

Emissions Test Report

EUT Name: Energy Axis Rex2 Form 12S Meter

EUT Model: REX2EAI

FCC ID: QZC-RX2EAI

FCC Title 47, Part 15, Subpart C

Prepared for:

John Holt
Elster Electricity, LLC
208 South Rogers Lane
Raleigh, NC 27610
Tel: 919 212-4700
Fax: 919 212-5108

Prepared by:

TUV Rheinland
762 Park Avenue
Youngsville, NC 27596
Tel: (919) 554-0901
Fax: (919) 556-2043
<http://www.tuv.com/>

Report/Issue Date: 15 October, 2007

Report Number: 30862811.002 FCC

Statement of Compliance

Manufacturer: Elster Electricity, LLC
208 South Rogers Lane
Raleigh, NC 27610
919 212-4700

Requester / Applicant: John Holt

Name of Equipment: Energy Axis Rex2 Form 12S Meter

Operation Frequency Range: 902.4 MHz to 927.6 MHz

Type of Equipment: Intentional Radiator

Application of Regulations: FCC Title 47, Part 15, Subpart C

Test Dates: 06 October, 2008 to 13 October, 2008

Guidance Documents:

Emissions: FCC 47 CFR Part 15C

Test Methods:

Emissions: ANSI C63.4:2003

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that a sample of one, of the equipment described above, has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of the laboratory.

23 October 2008

NVLAP Signatory

Date

200094-0

90552 and
100881

Industry Canada

IC3755

Table of Contents

1	EXECUTIVE SUMMARY.....	4
1.1	SCOPE	4
1.2	PURPOSE.....	4
1.3	SUMMARY OF TEST RESULTS.....	4
1.4	SPECIAL ACCESSORIES.....	5
1.5	EQUIPMENT MODIFICATIONS	5
2	LABORATORY INFORMATION	5
2.1	ACCREDITATIONS & ENDORSEMENTS	5
2.2	TEST FACILITIES.....	6
2.3	MEASUREMENT UNCERTAINTY.....	7
2.4	CALIBRATION TRACEABILITY	7
2.5	PRODUCT INFORMATION	8
2.6	PRODUCT DESCRIPTION	8
2.7	CONFIGURATION	9
3	ANTENNA PORT CONDUCTED EMISSIONS.....	9
3.1	CHANNEL SEPARATION PART 15.247(A)(1).....	9
3.2	PSEUDORANDOM HOPPING ALGORITHM FCC PART 15.247(A)(1)	11
3.3	OCCUPIED BANDWIDTH FCC PART 15.247(A)(1)(I)	14
3.4	PEAK OUTPUT POWER FCC PART 15.247(B)(2).....	15
4	SPURIOUS EMISSIONS	19
4.1	SPURIOUS EMISSIONS FCC PART 15.247(C)	19
4.2	FREQUENCY HOPPING SPREAD SPECTRUM (FHSS) SYSTEMS FCC PART 15.247(G)	30
4.3	INCORPORATION OF INTELLIGENCE WITHIN A FHSS SYSTEM FCC PART 15.247(H)	30
4.4	RADIATED EMISSIONS- 30MHZ TO 1GHz.....	31
4.5	CONDUCTED EMISSIONS	34
5	TEST EQUIPMENT USE LIST	37
5.1	TEST EQUIPMENT USE LIST	37

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Title 47, Part 15, Subpart C based on the results of testing performed on *06 October, 2008* through *13 October, 2008* on the *Energy Axis Rex2 Form 12S Meter* Model No. *REX2EAI* manufactured by Elster Electricity, LLC. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1 - Summary of Test Results

Test	Test Method(s)	Test Parameters	Measurement	Result
Channel Separation	FCC Part 15.247(a)(1)	Greater of 25 kHz or 20 dB bandwidth	400 kHz	compliant
Pseudorandom Hopping Algorithm	FCC Part 15.247(a)(1)			compliant
Time of Occupancy	FCC Part 15.247(a)(1)(i) RSS-210, Annex 8, Section A8.1 (3)	=<0.4 sec in 10 sec.	0.208 sec in 10sec	compliant
Occupied Bandwidth	FCC Part 15.247(a)(1)(i)	=<500kHz	20dB = 343 kHz	compliant
Peak Output Power	FCC Part 15.247(b)(2)	0.25 Watts	0.199 Watts	compliant
Spurious Emissions	FCC Part 15.247(C)	Table FCC Part 15.209	50.4 dBuV/m @ 3meters Average @ 7328.0 MHz	compliant
Frequency Hopping Spread Spectrum Systems	FCC Part 15.247(g)			compliant
Incorporation of Intelligence	FCC Part 15.247(h)			compliant

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

No modifications were found to be necessary in order to achieve compliance.

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

TUV Rheinland is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 25 and ISO 9002 (Lab code 200094-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

Registration No. IC3755

2.1.4 Japan - VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration No. R-1174 and C-1236).

2.1.5 Acceptance By Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address test results and test reports within the scope of the laboratory NIST / NVLAP accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 762 Park Ave., Youngsville, North Carolina 27596, USA.

2.2.1 Emission Test Facility

The Open Area Test Site and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 and 10 meters. This site has been described in reports dated May 12, 1997, submitted to the FCC, and accepted by letter dated June 25, 1997 (31040/SIT 1300F2). The site is listed with the FCC and accredited by NVLAP (code 200094-0). The 5m semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7m x 3.7m x 3.175mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6m x 0.8m x 0.8m high non-conductive table with a 3.175mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50cm x 50cm x 3.175mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 7.3m x 3.7m x 3.2m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9m x 3.7m x 3.175mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st addition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

The test system for conducted emissions is defined as the LISN, spectrum analyzer, coaxial cables, and pads. The test system for radiated emissions is defined as the antenna, spectrum analyzer, pre-amplifier, coaxial cables, and pads. The conducted test system has a combined standard uncertainty of ± 1.2 dB. The radiated test system has a combined standard uncertainty of ± 1.6 dB. The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Guide 25.

2.5 Product Information

Figure 1: Photo of 12S meter in a 12S electrical socket

2.6 Product Description

The EUT is a watt-hour meter with an integrated 900 MHz band, frequency hopping radio. A block diagram and schematic showing the major sections of the electronic assembly have been included in a separate test plan document for submission.

A more detailed description of the EUT can be found in the Manufacturer' test plan.

The EUT submitted for testing was Not Serialized.

2.7 Configuration

Each meter type was installed in turn in a meter socket appropriate for measuring electricity consumption. Preliminary testing was performed on each of the three meter types to determine the configuration that produced maximum radiation. The following meter types were tested:

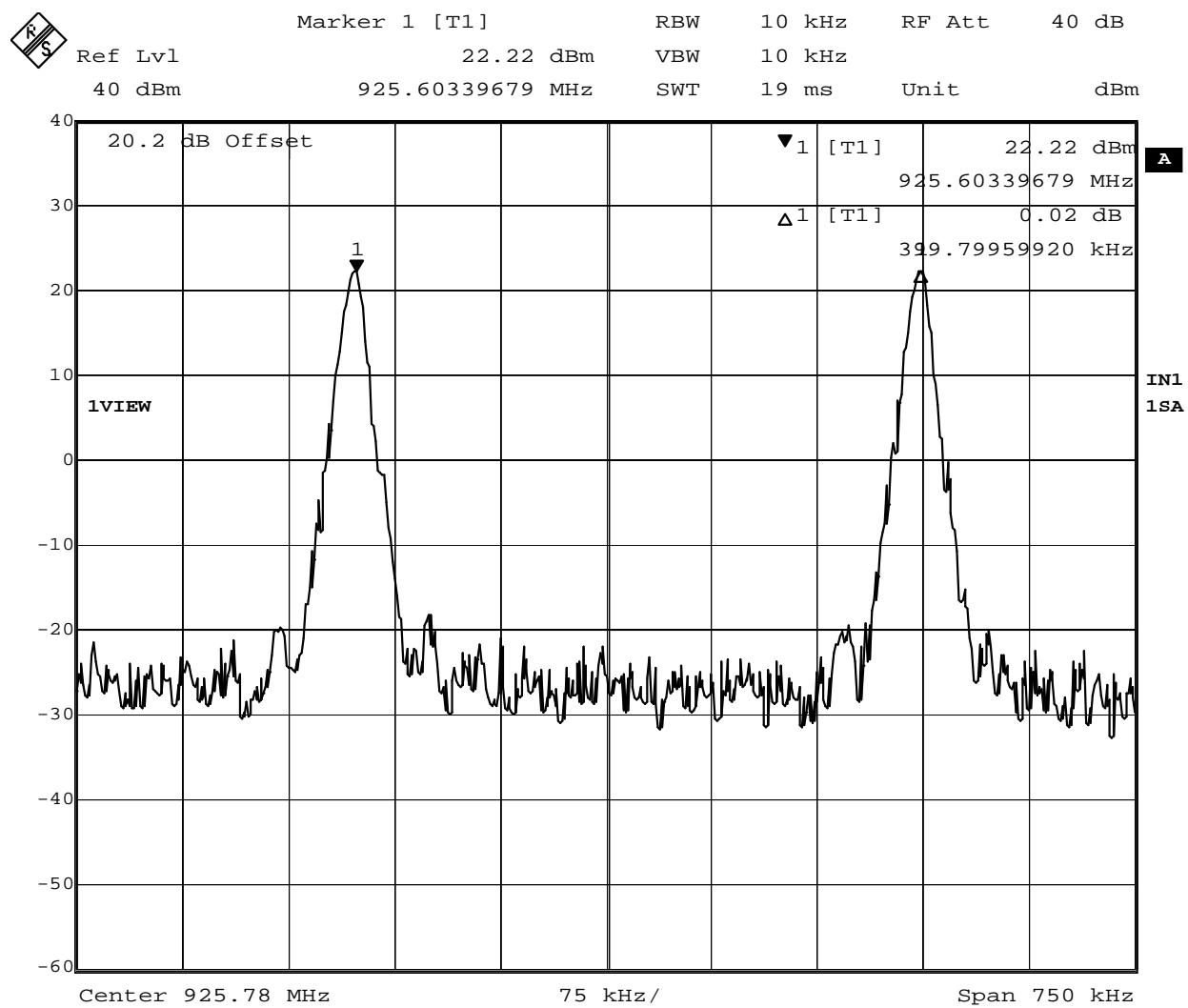
Meter Form	Test Voltage
Rex2 meter, Form 12S	120Vac
Rex2 meter, Form 12S, with service disconnect switch (SDS) installed.	120Vac

All units have an internal microwave slot antenna printed on the main PCB. There are no other antenna options to be tested. The printed circuit board assembly is connected to line voltage (120 or 240V ac) and to the output of a current transformer. There are no other cables or wires connected to the Single-phase meter. For the service disconnect meter, there is a disconnect option board that connects to the main board via the 10-pin header J5.

