

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Eurofins E&E Wireless
New Taipei City

Certificate No.

D3500V2-1013_Aug24

CALIBRATION CERTIFICATE

Object D3500V2 - SN: 1013

Calibration procedure(s) QA CAL-22.v7
Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date August 22, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Calibrated by	Name	Function	Signature
Calibrated by	Krešimir Franjić	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: August 22, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

- DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	$dx, dy = 5\text{mm}, dz = 1.4\text{mm}$	Graded Ratio = 1.5 mm (Z direction)
Frequency	3400MHz $\pm 1\text{MHz}$ 3500MHz $\pm 1\text{MHz}$ 3600MHz $\pm 1\text{MHz}$	

Head TSL parameters at 3400 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	38.0	2.81 mho/m
Measured Head TSL parameters	(22.0 ± 0.2)°C	38.5 $\pm 6\%$	2.85 mho/m $\pm 6\%$
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.1 W/kg $\pm 19.9\%$ (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.4 W/kg $\pm 19.5\%$ (k = 2)

Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.3 ±6%	2.92 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3500 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ±19.5% (k = 2)

Head TSL parameters at 3600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.8	3.02 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.2 ±6%	3.00 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3600 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.5 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ±19.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL at 3400 MHz**

Impedance	44.7 Ω – 7.3 $j\Omega$
Return Loss	-20.5 dB

Antenna Parameters with Head TSL at 3500 MHz

Impedance	53.1 Ω – 5.5 $j\Omega$
Return Loss	-24.2 dB

Antenna Parameters with Head TSL at 3600 MHz

Impedance	60.3 Ω – 1.7 $j\Omega$
Return Loss	-20.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.133 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

System Performance Check Report

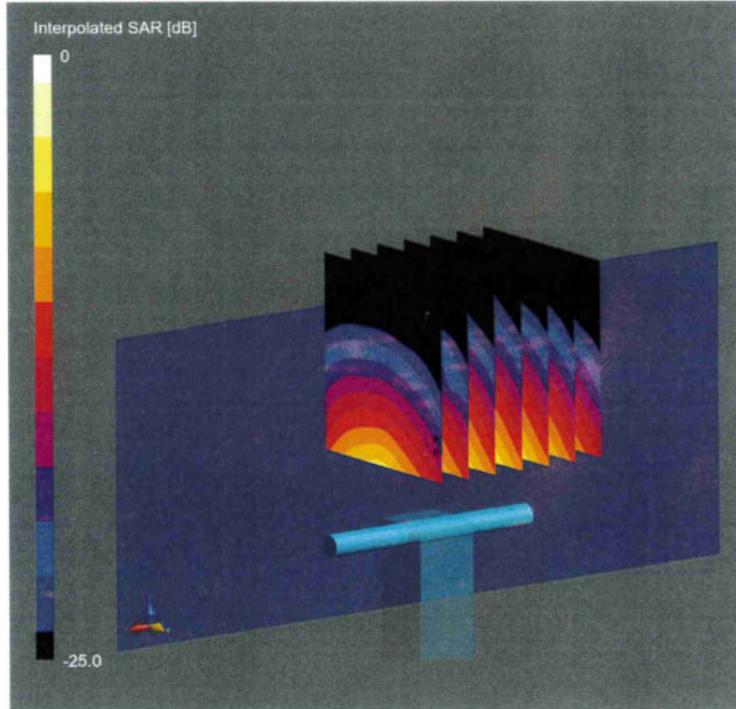
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3500V2 - SN1013	3400	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3400, 0	6.56	2.85	38.5

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-22	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup

Zoom Scan	
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-22
psSAR1g [W/Kg]	6.91
psSAR10g [W/Kg]	2.64
Power Drift [dB]	-0.06
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

System Performance Check Report

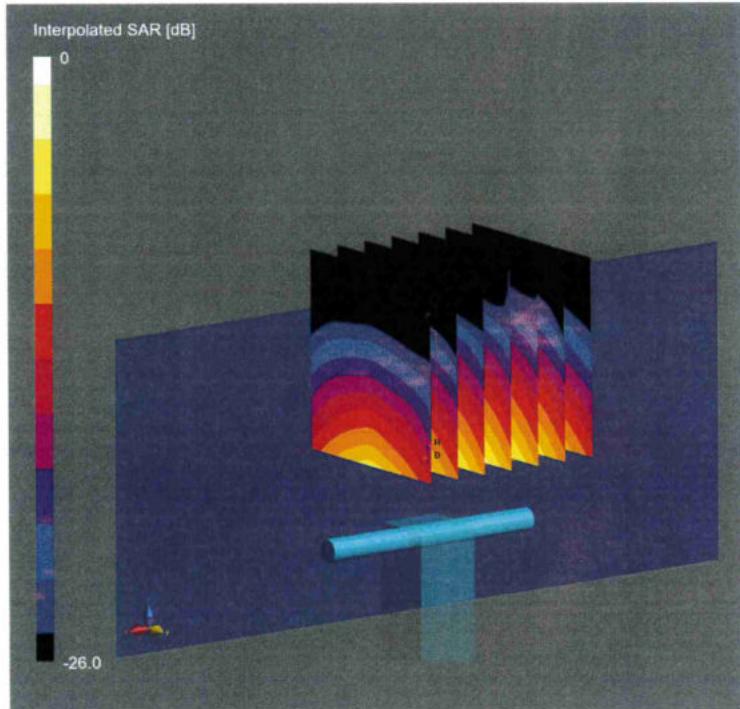
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3500V2 - SN1013	3500	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3500, 0	6.61	2.92	38.3

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-21	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup

Zoom Scan	
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-21
psSAR1g [W/Kg]	6.61
psSAR10g [W/Kg]	2.50
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

