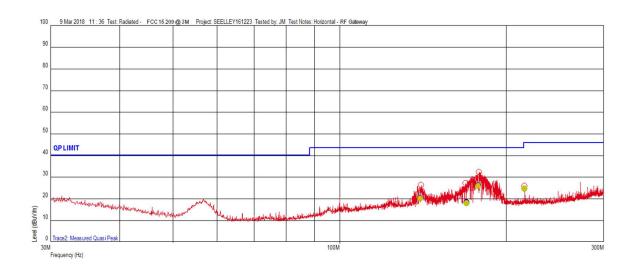

Page 16 of 56

11.3.3 Radiated Disturbances: 30MHz to 1000MHz

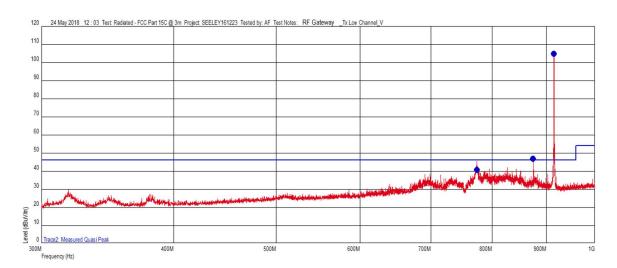
Measurement distance 3m.

Frequency	Antenna Pol.	Measured QP Level @ 3m	QP Limit @ 3m	QP Pass Margin
(MHz)		(dBμV/m)	(dBμV/m)	(dB)
All measured emission levels within the restricted bands of operation (section 15.205) were greater than 20dB below limits specified in section 15.209.				
Measured emission levels outside the restricted bands of operation are addressed by compliance with section 15.247 (d) as follows:				
711.1083	Н	38.69 83.20*		-44.51
772.0101	Н	39.43	83.20*	-43.77
774.1814	V	40.42	83.20*	-42.78
875.1218	Н	47.03	83.20*	-36.17
881.1247	V	43.63	83.20*	-39.57
887.1154	Н	44.87	83.20*	-38.33

^{*} The worst-case QP Limit @ 3m was determined by taking the minimum measured level of the intended signal @ 3m - 20dB, i.e. $103.20dB\mu V/m - 20dB = 83.20dB\mu V/m$.

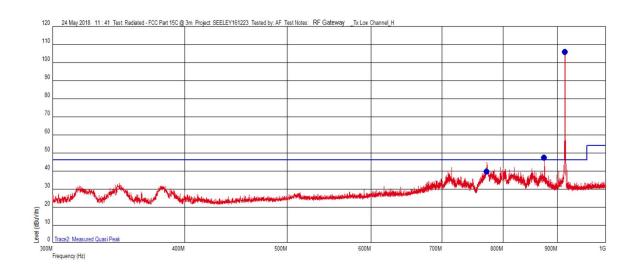

Radiated Emissions Plot (Vertical Polarisation, 30MHz to 300MHz)

This document shall not be reproduced, except in full



Page 17 of 56

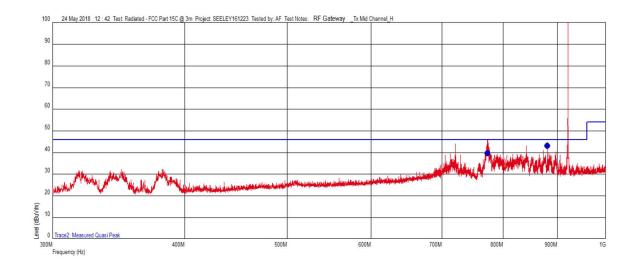
Radiated Emissions Plot (Horizontal Polarisation, 30MHz to 300MHz)


Radiated Emissions Plot (Vertical Polarisation, 300MHz to 1000MHz, Low Channel)

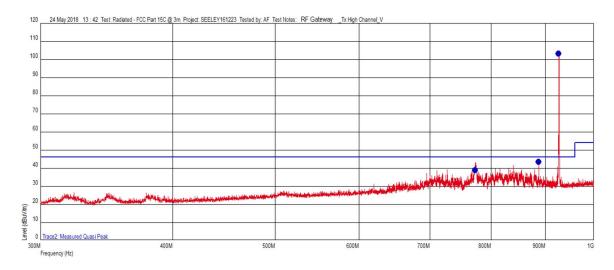
This document shall not be reproduced, except in full

Page 18 of 56

Radiated Emissions Plot (Horizontal Polarisation, 300MHz to 1000MHz, Low Channel)


Radiated Emissions Plot (Vertical Polarisation, 300MHz to 1000MHz, Middle Channel)

