TEST REPORT

Your Ref: Date: 6 Jun 2003

Our Ref: 56S030405/01_CORR01 Page: 1 of 18

-

DID: 68851464 Fax: 67741459

NOTE: This Report is issued subject to the "Terms and Conditions Governing Technical Services" set out in the "Request for Technical Services" form. The terms and conditions governing the issue of this report are set out overleaf.

COMPLIANCE REPORT ON TESTING IN ACCORDANCE WITH SAR (SPECIFIC ABSORPTION RATE) REQUIREMENTS

Supplement C (Edition 01-01) FCC OET Bulletin 65 (Edition 97-01)

OF A

Bluetooth Class 1 Compact Flash Adapter [Model: CFPA-001]

TEST FACILITY Telecoms & EMC, Testing Group, PSB Corporation Pte Ltd

1 Science Park Drive, Singapore 118221

APPLICANT Mr. Chua Teck Chuan

GigaWaveTech Pte Ltd No 1 Jalan Kilang Timor, #07-02, Pacific Tech Centre

Singapore 159303

Tel: (65) 63774801 Fax: (65) 63750966

JOB NUMBER 56S030405

TEST PERIOD 4 Jun 2003 - 5 Jun 2003

PREPARED BY

Gary Ng Ah Chye Associate Engineer **APPROVED BY**

Benjamin Foo Assistant Vice President

Corporation

This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- Unless otherwise requested, a reported shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report is not a Certificate of Quality. It only applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are application to other similar items. In addition, such results must not be used to indicate or imply that PSB Corporation approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that PSB Corporation in any way "guarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client, PSB Corporation therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- 5. Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through PSB Corporation, unless the Client has authorised PSB Corporation in writing to do so.
- 6. PSB Corporation may at its sole discretion add to amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with PSB Corporation and the Client shall, upon payment of PSB Corporation's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that PSB Corporation may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that PSB Corporation has verified or ascertained any endorsement or marks from any testing authority or bodies that may be found on that sample.
- 9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to PSB Corporation or to the report or results furnished by PSB Corporation in any advertisements or sales promotion.

April 2002 Page 2 of 18

TEST SUMMARY

PRODUCT DESCRIPTION

TEST RESULTS

ANNEX A - TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX B - EUT PHOTOGRAPHS / DIAGRAMS

Test Setup

EUT Photographs

ANNEX C - TISSUE SIMULANT DATA SHEETS

ANNEX D - SAR VALIDATION RESULTS

ANNEX E - CALIBRATION CERTIFICATES

Validation Dipole Calibration Certificates

SAR Probe Calibration Certificates

ANNEX F - REFERENCES

The product was tested in accordance with the following standards.

Test Results Summary

Test Standards	Description	Pass / Fail
 Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01) ANSI/IEEE Standard C95.1-1993 	SAR Measurement (Device at body phantom)	Pass *

Note:

- 1. The worst-case SAR value was found to be **0.928W/kg** which is lower than the maximum limit of 1.60 W/kg, over 1g of tissue.
- * Based on spatial peak uncontrolled exposure / general population level:

Head: 1.60 W/kg, over 1g of tissue.

Body: 1.60 W/kg, over 1g of tissue.

Modification

No modification was made.

Compact Flash Adapter (EUT) DESCRIPTION

Odinpact i lasii Adaptei (EOT) B	
Compact Flash Adapter (EUT)	The Equipment Under Test (EUT) is a Bluetooth Class 1 Compact
Description	Flash Adapter
Compact Flash Adapter (EUT)	Identical Prototype
Test Device Type	
Ţ.	
Compact Flash Adapter (EUT)	CFPA-001
Model	
Compact Flash Adapter (EUT)	GigaWaveTech
Brand Name	
Compact Flash Adapter (EUT)	Labelled as " CFA055000017 "
Serial Numbers	
Compact Flash Adapter (EUT)	QXZCFPA-001
FCC ID	

PDA (Host) DESCRIPTION

FUA (11031) DESCRIF HON	
PDA (Host)	Portable Device (Pocket PC - iPAQ 3850)
Device Category	
PDA (Host)	General Population/Uncontrolled exposure
Exposure Environment	
PDA (Host)	DoC
FCC ID	

