

FCC RADIO TEST REPORT

FCC ID : QYLAX211NG
Equipment : Wireless Module
Brand Name : Getac
Model Name : AX211NGW
Applicant : Getac Technology Corporation.
5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang
Dist., Taipei City 115018, Taiwan, R.O.C.
Standard : FCC Part 15 Subpart C §15.247

The product was received on Aug. 10, 2023 and testing was performed from Aug. 29, 2023 to Sep. 16, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu**Sportun International Inc. Wensan Laboratory**

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description.....	5
1.1 Product Feature of Equipment Under Test.....	5
1.2 Modification of EUT	7
1.3 Testing Location	7
1.4 Applicable Standards.....	7
2 Test Configuration of Equipment Under Test.....	8
2.1 Carrier Frequency Channel	8
2.2 Test Mode.....	9
2.3 Connection Diagram of Test System.....	10
2.4 Support Unit used in test configuration and system	10
2.5 EUT Operation Test Setup	10
3 Test Result.....	11
3.1 Output Power Measurement.....	11
3.2 Radiated Band Edges and Spurious Emission Measurement	12
3.3 AC Conducted Emission Measurement.....	16
3.4 Antenna Requirements	18
4 List of Measuring Equipment	19
5 Measurement Uncertainty	21
Appendix A. Conducted Test Results	
Appendix B. AC Conducted Emission Test Result	
Appendix C. Radiated Spurious Emission	
Appendix D. Radiated Spurious Emission Plots	
Appendix E. Duty Cycle Plots	
Appendix F. Setup Photographs	

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	-	See Note
-	15.247(a)(1)	Hopping Channel Separation	-	See Note
-	15.247(a)(1)	Dwell Time of Each Channel	-	See Note
-	15.247(a)(1)	20dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	-	See Note
-	15.247(d)	Conducted Spurious Emission	-	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	-
3.3	15.207	AC Conducted Emission	Pass	-
3.4	15.203	Antenna Requirement	Pass	-

Note:

1. For host device, Radiated Spurious Emission is verified and complies with the limit in this test report.
2. For host device, the Conducted Output Power is no difference after compared to module (Model: AX211NGW)

Conformity Assessment Condition:
1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".
Disclaimer:
The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang**Report Producer: Michelle Chen**

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature	
General Specs	Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax and Wi-Fi 6GHz 802.11ax
Sample 1	EUT with Host 1
Sample 2	EUT with Host 2
Sample 3	EUT with Host 3
Antenna Type	WLAN: <Main>: PIFA Antenna <Aux.>: PIFA Antenna Bluetooth: PIFA Antenna

The product was installed into Tablet PC (Brand Name: Getac, Model Name: F110, F110G7, F110-701, F110-711, F110-721, F110-Exc, F110Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, “-”, “_” or blank for marketing purpose and no impact safety related critical components and constructions.)) during test, and the host information was recorded in the following table.

Host Information	
Host 1	Host with SKU A
Host 2	Host with SKU B
Host 3	Host with SKU C

Antenna Information for Host		
Antenna	Manufacturer	PULSE
	Antenna Type	PIFA Antenna
	Part number	422GA4500009
	Peak gain (dBi)	2.31

Sample Information for Host			
	SKU A	SKU B	SKU C
CPU	i5-1335U	i5-1335U	i7-1365U
DDR	Kingston 8GB	Kingston 16GB	Kingston 32GB
SSD	256GB	512GB	1TB
PANEL	Full FHD AUO	Full FHD AUO	Full FHD AUO
DIGITIZER	Not Support	EMRight Digitizer	EMRight Digitizer
OPTION BAY	MicroSD Card	Barcode Reader	LAN
Expansion Bay	N/A	HID RFID	SMART CARD
Right side option	RFID (SN-NSVG7-C01)	Not Support	Fringer Print
WLAN/BT	Intel AX211	Intel AX211	Intel AX211
WWAN(4G)	NA	LN920A12-WW	LN920A12-WW
GNSS	GPS/GNSS (MC-1010-V2B)	LN920A12-WW	LN920A12-WW
Rear 8M Camera	Support	Support	Support
Webcam FHD	Support	Not Support	Support
IR Webcam	Not Support	Support	Support
USB3.2 Gen2 x 1 Type-A	Support	Support	Support
Type-C (thunder bolt)	Support	Support	Support
Audio/MIC	Support	Support	Support
Fischer	Not Support	Not Support	Not Support

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sportun International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sportun Site No. CO05-HY (TAF Code: 1190)
Remark	The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sportun International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sportun Site No. TH05-HY, 03CH11-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ FCC Part 15 Subpart C §15.247
- ♦ FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- ♦ FCC KDB 414788 D01 Radiated Test Site v01r01
- ♦ ANSI C63.10-2013

Remark:

1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
2. The TAF code is not including all the FCC KDB listed without accreditation.
3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

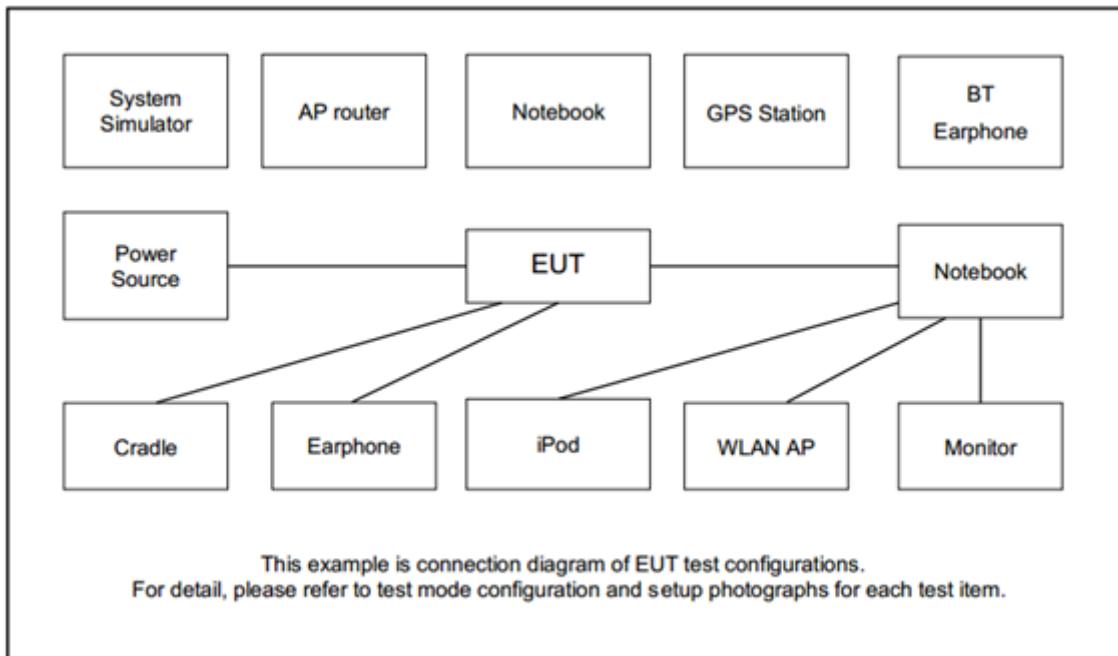
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases	
Test Item	Data Rate / Modulation
Radiated Test Cases	Bluetooth BR 1Mbps GFSK
	Mode 1: CH78_2480 MHz
AC Conducted Emission	Mode 1 : Bluetooth Link + WLAN (2.4GHz) Link + H-Pattern + Earphone + Battery 2 + Adapter 3 for Sample 3

