

FCC RADIO TEST REPORT

FCC ID : QYLFN990B
Equipment : 5G NR Module
Brand Name : Getac
Model Name : FN990A28
Applicant : Getac Technology Corporation.
5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang
Dist., Taipei City 115018, Taiwan, R.O.C.
Standard : FCC 47 CFR Part 2, 96

The product was received on Mar. 13, 2025 and testing was performed from Apr. 02, 2025 to Apr. 23, 2025. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Sportun International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description	5
1.1 Product Feature of Equipment Under Test.....	5
1.2 Modification of EUT	6
1.3 Testing Site.....	7
1.4 Applied Standards	8
2 Test Configuration of Equipment Under Test	9
2.1 Test Mode.....	9
2.2 Connection Diagram of Test System.....	10
2.3 Support Unit used in test configuration and system	10
2.4 Frequency List of Low/Middle/High Channels	10
3 Conducted Test Items.....	11
3.1 Measuring Instruments	11
3.2 Conducted Output Power Measurement	12
3.3 EIRP	13
4 Radiated Test Items	14
4.1 Measuring Instruments	14
4.2 Test Setup	14
4.3 Test Result of Radiated Test	15
4.4 Radiated Spurious Emission	16
5 List of Measuring Equipment.....	17
6 Measurement Uncertainty	18
Appendix A. Test Results of Conducted Test	
Appendix B. Test Results of Radiated Test	
Appendix C. Test Setup Photographs	

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Pass	-
3.3	§96.41	Effective Isotropic Radiated Power	Pass	-
4.4	§2.1053 §96.41	Radiated Spurious Emission	Pass	-

Note: The test plans were by manufacturer definition.

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang

Report Producer: Clio Lo

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature	
General Specs WCDMA/LTE/5G NR, and GNSS	
Antenna Type WWAN: PIFA Antenna	
Sample 1	EUT with Host 1
Sample 2	EUT with Host 2
Sample 3	EUT with Host 3

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

Support band and evaluated information	
Supported band	n48
Evaluated and Tested band	n48

Antenna information						
Band	Main	Aux	MIMO1	MIMO2		
n48			-0.23	-0.11		

The product was installed into Notebook (Brand Name: Getac, Model Name: B360, B360 Pro, B360G3, B360 ProG3, B360 Plus,

B360Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, “-“, “_” or blank for marketing purpose and no impact safety related critical components and constructions.)) during test, and the host information was recorded in the following table.

Host Information	
Host 1	Host with SKU A
Host 2	Host with SKU B
Host 3	Host with SKU C

DVT SKUs	SKU A	SKU B	SKU C
CPU	Ultra 5, 125H	Ultra 7, 165H	Ultra 7 268V vPro
Display	ADP 13.3",FHD	ADP 13.3",FHD	ADP 13.3",FHD
Touch screen	Support	Support	Support
Memory	kingston 8GB*2	kingston 32GB*2	kingston 32GB*2
Main storage	SSD 256GB	SSD 1TB	SSD 1TB
Second storage	SSD 256GB	SSD 1TB	Not Support
Wifi+BT	BE200NGW	BE200NGW	BE201NGW
WWAN	FN990A28	FN990A28	FN990A28
GPS/GNSS	FN990A28	MC-1010-V2b	MC-1010-V2b
AC adapter	FSP, 90W , FSP090-ABBN3	Chicony, 120W,A17-120P1A	FSP, 90W , FSP090-ABBN3
FINGERPRINT	Support	Not Support	Not Support
RFID	Support (SN-NSVG7-C01)	Support (SN-NSVG7-C01)	Support (SN-NSVG7-C01)
BCR	Support	Support	Support
Smart Card	Support	Support	Support
SD Card Reader	Support	Support	Support
Battery	BP2S1P4060S-01	BP3S2P3450P-01 BP3S2P2100S-04	BP2S1P4060S-01
Optional ports	RS232/2nd TBT4	RS232/2nd TBT4	RS232/2nd TBT4
ODD (Expansion)	Not Support	Support (3rd battery pack:BP3S2P2100S-04)	Not Support
MXM/PCMCIA/Express	Not Support	ADLINK,91-7C006-110E	Not Support
Expansion optional port	Not Support	Not Support	Not Support