The final configuration was selected to produce worse case radiation and place the EUT in the most susceptible state. The Rex2 meter with the internal service disconnect switch was determined to have the worst case emissions and was therefore used for all final testing displayed in this report.

3 Antenna Port Conducted Emissions

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.4:2003. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.


3.1 Channel Separation Part 15.247(a)(1)

Frequency hopping Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Maximum 20dB Bandwidth = 342.7 kHz

Channel Separation = 400 kHz

The channel separation is greater than the measured maximum 20 dB bandwidth. Therefore the EUT is compliant with this section.

Date: 14.OCT.2008 09:03:21

Figure 2: Channel Separation = 400 kHz

Spectrum Analyzer Parameters:

RBW=10kHz

Span=750kHz

VBW= 30kHz

LOG dB/div.= 10dB

Sweep = Auto

Detector = sample detector, max hold

3.2 Pseudorandom Hopping Algorithm FCC Part 15.247(a)(1)

The channel bandwidth for this system is greater than 250 kHz. Therefore the system must use at least 25 channels that are selected at the system hopping rate, from a pseudo-randomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift frequencies in synchronization with the transmitted signals.

In constant transmit mode, the Rex2 Meter would send a packet every 97.3 ms with a delay of 8 to 16 ms between packets. Each packet is sent on the next channel determined by the pseudo-random hop sequence given in the operation description

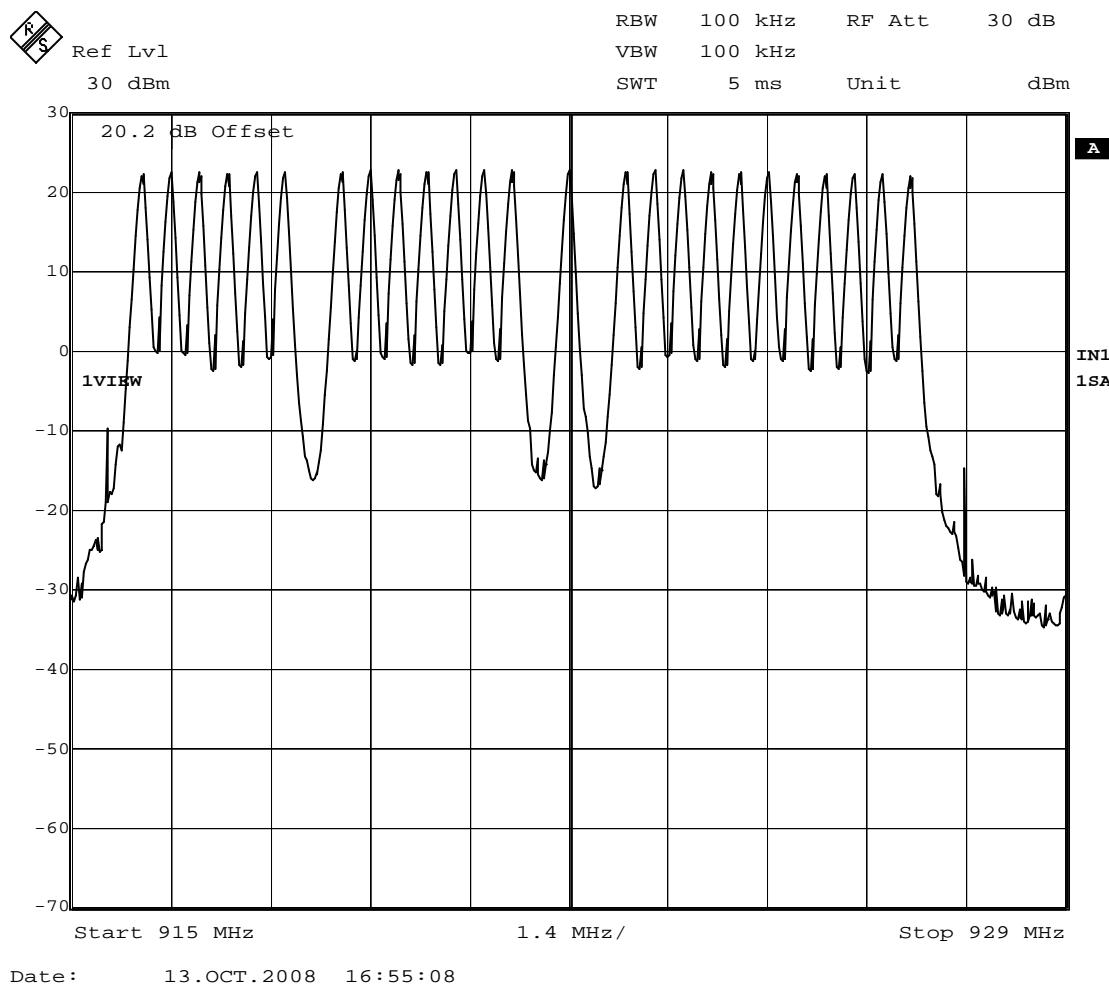
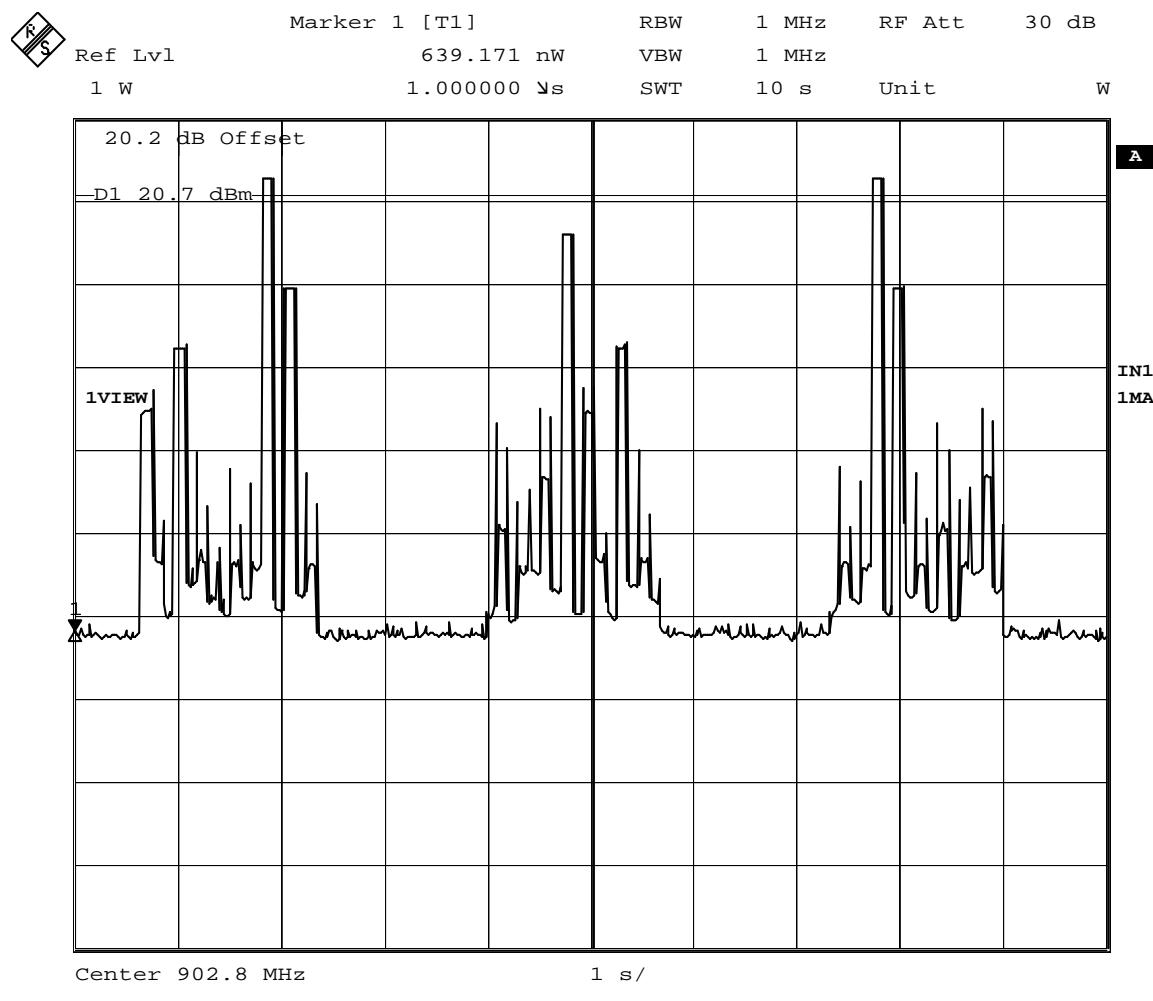