This document shall not be reproduced, except in full

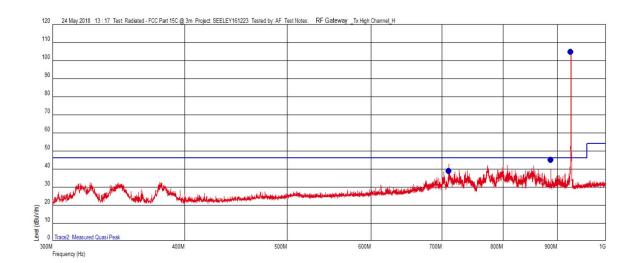


Page 19 of 56

Radiated Emissions Plot (Horizontal Polarisation, 300MHz to 1000MHz, Middle Channel)

Radiated Emissions Plot (Vertical Polarisation, 300MHz to 1000MHz, High Channel)

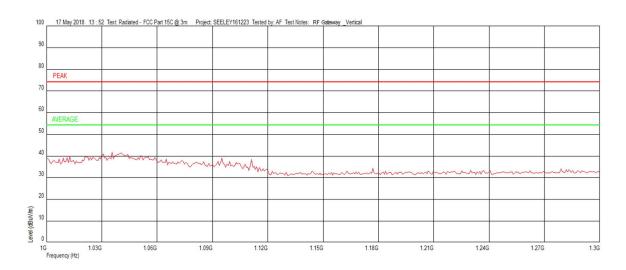
This document shall not be reproduced, except in full



Page 20 of 56

Radiated Emissions Plot (Horizontal Polarisation, 300MHz to 1000MHz, High Channel)

This document shall not be reproduced, except in full

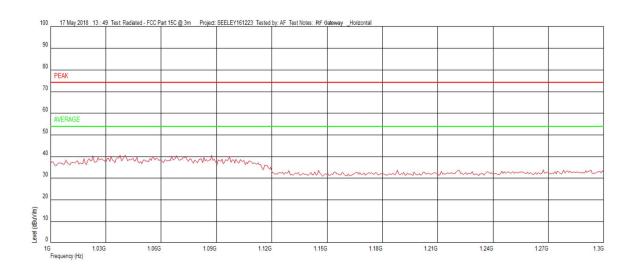

Page 21 of 56

11.3.4 Radiated Disturbances: 1000MHz to 9300MHz

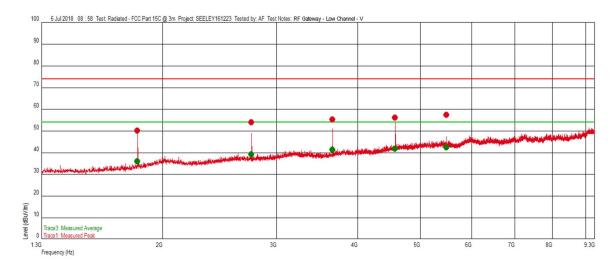
Measurement distance: 3m.

Frequency	Antenna Pol.	Measured AV Level @ 3m AV Limit @ 3m		AV Pass Margin	
(GHz)		(dBμV/m)	(dBμV/m)	(dB)	
Measured emission levels within the restricted bands of operation against limit specified in section 15.209 as follows:					
2.7452	Н	39.17	39.17 54		
3.6604	Н	43.24 54		-10.76	
3.6843	V	40.06	54	-13.94	
3.7085	V	41.97	54	-12.03	
4.5755	Н	43.74	54	-10.26	
Measured emission levels outside the restricted bands of operation are addressed by compliance with section 15.247 (d) as follows:					
5.4903	V	42.19	83.20*	-41.01	

^{*} The worst-case QP Limit @ 3m was determined by taking the minimum measured level of the intended signal @ 3m - 20dB, i.e. $103.20dB\mu V/m - 20dB = 83.20dB\mu V/m$.

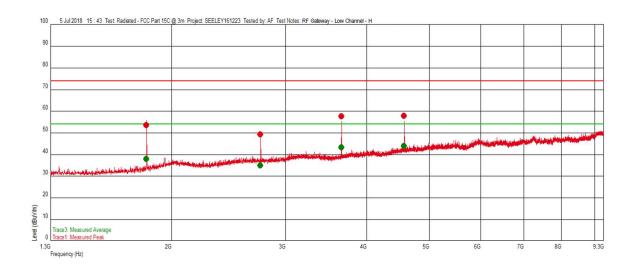

Radiated Emissions Plot (Vertical Polarisation, 1000MHz to 1300MHz)