Remark:

1. For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.
2. For Radiated Test Cases, the tests were performed with Adapter 3, Battery 2 and Sample 3.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
4.	Notebook	Dell	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility “DRTU.035544.22.200.0” was installed in Host which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

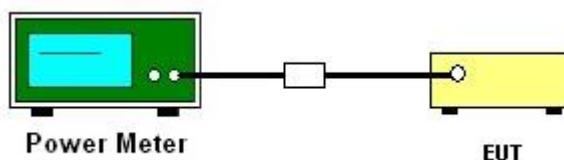
3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band:

1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

1. The testing follows ANSI C63.10-2013 clause 7.8.5.
1. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
2. Set the maximum power setting and enable the EUT to transmit continuously.
3. Measure the conducted output power with cable loss and record the results in the test report.
4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

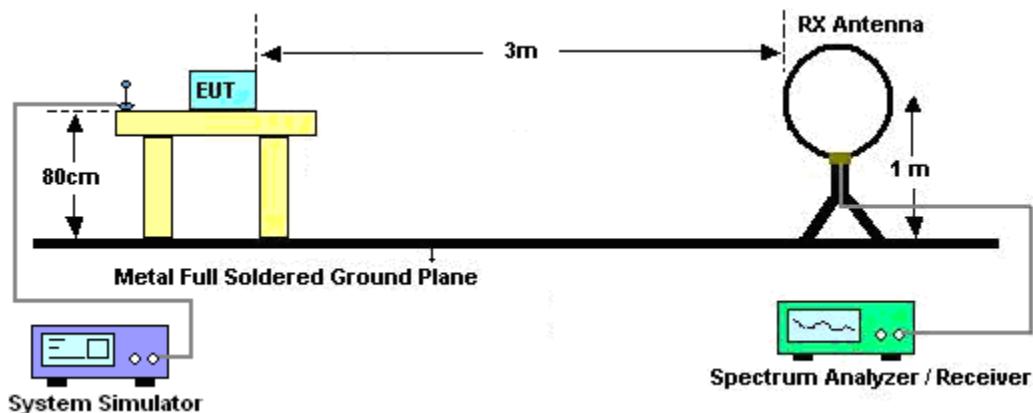
3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

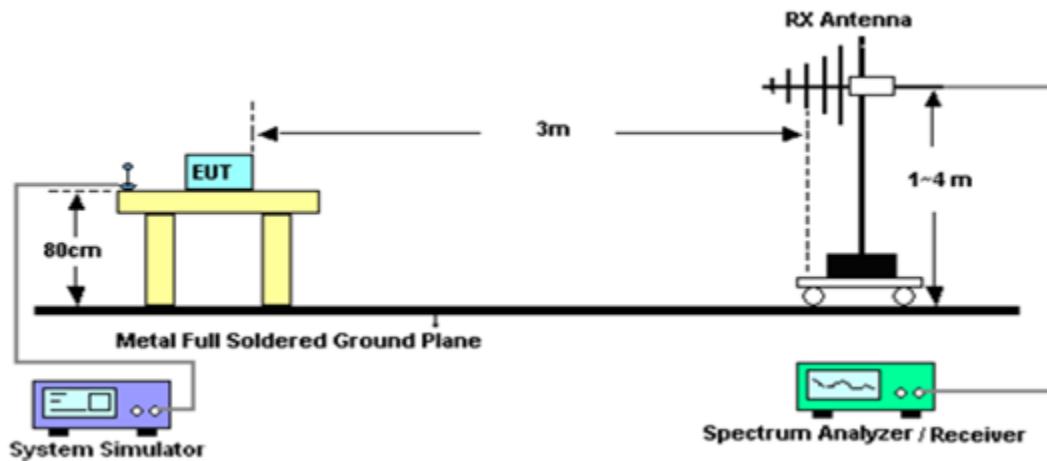
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

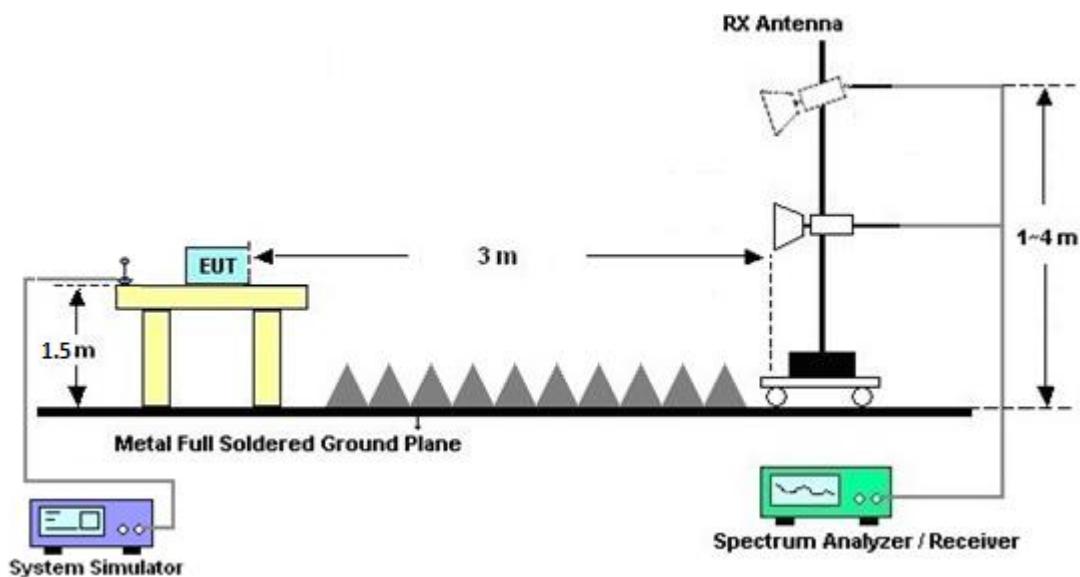
Please refer to the measuring equipment list in this test report.