Remark: The device will have different models of the three SKUs depending on the different markets.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Site

Test Site	Sportun International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sportun Site No. TH03-HY
Test Engineer	Mike Yeh
Temperature (°C)	21.1~24.5
Relative Humidity (%)	48.6~55.9

Test Site	Sportun International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sportun Site No. 03CH23-HY (TAF Code: 3786)
Test Engineer	Leo Li, Karl Hou and Lucifer Jiang
Temperature (°C)	19.4~21.1
Relative Humidity (%)	44.7~65.1
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.4 Applied Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ ANSI C63.26-2015
- ♦ FCC 47 CFR Part 2, 96
- ♦ FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- ♦ FCC KDB 414788 D01 Radiated Test Site v01r01
- ♦ FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ♦ FCC KDB 940660 D01 Part 96 CBRS Eqpt v03
- ♦ FCC KDB 412172 D01 Determining ERP and EIRP v01r01

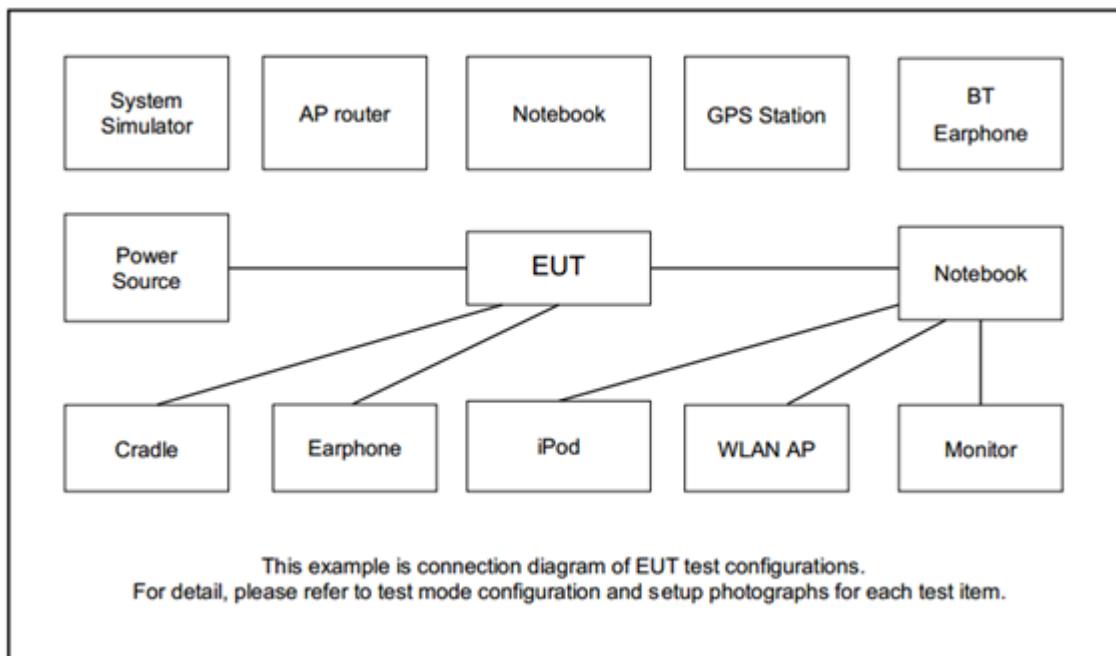
Remark:

1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.


Modulation Type	Modulation	Modulation Type	Modulation
A	DFT-s-OFDM PI/2 BPSK	N/A	N/A
B	DFT-s-OFDM QPSK	F	CP-OFDM QPSK
C	DFT-s-OFDM 16QAM	G	CP-OFDM 16QAM
D	DFT-s-OFDM 64QAM	H	CP-OFDM 64QAM
E	DFT-s-OFDM 256QAM	I	CP-OFDM 256QAM

Test Item	Modulation Type	Bandwidth	RB Size	Channel
Conducted Power	A, B, C, D, E	All	1, Half, Full	L, M, H
EIRP	A, B, C, D, E	All	1, Half, Full	L, M, H
RSE	A	20 MHz or less	Inner_1RB	L, M, H

Remark:

1. Evaluated all the transmitter signal and reporting worst-case configuration among all modulation types.
2. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst-case emissions are reported.
3. All the radiated test cases were performed with Adapter 1, Battery 1 and Sample 1.