System Performance Check Report

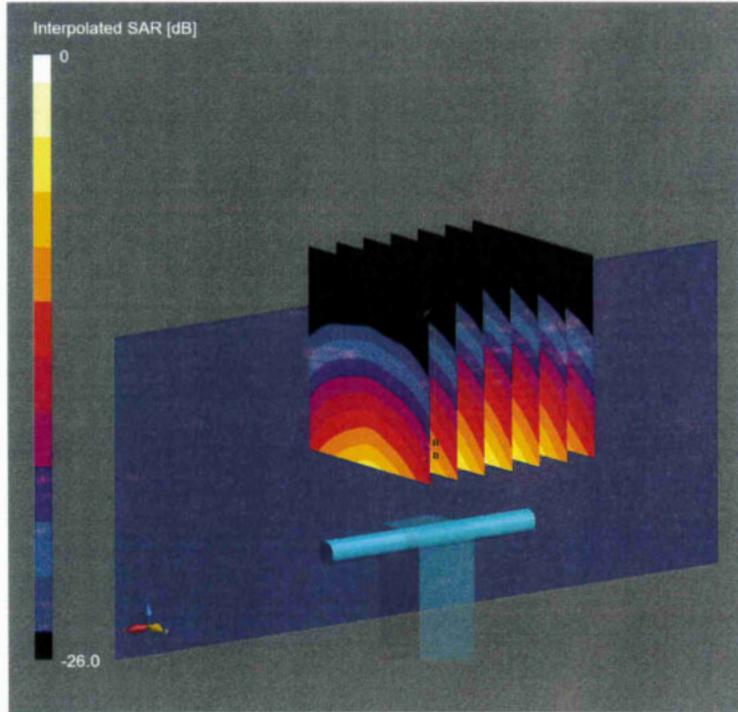
Summary

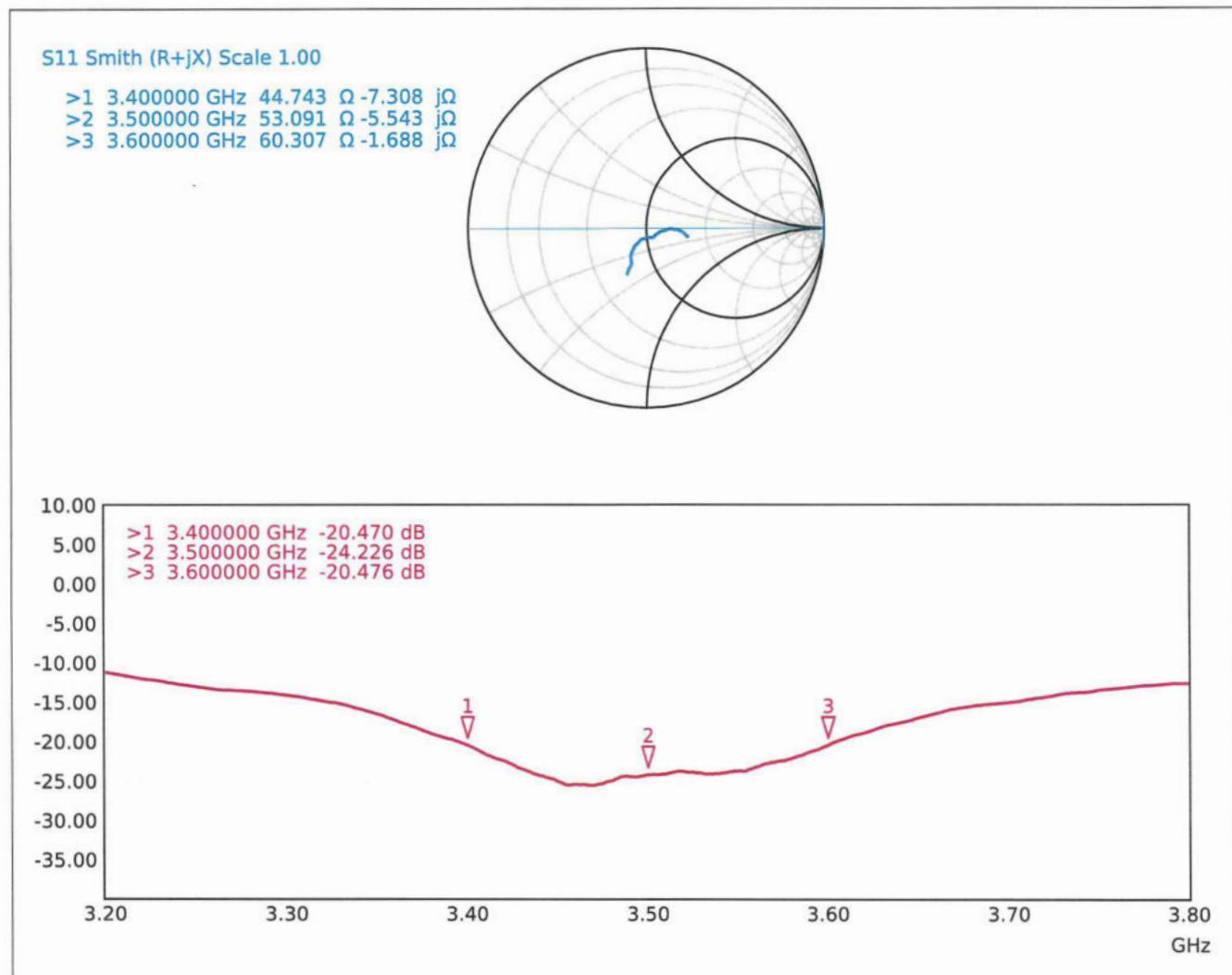
Dipole	Frequency [MHz]	TSL	Power [dBm]
D3500V2 - SN1013	3600	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3600, 0	6.61	3.00	38.2

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-21	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10


Scans Setup

Zoom Scan	
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-21
psSAR1g [W/Kg]	6.55
psSAR10g [W/Kg]	2.47
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificatesAccreditation No.: **SCS 0108**

Client

Eurofins E&E Wireless
New Taipei City

Certificate No.

D3700V2-1034_Aug24**CALIBRATION CERTIFICATE**Object **D3700V2 - SN: 1034**Calibration procedure(s) **QA CAL-22.v7**
Calibration Procedure for SAR Validation Sources between 3 - 10 GHzCalibration date **August 19, 2024**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Leif Klynsner	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: August 20, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

- DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR		16.4.0
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm		with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.4mm		Graded Ratio = 1.5 mm (Z direction)
Frequency	3700MHz \pm 1MHz 3800MHz \pm 1MHz		

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2)°C	38.1 \pm 6%	3.08 mho/m \pm 6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.0 W/kg \pm 19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg \pm 19.5% (k = 2)

Head TSL parameters at 3800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.6	3.22 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2)°C	38.0 \pm 6%	3.16 mho/m \pm 6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.4 W/kg \pm 19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg \pm 19.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL at 3700 MHz**

Impedance	44.7 Ω – 0.1 $j\Omega$
Return Loss	-25.0 dB

Antenna Parameters with Head TSL at 3800 MHz

Impedance	49.9 Ω + 1.3 $j\Omega$
Return Loss	-37.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.132 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

System Performance Check Report

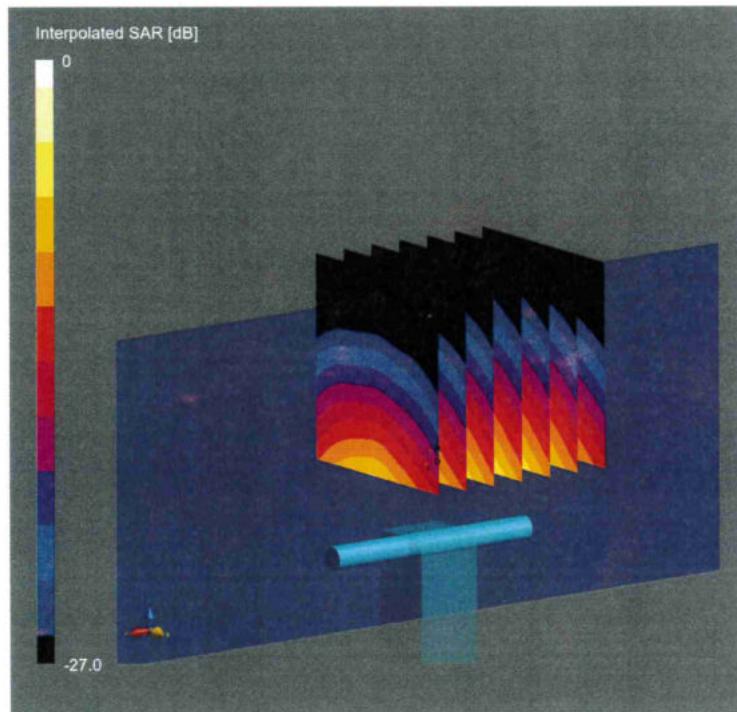
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3700V2 - SN1034	3700	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3700, 0	6.34	3.08	38.1

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-19	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup

	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2024-08-19
psSAR1g [W/Kg]	6.80
psSAR10g [W/Kg]	2.49
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 18.5 W/Kg

System Performance Check Report

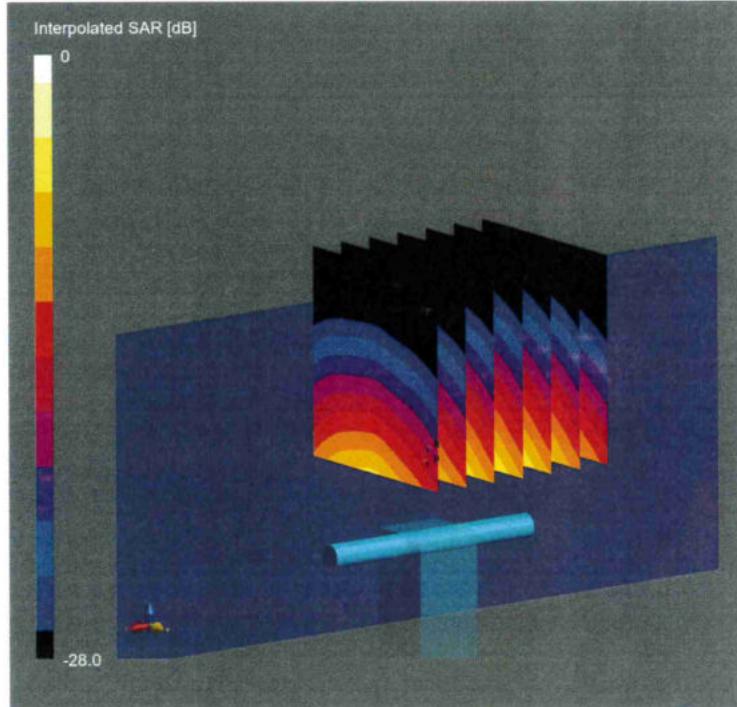
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3700V2 - SN1034	3800	HSL	20