Figure 3: Plot of hopping Channels 915-928 MHz

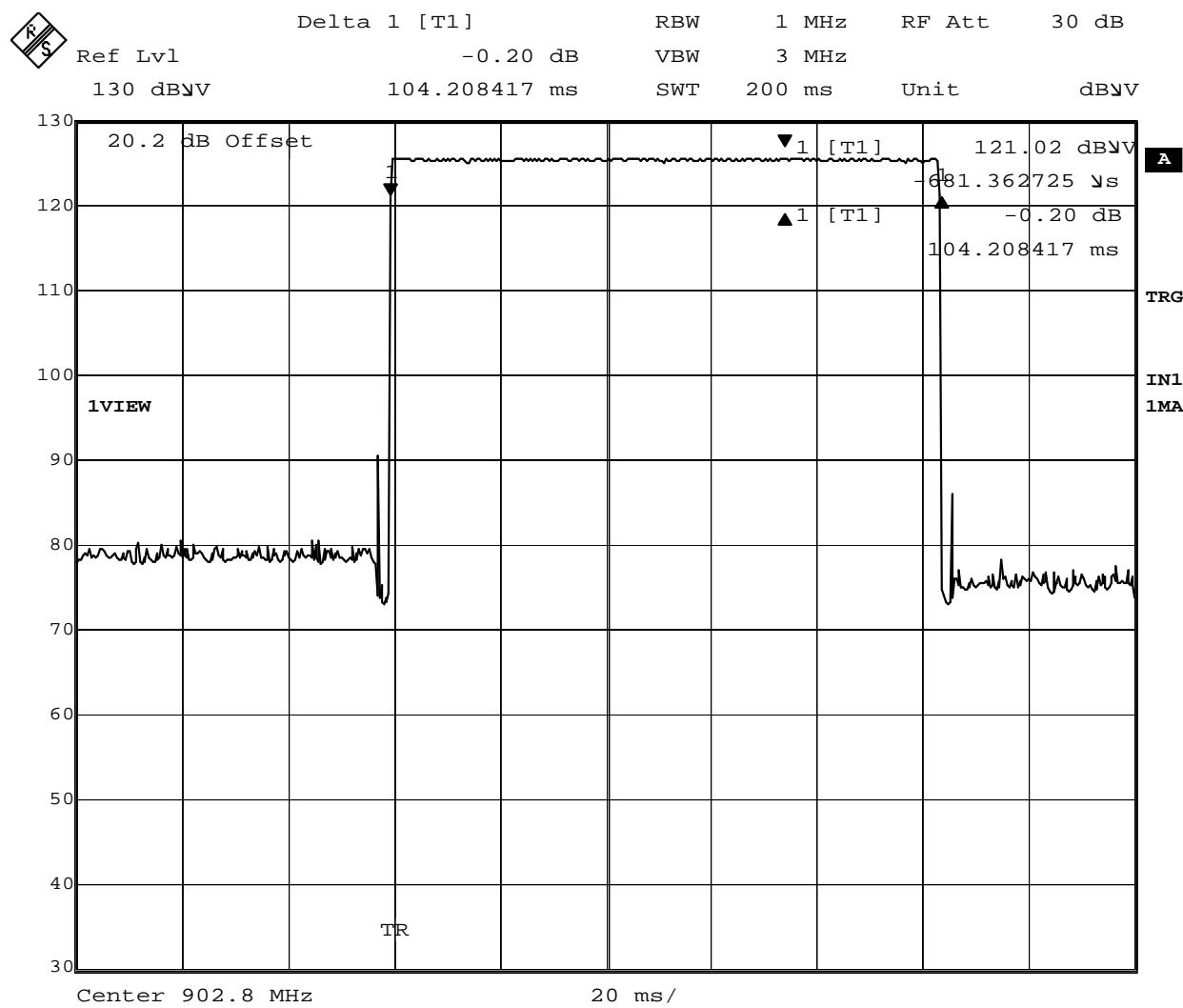
Spectrum Analyzer Parameters:
RBW=100kHz, VBW= 100kHz
Span=14MHz, Sweep = Auto
LOG dB/div.= 10dB
Detector = sample detector, max hold


Time of Occupancy FCC Part 15.247(a)(1)(i)

Frequency Band (MHz)	20 dB Bandwidth	Number of Hopping Channels	Average Time of Occupancy
902.4-927.6	=>250 kHz	25	=<0.4 sec. In 10 sec.

There were 2 hops at 0.104 seconds per hop for any 10 sec. Period. Time of occupancy equals number of hops multiplied by the duration of one hop.

Time of Occupancy limit = 0.400 seconds in any 10 second period.


Calculated Time of Occupancy = 0.102 seconds x 2 = 0.204 seconds in any 10 second period

Date: 13.OCT.2008 16:04:52

Figure 4: 10 second sweep of 902.8 MHz

Note: The on-channel traces are the two highest peaks.

Date: 13.OCT.2008 13:43:02

Figure 5: Measurement of 1 hop at 902.8 MHz

Time on Frequency = 104.2 ms

Spectrum Analyzer Parameters:

RBW=1MHz

Span=zero

VBW= 3MHz

LOG dB/div.= 10dB

Sweep = 200 ms

Detector = sample detector, max hold

3.3 Occupied Bandwidth FCC Part 15.247(a)(1)(i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

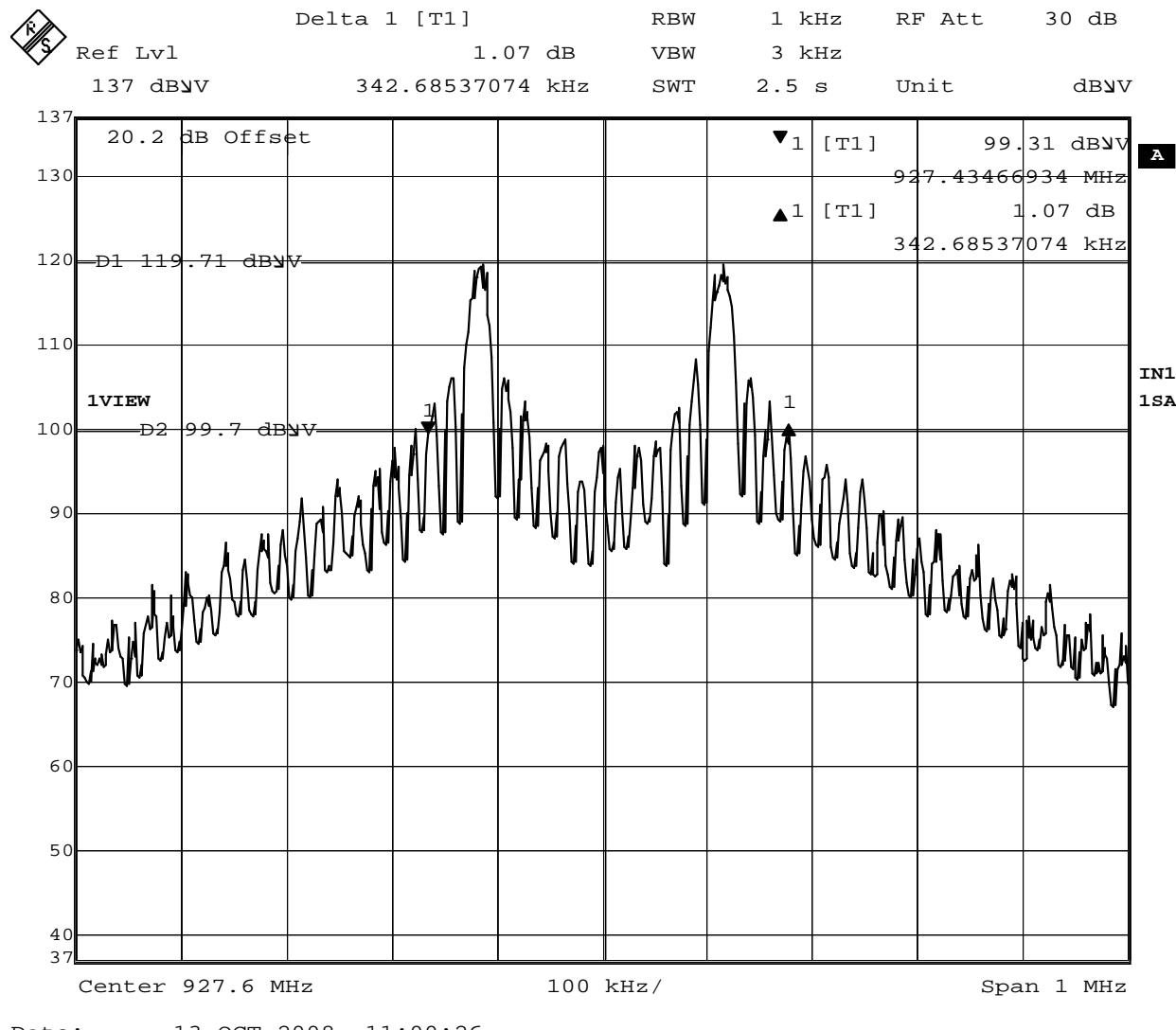
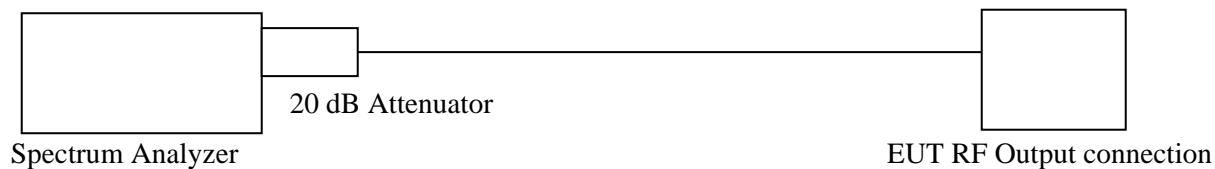


Figure 6: CH 63 (927.6 MHz) Occupied Bandwidth

Note: The above plot is the worst case.

