

FCC Test Report

Report No.: RFCDVB-WTW-P25040433-1

FCC ID: QYLGET122L

Test Model: GET-122L

Received Date: Apr. 21, 2025

Test Date: May 27 ~ Jun. 24, 2025

Issued Date: Jul. 08, 2025

Applicant: Getac Technology Corporation.

Address: 5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei City

115018, Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFCDVB-WTW-P25040433-1 Page No. 1 / 35 Report Format Version: 6.1.1

Table of Contents

Re	Release Control Record3				
1	Certificate of Conformity	. 4			
2 Summary of Test Results					
	.1 Measurement Uncertainty				
3	General Information	. 6			
	1.1 General Description of EUT	. 7 . 7 . 9 . 9			
4	est Types and Results	11			
	1. Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Setup 4.1.6 EUT Operating Conditions 4.1.7 Test Results 4.2 Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 Test Setup 4.2.6 EUT Operating Conditions 4.2.7 Test Results 3 Occupied Bandwidth Measurement 4.3.1 Test Setup 4.3.2 Test Instruments 4.3.3 Test Procedure 4.3.4 Deviation from Test Standard 4.3.5 EUT Operating Conditions 4.3.6 Test Results 4.3.6 Test Results	11 12 13 14 14 15 25 25 27 27 27 28 32 32 32 32 32			
5	Pictures of Test Arrangements				
	endix – Information of the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RFCDVB-WTW-P25040433-1	Original Release	Jul. 08, 2025

Report No.: RFCDVB-WTW-P25040433-1 Page No. 3 / 35 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: Digitizer Module

Brand: EMRight

Test Model: GET-122L

Sample Status: Engineering Sample

Applicant: Getac Technology Corporation.

Test Date: May 27 ~ Jun. 24, 2025

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.209)

ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : ______, Date: _____, Dull. 08, 2025

Gina Liu / Specialist

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.209)					
FCC Clause Test Item Result			Remarks			
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -13.35 dB at 0.15800 MHz.			
15.209	15.209 Radiated emission test Pass		Meet the requirement of limit. Minimum passing margin is -2.5 dB at 74.59 MHz.			
2.202	Bandwidth Measurement	Pass	Meet the requirement of limit.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.93 dB
	200MHz ~1000MHz	2.95 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Digitizer Module
Brand	EMRight
Test Model	GET-122L
Status of EUT	Engineering Sample
	End-product:
Power Supply Rating	19 Vdc (adapter)
	7.74 / 11.61 Vdc (battery)
Operating Frequency	511 kHz
Antenna Type	Loop antenna
Antenna Connector	NA
Field Strength	11.80 dBuV/m (30m)
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT is authorized for use in specific End-product. Please refer to below for more details.

Product	Brand	Model	Difference
		V120	
Notebook	Getac	V120Y(Y= 10 characters, Y can be 0 to 9, A to Z, a to z, "/", "\", "-", "_" or blank for marketing purpose)	For marketing purpose

2. The End-product uses following accessories.

Item	Brand	Model	Specification
Battery 1	Getac	BP2S1P4070P	Power Rating : Rating: 7.74Vdc , 3800mAh, 29.42Wh Typical Capacity: 4070mAh, 31.51Wh
Battery 2	Getac	BP3S1P4070P	Power Rating : Rating: 11.61Vdc , 3800mAh, 44.12Wh Typical Capacity: 4070mAh, 47.26Wh
AC Adapter	FSP	FSP065-RBBN3	AC Input : 100-240 Vac ; 50-60 Hz ; 1.5 A DC Output : 19.0Vdc ; 3.42A, 65.0W DC Output Cable : 1.45M / 1core AC Power Cord : 1.75M
Touch Pen	Getac	340GA8900001	-

- 3. Due to radiated measurements are made and the antenna gain is already accounted for this device, so provide an antenna datasheet and/or antenna measurement report is not required. The antenna dimensions and pictures (include antenna wire length if have) are stated in EUT photo exhibit.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

1 channel is provided to this EUT:

Channel	Frequency (kHz)
1	511

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applicable To			December 1	
Mode	RE<1G	PLC	BW	Description	
-	√	V	√ √	EUT + Battery 1	

Where

RE<1G: Radiated Emission below 1 GHz

PLC: Power Line Conducted Emission

BW: 20dB Bandwidth

Note:

- 1. The EUT had been pre-tested on the positioned of NB Mode and each 3 axis of Tablet Mode. The worst case was found when positioned on Y-axis of tablet Mode.
- 2. EUT can be used in the following ways: Battery 1/ Battery 2. Pre-scan these ways and find the worst case as a representative test condition.
- 3. "-" means no effect.