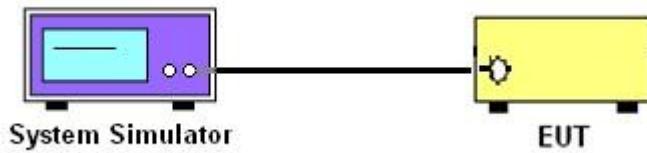
2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.4 Frequency List of Low/Middle/High Channels

5G NR Band 48 Channel and Frequency List				
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
40	Channel	638000	641666	645332
	Frequency	3570	3624.99	3679.98
20	Channel	637334	641666	646000
	Frequency	3560.01	3624.99	3690


3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.1.1 Test Setup

3.1.2 Conducted Output Power

3.1.3 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement

3.2.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.2.2 Test Procedures

1. The transmitter output port was connected to base station.
2. Set EUT at maximum power through base station.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure and record the power level from the system simulator.

3.3 EIRP

3.3.1 Description of the EIRP Measurement

The EIRP of mobile transmitters must not exceed 23 dBm /10 megahertz for LTE Band 48.

The testing follows ANSI C63.26-2015 Section 5.2.5.5.

According to KDB 412172 D01 Power Approach,

EIRP = PT + GT – LC, where

PT = transmitter output power in dBm

GT = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

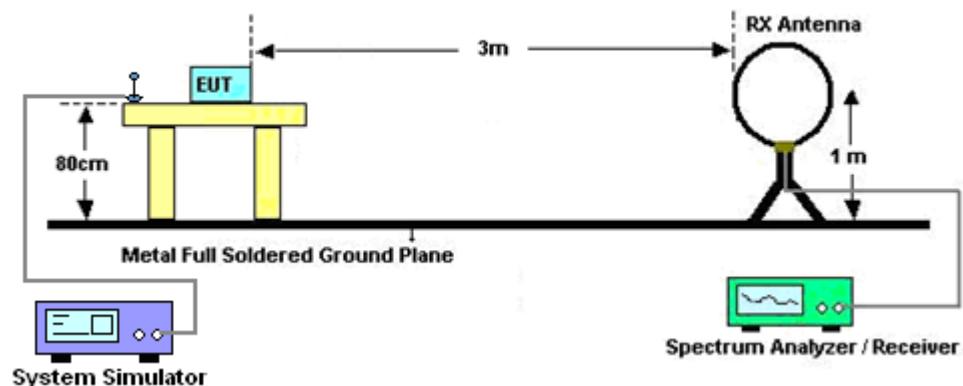
Device	Maximum EIRP (dBm/10 MHz)	Maximum PSD (dBm/MHz)
End User Device	23	n/a

Remark: Total channel power is complied with EIRP limit 23dBm/10MHz.

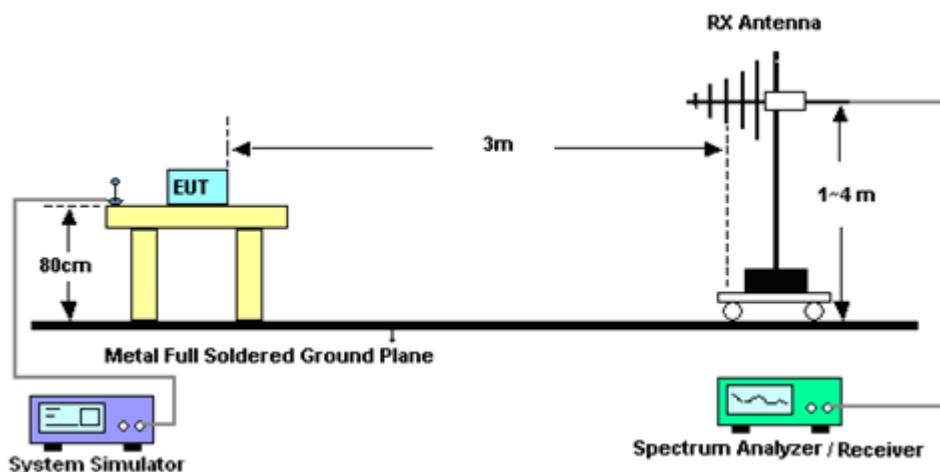
3.3.2 Test Procedures

The testing follows procedure in Section 5.2 of ANSI C63.26-2015 and KDB 940660 D01 Part 96 CBRS Eqpt v03 Section 3.2(b)(2)