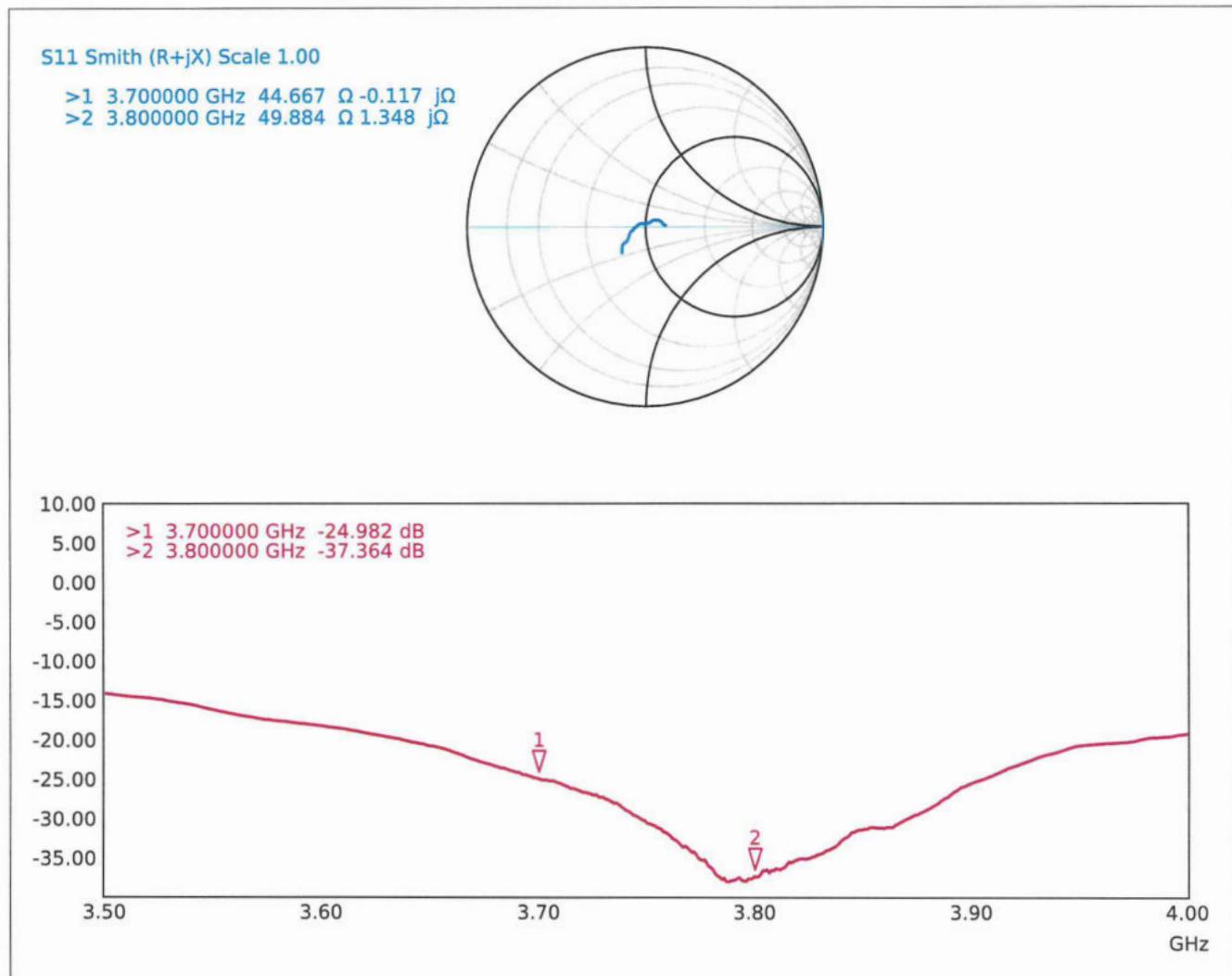
Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3800, 0	6.34	3.16	38.0

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-19	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup


Zoom Scan	
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-19
psSAR1g [W/Kg]	6.54
psSAR10g [W/Kg]	2.40
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 18.0 W/Kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificatesAccreditation No.: **SCS 0108**

Client

Eurofins E&E Wireless
New Taipei City

Certificate No.

D3900V2-1014_Aug24**CALIBRATION CERTIFICATE**Object **D3900V2 - SN: 1014**Calibration procedure(s) **QA CAL-22.v7**
Calibration Procedure for SAR Validation Sources between 3 - 10 GHzCalibration date **August 20, 2024**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Krešimir Franjić	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: August 21, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

- DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	$dx, dy = 5\text{mm}, dz = 1.4\text{mm}$	Graded Ratio = 1.5 mm (Z direction)
Frequency	3900MHz $\pm 1\text{MHz}$ 4000MHz $\pm 1\text{MHz}$ 4100MHz $\pm 1\text{MHz}$	

Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2)°C	37.9 $\pm 6\%$	3.25 mho/m $\pm 6\%$
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.2 W/kg $\pm 19.9\%$ (k = 2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg $\pm 19.5\%$ (k = 2)

Head TSL parameters at 4000 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.4	3.43 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.8 ±6%	3.34 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4000 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.8 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ±19.5% (k = 2)

Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.6 ±6%	3.43 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ±19.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL at 3900 MHz**

Impedance	48.0 Ω – 7.3 $j\Omega$
Return Loss	-22.3 dB

Antenna Parameters with Head TSL at 4000 MHz

Impedance	56.5 Ω – 4.6 $j\Omega$
Return Loss	-22.5 dB

Antenna Parameters with Head TSL at 4100 MHz

Impedance	61.8 Ω – 1.1 $j\Omega$
Return Loss	-19.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.1 ns
----------------------------------	--------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

System Performance Check Report

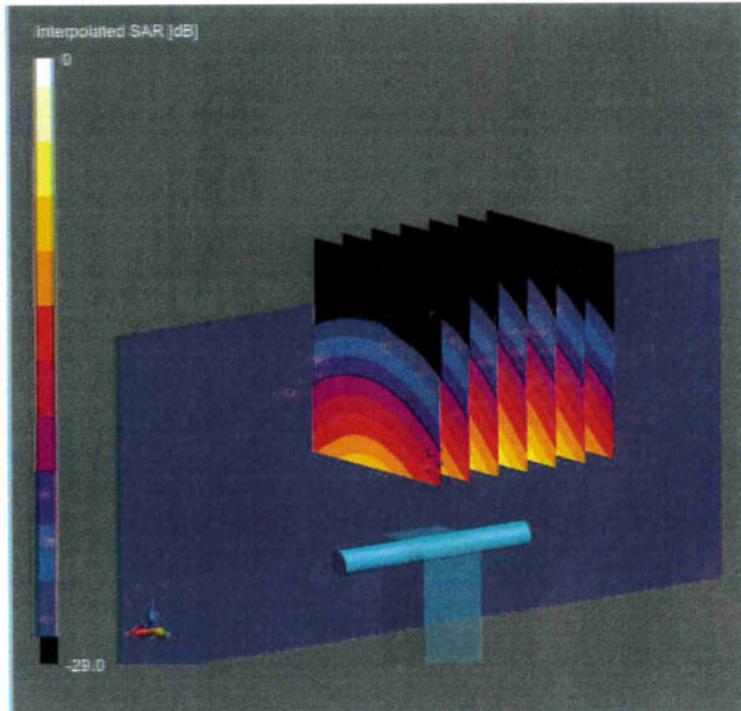
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3900V2 - SN1014	3900	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		3900, 0	6.39	3.25	37.9