DEVICE OPERATING CONFIGURATION

PDA (Host)	Ch 0 (2402MHz)
Operating Frequencies	Ch 39 (2441MHz)
	Ch 78 (2480MHz)
Compact Flash Adapter (EUT) (Operating Temperature Tolerance)	0 ~ +35 Degree Celsius
Compact Flash Adapter (EUT) (Operating Voltage Tolerance)	3.15 V ~ 3.45 V Volt DC
PDA (Host) Continuous Transmission Tolerance	The PDA shall cause no problem after transmitting for 100 minutes under maximum power transmitting rate.
PDA (Host)	17.35 dBm ± 1 dBm, Maximum (2402MHz)
Rated Output Power	17.35 dBm ± 1 dBm, Maximum (2441MHz)
	17.35 dBm ± 1 dBm, Maximum (2480MHz)
PDA (Host) Antenna Type	Internal dielectric antenna. (Monopole)
PDA (Host) Crest Factor	1.0
PDA (Host) Input Power	5 Volts DC, 2A
PDA (Host) Accessories	Charger Compaq - CF Adapter Expansion Pack for IPAQ 3850

MANUFACTURER

Manufacturer Address	OFFICE: Wisetronics Ltd 6/F Elite Industrial Building, 135 -137 Hoi Bun Road, Kwun Tong, Kowloon,
	· ·
	FACTORY: Elite Industrial City, Meilin Distric, Dailing Mount Twon, Dongguan, Guangdong China
DID	852 23412265
Fax	852 23436291

DEVICE OPERATING CONDITION

The EUT was put into operation by a radio communication tester. Communication between the EUT and the radio communication tester was established by air link. The EUT is operating in the following conditions:

- Loopback Bluetooth test mode
- Non-hopping, single Tx/Rx frequency as shown:

Tx Frequency Rx Frequency
Low Frequency 2402MHz 2480MHz
Mid Frequency 2441MHz 2402MHz
High Frequency 2480MHz 2402MHz

- ACL link is established with a R&S CMU 200 with Bluetooth option, DH1 data packets, data pattern PRBS9
- Transmitter transmits at maximum output power

For every SAR measurement, the EUT was set to maximum output power level using fully charged battery.

TEMPERATURE AND HUMIDITY

Ambient Temperature: $23 \pm 1^{\circ}$ C Tissue Temperature: $23 \pm 1^{\circ}$ C Humidity: 58% to 63%

Measurement Uncertainty

All test measurement carried out are traceable to national standards. The uncertainty of measurement at a confidence level of 95%, with a coverage of 2, is $\pm 20.5\%$.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	ci 1g	Standard Unc.(1g)	Vi or Veff
Measurement System						
Probe Calibration	± 4.8	normal	1	1	± 4.8	~
Axial isotropy	± 4.7	rectangular	√3	(1-cp)^1/2	± 1.9	8
Hemispherical Isotropy	± 9.6	rectangular	$\sqrt{3}$	(cp)^1/2	± 3.9	∞
Spatial resolution	± 0.0	rectangular	$\sqrt{3}$	1	± 0.0	8
Boundary effects	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	∞
Linearity	± 4.7	rectangular	$\sqrt{3}$	1	± 2.7	~
System Detection limit	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	~
Readout electronics	± 1.0	normal	1	1	± 1.0	8
Response time	± 0.8	rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 2.6	rectangular	$\sqrt{3}$	1	± 1.5	∞
RF ambient conditions	± 3.0	rectangular	$\sqrt{3}$	1	± 1.7	~
Probe Positioning Mechanical Tolerance	± 0.4	rectangular	√3	1	± 0.2	8
Probe Positioning with respect to Phantom Shell	± 2.9	rectangular	√3	1	± 1.7	8
Extrapolation, Interpolation and Integration Algorithms for Max. SAR Evaluation	± 1.0	rectangular	√3	1	± 0.6	8
Test Sample Related						
Device positioning	± 2.9	normal	1	1	± 2.9	145
Device holder uncertainty	± 3.6	normal	1	1	± 3.6	5
Power drift	± 5.0	rectangular	√3	1	± 2.9	∞
Phantom and Tissue Paramet	ers					
Phantom uncertainty	± 4.0	rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	rectangular	$\sqrt{3}$	0.64	± 1.8	∞
Liquid conductivity (meas)	± 2.4	normal	1	0.64	± 1.5	∞
Liquid permittivity (target)	± 5.0	rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (meas)	± 2.1	normal	1	0.6	± 1.2	8
Combined Standard Uncertainty					± 10.3	330
Coverage Factor for 95%		k=2				
Extended Standard Uncertain	ty				± 20.5	