The low and mid band 20 dB bandwidth plots are on file at TUV Rheinland

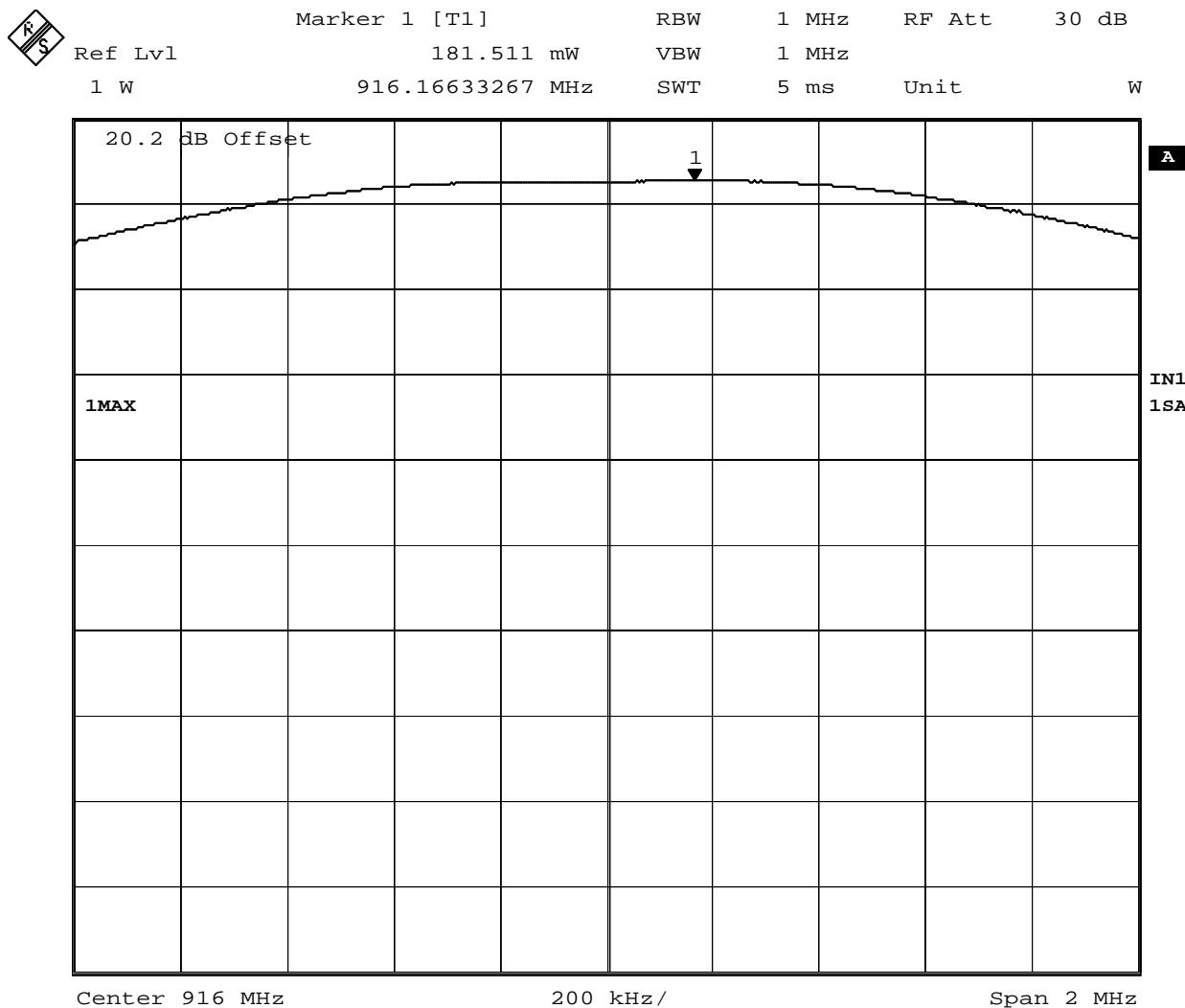

***BW = 342.7 KHZ**

3.4 Peak Output Power FCC Part 15.247(b)(2)

The maximum peak output power of the intentional radiator shall not exceed 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels. (Conducted Measurement)

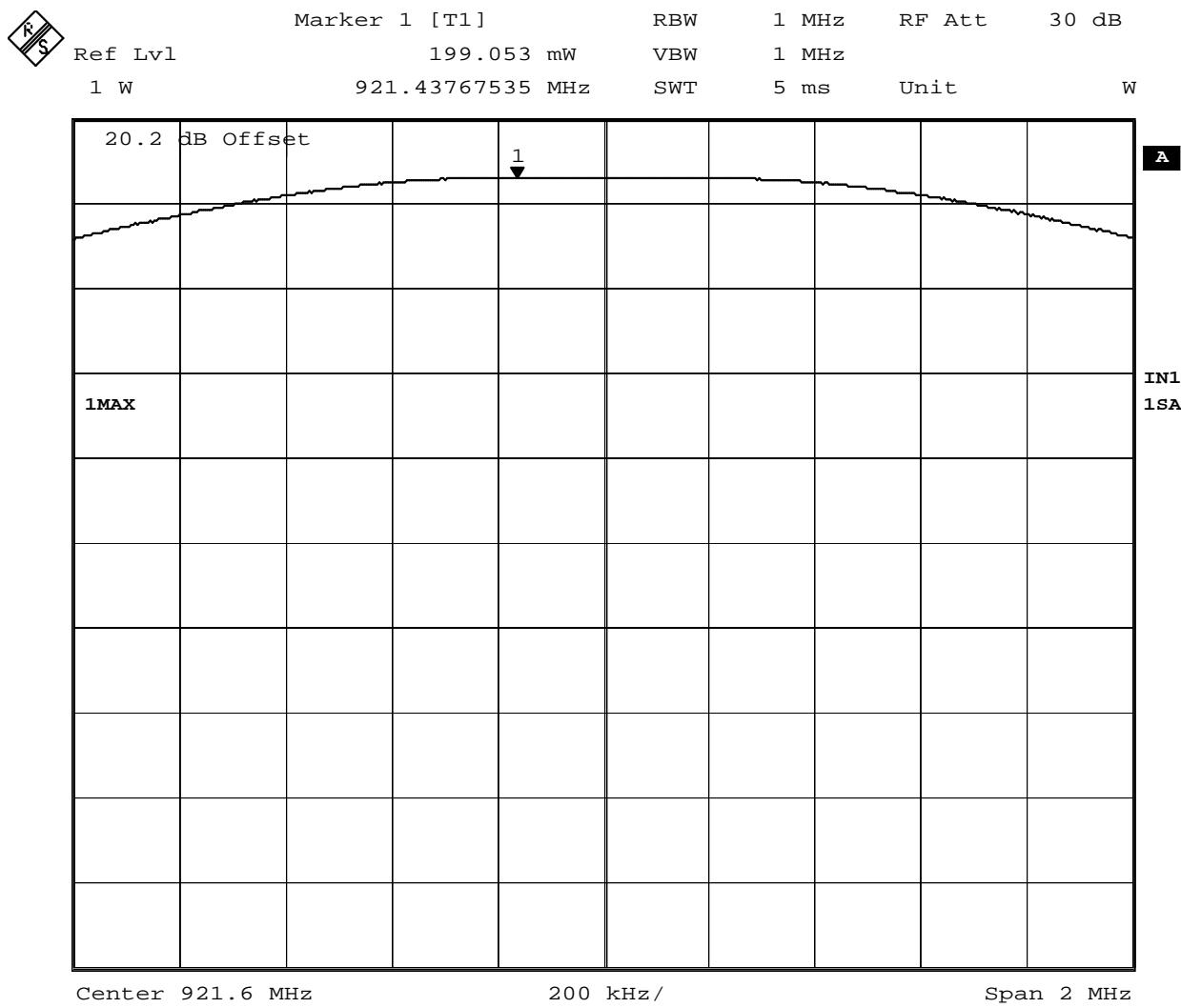
The peak output power was measured at CH01, CH34, CH48, and at CH63. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The cable loss and the attenuator was measured and added in the reference level offset in the spectrum analyzer. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

Test Setup



Peak Power Output

CH34: 916.0 MHz = 0.182 Watts = 129.59 dB μ V


CH48: 921.6 MHz = 0.199 Watts = 129.99 dB μ V

CH63: 927.6 MHz = 0.167 Watts = 129.21 dB μ V

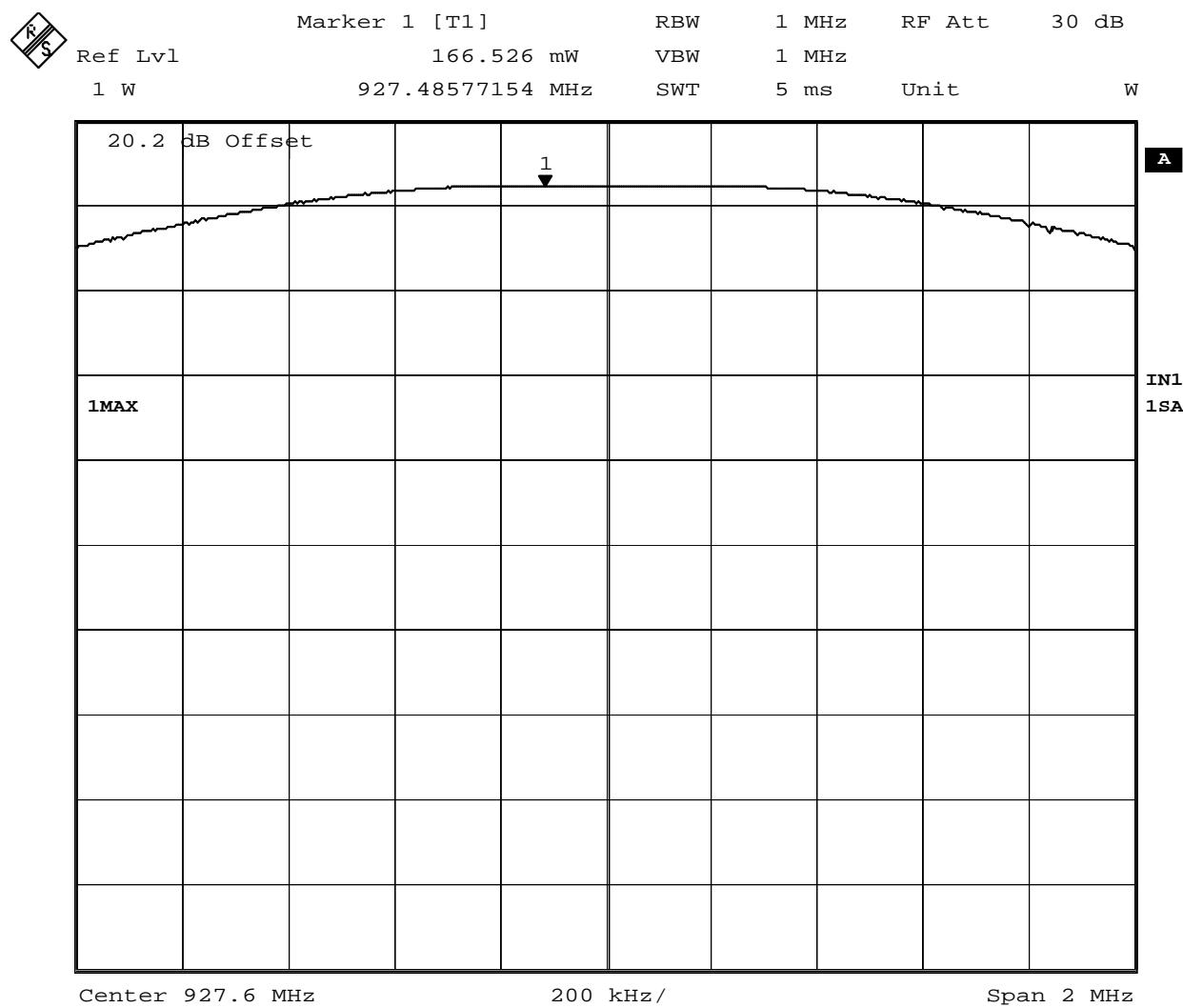

Date: 13.OCT.2008 10:22:25

Figure 7: CH 34 (916.0 MHz) Peak Output Power

Date: 13.OCT.2008 10:28:42

Figure 8: CH 48 (921.6 MHz) Peak Output Power

Date: 13.OCT.2008 10:30:04

Figure 9: CH 63 (926.7 MHz) Peak Output Power

3.4.1 Antenna Gain

The antenna gain data was supplied separately with the following results provided:

3.4.1.1 Results

Internal Antenna

Freq. (GHz)	Peak (dBi)
0.902 – 0.928	5.64

4 Spurious Emissions

4.1 Spurious Emissions FCC Part 15.247(c)

4.1.1 Test Methodology

4.1.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for each 6° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

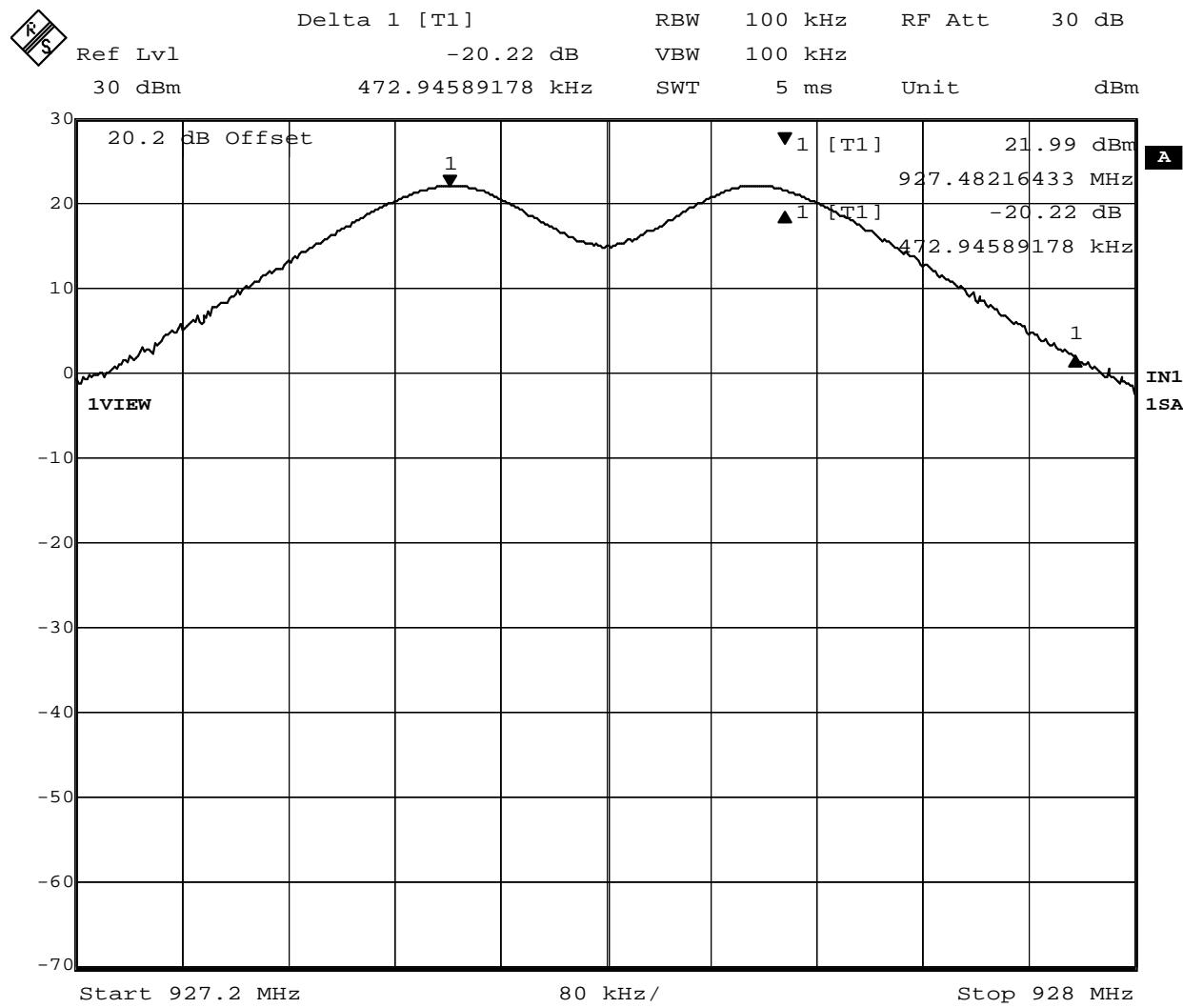
4.1.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

4.1.1.3 Deviations

There were no deviations from this test methodology.


4.1.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.1.2.1 Emissions Outside the Frequency Band

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either RF conducted or radiated measurements. Conducted antenna port measurements are provided below to show that the EUT meets these requirements at the band edges.

The first channel for this product starts on channel 34 (916MHz) which is 14 MHz away from the band edge or about the middle of the band; the 343 kHz bandwidth frequency is well within the band.

Date: 13.OCT.2008 16:37:18

Figure 10: Upper Band Edge Measurement

Note: Band edge is at 928 MHz

Channel Frequency is 927.6 MHz, The 20dB down point is at 927.96 MHz. The EUT is compliant with the rules.

SOP 1 Radiated Emissions								Tracking #	30862811.002	Page 2	of 4
EUT Name	Energy Axis Rex2 Form 12S Meter					Date	09 October, 2008				
EUT Model	REX2EAI					Temp / Hum in	72.5 deg F / 44% rh				
EUT Serial	Not Serialized					Temp / Hum out	N/A				
Standard	FCC 47 CFR Part 15C					Line AC / Freq.	120 VAC				
Deg/sweep	12					RBW / VBW	1 MHz/1MHz				
Dist/Ant Used	3 meters / 3115 above 1 GHz					Performed by	Mark Ryan				
Configuration	REX2 Meter with internal service disconnect switch, Channel 34, 916.00 MHz										
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dBuV/m)	
916.00	H	1.79	0	94.80	0.00	3.41	22.60	120.81	-20dBc		
1832.00	H	1.56	47	57.56	36.15	6.34	26.92	54.67	100.81	-46.14	
2748.00	H	1.73	66	47.29	35.93	7.93	29.78	49.07	100.81	-51.74	
3664.00	H	2.14	320	43.41	35.62	9.26	31.92	48.97	100.81	-51.84	
4580.00	H	1.72	66	40.71	35.93	10.89	32.56	48.23	100.81	-52.58	
5496.00	H	1.28	22	47.05	35.20	11.34	34.28	57.47	100.81	-43.34	
6412.00	H	1.32	28	40.84	35.17	12.93	34.62	53.22	100.81	-47.59	
7328.00	H	1.25	312	44.33	36.12	14.34	36.40	58.94	100.81	-41.87	
8244.00	H	1.31	63	34.62	35.56	15.76	37.34	52.16	100.81	-48.65	
9160.00	H	1.26	357	34.09	36.03	15.43	37.63	51.12	100.81	-49.69	
916.00	V			97.41	0.00	3.41	22.30	123.12	-20dBc		
1832.00	V	1.00	33	62.88	36.15	6.34	26.65	59.73	103.12	-43.39	
2748.00	V	1.25	84	46.79	35.93	7.93	29.33	48.12	103.12	-55.00	
3664.00	V	1.05	323	44.88	35.62	9.26	31.75	50.27	103.12	-52.85	
4580.00	V	1.14	60	42.52	35.93	10.89	32.73	50.21	103.12	-52.91	
5496.00	V	1.53	4	41.21	35.20	11.34	34.48	51.83	103.12	-51.29	
6412.00	V	1.00	68	39.75	35.17	12.93	34.76	52.27	103.12	-50.85	
7328.00	V	1.74	352	41.61	36.12	14.34	36.39	56.22	103.12	-46.90	
8244.00	V	1.08	5	35.94	35.56	15.76	37.33	53.48	103.12	-49.64	
9160.00	V	1.25	10	33.95	36.03	15.43	37.83	51.18	103.12	-51.94	
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty											
Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence											
Notes:											
The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured at 1 MHz bandwidth.											

SOP 1 Radiated Emissions							Tracking # 30862811.002 Page 3 of 4 FCC			
EUT Name	Energy Axis Rex2 Form 12S Meter					Date	09 October, 2008			
EUT Model	REX2EAI					Temp / Hum in	72.5 deg F / 44% rh			
EUT Serial	Not Serialized					Temp / Hum out	N/A			
Standard	FCC 47 CFR Part 15C					Line AC / Freq.	120 VAC			
Deg/sweep	12					RBW / VBW	1 MHz/1MHz			
Dist/Ant Used	3 meters / 3115 above 1 GHz					Performed by	Mark Ryan			
Configuration	REX2 Meter with internal service disconnect switch, Channel 48, 921.6 MHz									
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dBuV/m)
921.60	H			95.32	0.00	3.42	22.68	121.42	-20dBc	
1843.20	H	1.49	144	58.31	36.16	6.34	26.95	55.44	101.42	-45.98
2764.80	H	2.20	27	43.27	35.94	7.97	29.82	45.11	101.42	-56.31
3686.40	H	1.09	294	43.67	35.57	9.21	31.95	49.26	101.42	-52.16
4608.00	H	1.82	344	43.91	35.97	11.02	32.61	51.57	101.42	-49.85
5529.60	H	1.33	348	43.92	35.23	11.37	34.31	54.37	101.42	-47.05
6451.20	H	1.38	30	41.87	35.12	12.93	34.61	54.29	101.42	-47.13
7372.80	H	1.34	318	42.65	36.08	14.39	36.47	57.43	101.42	-43.99
8294.40	H	1.00	31	34.21	35.58	15.75	37.36	51.74	101.42	-49.68
9216.00	H	1.43	15	34.35	36.06	15.41	37.64	51.34	101.42	-50.08
921.60	V			97.24	0.00	3.42	22.38	123.04	-20dBc	
1843.20	V	1.35	352	62.65	36.16	6.34	26.68	59.51	103.04	-43.53
2764.80	V	1.06	320	45.40	35.94	7.97	29.37	46.79	103.04	-56.25
3686.40	V	1.07	12	42.39	35.57	9.21	31.79	47.83	103.04	-55.21
4608.00	V	1.25	67	42.27	35.97	11.02	32.77	50.09	103.04	-52.95
5529.60	V	1.26	355	40.59	35.23	11.37	34.50	51.23	103.04	-51.81
6451.20	V	1.44	48	41.61	35.12	12.93	34.77	54.19	103.04	-48.85
7372.80	V	1.14	66	29.12	36.08	14.39	36.48	43.91	103.04	-59.13
8294.40	V	1.11	77	21.10	35.58	15.75	37.37	38.63	103.04	-64.41
9216.00	V	1.01	61	20.86	36.06	15.41	37.84	38.05	103.04	-64.99
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty										
Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										
Notes: (AU mid-band)										
The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured at 1 MHz bandwidth.										