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup

Zoom Scan	
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-20
psSAR1g [W/Kg]	6.82
psSAR10g [W/Kg]	2.39
Power Drift [dB]	-0.02
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 19.1 W/Kg

System Performance Check Report

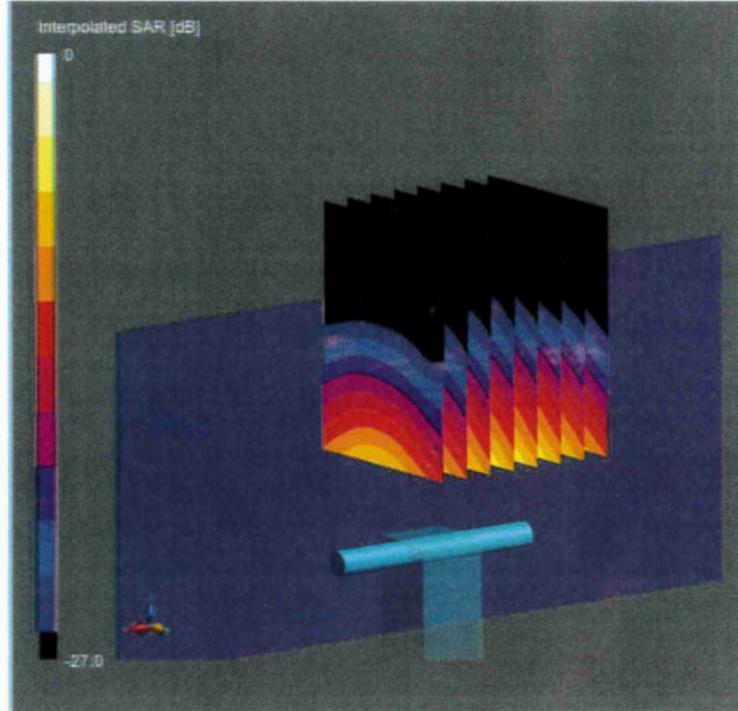
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3900V2 - SN1014	4000	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		4000, 0	6.39	3.34	37.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup

Zoom Scan	
Grid Extents [mm]	25 x 25 x 25
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-20
psSAR1g [W/Kg]	6.78
psSAR10g [W/Kg]	2.39
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

System Performance Check Report

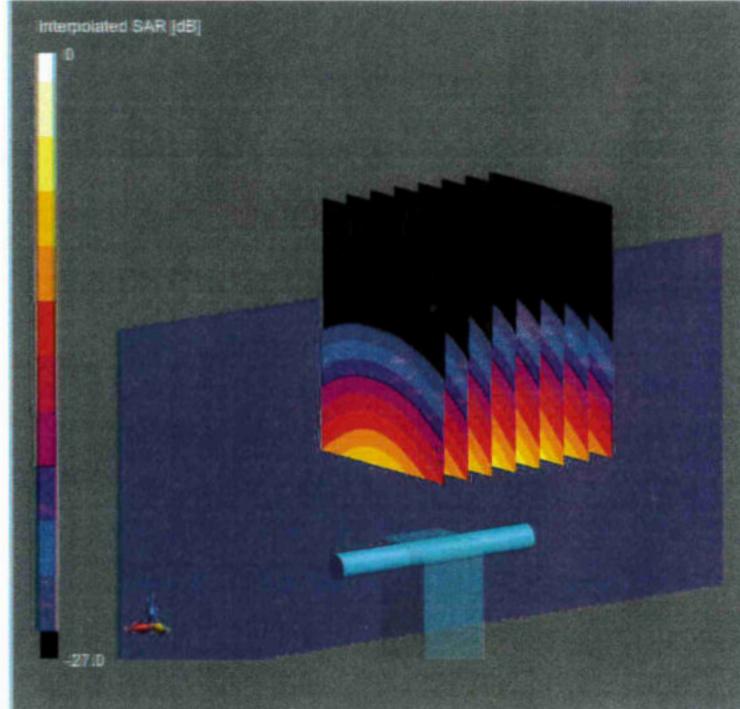
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D3900V2 - SN1014	4100	HSL	20

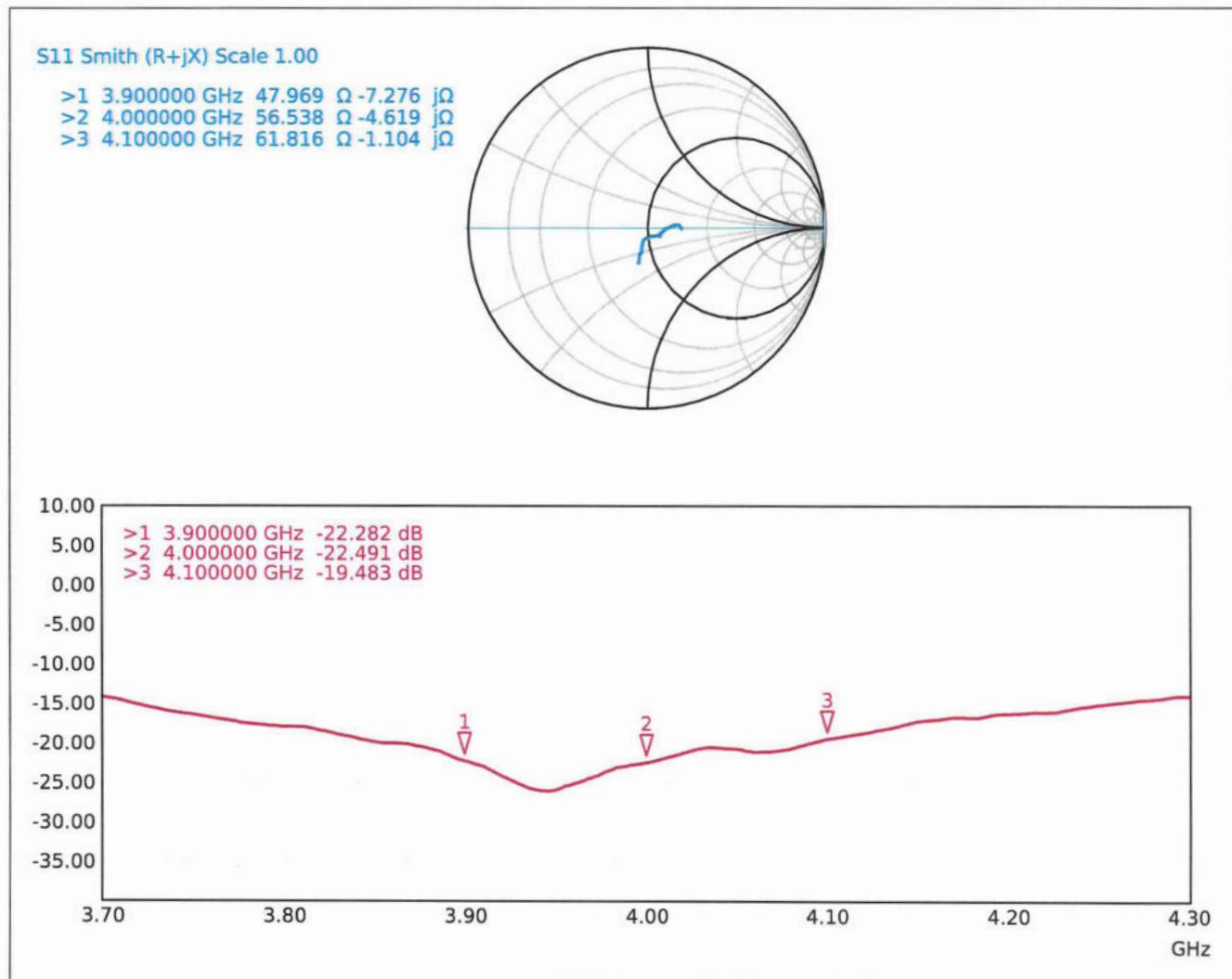
Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		4100, 0	6.31	3.43	37.6

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10

Scans Setup


Zoom Scan	
Grid Extents [mm]	25 x 25 x 25
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2024-08-20
psSAR1g [W/Kg]	6.81
psSAR10g [W/Kg]	2.38
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 20.0 W/Kg

Impedance Measurement Plot for Head TSL

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client

Eurofins E&E Wireless
 New Taipei City

Certificate No.