The measurement results were obtained with the EUT tested in the conditions described in this report (Annex A).

Table 1 – Body Worn Position SAR Test Results, device without belt clip (15mm spacing).

Phantom	Device Test	Antenna		(W/kg), over 1g T est Channel & Fr	
Configuration	Positions	Position	Channel: 0 2402MHz	Channel: 39 2441MHz	Channel: 78 2480MHz
Flat Phantom	EUT Rear To Phantom	fixed	0.040	0.052	0.060
Output Power (dBm) Before Test		18.15	17.85	17.55	
Output Power (dBm) After Test		18.15	17.85	17.55	

Table 2 - Body Worn Position SAR Test Results, device without belt clip(Touching).

Phantom	Device Test	Antenna		(W/kg), over 1g T est Channel & Fr	
Configuration	Positions	Position	Channel: 0 2402MHz	Channel: 39 2441MHz	Channel: 78 2480MHz
Flat Phantom	EUT Front Touched Phantom	fixed	0.070	0.054	0.044
Flat Phantom	EUT Rear Touched Phantom	fixed	0.928	0.756	0.559
Output Power (dBm) Before Test		18.15	17.85	17.55	
Output Power (dBm) After Test		18.15	17.85	17.55	

Remarks:

- 1. All modes of operations were investigated and the worst-case SAR levels are reported.
- 2. A fully charged Battery was used for each mode of operation.
- The worst-case SAR value was found to be 0.928W/Kg (over a 1g tissue) at Channel 0, EUT Rear Touched Phantom, which is lower than the maximum limit of 1.60 W/Kg, please refer to the above table.
- 4. The SAR limit of 1.60W/Kg (Spatial Peak level for Uncontrolled Exposure / General Population) is based on the Test Standards:
 - a) Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)
 - b) ANSI/IEEE Standard C95.1-1993

Ambient Temperature: $23 \pm 1^{\circ}$ C Tissue Temperature: $23 \pm 1^{\circ}$ C Humidity: 58% to 63%

Figure 1: SAR Test Distribution Plot – device without belt clip (15mm spacing).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear To Phantom	Fixed	Channel: 0 2402MHz	0.040

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group File Name: Flat Phantom_EUT belt clip_ch 0_data 7.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 568030405; Flat Phantom_EUT belt clip_ch 0_data 7

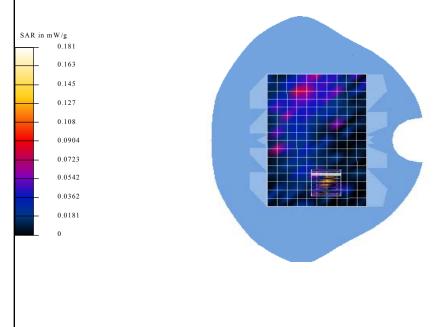
Communication System: 2450 Mhz_Gigawavetech; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz (σ = 1.997 mho/m, ϵ = 53.81, ρ = 1000 kg/m3)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51


Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 2.57 V/m Peak SAR = 0.218 mW/g

SAR(1 g) = 0.0404 mW/g; SAR(10 g) = 0.0259 mW/g

Power Drift = 6 dB

Date: 06/05/03

 $\begin{array}{lll} \mbox{Ambient Temperature:} & 23 \pm 1^{0} \mbox{ C} \\ \mbox{Tissue Temperature:} & 23 \pm 1^{0} \mbox{ C} \\ \mbox{Humidity:} & 58\% \mbox{ to } 63\% \\ \end{array}$