This document shall not be reproduced, except in full

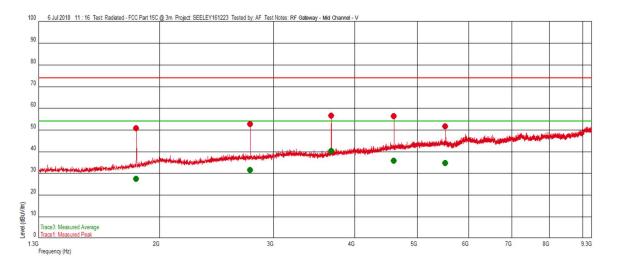


Page 22 of 56

Radiated Emissions Plot (Horizontal Polarisation, 1000MHz to 1300MHz)

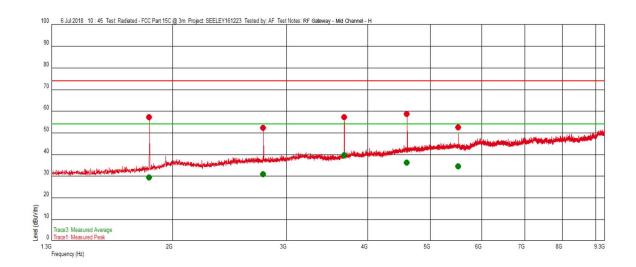

Radiated Emissions Plot (Vertical Polarisation, 1300MHz to 9300MHz, Low Channel)

This document shall not be reproduced, except in full

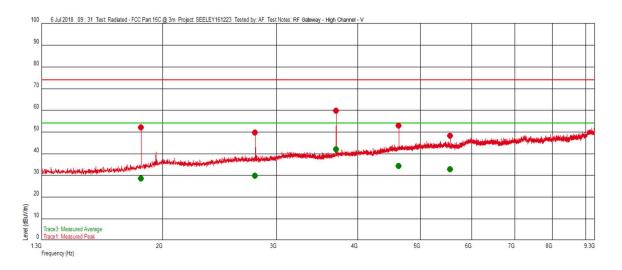


Page 23 of 56

Radiated Emissions Plot (Horizontal Polarisation, 1300MHz to 9300MHz, Low Channel)


Radiated Emissions Plot (Vertical Polarisation, 1300MHz to 9300MHz, Middle Channel)

This document shall not be reproduced, except in full

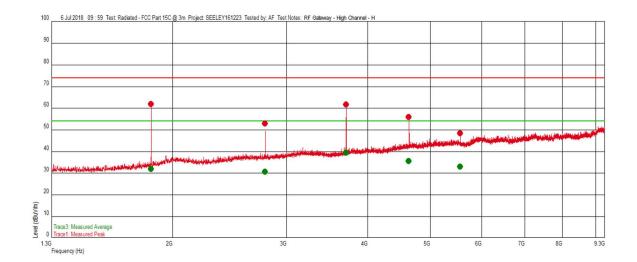


Page 24 of 56

Radiated Emissions Plot (Horizontal Polarisation, 1300MHz to 9300MHz, Middle Channel)

Radiated Emissions Plot (Vertical Polarisation, 1300MHz to 9300MHz, High Channel)

This document shall not be reproduced, except in full



Page 25 of 56

Radiated Emissions Plot (Horizontal Polarisation, 1300MHz to 9300MHz, High Channel)

This document shall not be reproduced, except in full

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19 Page 26 of 56

12 FCC Part 15C, Section 15.215 – ADDITIONAL PROVISIONS TO THE GENERAL RADIATED EMISSION LIMITATIONS.

20dB Bandwidth

The 20dB bandwidth was within the allowed band of operation between 902MHz and 928MHz. Refer to measurement results indicated in sections 13.1.3 of this report.

 F_{LOW} = 915.046MHz (low channel) F_{HIGH} = 927.137MHz (high channel)

EUT COMPLIED.

Page 27 of 56

13 FCC Part 15C, Section 15.247 – OPERATION WITHIN THE BANDS 902-928MHz, 2400-2483.5MHz, AND 5725-5850MHz

13.1 20dB Bandwidth - Section 15.247(a)(1)(i)

Test Date: 11/07/18, 03/10/18 Temperature: 18-20°C Test Officer: Aaron Fan Humidity: 47%-53%,

Test Location: Austest Laboratories (Castle Hill)

13.1.1 EUT Operating Mode

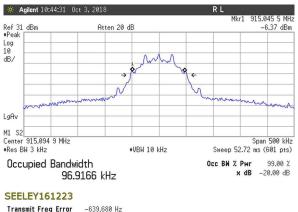
Refer to section 5.