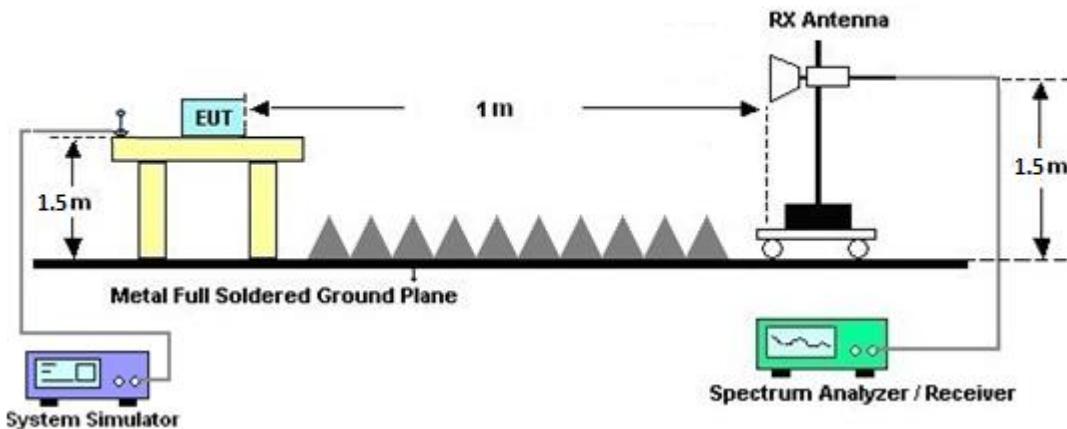

3.2.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
4. Set the maximum power setting and enable the EUT to transmit continuously.
5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for $f < 1$ GHz, RBW = 1 MHz for $f > 1$ GHz ; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).
Duty cycle = On time/100 milliseconds
On time = $N_1 \cdot L_1 + N_2 \cdot L_2 + \dots + N_{n-1} \cdot L_{n-1} + N_n \cdot L_n$
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
Average Emission Level = Peak Emission Level + $20 \cdot \log_{10}$ (Duty cycle)
6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".


Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79 dB) derived from $20 \cdot \log_{10}$ (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.2.4 Test Setup


For radiated test below 30MHz


For radiated test from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

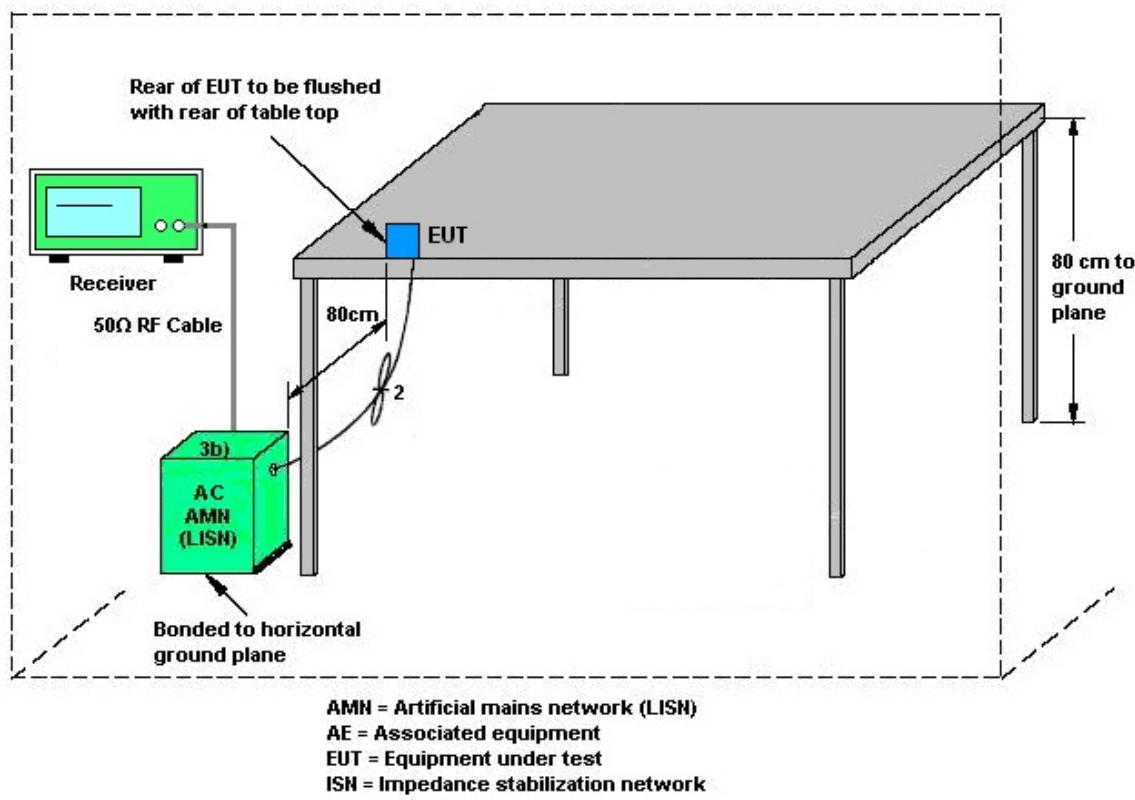
3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
7. The frequency range from 150 kHz to 30 MHz is scanned.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.3.4 Test Setup

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.4 Antenna Requirements

3.4.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Aug. 30, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	0932001	N/A	Sep. 26, 2022	Aug. 30, 2023	Sep. 25, 2023	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 26, 2022	Aug. 30, 2023	Sep. 25, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Aug. 30, 2023	Aug. 22, 2024	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 08, 2022	Sep. 11, 2023~Sep. 16, 2023	Oct. 07, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120 D	01620	1GHz~18GHz	Aug. 17, 2023	Sep. 11, 2023~Sep. 16, 2023	Aug. 16, 2024	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA9170	00994	18GHz~40GHz	Nov. 04, 2022	Sep. 11, 2023~Sep. 16, 2023	Nov. 03, 2023	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 09, 2022	Sep. 11, 2023~Sep. 16, 2023	Dec. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 09, 2022	Sep. 11, 2023~Sep. 16, 2023	Nov. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	1710001800055007	1GHz~18GHz	Jun. 14, 2023	Sep. 11, 2023~Sep. 16, 2023	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Sep. 11, 2023~Sep. 16, 2023	Jun. 26, 2024	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 07, 2022	Sep. 11, 2023~Sep. 16, 2023	Oct. 06, 2023	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY54130085	20MHz~8.4GHz	Oct. 18, 2022	Sep. 11, 2023~Sep. 16, 2023	Oct. 17, 2023	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Sep. 11, 2023~Sep. 16, 2023	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Sep. 11, 2023~Sep. 16, 2023	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Sep. 11, 2023~Sep. 16, 2023	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Sep. 11, 2023~Sep. 16, 2023	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 07, 2023	Sep. 11, 2023~Sep. 16, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz~40GHz	Mar. 07, 2023	Sep. 11, 2023~Sep. 16, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Sep. 11, 2023~Sep. 16, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	Sep. 11, 2023~Sep. 16, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-1530-8000-40SS	SN11	1.53G Low Pass	Sep. 11, 2023	Sep. 11, 2023~Sep. 16, 2023	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700-3000-18000-60SS	SN3	3GHz High Pass Filter	Sep. 11, 2023	Sep. 11, 2023~Sep. 16, 2023	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX8-5872.5-6750-18000-40SS	SN3	6.75GHz High Pass Filter	Sep. 11, 2023	Sep. 11, 2023~Sep. 16, 2023	Sep. 10, 2024	Radiation (03CH11-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Aug. 29, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Aug. 29, 2023	Nov. 30, 2023	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2022	Aug. 29, 2023	Nov. 16, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Aug. 29, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Aug. 29, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBECK	VTSD 9561-FN	00691	9kHz-200MHz	Jul. 28, 2023	Aug. 29, 2023	Jul. 27, 2024	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Aug. 29, 2023	Dec. 28, 2023	Conduction (CO05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U _c (y))	3.5 dB
---	--------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U _c (y))	6.3 dB
---	--------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U _c (y))	4.4 dB
---	--------