Figure 2: SAR Test Distribution Plot – device without belt clip (15mm spacing).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear To Phantom	Fixed	Channel: 39 2441MHz	0.052

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 2.69 V/m Peak SAR = 0.19 mW/g

SAR(1 g) = 0.0521 mW/g; SAR(10 g) = 0.0365 mW/g

Power Drift = 0.5 dB

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

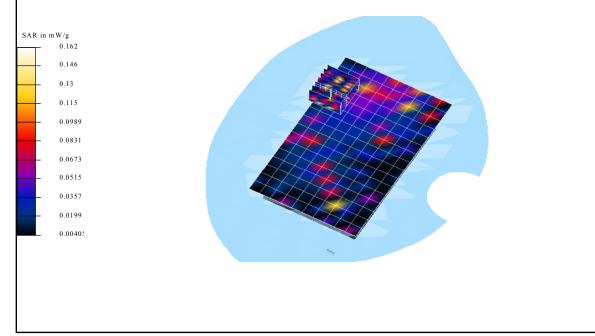


Figure 3: SAR Test Distribution Plot – device without belt clip (15mm spacing).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear To Phantom	Fixed	Channel: 78 2480MHz	0.060

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT 15mm Spacing_ch 78_data 9.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 56S030405; Flat Phantom_EUT 15mm Spacing_ch 78_data 9

 $Communication\ System:\ 2450\ Mhz_Gigawave tech;\ Frequency:\ 2480\ MHz;\ Duty\ Cycle:\ 1:1$

Medium: Body 2450 MHz (σ = 1.997 mho/m, ϵ = 53.81, ρ = 1000 kg/m3)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 2.78 V/m Peak SAR = 0.204 mW/g

SAR(1 g) = 0.0602 mW/g; SAR(10 g) = 0.0488 mW/g

Power Drift = -1 dB

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

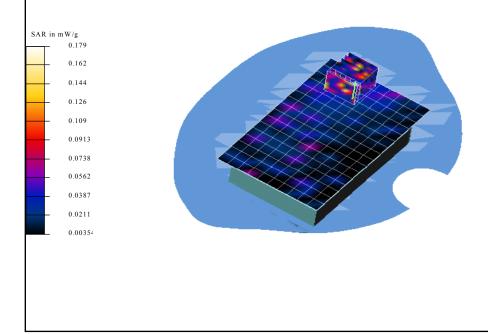


Figure 4: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Front Touched Phantom	Fixed	Channel: 0 2402MHz	0.070

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT front touch_ch 1_data 1.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 568030405; Flat Phantom_EUT front touch_ch 1_data 1

Communication System: 2450 Mhz_Gigawavetech; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz (σ = 1.997 mho/m, ϵ = 53.81, ρ = 1000 kg/m3)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

 $Reference\ Value = 2.29\ V/m$ $Peak\ SAR = 0.936\ mW/g$

SAR(1 g) = 0.0705 mW/g; SAR(10 g) = 0.0512 mW/g

Power Drift = -0.4 dB

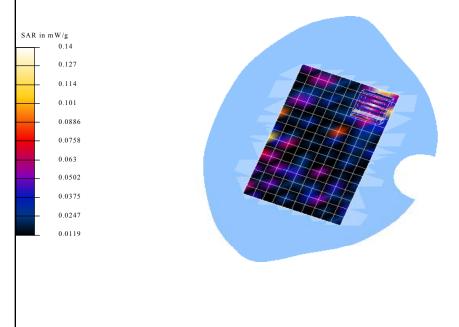


Figure 5: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Front Touched Phantom	Fixed	Channel: 39 2441MHz	0.054

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT front touch_ch 39_data 2.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 56S030405; Flat Phantom_EUT front touch_ch 39_data 2

Communication System: 2450 Mhz_Gigawavetech; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz ($\sigma = 1.997 \text{ mho/m}, \ \epsilon = 53.81, \ \rho = 1000 \text{ kg/m3}$)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