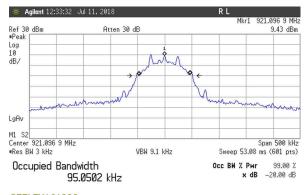
Tests were performed on the 3 x RF gate way units with permanent antenna removed and replaced with 50Ω SMA coaxial cable connection at the transceiver output. Each unit was configured with test firmware that enable transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel.

The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

13.1.2 Test Method

- a. Measurements were performed in accordance with ANSI C63.10 clause 6.9.2.
- b. Using a modified sample with antenna disconnected and coaxial cable connected at the transceiver output, the EUT transceiver output was connected to a spectrum analyser via a low loss RF cable, and attenuator (as necessary).
- c. Spectrum analyser RBW was set to 3kHz, VBW 10kHz.
- d. The spectrum analyser automated xdB bandwidth measurement function was employed. xdB set to -20.0.
- e. Measurements were repeated for the low, middle and high channels.




Page 28 of 56

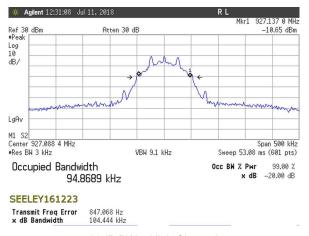
13.1.3 Test Results

Limit: The maximum allowed 20 dB bandwidth of the hopping channel was 500 kHz.

Channel	20dB Bandwidth	Result
	(kHz)	
Low	104.928	COMPLIED
Middle	104.024	COMPLIED
High	104.444	COMPLIED

Transmit Freq Error x dB Bandwidth

-639.680 Hz 104.928 kHz


SEELEY161223

Transmit Freq Error x dB Bandwidth

-414.558 Hz 104.024 kHz

20dB BW - Middle Channel

20dB BW - Low Channel

20dB BW - High Channel

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 29 of 56

13.2 Channel Separation - Section 15.247(a)(1)(i)

Test Date: 11/07/18, 25/07/18 Temperature: 20°C, 26°C Test Officer: Aaron Fan Humidity: 53%, 67%

Test Location: Austest Laboratories (Castle Hill)

13.2.1 EUT Operating Mode

Refer to section 5.

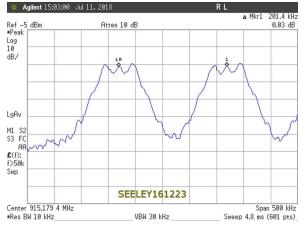
Tests were performed on the Wireless Receiver unit with permanent wire antenna fitted. Configured with normal operating firmware for frequency hopping transmission. The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

13.2.2 Test Method

Note that measurements were made on units with permanent wire antenna fitted configured for normal frequency hopping transmission.

For the Wireless Receiver, normal frequency hopping function occurred once powered. A near field probe, positioned close to the Wireless Receiver and connected to a spectrum analyser, was used to capture the transmission.

- a. Measurements were performed in accordance with ANSI C63.10 clause 7.8.2.
- b. Spectrum analyser RBW was set to 3kHz, VBW 10kHz.
- c. Peak frequencies of adjacent channels were marked and frequency separation compared to the limit.
- d. Measurements were repeated for the low, middle and high channels.



Page 30 of 56

13.2.3 Test Results

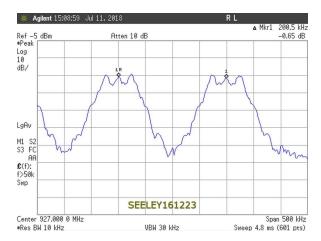
Limit: Channel separation to be greater than 25kHz or the 20dB bandwidth of the hopping channel.

Channels	Separation 20dB bandwidth		Result
	(kHz)	(kHz)	
Low	201.4	104.9	COMPLIED
Medium	201.2	104.0	COMPLIED
High	200.5	104.4	COMPLIED

RE Aglient 15:04:52 Jul 11, 2018

Ref -5 dBm Atten 10 dB -0.35 dB

*Peak
Log
10
dB/


MI S2
33 FC
AR
£(f):
f):590k
Swp

SEELEY161223

Center 921.000 0 MHz
*Res BN 10 kHz
VBN 30 kHz
Sweep 4.8 ms (601 pts).

Ch Separation - Low Channel

Ch Separation - Middle Channel

Ch Separation - High Channel

This document shall not be reproduced, except in full

Page 31 of 56

13.3 Pseudorandom Frequency Hopping Sequence - Section 15.247(a)(1)

The client provided the following description:

There are 61 frequencies used.