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U _c (y))	4.8 dB
---	--------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

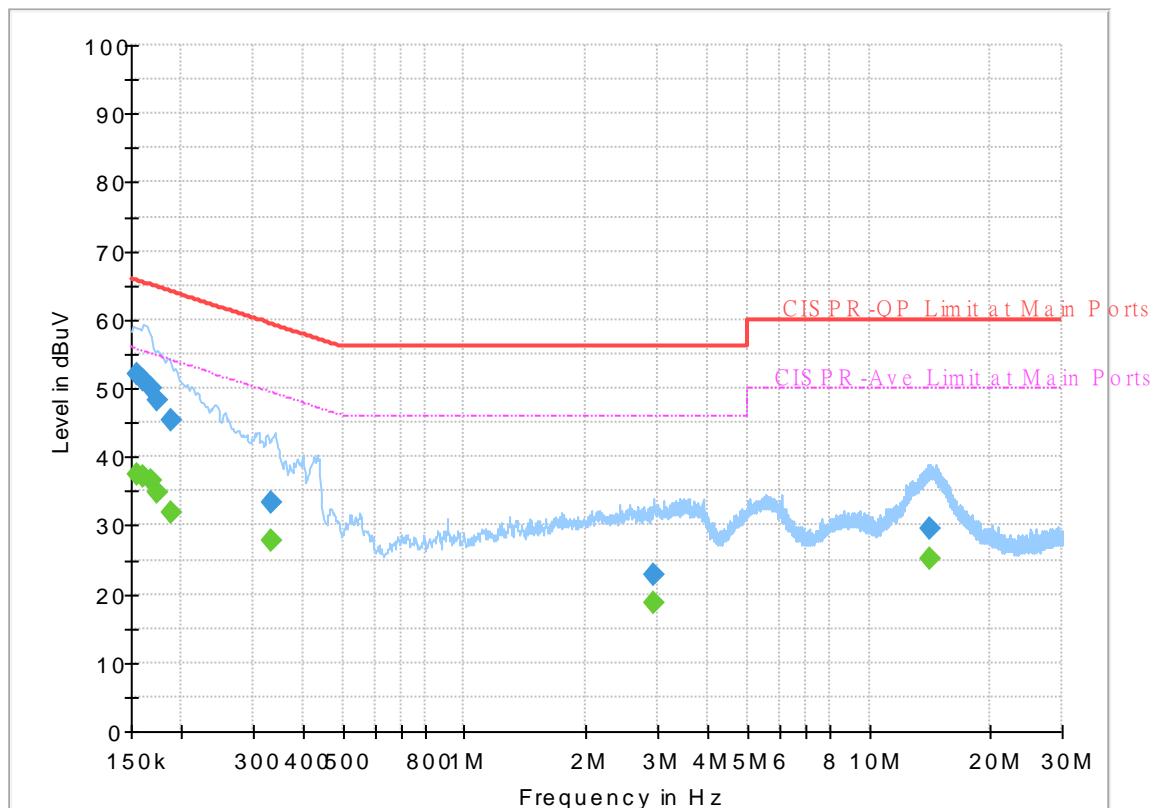
Measuring Uncertainty for a Level of Confidence of 95% (U = 2U _c (y))	5.3 dB
---	--------

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Ching Chen	Temperature:	21~25	°C
Test Date:	2023/8/30	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u>					
<u>Peak Power Table</u>					
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
DH5	0	1	9.40	30.00	Pass
	39	1	9.60	30.00	Pass
	78	1	9.80	30.00	Pass

<u>TEST RESULTS DATA</u>					
<u>Average Power Table</u>					
<i>(Reporting Only)</i>					
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
DH5	0	1	8.97	1.13	
	39	1	9.11	1.13	
	78	1	9.39	1.13	

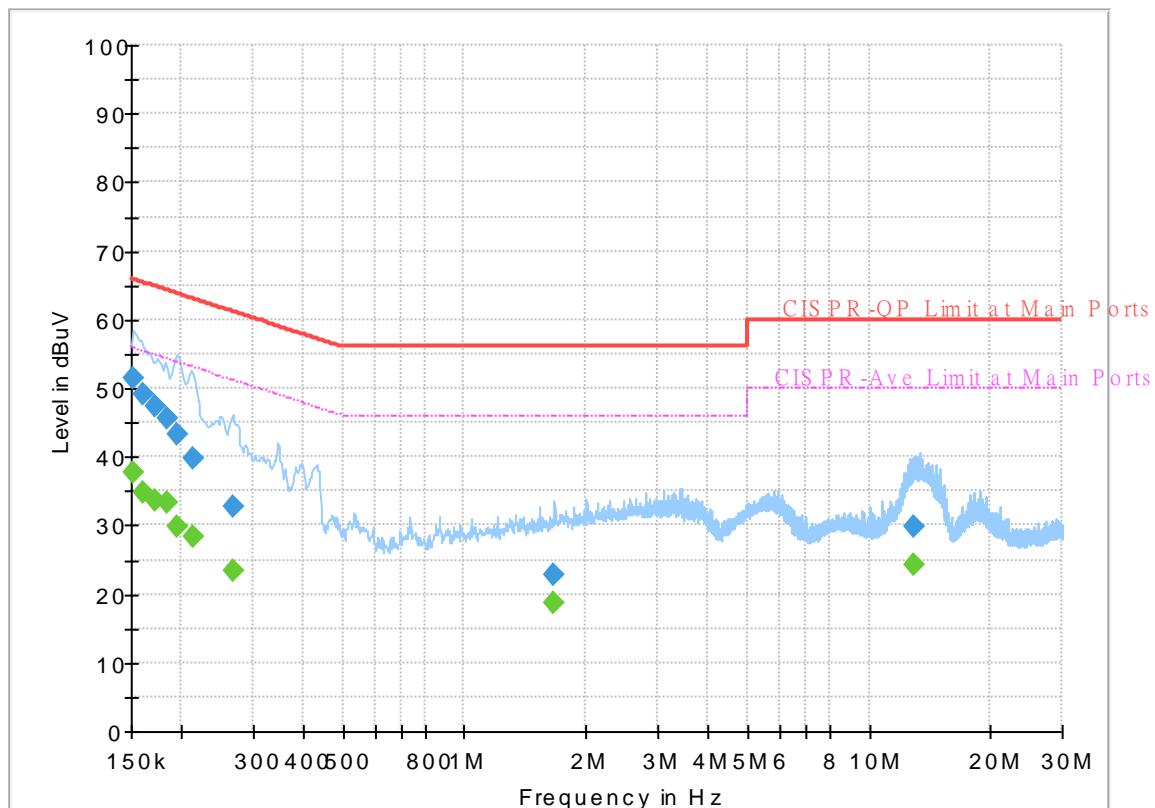

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26°C
		Relative Humidity :	45~55%