 $Reference\ Value = 2.58\ V/m$ $Peak\ SAR = 0.176\ mW/g$

SAR(1 g) = 0.0546 mW/g; SAR(10 g) = 0.0349 mW/g

Power Drift = -0.8 dB

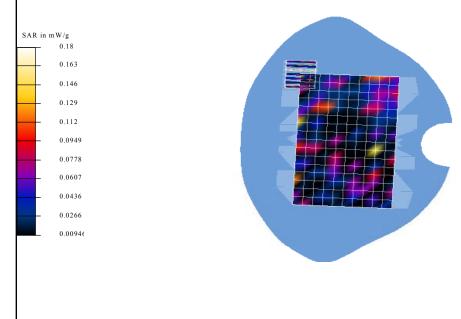


Figure 6: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Front Touched Phantom	Fixed	Channel: 78 2480MHz	0.044

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT front touch_ch 78_data 3.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 56S030405; Flat Phantom_EUT front touch_ch 78_data 3

Communication System: 2450 Mhz_Gigawavetech; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz (σ = 1.997 mho/m, ϵ = 53.81, ρ = 1000 kg/m3)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 2.51 V/m Peak SAR = 0.149 mW/g

SAR(1 g) = 0.0443 mW/g; SAR(10 g) = 0.0335 mW/g

 $Power\ Drift = <\!Undefined\!>$

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

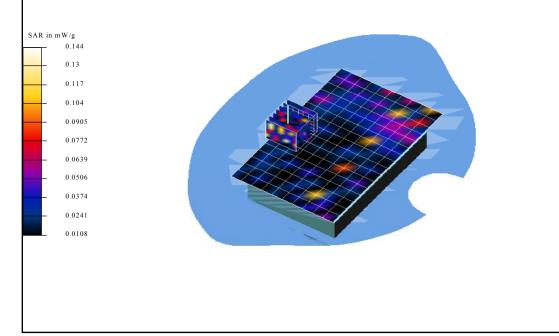


Figure 7: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear Touched Phantom	Fixed	Channel: 0 2402MHz	0.928

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT back touch_ch 0_data 4.da4

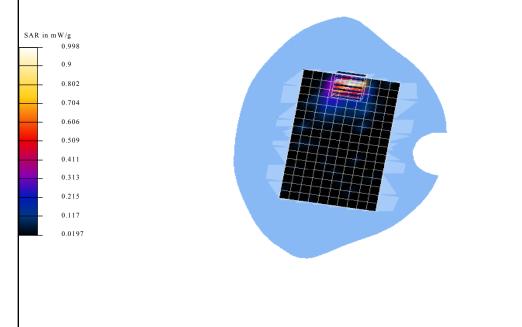
DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 568030405; Flat Phantom_EUT back touch_ch 0_data 4

Communication System: 2450 Mhz_Gigawavetech; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz (σ = 1.997 mho/m, ϵ = 53.81, ρ = 1000 kg/m3)

Phantom section: FlatSection

DASY4 Configuration:


- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

 $Reference\ Value = 4.03\ V/m$ $Peak\ SAR = 3.17\ mW/g$

SAR(1 g) = 0.928 mW/g; SAR(10 g) = 0.372 mW/g

Power Drift = -3 dB

Ambient Temperature: $23 \pm 1^{\circ}$ C Tissue Temperature: $23 \pm 1^{\circ}$ C Humidity: 58% to 63%

Figure 8: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear Touched	Fixed	Channel: 39 2441MHz	0.756
	Phantom			

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT back touch_ch 39_data 5.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 56S030405; Flat Phantom_EUT back touch_ch 39_data 5

Communication System: 2450 Mhz_Gigawavetech; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz ($\sigma = 1.997 \text{ mho/m}, \ \epsilon = 53.81, \ \rho = 1000 \text{ kg/m3}$)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

 $Reference\ Value = 2.73\ V/m$ $Peak\ SAR = 2.85\ mW/g$

SAR(1 g) = 0.756 mW/g; SAR(10 g) = 0.293 mW/g

Power Drift = 0.5 dB

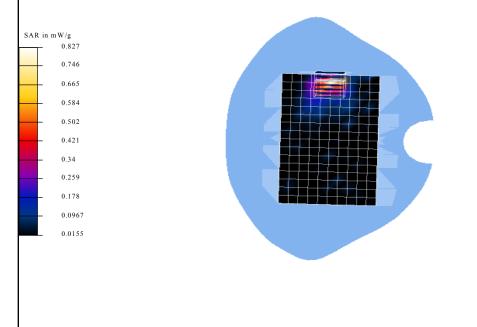


Figure 9: SAR Test Distribution Plot – device without belt clip (Touching).