A table is created that has each frequency in it once.

A polynomial random number generator is seeded with the Unique ID of the installation. No two networks have the same 32 but Unique ID.

Each entry in the table is swapped with another entry chosen at random. So finally, there is a list which has each frequency in it exactly 1 time and that pattern is nearly unique among all possible Unique ID's. The jumbled table of frequencies is used sequentially. Each new TX session starts on the next frequency and only exists on the one frequency (short burst). This ensures the equal use of frequencies is satisfied. The table entry swapping ensures the short term distribution of frequencies is met.

```
Code Snippet
static void setseed(unsigned long s)
\{ seed = s: \}
static unsigned long random32()
{ seed ^= seed << 13;</pre>
 seed ^= seed >> 17;
 seed ^= seed << 5:
 return seed:}
// Setup the sequence of frequencies
setseed(pair information.receiver radio link);
for (i = 0; i < NUM\_FREQUENCIES; i++)
  rf link freq table index[i] = i;
for (i = 1 : i < NUM FREQUENCIES : i++)
\{ k = rf | link | freq | table | index[i]; \}
  j = (random32() \% (NUM FREQUENCIES-1)) + 1;
  rf link freq table index[i] = rf link freq table index[i];
  rf_link_freq_table_index[j] = k;}
pair_information.receiver_radio_link is the Unique ID
```


Page 32 of 56

13.4 Equal Hopping Frequency Use- Section 15.247(a)(1)

Refer to client's description in section 13.3 of this report.

13.5 System Receiver Input Bandwidth- Section 15.247(a)(1)

The client provided the following statement:

Receiver Bandwidth is 125KHz which after the spectral spread caused by the 2-GFSK modulation and allowing 25KHz for frequency error is the bandwidth that matches the transmitted signal.

13.6 System Receiver Hopping Capability- Section 15.247(a)(1)

The client provided the following statement:

The receiver knows the Unique ID as it is in the message and does not change. The receiver knows the time since the last received message. The receiver knows the frequency of the last received message. The receiver calculates the same jumbled table of frequencies of the transmitter. By knowing the time difference, it knows how many steps have progressed and knows the frequency to receive on. Part of the protocol ensures that time is synchronized across devices in the system.

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 33 of 56

13.7 Number of Hopping Frequencies - Section 15.247(a)(1)(i)

Test Date: 11/07/18, 25/07/18 Temperature: 26°C Test Officer: Aaron Fan Humidity: 67%

Test Location: Austest Laboratories (Castle Hill)

13.7.1 EUT Operating Mode

Refer to section 5.

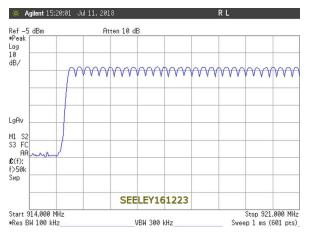
Tests were performed on the Wireless Receiver unit with permanent wire antenna fitted. Configured with normal operating firmware for frequency hopping transmission. The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

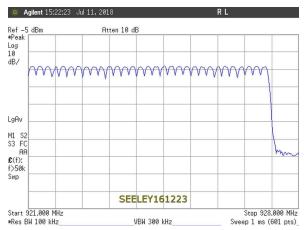
13.7.2 Test Method

Note that measurements were made on units with permanent wire antenna fitted configured for normal frequency hopping transmission.

For the Wireless Receiver, normal frequency hopping function occurred once powered. A near field probe, positioned close to the Wireless Receiver and connected to a spectrum analyser, was used to capture the transmission.

- a. Measurements were performed in accordance with ANSI C63.10 clause 7.8.3.
- b. Spectrum analyser RBW was set to 100kHz, VBW to 300kHz.
- c. Spectrum analyser trace was set to max hold to enable capture of all hopping channels.
- d. Number of hopping channels were then counted.
- e. Multiple trace captures maybe required to facilitate easier counting of channels.


Page 34 of 56


13.7.3 Test Results

Limit: If the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

20dB bandwidth <250kHz
Total number of channels counted: 61

EUT COMPLIED.

Number of Channels

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 35 of 56

13.8 Time of Occupancy (Dwell Time) - Section 15.247(a)(1)(iii)

Test Date: 07/11/2018 Temperature: 26°C Test Officer: Aaron Fan Humidity: 67%

Test Location: Austest Laboratories (NSW)

13.8.1 EUT Operating Mode

Refer to section 5.

Tests were performed on the Wireless Receiver unit with permanent wire antenna fitted. Configured with normal operating firmware for frequency hopping transmission. The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

13.8.2 Test Method

Note that measurements were made on units with permanent wire antenna fitted configured for normal frequency hopping transmission.