Radiated Emission Test (9 kHz ~ 30 MHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
-	1	1

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
-	1	1

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
-	1	1

Bandwidth Measurement:

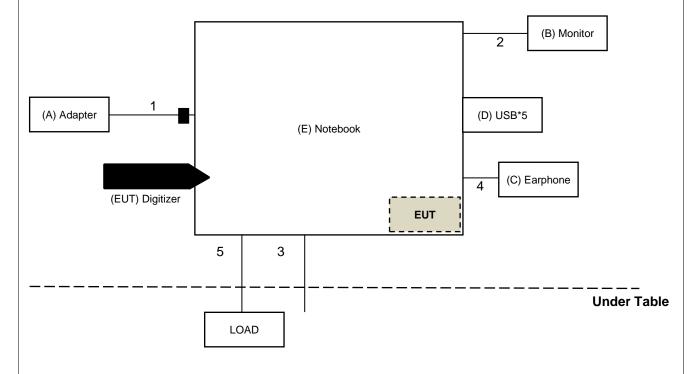
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
-	1	1

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	23 deg. C, 65 % RH	120 Vac, 60 Hz	Vincent Chen
PLC	24 deg. C, 70 % RH	120 Vac, 60 Hz	Thomas Cheng
BW	22 deg. C, 66 % RH	120 Vac, 60 Hz	Vincent Chen


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Adapter	FSP	FSP065-RBBN3	NA	NA	Accessory of EUT
В	Monitor	DELL	A14S2421HSXmTW	CN-01KWFW-WSL00-24C-711B	NA	Provided by Lab
С	EARPHONE	APPLE	MB77PFEB	NA	NA	Provided by Lab
D	USB*5	SanDisk	SDDDC3-032G	NA	NA	Provided by Lab
Ε	Notebook	Getac	V120	NA	NA	Provided by client

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.45	Y	1	Accessory of EUT
2	HDMI	1	1.8	Υ	0	Provided by Lab
3	RS232	1	1.5	N	0	Provided by Lab
4	AUDIO	1	1.2	N	0	Provided by Lab
5	LAN	1	1.5	N	0	Provided by Lab

3.3.1 Configuration of System under Test

General Description of Applied Standards 3.4 The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: FCC Part 15, Subpart C (15.209) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards.

Report No.: RFCDVB-WTW-P25040433-1 Page No. 10 / 35 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For Frequency below 30MHz

Frequency	Field Streng	th (dBuV/m)	Measurement Distance
(MHz)	uV/m	dBuV/m	(meters)
0.009 - 0.490	2400 / F (kHz)	48.52-13.80	300
0.490 - 1.705	24000 / F (kHz)	33.80-22.97	30
1.705 – 30.0	30	29.54	30

For Frequency between 30-1000MHz

Frequency (MHz)	Measurement Distance (at 3m)		
	uV/m	dBuV/m	
30-88	100	40.0	
88-216	150	43.5	
216-960	200	46.0	
Above 960	500	54.0	

Report No.: RFCDVB-WTW-P25040433-1 Page No. 11 / 35 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver Agilent	N9038A	MY50010158	Oct. 11, 2024	Oct. 10, 2025
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 24, 2024	Dec. 23, 2025
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 16, 2025	Apr. 15, 2026
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Oct. 14, 2024	Oct. 13, 2025
Loop Antenna TESEQ	HLA 6121	45745	Aug. 21, 2024	Aug. 20, 2025
Preamplifier EMCI	EMC001340	980201	Sep. 24, 2024	Sep. 23, 2025
Preamplifier EMCI	EMC 330H	980112	Sep. 24, 2024	Sep. 23, 2025
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Sep. 24, 2024	Sep. 23, 2025
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Temperature & Humidity Chamber	GTH-120-40-CP-AR	MAA1306-019	Sep. 09, 2024	Sep. 08, 2025
DC Power Supply Topward	33010D	807748	NA	NA
Digital Multimeter Fluke	87-III	70360742	Jul. 05, 2024	Jul. 04, 2025

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa 966 Chamber 5.
- 3. Tested date: May 27 ~ Jun. 24, 2025

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and Ground-Parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9kHz-90kHz, 110kHz-490kHz) set to average detect function and peak detect function.