EUT Information

Report NO : 381701-02
 Test Mode : Mode 1
 Test Voltage : 120Vac/60Hz
 Phase : Line

Full Spectrum


Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500	---	37.31	55.75	18.44	L1	OFF	19.8
0.154500	52.01	---	65.75	13.74	L1	OFF	19.8
0.161250	---	37.01	55.40	18.39	L1	OFF	19.8
0.161250	51.14	---	65.40	14.26	L1	OFF	19.8
0.168000	---	36.47	55.06	18.59	L1	OFF	19.8
0.168000	50.08	---	65.06	14.98	L1	OFF	19.8
0.174750	---	34.91	54.73	19.82	L1	OFF	19.8
0.174750	48.28	---	64.73	16.45	L1	OFF	19.8
0.188250	---	31.95	54.11	22.16	L1	OFF	19.8
0.188250	45.32	---	64.11	18.79	L1	OFF	19.8
0.334500	---	27.85	49.34	21.49	L1	OFF	19.8
0.334500	33.24	---	59.34	26.10	L1	OFF	19.8
2.924250	---	18.68	46.00	27.32	L1	OFF	19.9
2.924250	22.79	---	56.00	33.21	L1	OFF	19.9
14.106750	---	25.04	50.00	24.96	L1	OFF	19.9
14.106750	29.63	---	60.00	30.37	L1	OFF	19.9

EUT Information

Report NO : 381701-02
 Test Mode : Mode 1
 Test Voltage : 120Vac/60Hz
 Phase : Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250	---	37.66	55.88	18.22	N	OFF	19.8
0.152250	51.56	---	65.88	14.32	N	OFF	19.8
0.161250	---	34.89	55.40	20.51	N	OFF	19.8
0.161250	48.99	---	65.40	16.41	N	OFF	19.8
0.172500	---	33.73	54.84	21.11	N	OFF	19.8
0.172500	47.24	---	64.84	17.60	N	OFF	19.8
0.183750	---	33.19	54.31	21.12	N	OFF	19.8
0.183750	45.62	---	64.31	18.69	N	OFF	19.8
0.195000	---	29.86	53.82	23.96	N	OFF	19.8
0.195000	43.16	---	63.82	20.66	N	OFF	19.8
0.213000	---	28.43	53.09	24.66	N	OFF	19.8
0.213000	39.68	---	63.09	23.41	N	OFF	19.8
0.267000	---	23.36	51.21	27.85	N	OFF	19.8
0.267000	32.88	---	61.21	28.33	N	OFF	19.8
1.668750	---	18.73	46.00	27.27	N	OFF	19.8
1.668750	22.90	---	56.00	33.10	N	OFF	19.8
12.914250	---	24.20	50.00	25.80	N	OFF	20.0
12.914250	29.89	---	60.00	30.11	N	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Sam Chou and Troye Hsieh	Temperature :		19.8~22.1°C	
		Relative Humidity :		55.1~65.6%	

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)	
BT CH 78 2480MHz	*	2480	105.03	-	-	104.2	27.7	7.3	34.17	295	248	P	H	
	*	2480	80.24	-	-	-	-	-	-	-	-	A	H	
		2483.84	53.86	-20.14	74	53.03	27.7	7.3	34.17	295	248	P	H	
		2483.84	29.07	-24.93	54	-	-	-	-	-	-	A	H	
													H	
													H	
	*	2480	103.43	-	-	102.6	27.7	7.3	34.17	100	68	P	V	
	*	2480	78.64	-	-	-	-	-	-	-	-	A	V	
		2483.64	53.4	-20.6	74	52.57	27.7	7.3	34.17	100	68	P	V	
		2483.64	28.61	-25.39	54	-	-	-	-	-	-	A	V	
													V	
													V	
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.													

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BT (SHF)

Emission below 1GHz

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.		
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT CH 00 2402MHz		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	H

$$1. \text{ Path Loss(dB)} = \text{Cable loss(dB)} + \text{Filter loss(dB)} + \text{Attenuator loss(dB)}$$

$$2. \text{ Level(dB μ V/m)} =$$

$$\text{Antenna Factor(dB/m)} + \text{Path Loss(dB)} + \text{Read Level(dB μ V)} - \text{Preamp Factor(dB)}$$

$$3. \text{ Margin (dB)} = \text{Level(dB μ V/m)} - \text{Limit Line(dB μ V/m)}$$

For Peak Limit @ 2390MHz:

$$1. \text{ Level(dB μ V/m)}$$

$$= \text{Antenna Factor(dB/m)} + \text{Path Loss(dB)} + \text{Read Level(dB μ V)} - \text{Preamp Factor(dB)}$$

$$= 32.22(\text{dB/m}) + 4.58(\text{dB}) + 54.51(\text{dB μ V}) - 35.86 (\text{dB})$$