For the Wireless Receiver, normal frequency hopping function occurred once powered. A near field probe, positioned close to the Wireless Receiver and connected to a spectrum analyser, was used to capture the transmission.

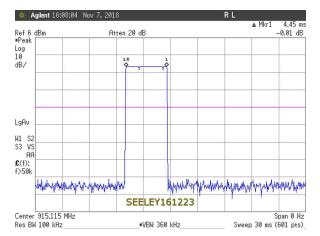
- a. Measurements were performed in accordance with ANSI C63.10 clause 7.8.4.
- b. Spectrum analyser RBW was set to 100kHz, < channel spacing, VBW to 300kHz.
- c. The spectrum analyser display was centered on one channel frequency, using zero span.
- d. Sweep time was adjusted so that a single transmit pulse was captured and transmit duration measured.
- e. Sweep time was then extended to 20 seconds and the number of transmit pulses counted.
- f. Time of occupancy over a 20 second period was then calculated.
- g. Measurements were repeated for the low, middle and high channels.

Page 36 of 56

13.8.3 Test Results

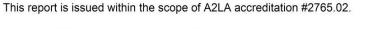
Limit: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 20 seconds.

Transmit duration for one hop on a low channel: 4.45ms Transmit duration for one hop on a middle channel: 4.4ms Transmit duration for one hop on a high channel: 4.45ms


Number of hops over a 20 second period:

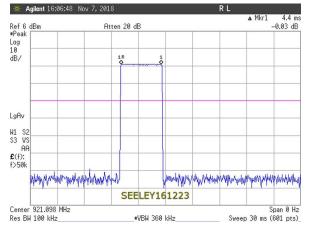

Low channel: 5 Middle channel: 5 High channel: 5

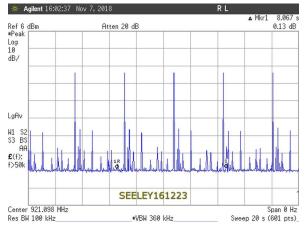
Time of occupancy over a 20 second period:

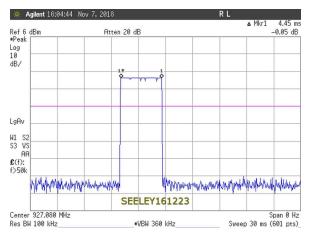

Low channel: 22.3ms Middle channel: 22.0ms High channel: 22.3ms

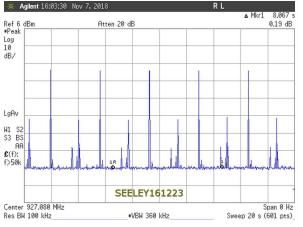
EUT COMPLIED

Time of Occupancy - Low Channel








No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19 Page 37 of 56

Time of Occupancy - Middle Channel

Time of Occupancy - High Channel

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 38 of 56

13.9 Peak Conducted Output Power - Section 15.247(b)(2)

Test Date: 11/07/18 Temperature: 20°C Test Officer: Aaron Fan Humidity: 53%

Test Location: Austest Laboratories (Castle Hill)

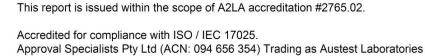
13.9.1 EUT Operating Mode

Refer to section 5.

Tests were performed on the 3 x RF gate way units with permanent antenna removed and replaced with 50Ω SMA coaxial cable connection at the transceiver output. Each unit was configured with test firmware that enable transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel.

The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

13.9.2 Test Method


- a. Measurements were performed in accordance with ANSI C63.10 clause 7.8.5.
- b. Spectrum analyser RBW was set to 1MHz, VBW to 3MHz.
- c. The analyser display was centred on the channel frequency to be measured.
- d. The spectrum analyser trace was set to max hold and the trace to stabilised.
- e. The marker was positioned at the peak level (peak search).
- f. The level was recorded and compared to the limit.
- g. Measurements were repeated for the low, middle and high channels.

13.9.3 Directional antenna gain

The Wireless Receiver uses a permanently fitted wire antenna, approximately 7.5cm long. The client estimated the gain of the Wireless Receiver antenna to be around -2dBi. It is unlikely that such an antenna would have a gain that exceeds 6dBi for the band 915MHz to 928MHz.

Section 15.247 (b) (4) indicates that the specified limit of 1W for conducted output power is based on the use of an antenna with a directional gain not exceeding 6dBi.