Note:

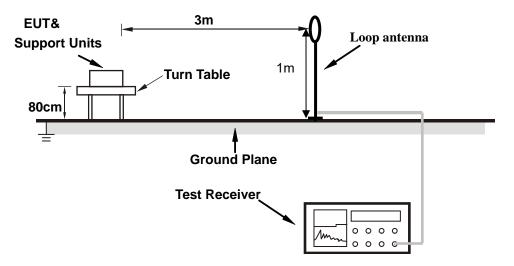
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency band (9 kHz~150 kHz) and 9 kHz or 10 kHz at frequency below 30MHz (except 9 kHz~150 kHz).
- 2. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

For Radiated emission above 30MHz

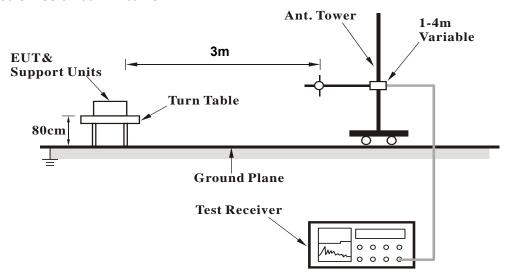
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

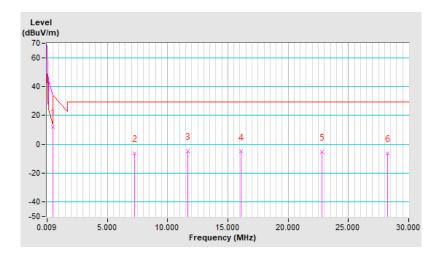
4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Below 30MHz Data:

TX Mode

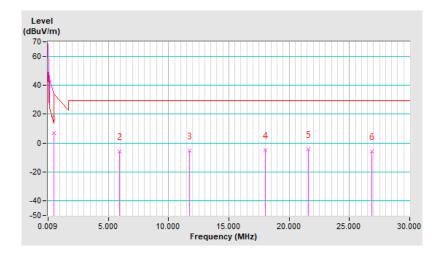

Channel	TX Channel 1	Detector Function	Oversi Darak (OD)	
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)	

	Antenna Polarity : Parallel							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	0.511	11.80 QP	33.40	-21.60	1.00	264	32.20	-20.40
2	7.237	-6.20 QP	29.50	-35.70	1.00	327	12.80	-19.00
3	11.705	-4.60 QP	29.50	-34.10	1.00	151	14.10	-18.70
4	16.084	-5.00 QP	29.50	-34.50	1.00	175	13.40	-18.40
5	22.832	-5.10 QP	29.50	-34.60	1.00	5	13.30	-18.40
6	28.231	-6.50 QP	29.50	-36.00	1.00	2	11.90	-18.40

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49 \text{MHz}$, the measured field strength was extrapolated to distance 300 meters Distance factor @3m = $40*\log(3/300)$ = -80 dB

For $0.49 \sim 30 MHz$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = $40 \log(3/30)$ = -40 dB

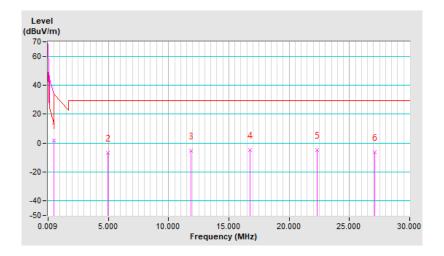


Channel	TX Channel 1	D. t t F t'	0	
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)	

	Antenna Polarity : Perpendicular							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	0.511	7.20 QP	33.40	-26.20	1.00	278	27.60	-20.40
2	5.917	-5.90 QP	29.50	-35.40	1.00	40	13.50	-19.40
3	11.765	-5.30 QP	29.50	-34.80	1.00	176	13.30	-18.60
4	18.004	-4.80 QP	29.50	-34.30	1.00	181	13.50	-18.30
5	21.603	-4.10 QP	29.50	-33.60	1.00	270	14.10	-18.20
6	26.881	-5.60 QP	29.50	-35.10	1.00	132	12.60	-18.20

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49$ MHz, the measured field strength was extrapolated to distance 300 meters Distance factor @3m = $40*\log(3/300) = -80$ dB