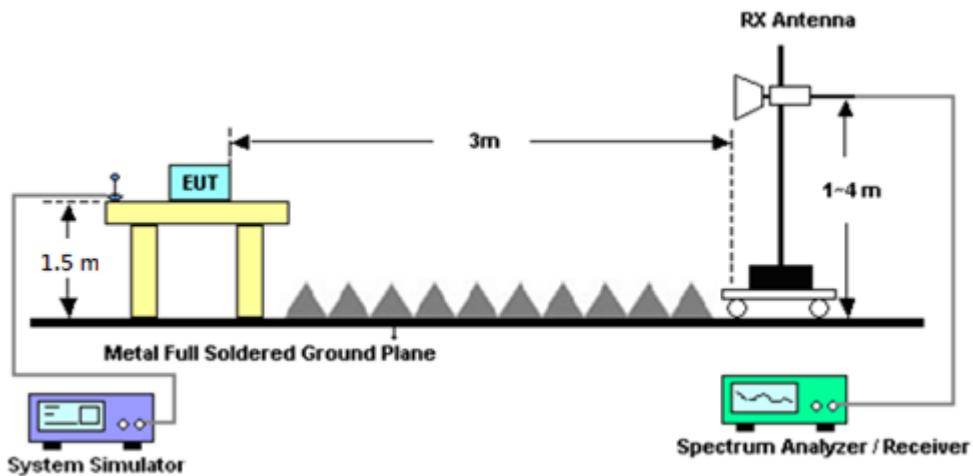
Determine the EIRP by adding the effective antenna gain to the measured average conducted power level.

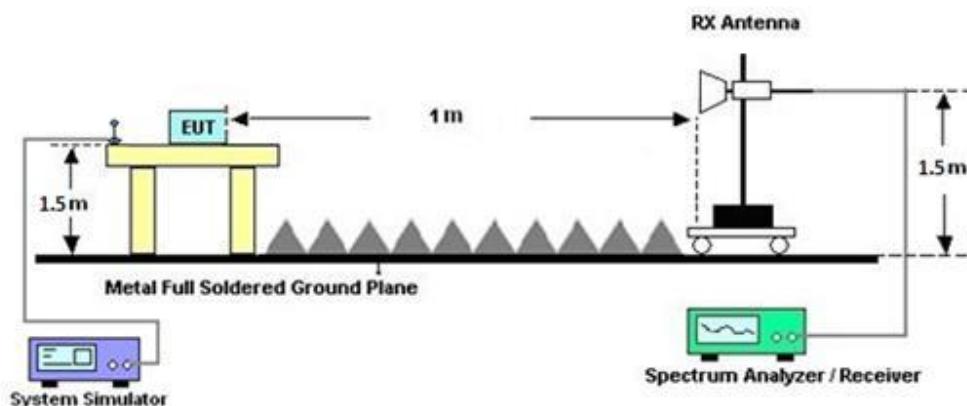

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup


For radiated test below 30MHz


For radiated test from 30MHz to 1GHz

For radiated emissions from 1GHz to 18GHz

For radiated emissions above 18GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI C63.26-2015.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI C63.26-2015 section 5.5.4 Radiated measurement using the field strength method.