This document shall not be reproduced, except in full

2/9 Packard Avenue, Castle Hill NSW 2154 Australia Ph: +612 9680 9990

13.9.4 Test Results

Limit: 1 watt for systems employing at least 50 hopping channels.

Frequency	Outpu	Output Power		mit	Δ Limit
MHz	dBm	mW	dBm	mW	dB
915.1 (Low Ch)	12.0	15.8	30.0	1000	-18.0
921.1 (Mid Ch)	11.8	15.1	30.0	1000	-18.2
927.1 (High Ch)	11.4	13.8	30.0	1000	-18.6

Aglent 12:15:09 Jul 11, 2018 R L

Ref 31 dBm Atten 40 dB 11.78 dBm

*Peak
Log
10
dB/

LgAv

M1 \$2
\$3 FC
A AA
AA
E(f):
FTun
Swp

SEELEY161223

Center 921,100 MHz

*Res BH 1 MHz

VBM 3 MHz

Sweep 1 ms (601 pts)

Tx Power - Low Channel

Tx Power - Middle Channel

Tx Power - High Channel

This document shall not be reproduced, except in full

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 40 of 56

13.9.5 Transmit Power – Supply Voltage Variation

The Wireless Receiver was powered from the cooler controller which was connected to a nominal 120VAC 60Hz mains supply.

Section15.31 (e) requires transmitted power at the fundamental to be measured with the supply voltage varied between 85% and 115% of the nominal voltage range.

No change in transmit power at the fundamental was observed when the AC supply voltage was varied.

Page 41 of 56

13.10 Out of band emissions - Section 15.247(d)

Test Date: 15/07/18, 25/07/18, 01/08/18 Temperature: 20 - 26°C Test Officer: Aaron Fan Humidity: 53 - 74%

Test Location: Austest Laboratories (Castle Hill)

13.10.1 EUT Operating Mode

Refer to section 5.

Tests were performed on the 3 x RF gate way units with permanent antenna removed and replaced with 50Ω SMA coaxial cable connection at the transceiver output. Each unit was configured with test firmware that enable transmission at a selected frequency. One unit for low channel, second unit for middle channel and third unit for high channel.

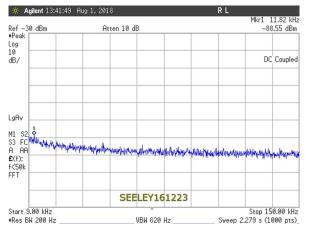
For measurement at the band-edges whilst frequency hopping was active, the Wireless Receiver unit was tested with permanent wire antenna fitted. Configured with normal operating firmware for frequency hopping transmission.

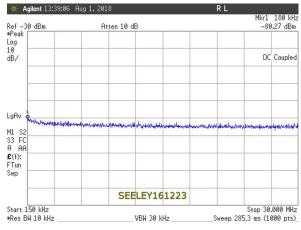
The Wireless Receiver was powered by connection to the cooler controller, which was connected to a 120VAC 60Hz mains supply.

13.10.2 Test Method

- a. Measurements were performed in accordance with ANSI C63.10 clauses 7.8.6 (bandedge) and 7.8.8.
- b. Spectrum analyser RBW was set to 100kHz, VBW to 300kHz, except below 30MHz were RBW had to be reduced to reduce influence of the analysers zero marker.
- c. Highest in-band level was recorded for each channel measured.
- d. The frequency range 9kHz up to the 10th harmonic of the intentional transmission was swept to locate the highest out of band emissions.
- e. Ensured that any out of band emissions were greater than 20dB below the recorded in band level.
- f. Ensured that any emissions that fall within the restricted bands specified in section 15.205 also meet the radiated emission limits specified in section 15.209.
- g. Repeat the above for the low, middle and high channel and across all transmit modes.
- h. For FHSS, remeasure at the band-edges with frequency hopping enabled. Due to the test samples provided, this was performed as a radiated emission measurement (see section 10 of this report for test method).

This document shall not be reproduced, except in full

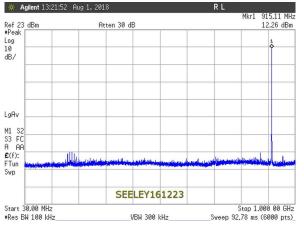

Page 42 of 56


13.10.3 **Test Results**

13.10.3.1 Frequency Range: 9kHz to 25000MHz

All measured out-of- band emissions were greater than 20dB below the highest in-band level.

Highest measured out of band emission level was -29.3dBm at 1854.2MHz, with transmission on the highest channel.