$$= 55.45 (\text{dB μ V/m})$$

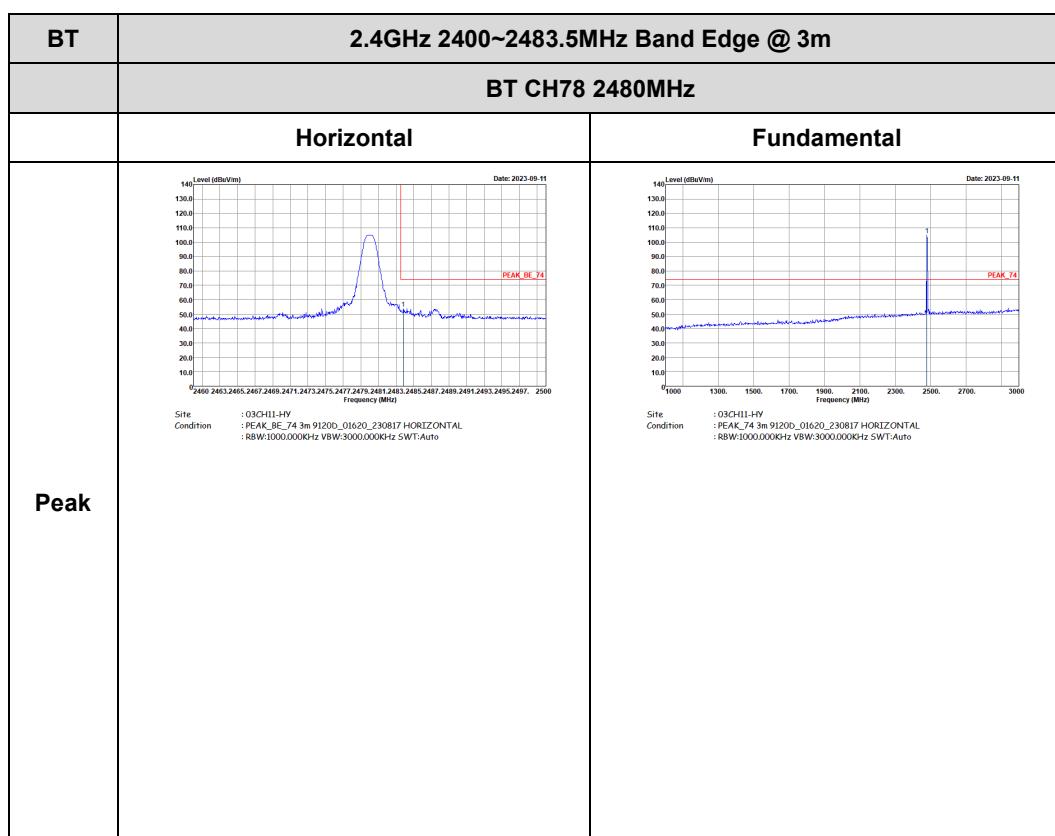
$$2. \text{ Margin (dB)}$$

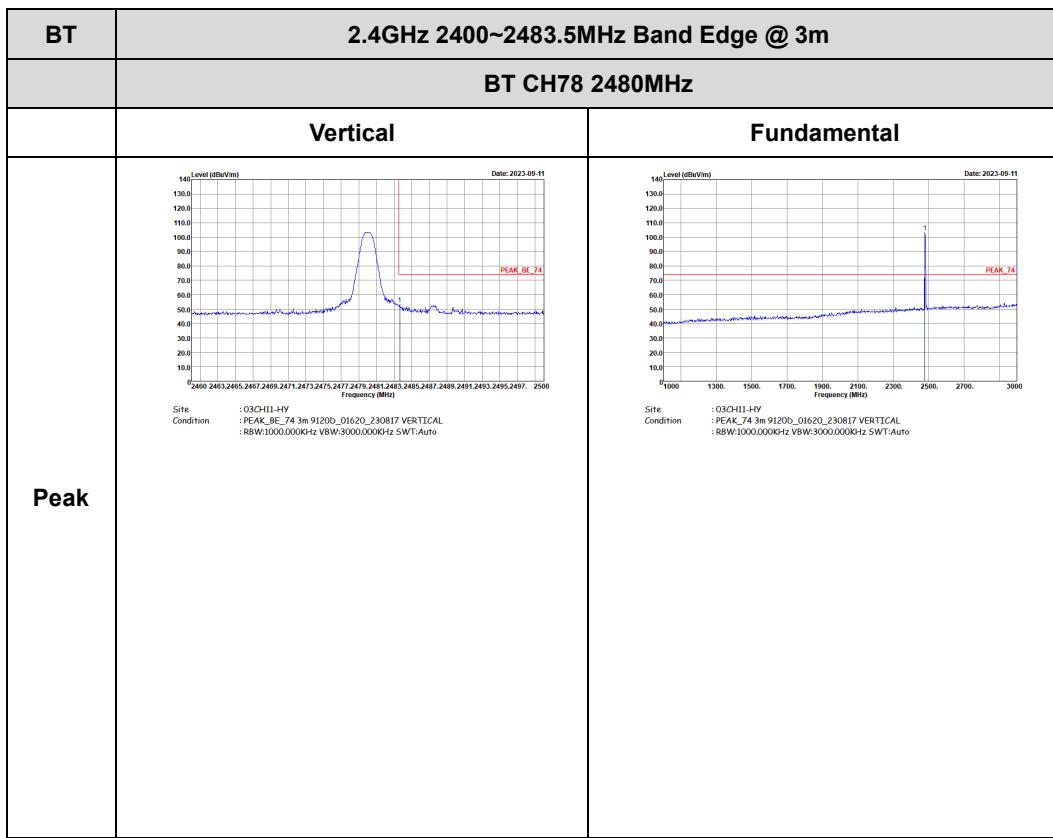
$$= \text{Level(dB μ V/m)} - \text{Limit Line(dB μ V/m)}$$

$$= 55.45(\text{dB μ V/m}) - 74(\text{dB μ V/m})$$

$$= -18.55(\text{dB})$$

Peak measured complies with the limit line, so test result is “PASS”.