D5GHzV2-1358_Jun25

CALIBRATION CERTIFICATE

Object **D5GHzV2 - SN: 1358**

Calibration procedure(s) **QA CAL-22.v7**
 Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date **June 2, 2025**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	27-May-25 (No. 675-ACAD_Source_Box-250527)	May-26
Signal Generator R&S SMB100A	SN: 182081	27-May-25 (No. 675-CAL16-S4588-250527)	May-26
Mismatch; SMA	SN: 1102	24-Apr-25 (No. 675-Mismatch_SMA-250424)	Apr-26

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: June 5, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

- DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	5250MHz \pm 1MHz 5600MHz \pm 1MHz 5800MHz \pm 1MHz	

HSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.9	4.71 mho/m
Measured HSL parameters	(22.0 \pm 0.2)°C	36.7 \pm 6%	4.64 mho/m \pm 6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	8.02 W/kg
SAR for nominal HSL parameters	normalized to 1W	80.2 W/kg \pm 19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.30 W/kg
SAR for nominal HSL parameters	normalized to 1W	23.0 W/kg \pm 19.5% (k = 2)

HSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.5	5.07 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	36.0 ±6%	5.02 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5600 MHz

SAR averaged over 1 cm³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	8.26 W/kg
SAR for nominal HSL parameters	normalized to 1W	82.6 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.38 W/kg
SAR for nominal HSL parameters	normalized to 1W	23.8 W/kg ±19.5% (k = 2)

HSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.3	5.27 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	35.8 ±6%	5.24 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	8.16 W/kg
SAR for nominal HSL parameters	normalized to 1W	81.6 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.33 W/kg
SAR for nominal HSL parameters	normalized to 1W	23.3 W/kg ±19.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with HSL at 5250 MHz**

Impedance	48.3 Ω – 0.6 $j\Omega$
Return Loss	-34.9 dB

Antenna Parameters with HSL at 5600 MHz

Impedance	53.1 Ω + 2.8 $j\Omega$
Return Loss	-27.8 dB

Antenna Parameters with HSL at 5800 MHz

Impedance	54.7 Ω + 4.2 $j\Omega$
Return Loss	-24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

System Performance Check Report

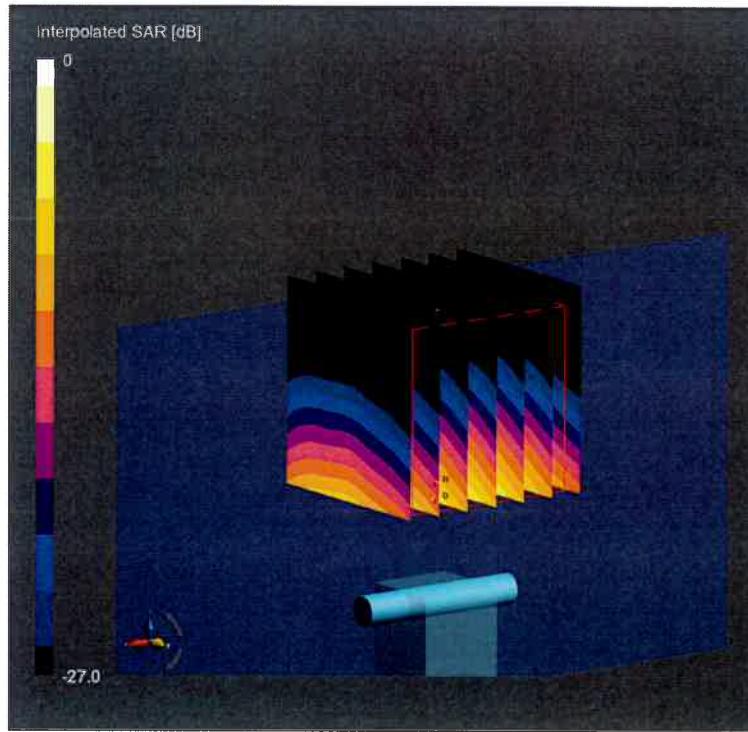
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D5GHzV2 - SN1358	5250	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		5250, 0	5.68	4.64	36.7

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-06-02	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17

Scans Setup

Zoom Scan	
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

Zoom Scan	
Date	2025-06-02
psSAR1g [W/Kg]	8.02
psSAR10g [W/Kg]	2.30
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 32.6 W/Kg

System Performance Check Report

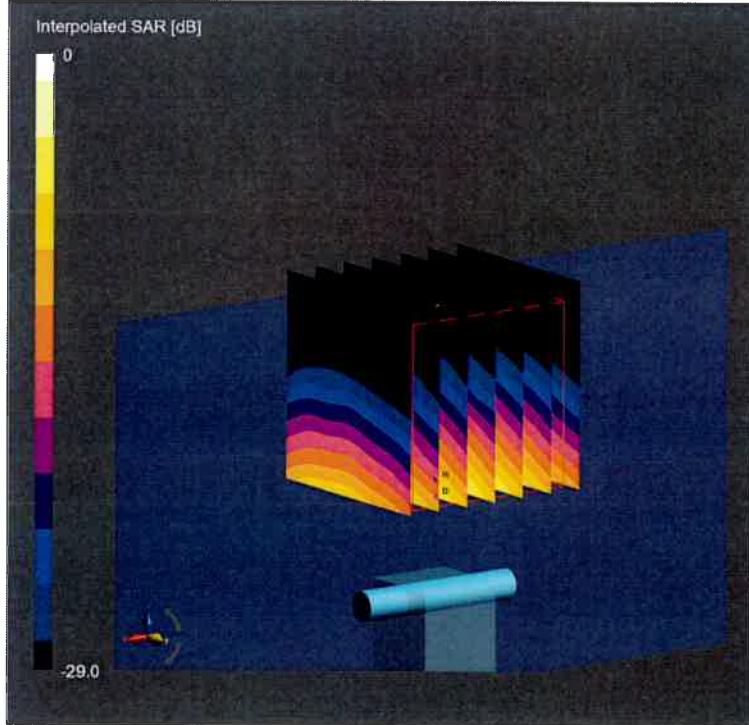
Summary

Dipole	Frequency [MHz]	TSL	Power [dBm]
D5GHzV2 - SN1358	5600	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		5600, 0	5.21	5.02	36.0

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-06-02	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2025-06-02
psSARTg [W/Kg]	8.26
psSART0g [W/Kg]	2.38
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 36.2 W/Kg