For $0.49 \sim 30 MHz$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40 dB



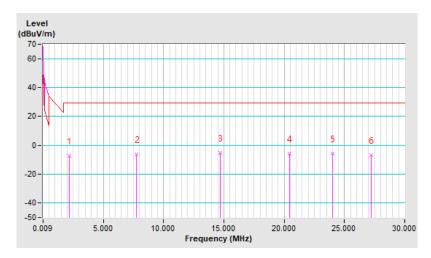
Channel	TX Channel 1	D. t t F t'	0	
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)	

	Antenna Polarity : Ground-parallel							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	0.511	1.80 QP	33.40	-31.60	1.00	264	22.20	-20.40
2	4.988	-6.90 QP	29.50	-36.40	1.00	12	13.60	-20.50
3	11.885	-5.10 QP	29.50	-34.60	1.00	3	13.50	-18.60
4	16.744	-4.90 QP	29.50	-34.40	1.00	210	13.40	-18.30
5	22.322	-4.70 QP	29.50	-34.20	1.00	80	13.60	-18.30
6	27.121	-6.30 QP	29.50	-35.80	1.00	104	11.90	-18.20

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49$ MHz, the measured field strength was extrapolated to distance 300 meters Distance factor @3m = $40*\log(3/300) = -80$ dB

For $0.49 \sim 30 MHz$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40 dB

Standby Mode

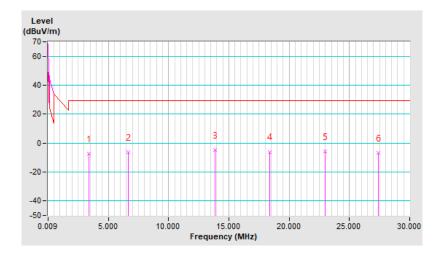

Channel	TX Channel 1	Detector Function	Ougoi Poek (OD)
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity : Parallel							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2.200	-7.20 QP	29.50	-36.70	1.00	98	13.20	-20.40
2	7.780	-6.20 QP	29.50	-35.70	1.00	282	12.70	-18.90
3	14.700	-5.30 QP	29.50	-34.80	1.00	288	13.20	-18.50
4	20.430	-5.70 QP	29.50	-35.20	1.00	184	12.40	-18.10
5	24.000	-6.00 QP	29.50	-35.50	1.00	5	12.20	-18.20
6	27.240	-6.60 QP	29.50	-36.10	1.00	103	11.60	-18.20

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49 \text{MHz}$, the measured field strength was extrapolated to distance 300 meters Distance factor@3m = $40*\log(3/300) = -80 \text{dB}$

For $0.49 \sim 30 \text{MHz}$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = $40 \cdot \log(3/30) = -40 \cdot \text{dB}$

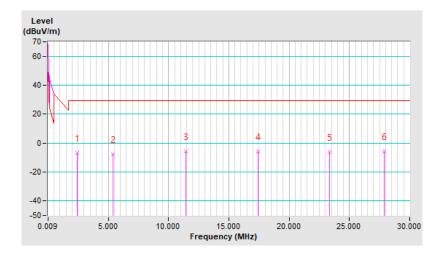


Channel	TX Channel 1	D. t t F t'	O D L . (OD)
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity : Perpendicular							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	3.400	-7.20 QP	29.50	-36.70	1.00	265	13.20	-20.40
2	6.670	-6.40 QP	29.50	-35.90	1.00	215	12.70	-19.10
3	13.830	-4.80 QP	29.50	-34.30	1.00	351	13.80	-18.60
4	18.390	-6.00 QP	29.50	-35.50	1.00	84	12.30	-18.30
5	23.010	-6.00 QP	29.50	-35.50	1.00	64	12.40	-18.40
6	27.390	-6.80 QP	29.50	-36.30	1.00	186	11.50	-18.30

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49$ MHz, the measured field strength was extrapolated to distance 300 meters Distance factor @3m = $40*\log(3/300) = -80$ dB