SOP 1 Radiated Emissions								Tracking #	30862811.002	Page 4	of 4
								FCC			
EUT Name	Energy Axis Rex2 Form 12S Meter				Date	09 October, 2008					
EUT Model	REX2EAI				Temp / Hum in	72.5 deg F / 44% rh					
EUT Serial	Not Serialized				Temp / Hum out	N/A					
Standard	FCC 47 CFR Part 15C				Line AC / Freq.	120 VAC					
Deg/sweep	12				RBW / VBW	1 MHz/1MHz					
Dist/Ant Used	3 meters / 3115 above 1 GHz				Performed by	Mark Ryan					
Configuration	REX2 Meter with internal service disconnect switch, Channel 63, 927.6 MHz										
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dBuV/m)	
927.60	H	1.68	5	93.81	0.00	3.42	22.80	120.03	-20dBc		
1855.20	H	1.13	317	59.34	36.16	6.42	27.03	56.63	100.03	-43.40	
2782.80	H	1.79	281	43.28	35.98	8.05	29.89	45.25	100.03	-54.78	
3710.40	H	1.85	328	38.38	35.51	9.03	32.02	43.93	100.03	-56.10	
4638.00	H	1.44	13	41.47	36.01	10.76	32.70	48.93	100.03	-51.10	
5565.60	H	1.44	310	46.28	35.30	11.44	34.35	56.77	100.03	-43.26	
6493.20	H	1.22	25	42.13	35.27	12.89	34.60	54.35	100.03	-45.68	
7420.80	H	1.69	11	39.37	35.94	14.56	36.63	54.62	100.03	-45.41	
8348.40	H	1.04	9	35.56	35.61	15.72	37.41	53.08	100.03	-46.95	
9276.60	H	1.00	0	32.77	36.26	15.42	37.66	49.59	100.03	-50.44	
927.60	V	1	30	93.89	0.00	3.42	22.60	119.91	-20dBc		
1855.20	V	1.35	350	60.67	36.16	6.42	26.75	57.68	99.91	-42.23	
2782.80	V	1.34	275	45.41	35.98	8.05	29.46	46.95	99.91	-52.96	
3710.40	V	1.07	337	41.47	35.51	9.03	31.89	46.89	99.91	-53.02	
4638.00	V	1.17	0	41.08	36.01	10.76	32.85	48.68	99.91	-51.23	
5565.60	V	1.53	328	42.77	35.30	11.44	34.51	53.42	99.91	-46.49	
6493.20	V	1.41	47	42.65	35.27	12.89	34.80	55.07	99.91	-44.84	
7420.80	V	1.59	328	40.84	35.94	14.56	36.68	56.14	99.91	-43.77	
8348.40	V	1.24	350	35.41	35.61	15.72	37.45	52.97	99.91	-46.94	
9276.60	V	1.30	5	33.03	36.26	15.42	37.86	50.05	99.91	-49.86	

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes:

The bandwidth for these measurements was higher than 100 kHz. However, the peak spurious emissions still met the requirements of 15.247(c), even when measured at 1 MHz bandwidth.

4.1.2.2 Restricted band measurements

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)). In addition, where an average detector is used for determining compliance with the limits in 15.209(a), there is a corresponding peak limit 20 dB above the specified average limit according to 15.35(b)

Measurements demonstrating compliance with these parts are provided in the tables below.

SOP 1 Radiated Emissions							Tracking #	30862811.002 FCC	Page 1	of 6
EUT Name	Energy Axis Rex2 Form 12S Meter						Date	09 October, 2008		
EUT Model	REX2EAI						Temp / Hum in	72.5 deg F / 44% rh		
EUT Serial	Not Serialized						Temp / Hum out	N/A		
Standard	FCC 47 CFR Part 15C						Line AC / Freq.	120 VAC		
Deg/sweep	6						RBW / VBW	1 MHz/1MHz		
Dist/Ant Used	3 meters / 3115						Performed by	Mark Ryan		
Configuration	REX2 Meter with internal service disconnect switch, Channel 34, 916.00 MHz									
Emission Freq (MHz)	ANT Polar (H)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak										
2748.00	H	1.73	66	47.29	35.93	7.93	29.78	49.07	74.00	-24.93
3664.00	H	2.14	320	43.41	35.62	9.26	31.92	48.97	74.00	-25.03
4580.00	H	1.72	66	40.71	35.93	10.89	32.56	48.23	74.00	-25.77
7328.00	H	1.25	312	44.33	36.12	14.34	36.40	58.94	74.00	-15.06
8244.00	H	1.31	63	34.62	35.56	15.76	37.34	52.16	74.00	-21.84
9160.00	H	1.26	357	34.09	36.03	15.43	37.63	51.12	74.00	-22.88
Average										
2748.00	H	1.73	66	38.88	35.93	7.93	29.78	40.66	54.00	-13.34
3664.00	H	2.14	320	34.31	35.62	9.26	31.92	39.87	54.00	-14.13
4580.00	H	1.72	66	30.52	35.93	10.89	32.56	38.04	54.00	-15.96
7328.00	H	1.25	312	35.79	36.12	14.34	36.40	50.40	54.00	-3.60
8244.00	H	1.31	63	21.71	35.56	15.76	37.34	39.25	54.00	-14.75
9160.00	H	1.26	357	21.14	36.03	15.43	37.63	38.17	54.00	-15.83
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty										
Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz										
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.										

SOP 1 Radiated Emissions							Tracking # 30862811.002 Page 2 of 6 FCC					
EUT Name	Energy Axis Rex2 Form 12S Meter					Date	09 October, 2008					
EUT Model	REX2EAI					Temp / Hum in	72.5 deg F / 44% rh					
EUT Serial	Not Serialized					Temp / Hum out	N/A					
Standard	FCC 47 CFR Part 15C					Line AC / Freq.	120 VAC					
Deg/sweep	6					RBW / VBW	1 MHz/1MHz					
Dist/Ant Used	3 meters / 3115					Performed by	Mark Ryan					
Configuration	REX2 Meter with internal service disconnect switch, Channel 34, 916.00 MHz											
Emission Freq (MHz)	ANT Polar (V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)		
Peak												
2748.00	V	1.25	84	46.79	35.93	7.93	29.33	48.12	74.00	-24.93		
3664.00	V	1.05	323	44.88	35.62	9.26	31.75	50.27	74.00	-23.73		
4580.00	V	1.14	60	42.52	35.93	10.89	32.73	50.21	74.00	-23.79		
7328.00	V	1.74	352	41.61	36.12	14.34	36.39	56.22	74.00	-17.78		
8244.00	V	1.08	5	35.94	35.56	15.76	37.33	53.48	74.00	-20.52		
9160.00	V	1.25	10	33.95	36.03	15.43	37.83	51.18	74.00	-22.82		
Average												
2748.00	V	1.25	84	36.07	35.93	7.93	29.33	37.40	54.00	-16.60		
3664.00	V	1.05	323	35.49	35.62	9.26	31.75	40.88	54.00	-13.12		
4580.00	V	1.14	60	32.86	35.93	10.89	32.73	40.55	54.00	-13.45		
7328.00	V	1.74	352	32.10	36.12	14.34	36.39	46.71	54.00	-7.29		
8244.00	V	1.08	5	22.52	35.56	15.76	37.33	40.06	54.00	-13.94		
9160.00	V	1.25	10	21.15	36.03	15.43	37.83	38.38	54.00	-15.62		
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty												
Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence												
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz												
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.												

SOP 1 Radiated Emissions							Tracking #	30862811.002 Page 3 of 6		
EUT Name	Energy Axis Rex2 Form 12S Meter				Date	09 October, 2008				
EUT Model	REX2EAI				Temp / Hum in	72.5 deg F / 44% rh				
EUT Serial	Not Serialized				Temp / Hum out	N/A				
Standard	FCC 47 CFR Part 15C				Line AC / Freq.	120 VAC				
Deg/sweep	6				RBW / VBW	1 MHz/1MHz				
Dist/Ant Used	3 meters / 3115				Performed by	Mark Ryan				
Configuration	REX2 Meter with internal service disconnect switch, Channel 48, 921.60 MHz									
Emission Freq (MHz)	ANT Polar (H)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak										
2764.80	H	2.20	27	43.27	35.94	7.97	29.82	45.11	74.00	-28.89
3686.40	H	1.09	294	43.67	35.57	9.21	31.95	49.26	74.00	-24.74
4608.00	H	1.82	344	43.91	35.97	11.02	32.61	51.57	74.00	-22.43
7372.80	H	1.34	318	42.65	36.08	14.39	36.47	57.43	74.00	-16.57
8294.40	H	1.00	31	34.21	35.58	15.75	37.36	51.74	74.00	-22.26
9216.00	H	1.43	15	34.35	36.06	15.41	37.64	51.34	74.00	-22.66
Average										
2764.80	H	2.20	27	34.46	35.93	7.93	29.78	36.24	54.00	-17.76
3686.40	H	1.09	294	34.46	35.62	9.26	31.92	40.02	54.00	-13.98
4608.00	H	1.82	344	34.04	35.93	10.89	32.56	41.56	54.00	-12.44
7372.80	H	1.34	318	33.75	36.12	14.34	36.40	48.36	54.00	-5.64
8294.40	H	1.00	31	21.11	35.58	15.75	37.36	38.64	54.00	-15.36
9216.00	H	1.43	15	21.51	36.06	15.41	37.64	38.50	54.00	-15.50
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty										
Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz										
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.										