Phantom Configuration	Device Test Positions	Antenna Position	Channel	SAR (W/kg), over 1g Tissue
Flat Phantom	EUT Rear Touched Phantom	Fixed	Channel: 78 2480MHz	0.559

Date: 06/05/03

Test Laboratory: Telecom & EMC Testing Group

File Name: Flat Phantom_EUT back touch_ch 78_data 6.da4

DUT: Gigawavetech PDA_For Body Test Type & Serial Number: Nil Program: Job No: 56S030405; Flat Phantom_EUT back touch_ch 78_data 6

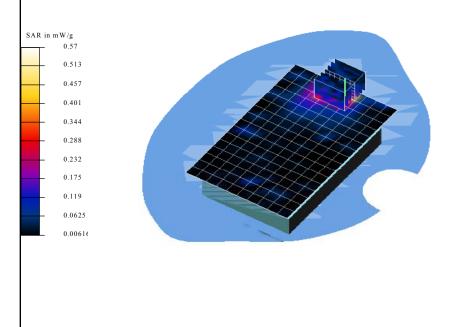
Communication System: 2450 Mhz_Gigawavetech; Frequency: 2480 MHz; Duty Cycle: 1:1

Medium: Body 2450 MHz ($\sigma = 1.997 \text{ mho/m}, \ \epsilon = 53.81, \ \rho = 1000 \text{ kg/m3}$)

Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn475; Calibrated: 11/14/2002
- Phantom: TP:
- Software: DASY4, V4.0 Build 51


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 2.8 V/m Peak SAR = 1.77 mW/g

SAR(1 g) = 0.559 mW/g; SAR(10 g) = 0.231 mW/g

Power Drift = -1 dB

Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

ANNEX A

ANNEX A TEST INSTRUMENTATION & GENERAL PROCEDURE

A.1 General Test Procedure

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the fiberglass shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the DUT. After the initial scan, a high- resolution grid is used to locate the absolute maximum measured energy point. At this location, attenuation versus depth scan will be accomplished by the measurement system to calculate the SAR value.

A.2 SAR Test Instrumentation

SAR Measurement System

Positioning Equipment

Type: High Precision Industrial Robot, RX90.
Precision: High precision (repeatability 0.02mm)
Reliability: High reliability (industrial design)

• Compaq Computer

Type: 2.4GHz Pentium
Memory: 512MB SDRAM
Operating System: Windows 2000
Dell Monitor: 17" LCD

• Dosimetric E-Field Probe

Type: ET3DV6 Isotropy Error (\varnothing): ± 0.25 dB

Dynamic Range: 0.01 – 100 W/kg

• Phantom & Tissue

Phantom: "SAM v4.0 Phantom", manufactured by SPEAG

Tissue: Simulated Tissue with electrical characteristics similar to those of the

human at normal body temperature (23 \pm 1°C)

Shell: Fiberglass shell phantom with 2mm thickness

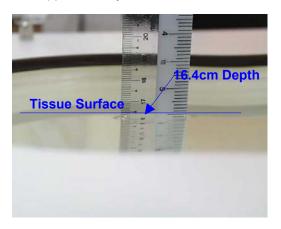
Dimension: A100cm x 50cm x 85cm (L x W x H)

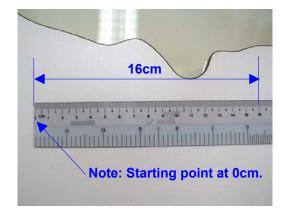
A.3 <u>Test Setup</u>

Phantom

The "SAM v4.0 Phantom", manufactured by SPEAG is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

- Left hand
- Right hand
- Flat phantom


The phantom table comes in the sizes: A 100x50x85 cm (LxWxH) table for use with free standing robots.


The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

Liquid Depth

The liquid depth at the head of the SAM v4.0 Phantom is approximately 16.4cm.