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
7. To convert spectrum reading $E(\text{dBuV/m})$ to EIRP(dBm)
$$\text{EIRP(dBm)} = \text{Level (dBuV/m)} + 20\log(d) - 104.77,$$
where d is the distance at which field strength limit is specified in the rules
8. Field Strength Level (dBm) = Spectrum Reading (dBm) + Antenna Factor + Cable Loss + Read Level - Preamp Factor.
9. $\text{ERP (dBm)} = \text{EIRP (dBm)} - 2.15$
10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Apr. 15, 2025~Apr. 23, 2025	Aug. 28, 2025	Radiation (03CH23-HY)
Bilog Antenna	TESEQ & WOKEN	CBL 6111D & 00802N1D-06	62028 & 003	30MHz~1GHz	Nov. 27, 2024	Apr. 15, 2025~Apr. 23, 2025	Nov. 26, 2025	Radiation (03CH23-HY)
Amplifier	SONOMA	310N	421582	9kHz~1GHz	Jul. 14, 2024	Apr. 15, 2025~Apr. 23, 2025	Jul. 13, 2025	Radiation (03CH23-HY)
Amplifier	EMEC	EM01G18GA	060878	N/A	Sep. 27, 2024	Apr. 15, 2025~Apr. 23, 2025	Sep. 26, 2025	Radiation (03CH23-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C05A18EN	1GHz~18GHz	Jun. 20, 2024	Apr. 15, 2025~Apr. 23, 2025	Jun. 19, 2025	Radiation (03CH23-HY)
HF-EHF Horn Antenna	SCHWARZB ECK	BBHA 9170	1224	18GHz-40GHz	Jun. 24, 2024	Apr. 15, 2025~Apr. 23, 2025	Jun. 23, 2025	Radiation (03CH23-HY)
Preamplifier	EMEC	EM18G40G	060872	18GHz~40GHz	Nov. 29, 2024	Apr. 15, 2025~Apr. 23, 2025	Nov. 28, 2025	Radiation (03CH23-HY)
Signal Analyzer	Keysight	N9010B	MY62170337	N/A	Aug. 21, 2024	Apr. 15, 2025~Apr. 23, 2025	Aug. 20, 2025	Radiation (03CH23-HY)
Hygrometer	TECPEL	DTM-303B	TP211542	N/A	Oct. 24, 2024	Apr. 15, 2025~Apr. 23, 2025	Oct. 23, 2025	Radiation (03CH23-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Apr. 15, 2025~Apr. 23, 2025	N/A	Radiation (03CH23-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Apr. 15, 2025~Apr. 23, 2025	N/A	Radiation (03CH23-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Apr. 15, 2025~Apr. 23, 2025	N/A	Radiation (03CH23-HY)
Software	Audix	E3 6.09824_2019 122	RK-002348	N/A	N/A	Apr. 15, 2025~Apr. 23, 2025	N/A	Radiation (03CH23-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 05, 2025	Apr. 15, 2025~Apr. 23, 2025	Mar. 04, 2026	Radiation (03CH23-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804395/2	N/A	Nov. 26, 2024	Apr. 15, 2025~Apr. 23, 2025	Nov. 25, 2025	Radiation (03CH23-HY)
RF Cable	EMC	EMC101Y	231115/231119/231122	N/A	Nov. 26, 2024	Apr. 15, 2025~Apr. 23, 2025	Nov. 25, 2025	Radiation (03CH23-HY)
DC Power Supply	GW Instek	PSS-2005	EL890089	1V~20V 0.5A~5A	Feb. 07, 2025	Apr. 02, 2025~Apr. 06, 2025	Feb. 06, 2026	Conducted (TH03-HY)
Hygrometer	TECPEL	DTM-303B	TP200886	NA	Mar. 03, 2025	Apr. 02, 2025~Apr. 06, 2025	Mar. 02, 2026	Conducted (TH03-HY)
Base Station (Measure)	Anritsu	MT8821C	6262116725	LTE	Oct. 17, 2024	Apr. 02, 2025~Apr. 06, 2025	Oct. 16, 2025	Conducted (TH03-HY)
Base Station (Measure)	Anritsu	MT8000A	6262148275	FR1	Oct. 20, 2024	Apr. 02, 2025~Apr. 06, 2025	Oct. 19, 2025	Conducted (TH03-HY)
Coupler	MVE	MVE-4816-10	A400024	N/A	Jun. 27, 2024	Apr. 02, 2025~Apr. 06, 2025	Jun. 26, 2025	Conducted (TH03-HY)
RF Cable	MVE	MCBL-LL403P.50	E80002C	9KHz~40GHz	Aug. 23, 2024	Apr. 02, 2025~Apr. 06, 2025	Aug. 22, 2025	Conducted (TH03-HY)
Software 1	Sporton	FCC 5GNR_FSV30 44 20231106	N/A	Conducted Test Item	N/A	Apr. 02, 2025~Apr. 06, 2025	N/A	Conducted (TH03-HY)

6 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.6 dB
---	--------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 6 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.4 dB
---	--------