For $0.49 \sim 30 MHz$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40 dB

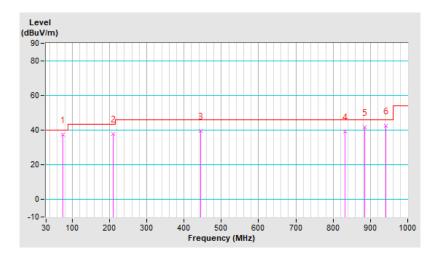


Channel	TX Channel 1	D. t t F t'	O D L . (OD)
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity : Ground-parallel							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2.440	-6.90 QP	29.50	-36.40	1.00	234	13.50	-20.40
2	5.380	-7.60 QP	29.50	-37.10	1.00	16	12.40	-20.00
3	11.440	-5.90 QP	29.50	-35.40	1.00	131	12.80	-18.70
4	17.400	-6.00 QP	29.50	-35.50	1.00	355	12.30	-18.30
5	23.340	-6.30 QP	29.50	-35.80	1.00	288	12.00	-18.30
6	27.870	-6.00 QP	29.50	-35.50	1.00	321	12.40	-18.40

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. $0.009 \sim 0.49$ MHz, the measured field strength was extrapolated to distance 300 meters Distance factor @3m = $40*\log(3/300) = -80$ dB

For $0.49 \sim 30 MHz$, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40 dB

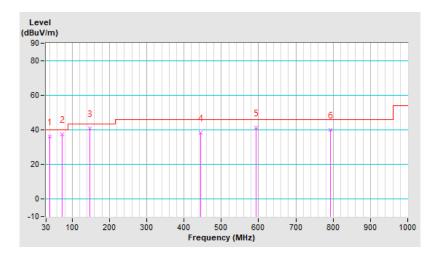

Below 1GHz Data:

TX Mode

Channel	TX Channel 1	Detector Function	Ouggi Book (OD)
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	74.59	37.5 QP	40.0	-2.5	2.00 H	224	53.1	-15.6
2	210.42	38.0 QP	43.5	-5.5	1.00 H	270	53.4	-15.4
3	445.16	39.5 QP	46.0	-6.5	2.00 H	194	47.2	-7.7
4	831.22	39.1 QP	46.0	-6.9	1.50 H	338	39.6	-0.5
5	885.54	41.5 QP	46.0	-4.5	1.01 H	257	42.0	-0.5
6	940.83	42.4 QP	46.0	-3.6	1.50 H	263	41.9	0.5

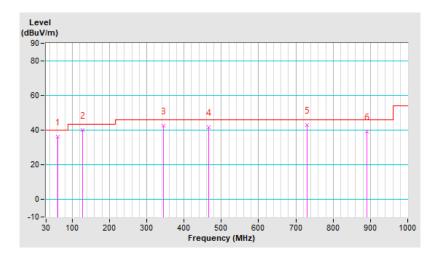
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.



Channel	TX Channel 1	Data dan Funation	O (OD)
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	39.60	36.2 QP	40.0	-3.8	1.50 V	221	48.7	-12.5
2	73.45	37.3 QP	40.0	-2.7	2.00 V	223	52.7	-15.4
3	147.56	40.9 QP	43.5	-2.6	1.50 V	223	53.2	-12.3
4	445.29	38.2 QP	46.0	-7.8	2.00 V	254	45.9	-7.7
5	593.47	41.2 QP	46.0	-4.8	2.00 V	182	46.2	-5.0
6	792.42	39.9 QP	46.0	-6.1	2.00 V	346	40.7	-0.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

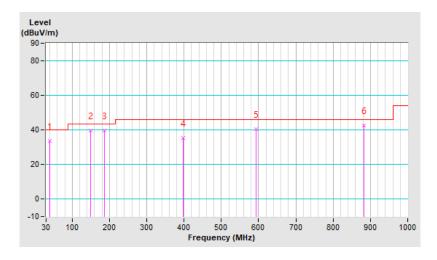


Standby Mode

Channel	TX Channel 1	Detector Function	Ougoi Dook (OD)
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	62.01	36.2 QP	40.0	-3.8	1.00 H	234	49.5	-13.3					
2	127.97	40.0 QP	43.5	-3.5	1.00 H	291	53.4	-13.4					
3	344.28	42.6 QP	46.0	-3.4	2.00 H	175	53.2	-10.6					
4	465.53	41.7 QP	46.0	-4.3	1.50 H	240	49.1	-7.4					
5	729.37	42.8 QP	46.0	-3.2	2.00 H	339	44.6	-1.8					
6	891.36	39.0 QP	46.0	-7.0	2.00 H	206	39.4	-0.4					

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.