System Performance Check Report**Summary**

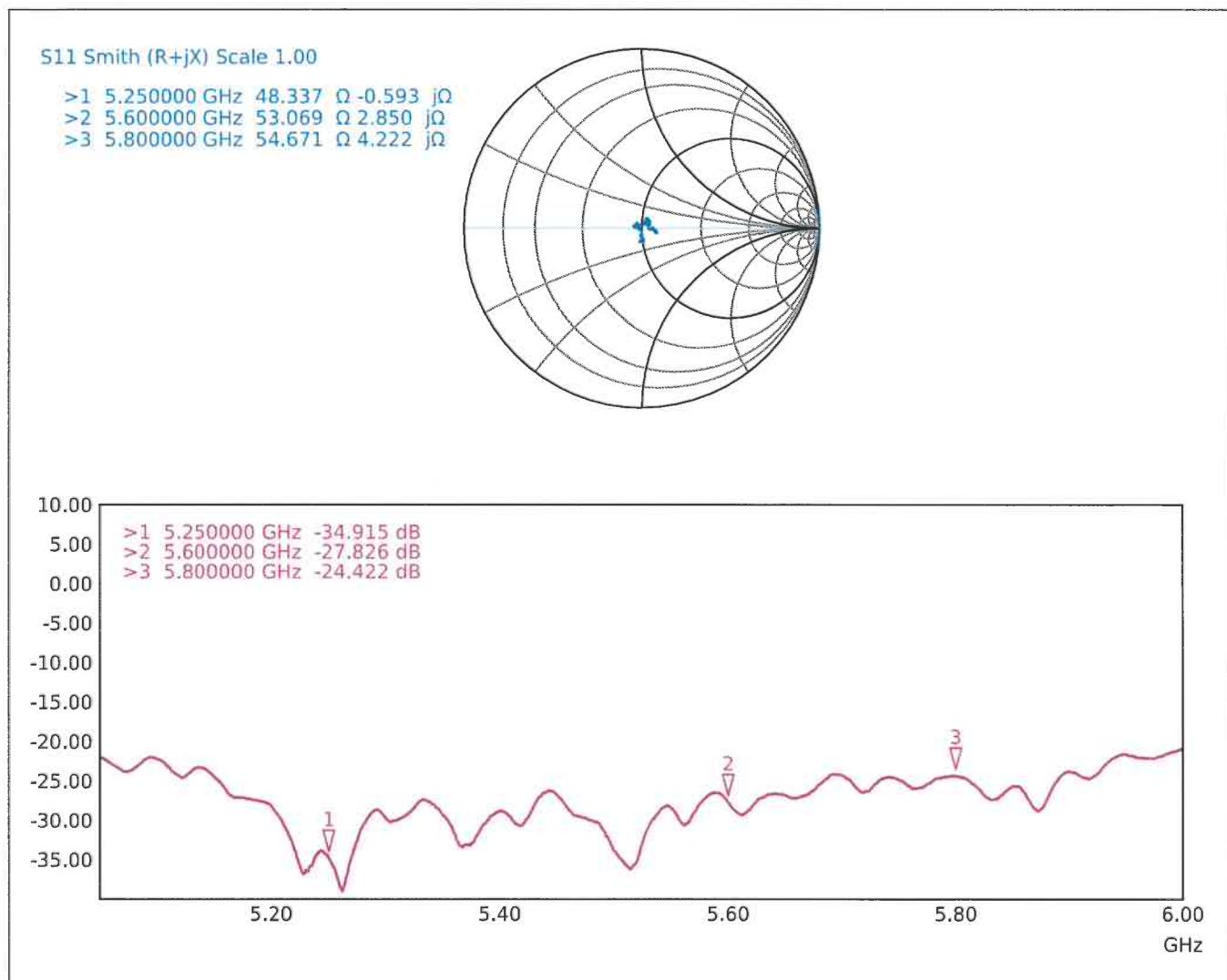
Dipole	Frequency [MHz]	TSL	Power [dBm]
D5GHzV2 - SN1358	5800	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0--		5800, 0	5.17	5.24	35.8

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-06-02	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17


Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2025-06-02
psSAR1g [W/Kg]	8.16
psSAR10g [W/Kg]	2.33
Power Drift [dB]	-0.02
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

Impedance Measurement Plot for HSL

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Eurofins E&E Wireless**
 New Taipei City

Certificate No.

D6.5GHzV2-1081_Jun25

CALIBRATION CERTIFICATE

Object **D6.5GHzV2 - SN: 1081**

Calibration procedure(s) **QA CAL-22.v7**
 Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date **June 4, 2025**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	27-May-25 (No. 675-ACAD_Source_Box-250527)	May-26
Signal Generator R&S SMB100A	SN: 182081	27-May-25 (No. 675-CAL16-S4588-250527)	May-26
Mismatch; SMA	SN: 1102	24-Apr-25 (No. 675-Mismatch_SMA-250424)	Apr-26

	Name	Function	Signature
Calibrated by	Leif Klysner	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: June 4, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

- DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with spacer
Zoom Scan Resolution	$dx, dy = 3.4\text{mm}, dz = 1.4\text{mm}$	Graded Ratio = 1.4 mm (Z direction)
Frequency	6500MHz $\pm 1\text{MHz}$	

HSL parameters at 6500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	34.5	6.07 mho/m
Measured HSL parameters	(22.0 ± 0.2)°C	34.8 $\pm 6\%$	6.15 mho/m $\pm 6\%$
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 6500 MHz

SAR averaged over 1 cm³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	29.9 W/kg
SAR for nominal HSL parameters	normalized to 1W	299 W/kg $\pm 24.7\%$ (k = 2)

SAR averaged over 8 cm³ (8 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	6.72 W/kg
SAR for nominal HSL parameters	normalized to 1W	67.2 W/kg $\pm 24.4\%$ (k = 2)

SAR averaged over 10 cm³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	5.54 W/kg
SAR for nominal HSL parameters	normalized to 1W	55.4 W/kg $\pm 24.4\%$ (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with HSL at 6500 MHz**

Impedance	46.6 Ω – 1.7 $j\Omega$
Return Loss	-28.0 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ³	Condition	
APD measured	20 dBm input power	298 W/kg
APD measured	normalized to 1W	2980 W/kg \pm 29.2% (k = 2)

APD averaged over 4 cm ³	Condition	
APD measured	20 dBm input power	134 W/kg
APD measured	normalized to 1W	1340 W/kg \pm 28.9% (k = 2)