Uncertainty of Radiated Emission Measurement (6 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.8 dB
---	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.7 dB
---	--------

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power) and EIRP

NR n48 Maximum Average Power [dBm] (GT - LC = -0.11 dB)								
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)
20	1	1	PI/2 BPSK	21.54	21.74	21.47	21.68	0.1472
20	1	49		21.63	21.76	21.24		
20	25	12		21.65	21.75	21.43		
20	1	0		21.06	21.20	20.97		
20	1	50		21.12	21.25	20.85		
20	50	0		21.16	21.25	20.92		
20	1	1		21.52	21.65	21.39		
20	1	49		21.53	21.69	21.19		
20	25	12		21.62	21.79	21.39		
20	1	0		20.49	20.64	20.41		
20	1	50		20.61	20.58	20.18		
20	50	0		20.65	20.75	20.42		
20	1	1	16-QAM	20.40	20.53	20.29	20.42	0.1102
20	1	1	64-QAM	19.01	19.21	18.93		
20	1	1	256-QAM	17.12	17.18	16.92		
Limit	EIRP < 23dBm/10MHz			Result			Pass	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

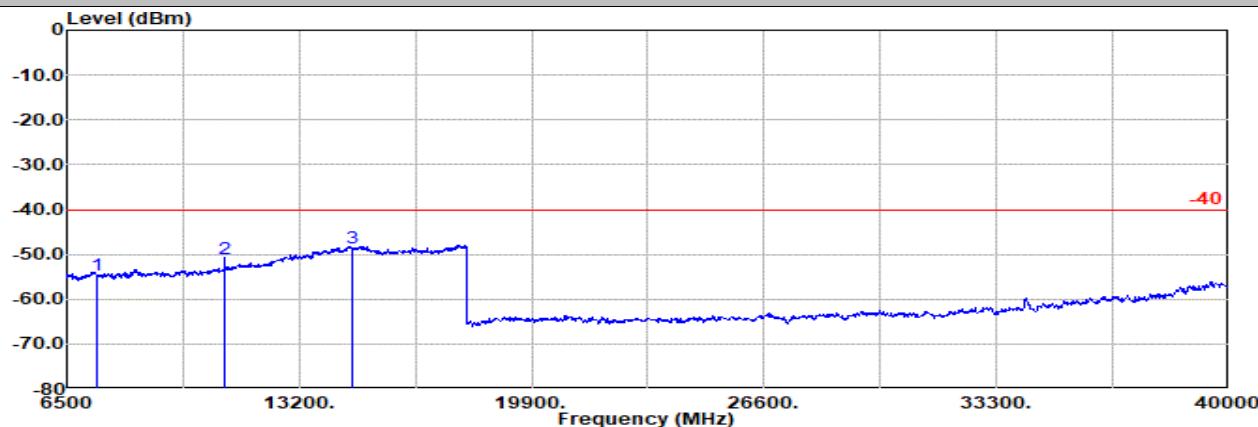
NR n48 Maximum Average Power [dBm] (GT - LC = -0.11 dB)								
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP(W)
40	1	1	PI/2 BPSK	21.66	21.70	21.57	21.75	0.1496
40	1	104		21.74	21.69	21.32		
40	50	25		21.65	21.84	21.40		
40	1	0		21.12	21.24	21.05		
40	1	105		21.23	21.27	20.80		
40	100	0		21.14	21.35	20.92		
40	1	1		21.66	21.71	21.44		
40	1	104		21.72	21.71	21.29		
40	50	25		21.60	21.86	21.45		
40	1	0		20.64	20.72	20.45		
40	1	105		20.69	20.68	20.29		
40	100	0		20.64	20.76	20.42		
40	1	1	16-QAM	20.47	20.54	20.36	20.43	0.1104
40	1	1	64-QAM	19.16	19.23	18.97		
40	1	1	256-QAM	17.08	17.25	17.12		
Limit	EIRP < 23dBm/10MHz			Result			Pass	