Channel	TX Channel 1	Data dan Funation	O (OD)
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m													
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)						
1	39.70	33.6 QP	40.0	-6.4	1.00 V	232	46.1	-12.5						
2	149.31	39.6 QP	43.5	-3.9	1.50 V	336	51.8	-12.2						
3	186.17	39.4 QP	43.5	-4.1	1.00 V	237	54.0	-14.6						
4	397.63	35.3 QP	46.0	-10.7	2.00 V	89	44.6	-9.3						
5	593.57	40.4 QP	46.0	-5.6	1.50 V	244	45.4	-5.0						
6	882.63	42.4 QP	46.0	-3.6	2.00 V	218	42.9	-0.5						

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguenou (MU=)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-Peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

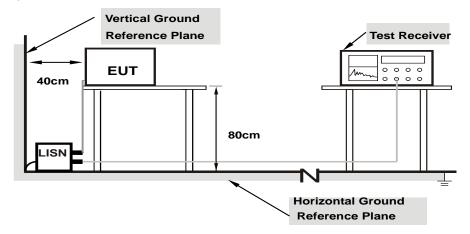
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
50 . l t	E1-011279	04	2024/11/28	2025/11/27
50 ohm terminal resistance	E1-011280	05	2024/11/28	2025/11/27
resistance	E1-011311	09	2024/11/28	2025/11/27
DC-LISN Schwarzbeck	NNBM 8126G	8126G-069	2024/11/5	2025/11/4
EMI Test Receiver R&S	ESR3	102783	2024/12/17	2025/12/16
Fixed Attenuator STI	BNC5W10dB	PAD-COND2-01	2024/8/25	2025/8/24
LISN	ESH2-Z5	100100	2025/3/5	2026/3/4
R&S	ESH3-Z5	100312	2024/9/9	2025/9/8
RF Coaxial Cable Woken	5D-FB	Cable-cond2-01	2024/8/25	2025/8/24
Software BVADT	BVADT_Cond_ V7.4.1.0	N/A	N/A	N/A
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2024/8/28	2025/8/27

- Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).
 - 3. The VCCI Site Registration No. is C-12047.
 - 4. Tested date: May 27, 2025

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.


NOTE:	The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (Control of test receiver)	ĴΡ)
	and average detection (AV) at frequency 0.15 MHz - 30 MHz.	

4.2.4 Deviation from Test Standard

No deviation.

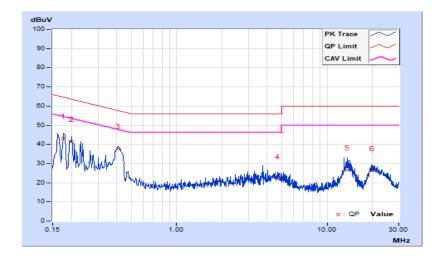
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

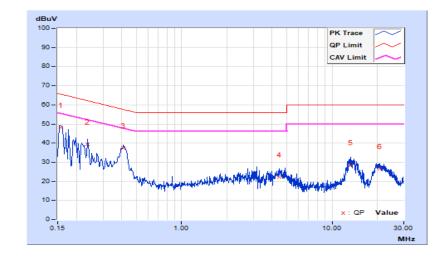


4.2.7 Test Results

TX Mode

	Phase Of Power : Line (L)												
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)				
NO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.17800	10.26	32.77	17.22	43.03	27.48	64.58	54.58	-21.55	-27.10			
2	0.20200	10.27	31.15	14.06	41.42	24.33	63.53	53.53	-22.11	-29.20			
3	0.40821	10.29	27.39	20.46	37.68	30.75	57.68	47.68	-20.00	-16.93			
4	4.68600	10.42	11.39	2.38	21.81	12.80	56.00	46.00	-34.19	-33.20			
5	13.71400	10.50	15.99	5.56	26.49	16.06	60.00	50.00	-33.51	-33.94			
6	19.94600	10.63	15.63	7.42	26.26	18.05	60.00	50.00	-33.74	-31.95			

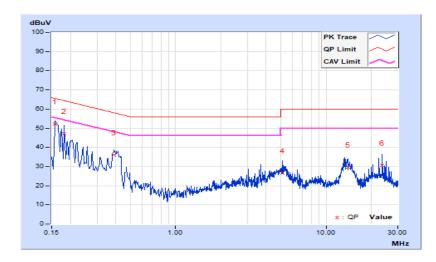
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