*The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

System Performance Check Report

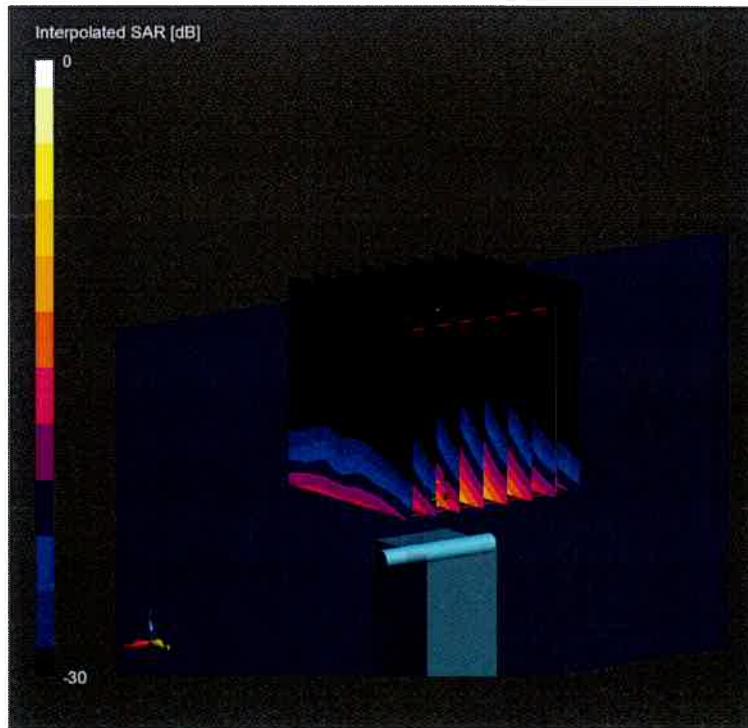
Summary

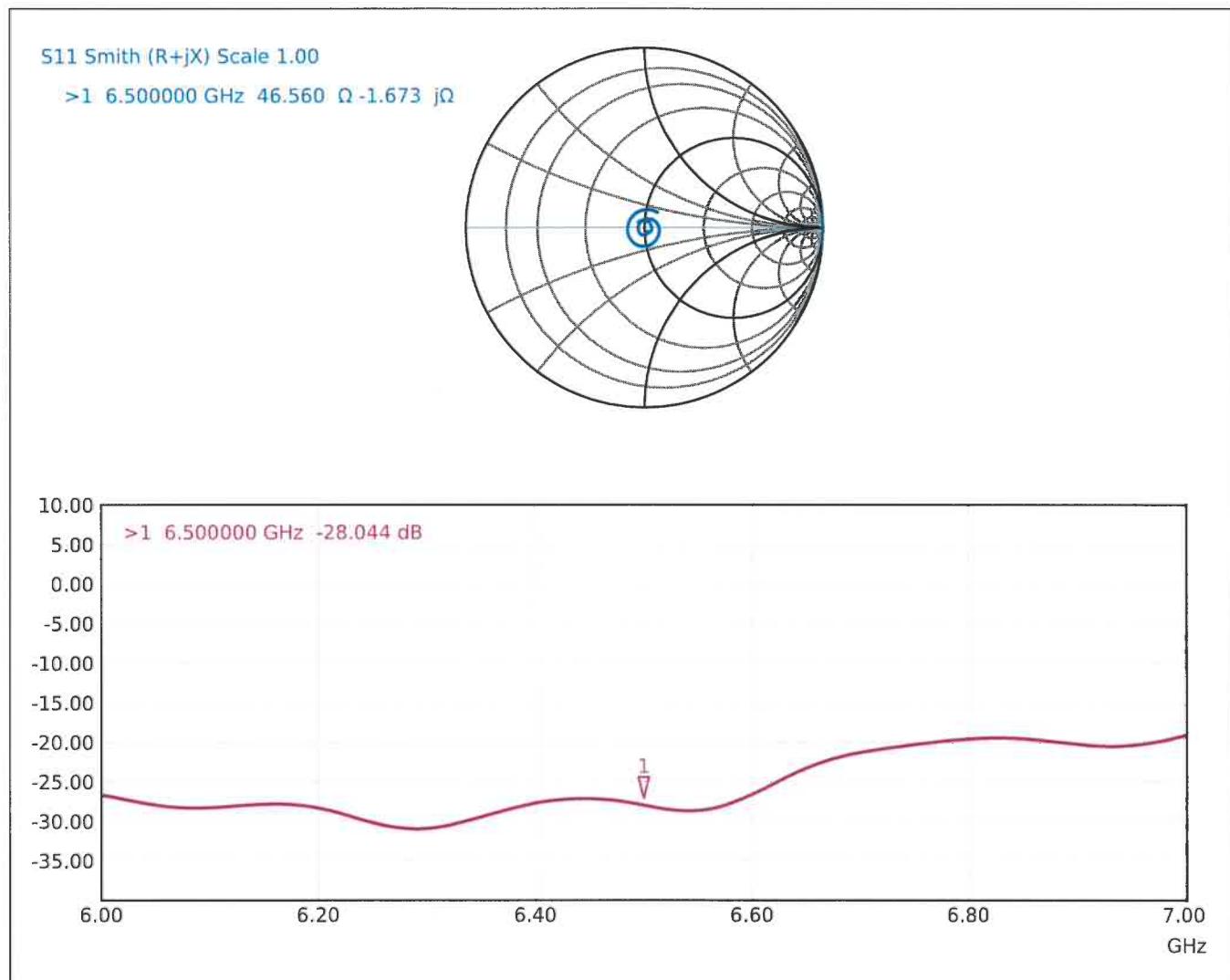
Dipole	Frequency [MHz]	TSL	Power [dBm]
D6.5GHzV2 - SN1081	6500	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	5	CW, 0--		6500, 0	5.49	6.15	34.8

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center	HSL, 2025-06-04	EX3DV4 - 5N7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17


Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	3.4 x 3.4 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results

	Zoom Scan
Date	2025-06-04
psSAR1g [W/Kg]	29.9
psSAR10g [W/Kg]	5.54
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

Impedance Measurement Plot for HSL

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **Eurofins E&E Wireless**
 New Taipei City

Accreditation No.: **SCS 0108**

Certificate No. **5G-Veri10-1060_Sep24**

CALIBRATION CERTIFICATE

Object **5G Verification Source 10 GHz - SN: 1060**

Calibration procedure(s) **QA CAL-45.v5**
 Calibration procedure for sources in air above 6 GHz

Calibration date: **September 17, 2024**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3	SN: 9374	28-Aug-24 (No. EUmm-9374_Aug24)	Aug-25
DAE4ip	SN: 1602	08-Nov-23 (No. DAE4ip-1602_Nov23)	Nov-24
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A	SN: 100184	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Power sensor R&S NRP18S-10	SN: 101258	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Network Analyzer Keysight E5063A	SN: MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Calibrated by: Name **Joanna Lleshaj** Function **Laboratory Technician**

Signature

Approved by: Name **Sven Kühn** Function **Technical Manager**

Issued: September 18, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

CW Continuous wave

Accreditation No.: **SCS 0108**

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System:* z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions:* (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning:* The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution:* E field is measured in two x-y-plane (10mm, 10mm + $\lambda/4$) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm^2 and 4cm^2) power density values at 10mm in front of the horn.
- Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

- Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m^2) averaged over the surface area of 1cm^2 and 4cm^2 at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASYB Module mmWave		V3.2
Phantom	5G Phantom		
Distance Horn Aperture - plane	10 mm		
Number of measured planes	2 (10mm, 10mm + $\lambda/4$)		
Frequency	10 GHz \pm 10 MHz		

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measured Plane	P_{rad}^1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m ²)	Uncertainty (k = 2)
				1 cm ² 4 cm ²	
10 mm	93.3	153	1.27 dB	60.6 56.5	1.28 dB

Distance Horn Aperture to Measured Plane	P_{rad}^1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m ²)	Uncertainty (k = 2)
				1 cm ² 4 cm ²	
10 mm	93.3	153	1.27 dB	60.4, 60.6, 60.8 56.2, 56.5, 56.7	1.28 dB