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

Appendix B. Test Results of Radiated Test

B1. Summary of each worse mode

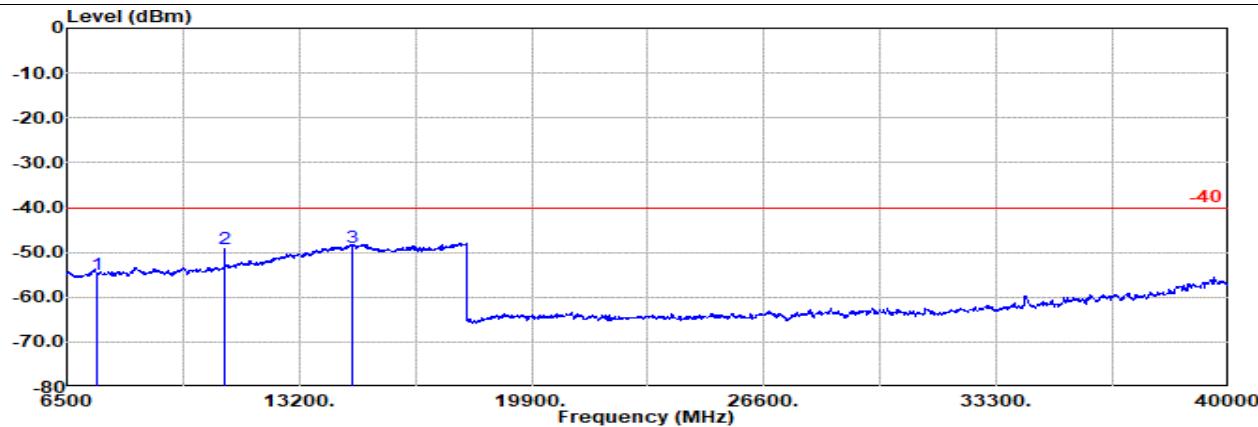
Mode	Part	Band	Ch	Freq (MHz)	Level (dBm)	Det	Ant Factor (dB)	Amp\Cbl (dB)	Filter (dB)	EIRPCF (dB)	Reading (dBuV)	Limit (dBm)	Margin (dB)	Pol	Ant
1	Part 96	NR SA n48	H	14725	-48.72	RMS	41.55	-26.03	2.50	-95.23	28.49	-40.00	-8.72	H	MIMO2



MIMO2 Antenna

Part 96 Mode 1

NR SA n48 20M Ch646000 1RB1 BPSK


H

Site : 03CH23-HY

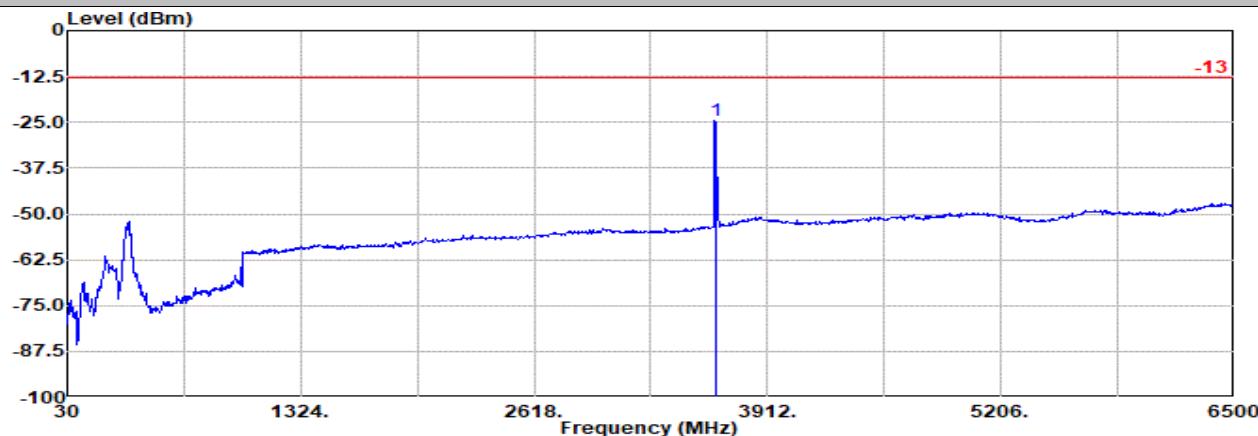
Condition: -40 1m SHF_1224_240624 Horizontal
: NR SA n48 20M Ch646000 1RB1 BPSK