SOP 1 Radiated Emissions							Tracking # 30862811.002 Page 4 of 6 FCC					
EUT Name	Energy Axis Rex2 Form 12S Meter					Date	09 October, 2008					
EUT Model	REX2EAI					Temp / Hum in	72.5 deg F / 44% rh					
EUT Serial	Not Serialized					Temp / Hum out	N/A					
Standard	FCC 47 CFR Part 15C					Line AC / Freq.	120 VAC					
Deg/sweep	6					RBW / VBW	1 MHz/1MHz					
Dist/Ant Used	3 meters / 3115					Performed by	Mark Ryan					
Configuration	REX2 Meter with internal service disconnect switch, Channel 48, 921.60 MHz											
Emission Freq (MHz)	ANT Polar (V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)		
Peak												
2764.80	V	1.06	320	45.40	35.94	7.97	29.37	46.79	54.00	-27.21		
3686.40	V	1.07	12	42.39	35.57	9.21	31.79	47.83	54.00	-26.17		
4608.00	V	1.25	67	42.27	35.97	11.02	32.77	50.09	54.00	-23.91		
7372.80	V	1.14	66	39.24	36.08	14.39	36.48	54.03	54.00	-19.97		
8294.40	V	1.11	77	33.95	35.58	15.75	37.37	51.48	54.00	-22.52		
9216.00	V	1.01	61	34.35	36.06	15.41	37.84	51.54	54.00	-22.46		
Average												
2764.80	V	1.06	320	37.58	35.94	7.97	29.37	38.97	54.00	-15.03		
3686.40	V	1.07	12	42.46	35.57	9.21	31.79	47.90	54.00	-6.10		
4608.00	V	1.25	67	32.30	35.97	11.02	32.77	40.12	54.00	-13.88		
7372.80	V	1.14	66	29.12	36.08	14.39	36.48	43.91	54.00	-10.09		
8294.40	V	1.11	77	21.10	35.58	15.75	37.37	38.63	54.00	-15.37		
9216.00	V	1.01	61	20.86	36.06	15.41	37.84	38.05	54.00	-15.95		
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty												
Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence												
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz												
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.												

SOP 1 Radiated Emissions							Tracking # 30862811.002 Page 5 of 6				
EUT Name	Energy Axis Rex2 Form 12S Meter					Date	09 October, 2008				
EUT Model	REX2EAI					Temp / Hum in	72.5 deg F / 44% rh				
EUT Serial	07 672 721					Temp / Hum out	N/A				
Standard	FCC 47 CFR Part 15C					Line AC / Freq.	120 VAC				
Deg/sweep	12					RBW / VBW	1 MHz/1MHz				
Dist/Ant Used	3 meters / 3115					Performed by	Mark Ryan				
Configuration	REX2 Meter with internal service disconnect switch, Channel 63, 927.6 MHz										
Emission Freq (MHz)	ANT Polar (H)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)	
2782.80	H	1.79	281	43.28	35.98	8.05	29.89	45.25	74.00	-28.75	
3710.40	H	1.85	328	38.38	35.51	9.03	32.02	43.93	74.00	-30.07	
4638.00	H	1.44	13	41.47	36.01	10.76	32.70	48.93	74.00	-25.07	
7420.80	H	1.69	11	39.37	35.94	14.56	36.63	54.62	74.00	-19.38	
8348.40	H	1.04	9	35.56	35.61	15.72	37.41	53.08	74.00	-20.92	
Peak											
2782.80	H	1.79	281	32.29	35.98	8.05	29.89	34.26	54.00	-19.74	
3710.40	H	1.85	328	25.14	35.51	9.03	32.02	30.69	54.00	-23.31	
4638.00	H	1.44	13	31.70	36.01	10.76	32.70	39.16	54.00	-14.84	
7420.80	H	1.69	11	29.22	35.94	14.56	36.63	44.47	54.00	-9.53	
8348.40	H	1.04	9	22.72	35.61	15.72	37.41	40.24	54.00	-13.76	
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty											
Combined Standard Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence											
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz											
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.											

SOP 1 Radiated Emissions							Tracking #	30862811.002 Page 6 of 6		
EUT Name	Energy Axis Rex2 Form 12S Meter				Date	09 October, 2008				
EUT Model	REX2EAI				Temp / Hum in	72.5 deg F / 44% rh				
EUT Serial	Not Serialized				Temp / Hum out	N/A				
Standard	FCC 47 CFR Part 15C				Line AC / Freq.	120 VAC				
Deg/sweep	12				RBW / VBW	1 MHz/1MHz				
Dist/Ant Used	3 meters / 3115				Performed by	Mark Ryan				
Configuration	REX2 Meter with internal service disconnect switch, Channel 63, 927.6 MHz									
Emission Freq (MHz)	ANT Polar (V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak										
2782.80	V	1.34	275	45.41	35.98	8.05	29.46	46.95	74.00	-27.05
3710.40	V	1.07	337	41.47	35.51	9.03	31.89	46.89	74.00	-27.11
4638.00	V	1.17	0	41.08	36.01	10.76	32.85	48.68	74.00	-25.32
7420.80	V	1.59	328	40.84	35.94	14.56	36.68	56.14	74.00	-17.86
8348.40	V	1.24	350	35.41	35.61	15.72	37.45	52.97	74.00	-21.03
Average										
2782.80	V	1.34	275	35.37	35.98	8.05	29.46	36.91	54.00	-17.09
3710.40	V	1.07	337	31.21	35.51	9.03	31.89	36.63	54.00	-17.37
4638.00	V	1.17	0	30.95	36.01	10.76	32.85	38.55	54.00	-15.45
7420.80	V	1.59	328	31.47	35.94	14.56	36.68	46.77	54.00	-7.23
8348.40	V	1.24	350	22.99	35.61	15.72	37.45	40.55	54.00	-13.45
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty										
Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence										
Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz										
Note: Peak measurements were made to document compliance with 15.247(c) and compliance with 15.35b. In addition, average measurements were made to document compliance with 15.205(b) for spurious emissions falling in the restricted bands.										

4.2 Frequency Hopping Spread Spectrum (FHSS) Systems FCC Part 15.247(g)

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

In constant transmit mode, the Rex2 Meter sends a packet nominally every 97.3 ms with a delay of 8 to 16 ms between packets. Each packet is sent on the next channel determined by the pseudo-random hop table. When presented with a continuous data stream, the EUT adheres to the 0.4 second dwell time for each 10 second window requirement. The EUT always distributes its transmissions across all 25 channels, and does not re-use a channel again until a transmission has occurred on each of the other 24 channels.

4.3 Incorporation of Intelligence within a FHSS System FCC Part 15.247(h)

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The EUT does not incorporate intelligence relating to the hopping pattern as described above. Rather, the EUT always distributes its transmissions across the same 25 channels. A channel is not re-used until a transmission has occurred on each of the other 24 channels.

4.4 Radiated Emissions- 30MHz to 1GHz

Testing was performed in accordance with FCC part 15.209. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.4.1 Test Methodology

4.4.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.4.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

4.4.1.3 Deviations

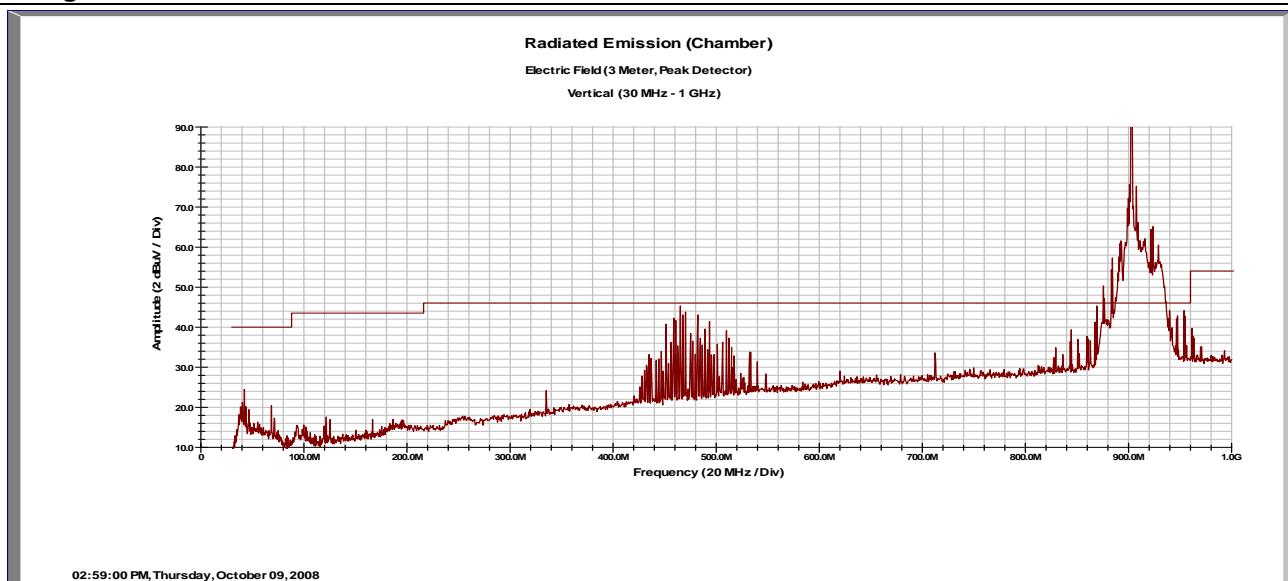
There were no deviations from this test methodology.

4.4.2 Test Results

Section 4.4.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.4.2.1 Final Data


The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

SOP 1 Radiated Emissions								Tracking # 30862811.002 Page 1 of 2												
EUT Name	Energy Axis Rex2 Form 12S Meter				Date	09 October, 2008														
EUT Model	REX2EAI				Temp / Hum in	73 Deg F / 50% rH														
EUT Serial	Not Serialized				Temp / Hum out	N/A														
Standard	FCC 47 CFR Part 15C				Line AC / Freq.	120VAC / 60 Hz														
Deg/sweep	12				RBW / VBW	120 kHz / 300 kHz														
Dist/Ant Used	3m / 6140 X-wing				Performed by	Mark Ryan														
Configuration	EUT in Transmit Mode on Channel 1 – Worst Case																			
02:56:24 PM, Thursday, October 09, 2008																				
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)										
480.92	H			18.09	0.00	2.40	16.94	37.43	46.00	-8.57										
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty																				
Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence																				
Notes: The worst case QP emission (outside the operating frequency band) was more than 6 dB below the limit. All other QP emissions were more than 20dB below the FCC part 15.209 limit, Refer to other sections of this report for emissions inside the operating band.																				

SOP 1 Radiated Emissions

Tracking # 30862811.002 Page 2 of 2
 FCC

EUT Name	Energy Axis Rex2 Form 12S Meter	Date	09 October, 2008
EUT Model	REX2EAI	Temp / Hum in	73 Deg F / 50% rH
EUT Serial	Not Serialized	Temp / Hum out	N/A
Standard	FCC 47 CFR Part 15C	Line AC / Freq.	120VAC / 60 Hz
Deg/sweep	12	RBW / VBW	120 kHz / 300 kHz
Dist/Ant Used	3m / 6140 X-wing	Performed by	Mark Ryan
Configuration	EUT in Receive Mode		

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM QP Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)
465.13	V	1.15	0	19.92	0.00	2.36	17.71	39.98	46.00	-6.02

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: The worst case QP emission (outside the operating frequency band) was more than 6 dB below the limit. All other QP emissions were more than 20dB below the FCC part 15.209 limit, Refer to other sections of this report for emissions inside the operating band.