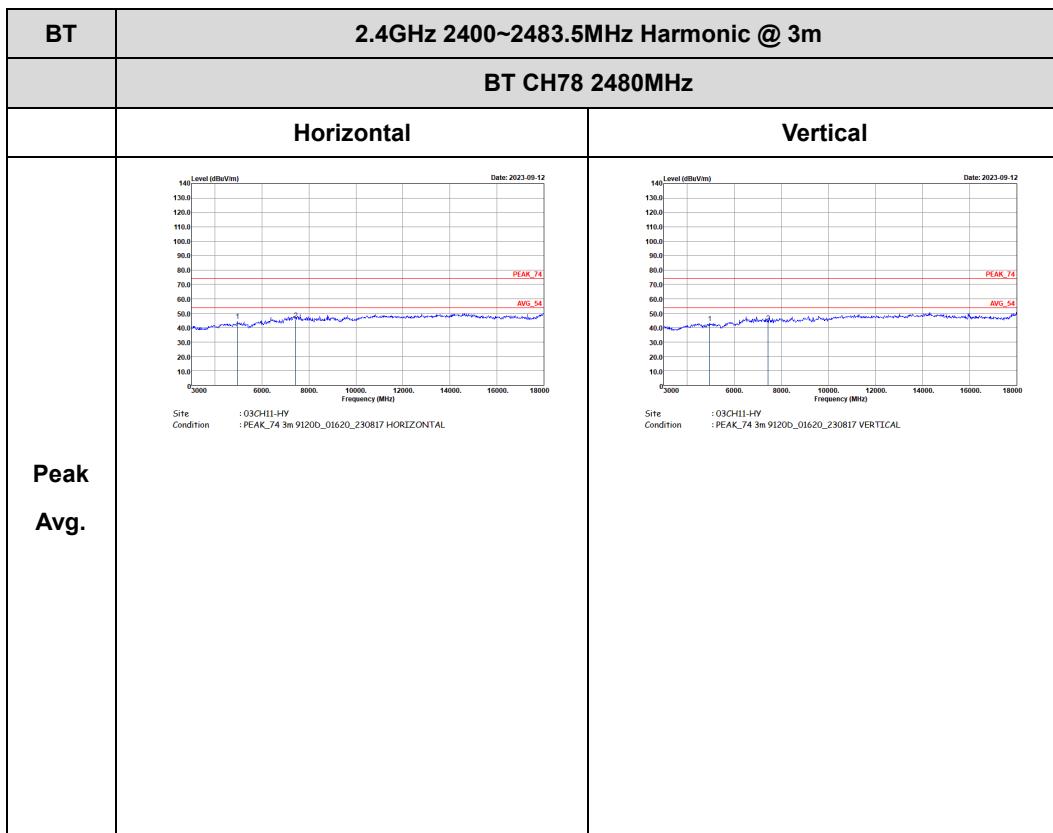


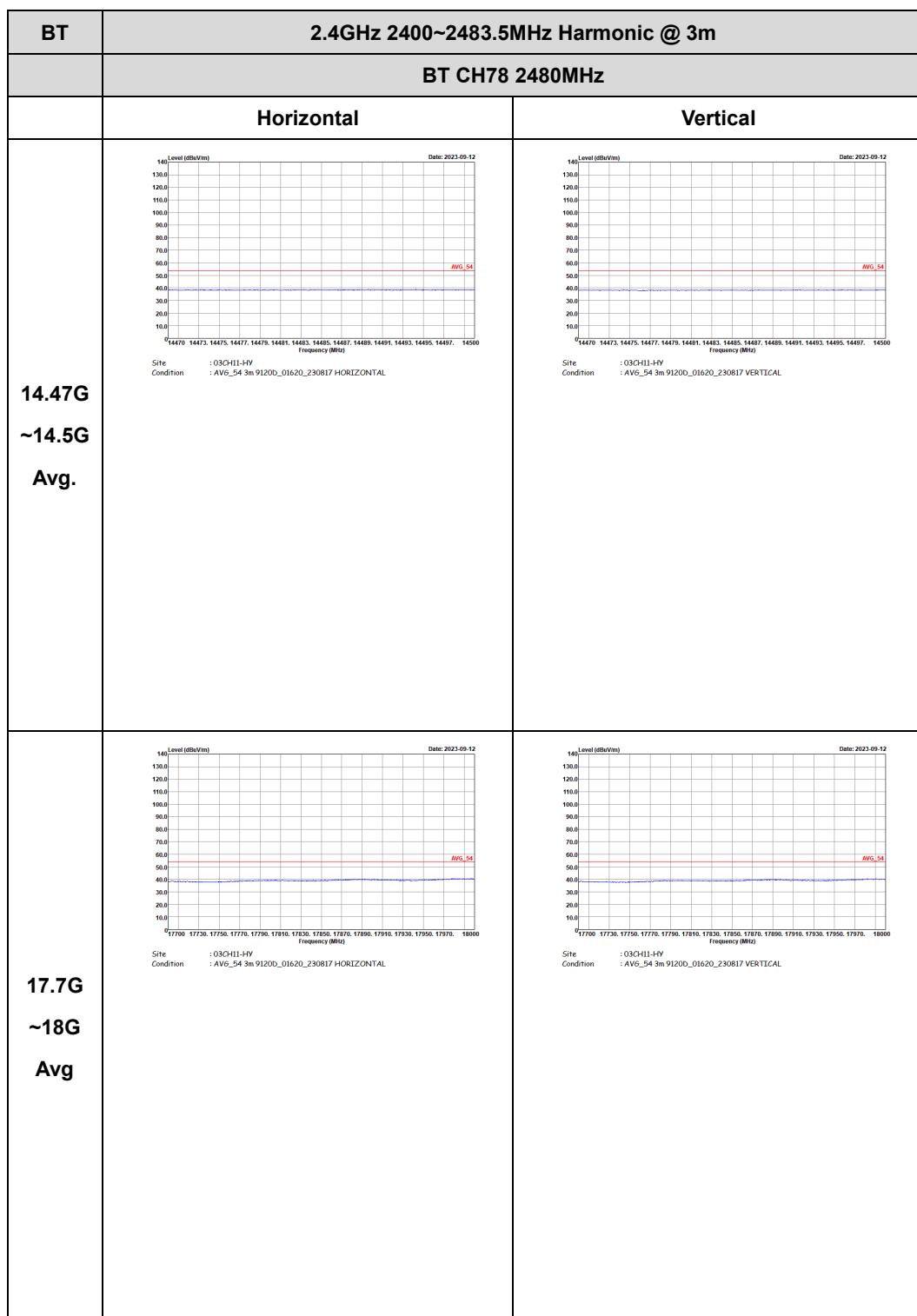

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Yuan Lee, Sam Chou and Troye Hsieh	Temperature :	19.8~22.1°C
		Relative Humidity :	55.1~65.6%

2.4GHz 2400~2483.5MHz

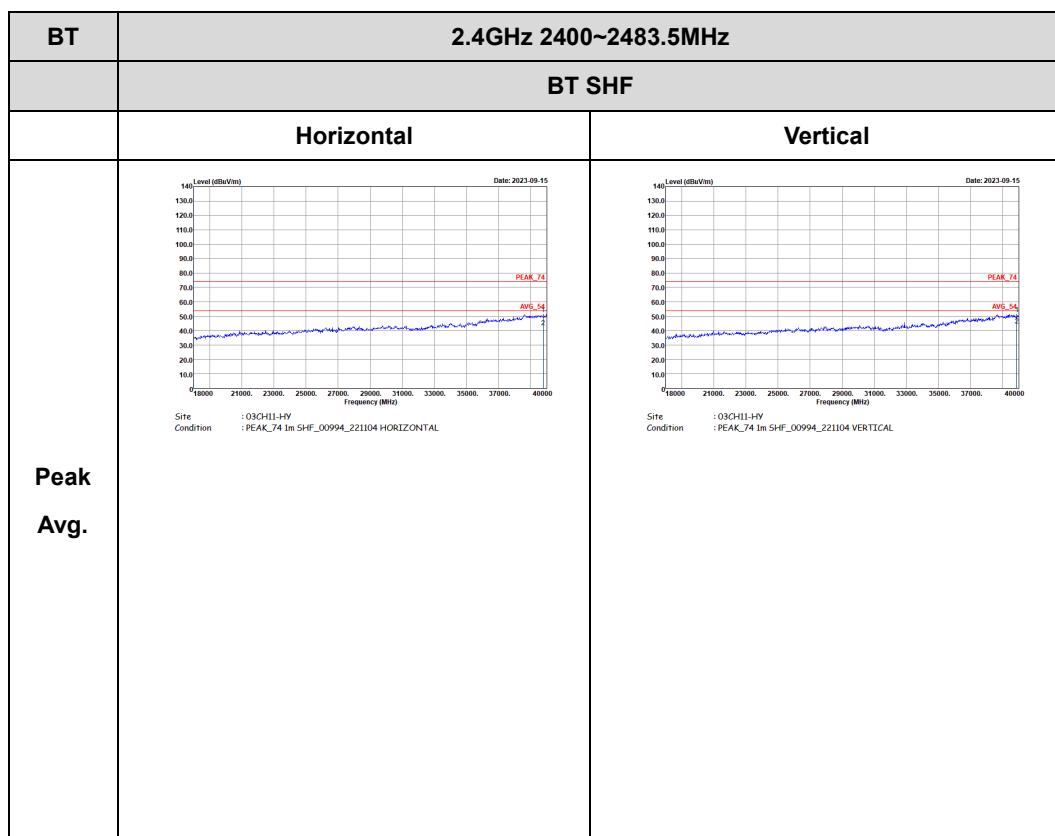
BT (Band Edge @ 3m)