Freq	Level	Detector	Ant Factor	Amp\Cb		Filter 1	EIRPCF	Readin g	Limit		Margin	Pol
				dB/m	dB				dBuV	dBm		
1	7362.00	-54.52 RMS		37.28	-23.50	2.26	-95.23	24.67	-40.00	-14.52		Horizontal
2	11043.00	-50.87 RMS		37.97	-24.47	2.25	-95.23	28.61	-40.00	-10.87		Horizontal
3	14725.00	-48.72 RMS		41.55	-26.03	2.50	-95.23	28.49	-40.00	-8.72		Horizontal

Site : 03CH23-HY

Condition: -40 1m SHF_1224_240624 Vertical
: NR SA n48 20M Ch646000 1RB1 BPSK

Freq	Level	Detector	Ant Factor	Amp\Cb		Filter 1	EIRPCF	Readin g	Limit		Margin	Pol
				dB/m	dB				dBuV	dBm		
1	7362.00	-54.88 RMS		37.28	-23.50	2.26	-95.23	24.31	-40.00	-14.88		Vertical
2	11043.00	-49.15 RMS		37.97	-24.47	2.25	-95.23	30.33	-40.00	-9.15		Vertical
3	14725.00	-48.79 RMS		41.55	-26.03	2.50	-95.23	28.42	-40.00	-8.79		Vertical

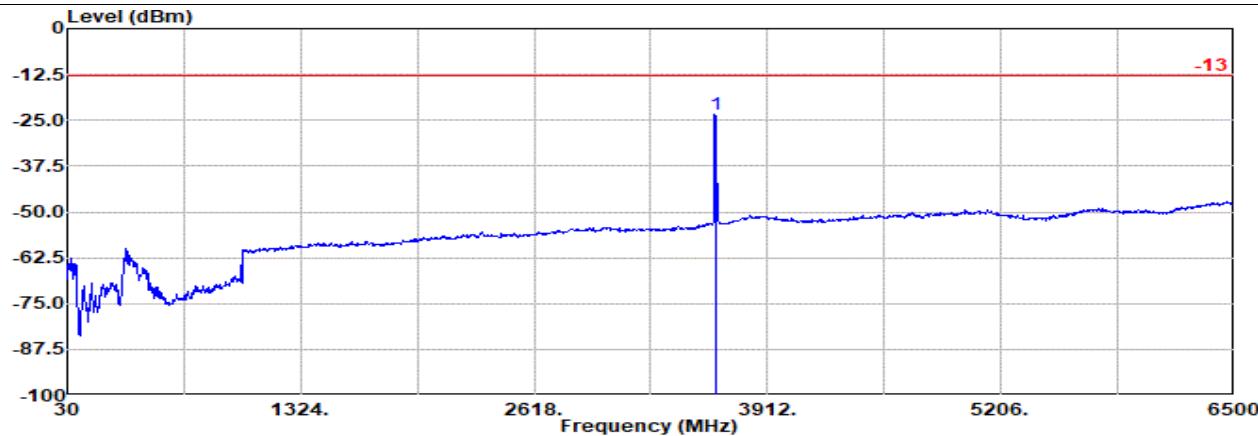


MIMO2 Antenna

Part 96 Mode 1

NR SA n48 20M Ch646000 1RB1 BPSK

H


Site : 03CH23-HY

Condition: -13 3m CBL6111D_62028 & 003_241127 Horizontal

: NR SA n48 20M Ch646000 1RB1 BPSK

: #1 is fundamental signal which can be ignored.

Freq	Level	Detector	Ant Factor	Amp\Cb		Filter 1	EIRPCF	Readin g	Limit	Margin	Pol
				dB/m	dB						
1 3624.99	-24.67	RMS		29.55	-23.89	10.72	-95.23	54.18	-40.00	15.33	Horizontal

Site : 03CH23-HY

Condition: -13 3m CBL6111D_62028 & 003_241127 Vertical

: NR SA n48 20M Ch646000 1RB1 BPSK

: #1 is fundamental signal which can be ignored.

Freq	Level	Detector	Ant Factor	Amp\Cb		Filter 1	EIRPCF	Readin g	Limit	Margin	Pol
				dB/m	dB						
1 3624.99	-23.25	RMS		29.55	-23.89	10.72	-95.23	55.60	-40.00	16.75	Vertical

Remark: #1 is fundamental signal which can be ignored.