4.5 Conducted Emissions

Testing was performed in accordance with FCC part 15.207 and RSS210-section 2.6.

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.5.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. For each frequency sub-range, each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50 μ H / 50 Ω LISNs.

Testing is either performed in the anechoic chamber or on PLC Site 2. The setup photographs clearly identify which site was used. The vertical ground plane used in the anechoic chamber is a 2m x 2m wooden frame that is covered with 1/4 inch hardware cloth and is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN. Floor-standing equipment is placed directly on the ground plane.

4.5.1.1 Deviations

There were no deviations from this test methodology.

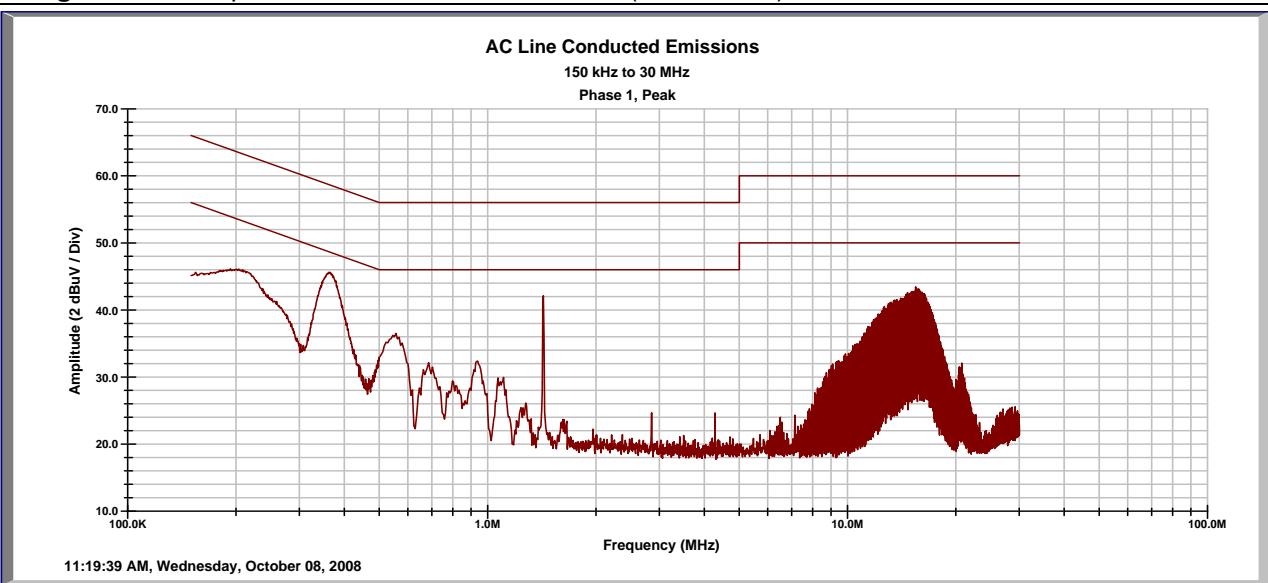
4.5.2 Test Results

Section 4.5.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Plots of the EUT's AC Line Conducted emissions are contained in the following sections. The plots show peak and/or average emissions and the corresponding peak and/or average limits. If the peak emissions are below the average limit, then the EUT is considered to pass and no average measurements are made. If the peak emissions are below the quasi-peak limit and the average emissions are below the average limit, then the EUT is considered to pass and no further measurements are made. Otherwise, individual frequencies are measured and compared to the corresponding limit for the detector used (quasi-peak or average).

4.5.2.1 Final Data


The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

SOP 2 Conducted Emissions

Tracking # 30862811.002 Page 1 of 2
 FCC

EUT Name	Energy Axis Rex2 Form 12S Meter	Date	08 October, 2008
EUT Model	REX2EAI	Temp / Humidity	73 / 42%
EUT Serial	Not Serialized	RBW / VBW	9 kHz / 30 kHz
Standard	FCC 47 CFR Part 15C	Line AC /Freq	120 VAC / 60 Hz
LISNs Used	16	Performed by	Mark Ryan

Configuration Two-phase REX2 meter – TX – Ch 63 (Worst Case) - Line

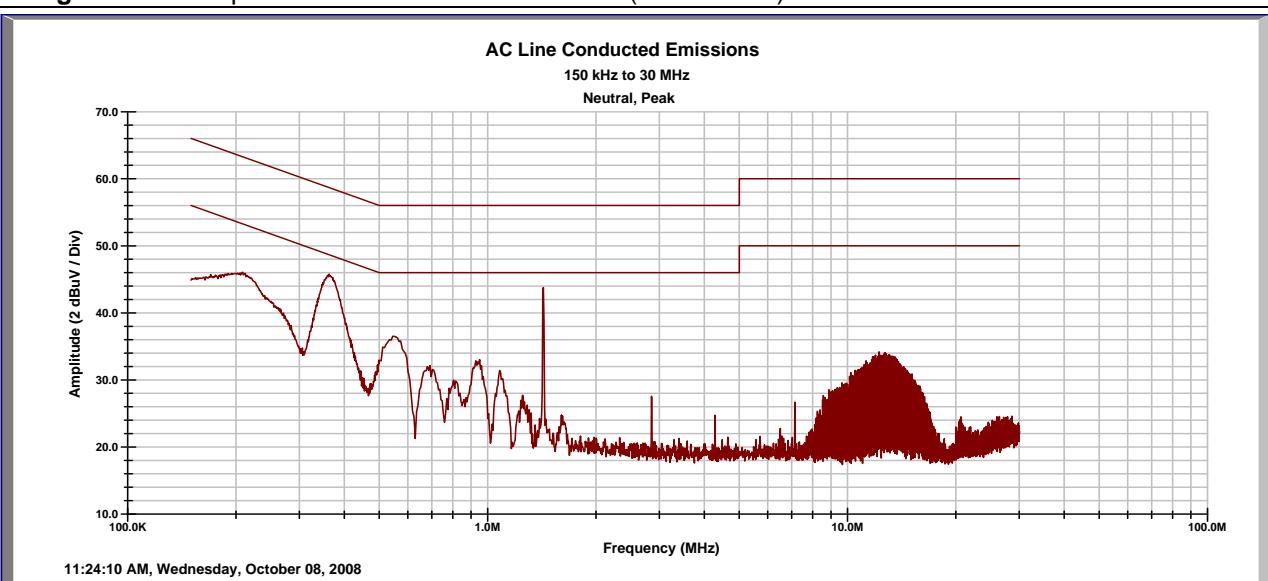
Emission Freq (MHz)	Line ID (1,2,3,N)	FIM Quasi (dBuV)	FIM Ave (dBuV)	Cable Loss (dB)	LISN + T Limiter (dB)	Quasi Limit (dBuV)	Ave Limit (dBuV)	Quasi Spec Margin (dB)	Ave Spec Margin (dB)

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty

Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: Low, Medium, and High Frequencies were investigated. The emissions on Ch 63 (927.6 MHz) were the worst case. Plots on the other frequencies are on file at TUV Rheinland.


Worst case conducted power line emissions were on phase two (see below)

SOP 2 Conducted Emissions

Tracking # 30862811.002 Page 2 of 2
 FCC

EUT Name	Energy Axis Rex2 Form 12S Meter	Date	08 October, 2008
EUT Model	REX2EAI	Temp / Humidity	73 / 42%
EUT Serial	Not Serialized	RBW / VBW	9 kHz / 30 kHz
Standard	FCC 47 CFR Part 15C	Line AC /Freq	120 VAC / 60 Hz
LISNs Used	15	Performed by	Mark Ryan

Configuration Two-phase REX2 meter – TX – Ch 63 (Worst Case) Neutral

Emission Freq (MHz)	Line ID (1,2,3,N)	FIM Quasi (dBuV)	FIM Ave (dBuV)	Cable Loss (dB)	LISN + T Limiter (dB)	Quasi Limit (dBuV)	Ave Limit (dBuV)	Quasi Spec Margin (dB)	Ave Spec Margin (dB)
0.21	N	30.81	4.96	0.02	10.17	63.21	53.21	-22.21	-38.06
0.36	N	30.58	4.38	0.12	10.17	58.73	48.73	-17.87	-34.07
0.56	N	20.86	1.41	0.07	10.17	56.00	46.00	-24.90	-34.34
0.95	N	14.50	0.40	0.14	10.20	56.00	46.00	-31.17	-35.27
1.43	N	33.13	32.47	0.13	10.21	56.00	46.00	-12.53	-3.19
12.71	N	19.02	16.31	0.15	10.78	60.00	50.00	-30.06	-22.77

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty

Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: Low, Medium, and High Frequencies were investigated. The emissions on Ch 63 (927.6 MHz) were the worst case. Plots on the other frequencies are on file at TUV Rheinland.

5 Test Equipment Use List

5.1 Test Equipment use list

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
SOP 1 - Radiated Emissions (5 Meter Chamber)					
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	30-Jan-08	30-Jan-09
Antenna Horn 1-18GHz	EMCO	3115	5770	16-Jun-08	16-Jun-10
Ant. BiconiLog	Chase	CBL6140A	1108	13-Jun-08	13-Jun-10
Receiver, EMI ¹	Rohde & Schwarz	ESIB40	100043	9-Jun-08	9-Jun-09
Cable, Coax	Andrew	FSJ1-50A	003	25-Jan-08	25-Jan-09
Cable, Coax	Andrew	FSJ1-50A	030	30-Jan-08	30-Jan-09
Cable, Coax	Andrew	FSJ1-50A	045	30-Jan-08	30-Jan-09
SOP 2 - Conducted Emissions (AC/DC)					
LISN 15-18 (NSLK 8126)	Schwarzbeck Mess-Electronik	NSLK 8126	003885	11-Jan-08	11-Jan-09
Spectrum Analyzer	Agilent Tec.	E7405A	US39440161	7-Aug-08	7-Aug-09
Cable, Coax	Belden	RG-213	004	25-Jan-08	25-Jan-09
Antenna Port Conducted Emissions					

- Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.
- 1) This equipment was also used for antenna port conducted measurements.