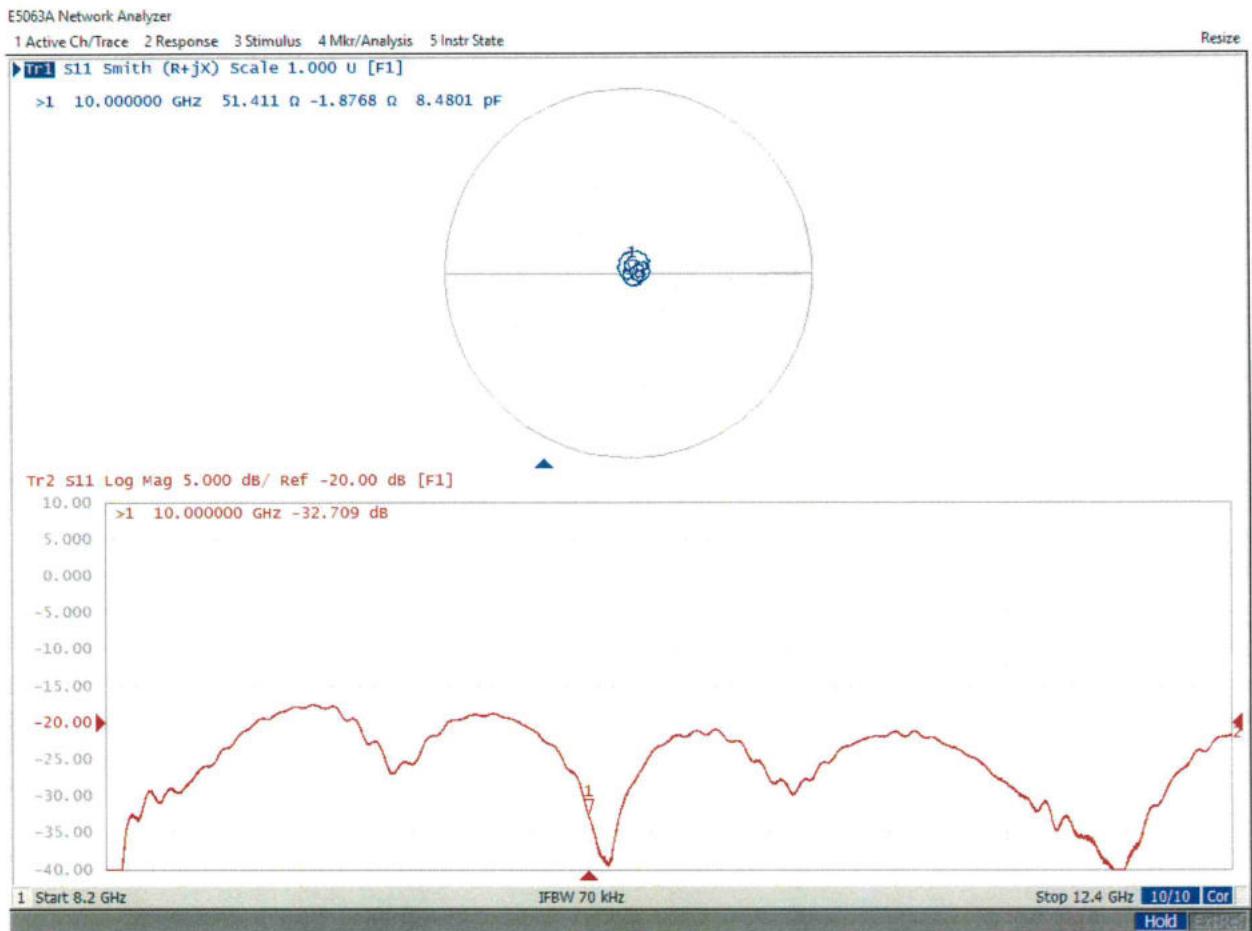
Square Averaging

Distance Horn Aperture to Measured Plane	P_{rad}^1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m ²)	Uncertainty (k = 2)
				1 cm ² 4 cm ²	
10 mm	93.3	153	1.27 dB	60.5 56.4	1.28 dB

Distance Horn Aperture to Measured Plane	P_{rad}^1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m ²)	Uncertainty (k = 2)
				1 cm ² 4 cm ²	
10 mm	93.3	153	1.27 dB	60.3, 60.5, 60.7 56.1, 56.4, 56.6	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	P_{rad}^1 (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m ²)	Uncertainty (k = 2)
10 mm	93.3	153	1.27 dB	61.9, 62.0, 62.2	1.28 dB


¹ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	51.4 Ω - 1.9 $j\Omega$
Return Loss	- 32.7 dB

Impedance Measurement Plot

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1060	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]	5G Scan	5G Scan
MAIA	10.0	2024-09-17, 16:32
	MAIA not used	1.00
		Circular Averaging
		60.4
		60.6
		60.8
		61.9
		62.0
		62.2
		153
		-0.04

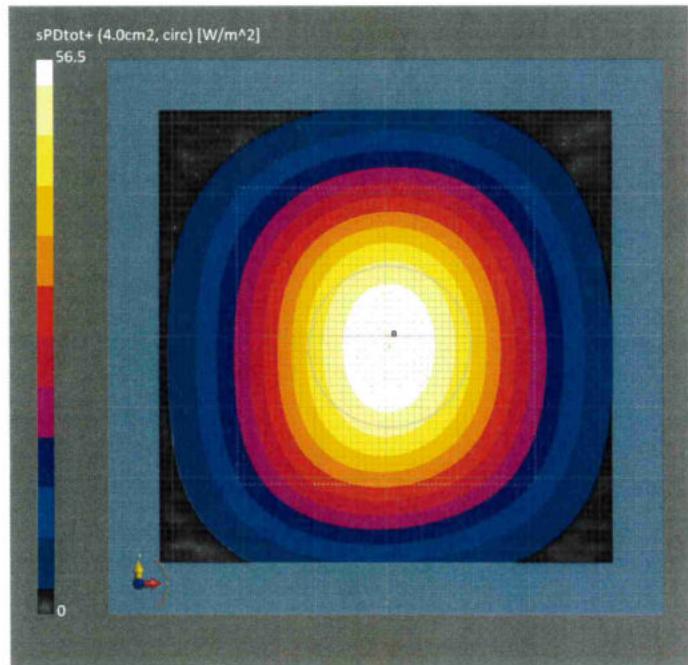
DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1060	-

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]	5G Scan	5G Scan
MAIA	10.0	2024-09-17, 16:32
	MAIA not used	4.00
		Circular Averaging
		56.2
		56.5
		56.7
		61.9
		62.0
		62.2
		153
		-0.04

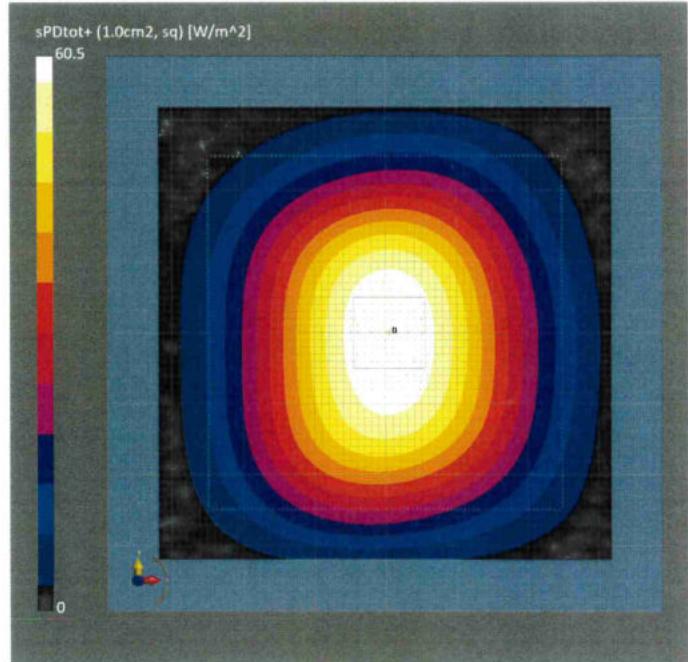
DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1060	-

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]	5G Scan	Measurement Results	5G Scan
MAIA	10.0 MAIA not used	Date Avg. Area [cm ²] Avg. Type psPDn+ [W/m ²] psPDtot+ [W/m ²] psPDmod+ [W/m ²] Max(Sn) [W/m ²] Max(Stot) [W/m ²] Max(Stot) [W/m ²] E _{max} [V/m] Power Drift [dB]	2024-09-17, 16:32 1.00 Square Averaging 60.3 60.5 60.7 61.9 62.0 62.2 153 -0.04

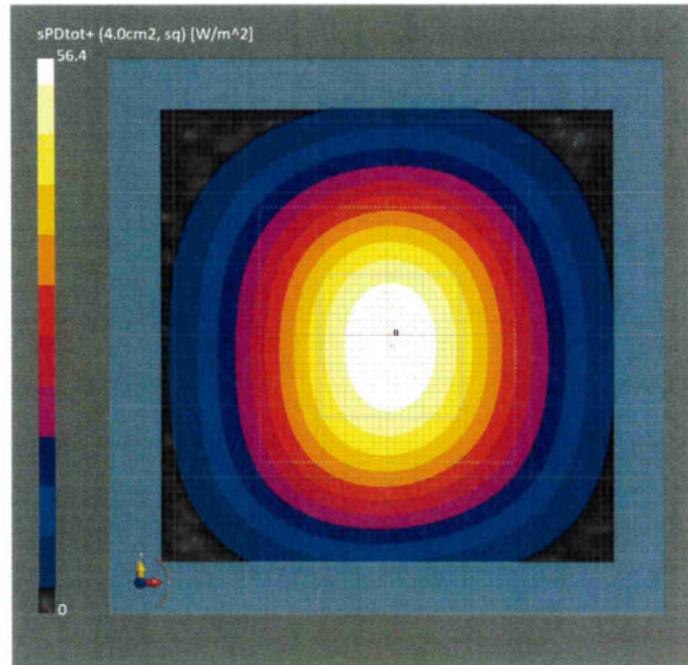
DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1060	-

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm]	5G Scan	5G Scan
MAIA	10.0	2024-09-17, 16:32
	MAIA not used	4.00
		Square Averaging
		56.1
		56.4
		56.6
		61.9
		62.0
		62.2
		153
		-0.04