<u></u>			
Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor		Reading Value (dBuV)		<u> </u>		Limit (dBuV)		Margin (dB)		
140	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15687	10.30	37.71	20.27	48.01	30.57	65.63	55.63	-17.62	-25.06		
2	0.23786	10.30	28.93	10.69	39.23	20.99	62.17	52.17	-22.94	-31.18		
3	0.41000	10.32	27.21	20.41	37.53	30.73	57.65	47.65	-20.12	-16.92		
4	4.48200	10.48	11.69	2.38	22.17	12.86	56.00	46.00	-33.83	-33.14		
5	13.28200	10.64	18.03	7.69	28.67	18.33	60.00	50.00	-31.33	-31.67		
6	20.62600	10.83	15.61	6.38	26.44	17.21	60.00	50.00	-33.56	-32.79		

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

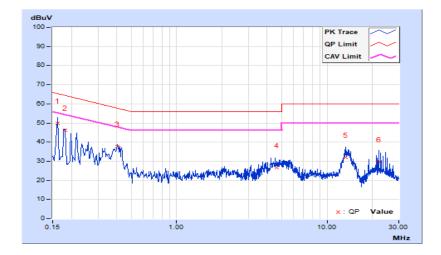


Standby Mode

Phase	Line (L)	Dotagtor Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector Function	Average (AV)

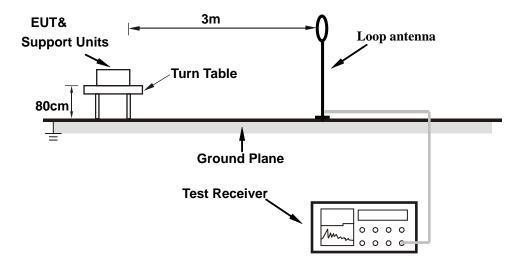
	Phase Of Power : Line (L)												
	Frequency	Correction	Readin	Reading Value		Emission Level		nit	Margin				
No		Factor	(dB	uV)	(dB	suV) (dBuV)		uV)	(dB)				
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.			
1	0.15800	10.25	41.97	22.85	52.22	33.10	65.57	55.57	-13.35	-22.47			
2	0.18200	10.26	36.99	18.71	47.25	28.97	64.39	54.39	-17.14	-25.42			
3	0.39000	10.29	25.89	17.03	36.18	27.32	58.06	48.06	-21.88	-20.74			
4	5.12200	10.42	16.06	7.48	26.48	17.90	60.00	50.00	-33.52	-32.10			
5	13.91000	10.50	19.21	7.94	29.71	18.44	60.00	50.00	-30.29	-31.56			
6	23.59800	10.58	20.02	6.10	30.60	16.68	60.00	50.00	-29.40	-33.32			

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	g Value	Emissio	n Level	Lir	nit	Ma	rgin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16200	10.30	39.54	23.88	49.84	34.18	65.36	55.36	-15.52	-21.18
2	0.18037	10.30	35.66	20.63	45.96	30.93	64.47	54.47	-18.51	-23.54
3	0.40499	10.32	27.39	22.12	37.71	32.44	57.75	47.75	-20.04	-15.31
4	4.62200	10.48	16.09	7.84	26.57	18.32	56.00	46.00	-29.43	-27.68
5	13.23800	10.63	21.44	11.23	32.07	21.86	60.00	50.00	-27.93	-28.14
6	21.99800	10.81	18.96	5.76	29.77	16.57	60.00	50.00	-30.23	-33.43


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Occupied Bandwidth Measurement

4.3.1 Test Setup

4.3.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.3 Test Procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter Semianechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Then the Loop antenna was rotated 360 degrees to determine the position of the highest radiation.
- b. The antenna is a broadband loop antenna, which is fixed of a 1m height above the ground, and set away from 3m to the EUT to find the disturbance reading on each frequency.
- c. The test- spectrum system was set to Peak detect function and specified bandwidth.
- d. Measurement method refers to Section 6.9.3 of ANSI C63.10.

4.3.4 Deviation from Test Standard

No deviation.

4.3.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously.

4.3.6 Test Results

Frequency (kHz)	20dB Bandwidth (kHz)	Pass / Fail
511	0.0336	Pass

Note: The signal look like CW signal, so RBW can't be match 1~5 % OBW.

5	Pictures of Test Arrangements			
Plea	Please refer to the attached file (Test Setup Photo).			

Report No.: RFCDVB-WTW-P25040433-1 Page No. 34 / 35 Report Format Version: 6.1.1

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com. web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFCDVB-WTW-P25040433-1 Page No. 35 / 35 Report Format Version: 6.1.1