9kHz to 150kHz

150kHz to 30MHz

Atten 30 dB

* Agilent 13:25:51 Aug 1, 2018

Ref 23 dBm ■Peak

Log 10 dB/

LgAv

M1 S2 S3 FC A AA

£(f): FTun

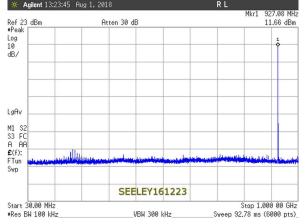
Swp

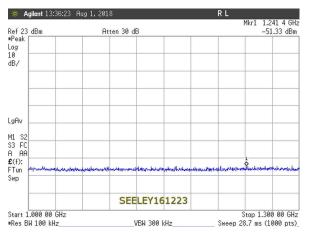
30MHz to 1000MHz - Low Channel

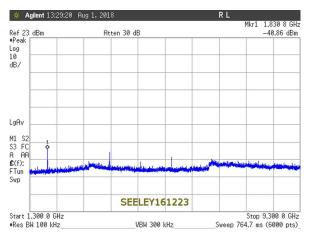
30MHz to 1000MHz - Middle Channel

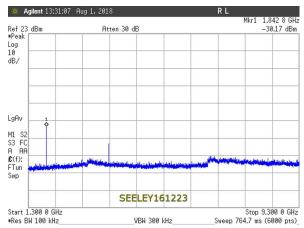
This document shall not be reproduced, except in full

This report is issued within the scope of A2LA accreditation #2765.02.


11.87 dBm


Span 970 MHz

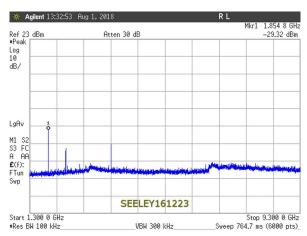

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19 Page 43 of 56



30MHz to 1000MHz - High Channel

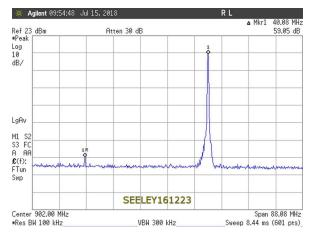
1000MHz to 1300MHz

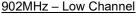
1300MHz to 9300MHz - Low Channel

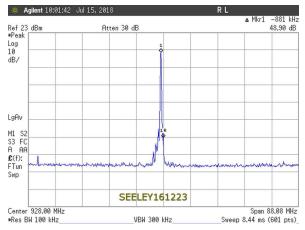

1300MHz to 9300MHz - Middle Channel

This document shall not be reproduced, except in full

Page 44 of 56




1300MHz to 9300MHz - High Channel


13.10.3.2 Authorised Band-Edges: 902MHz and 928MHz

At the authorised band-edges, measured out-of- band emissions were greater than 20dB below the highest in-band level.

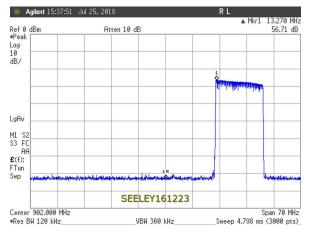
Frequency Hopping Disabled

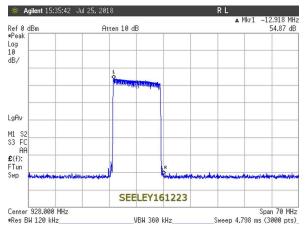
928MHz - High Channel

This document shall not be reproduced, except in full

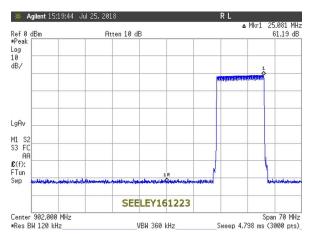
This report is issued within the scope of A2LA accreditation #2765.02.

Accredited for compliance with ISO / IEC 17025.





Page 45 of 56


Frequency Hopping Enabled

902MHz - Vertical Polarisation

928MHz – Vertical Polarisation

902MHz - Horizontal Polarisation

928MHz - Horizontal Polarisation

This document shall not be reproduced, except in full

2/9 Packard Avenue, Castle Hill NSW 2154 Australia Ph: +612 9680 9990

FCC Part 15C Test Report

No: 0228SEELEY_MQWC(Receiver)_FCC15C FCC ID: R2ESIA19

Page 46 of 56

13.11 Co-existence with other FHSS systems- Section 15.247(h)

The client provided the following statement:

The transmit frequency is determined by 'network' time and each network has its own sequence of frequencies. The system does not adjust the next frequency or the timing of the next frequency based on the presence or otherwise of a message or the presence or otherwise of a clear channel.