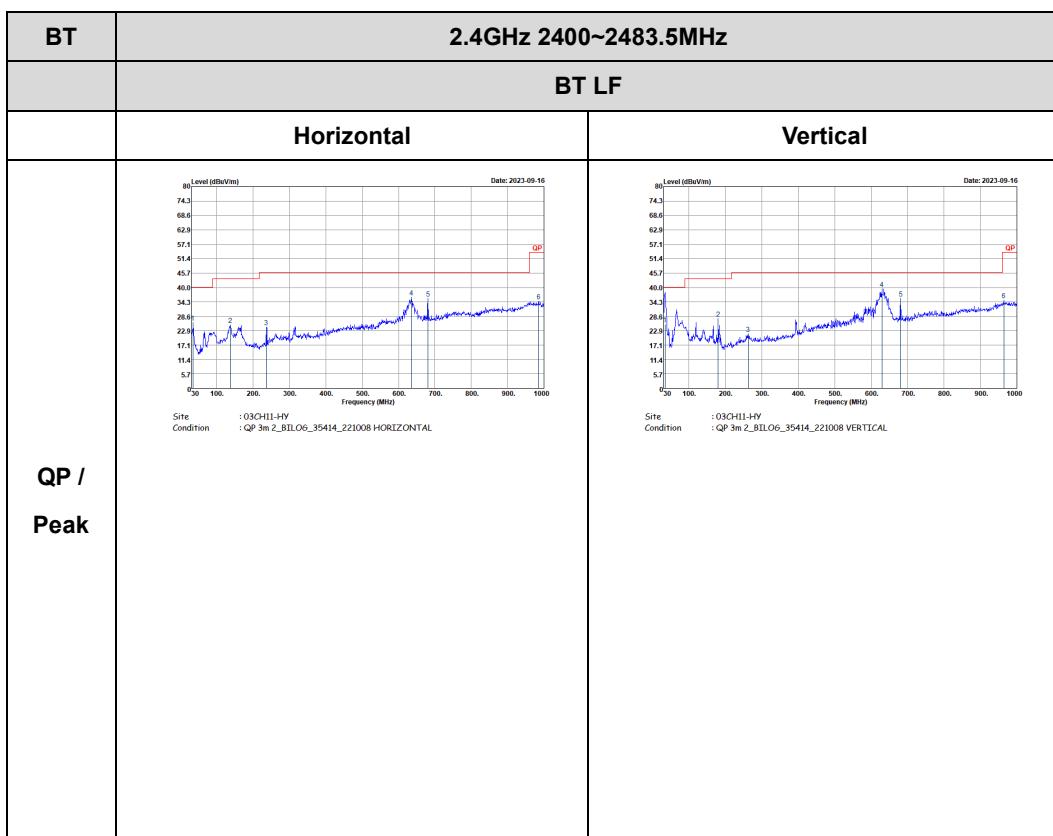


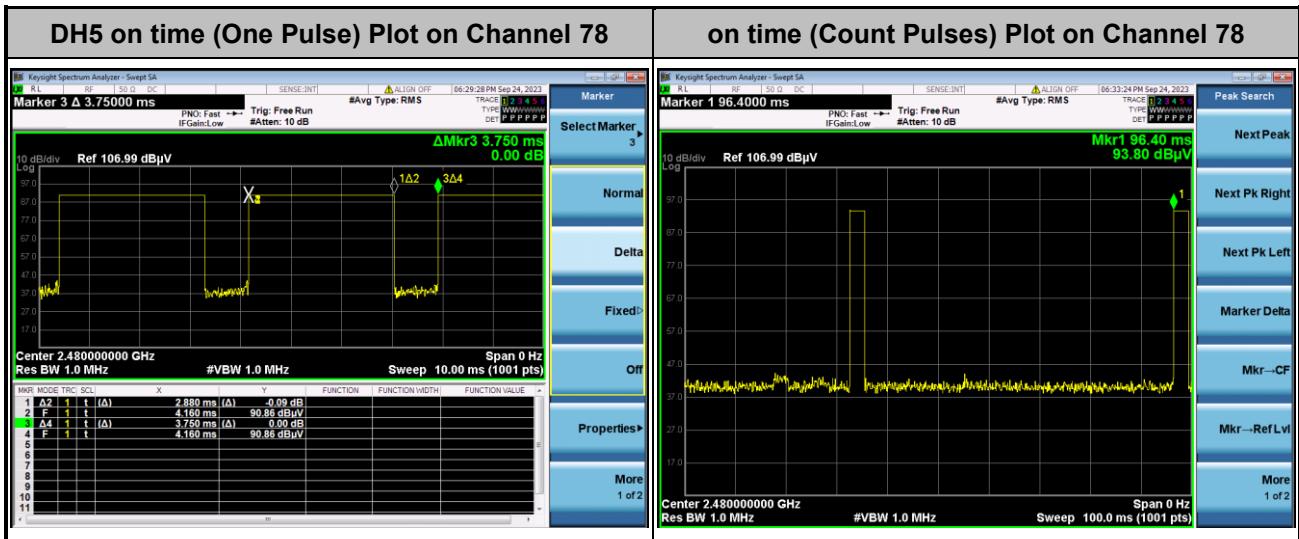
2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)



Emission above 18GHz


2.4GHz BT (SHF @ 1m)



Emission below 1GHz

2.4GHz BT (LF)

Appendix E. Duty Cycle Plots

Note:

1. Worst case Duty cycle = on time/100 milliseconds = $2 * 2.88 / 100 = 5.76 \%$
2. Worst case Duty cycle correction factor = $20 * \log(\text{Duty cycle}) = -24.79 \text{ dB}$
3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms} \times 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. $[100 \text{ ms} / 57.6 \text{ ms}] = 2 \text{ hops}$

Thus, the maximum possible ON time:

$$2.88 \text{ ms} \times 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$