Simulated tissue

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

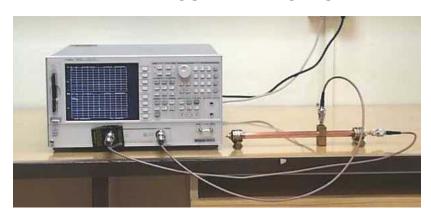
Tissue Density: Approximately 1.25 g/cm³

• Preparation

The ingredients (i.e. water, sugar, salt, etc) required to prepare the simulated tissue are carefully weighed and poured into a clean container for mixing. A stirring paddle, that is attached to a hand drill is used to stir the solution for a duration of about 30 minutes or more. When the ingredients are completely dissolved, the solution is left in the container for the air bubbles to disappear.

Measurement of Electrical Characteristics of Simulated Tissue

- 1) S-PARAMETER Network Analyzer, Agilent 8753ES (30kHz 6GHz)
- 2) Slotted Coaxial Waveguide


Description of the slotted coaxial waveguide

The cylindrical waveguide is constructed with copper tube of about 30 to 40 cm of length, generally 12.5 mm diameter, with connectors at both ends. Inside of this tube, a conductive rod about 6.3 mm is coaxial supported by the two ends connectors (radiator). A slot 3 mm wide start at the beginning of the tube to almost the two third of the tube length. The outer edge of the slotted tube is marked in centimeters. For frequency below 1GHz, 1 centimeter per step. For higher frequency above 1 GHz, 0.5 centimeter per step. A saddle piece containing the sampling probe is inserted in the slot so the tip of the probe is close but not in contact with the inner conductor (radiator).

To measure the electrical characteristics of the liquid simulated tissue, which fill the coaxial waveguide, select CW frequency and measure amplitude and phase with the Network Analyzer for every point in the slot (typically 11). An effort is made to keep the results dielectric constant and conductivity within 5 % of published data.

ELECTRICAL CHARACTERISTIC MEASUREMENT SETUP

Determining Relative Dielectric Constant and Effective Conductivity

$$c = 3 \cdot 10^{8} (m/s) \qquad A = \frac{\Delta A}{20} \cdot \ln(10) \qquad \theta = \frac{\Delta \theta \cdot 2 \cdot \pi}{360}$$

$$\lambda = \frac{c}{f} \cdot \frac{100}{2.54} (inches) \qquad \varepsilon_{re} = \left(A^{2} + \theta^{2}\right) \cdot \frac{\lambda^{2}}{\left(4 \cdot \pi\right)^{2}}$$

$$\theta = \left(|A| \cdot \frac{\lambda}{4 \cdot \pi \cdot \sqrt{\varepsilon_{re}}}\right) \qquad S = \tan(2 \cdot \theta^{2})$$

Where:

ΔA is the amplitude attenuation in dB

 Δt is the phase change in degrees for 5 cm of wave propagation in the slotted line

f is the frequency of interest in Hz

 ε_{re} is the real part of the complex dielectric constant

$$\begin{split} \varepsilon_r &= \frac{\varepsilon_{re}}{\sqrt{1 + S^2}} \\ \sigma &= S \cdot 2 \cdot \pi \cdot f \cdot 8.854 \cdot 10^{-12} \cdot \varepsilon_r (S/m) \end{split}$$

The results: ε_r is the relative dielectric constant and σ is the conductivity in S/m.

Positioning of EUT

The DASY4 holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The intended use position in the CENELEC document is has a rotation angle of 65° and an inclination angle of 80°. The rotation centers for both scales is the ear opening. Thus the device needs no repositioning when changing the angles. The device rotation around the device axis is not changed in the holder. In the CENELEC standard it is always 0°. If the standard changes, a support will be provided with the new angle.

- 1. "Cheek/Touch Position" the device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established:
- i) When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii) (Or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivotingpoint, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

- 2. "Ear/Tilt Position" With the handset aligned in the "Cheek/Touch Position":
- i) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- (Otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the handset is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

3. **Body Worn Configuration**

All body worn accessories are tested for the FCC RF exposure compliance. The phone is positioned into carrying case (if available) and placed below of the flat phantom. Headset or ear piece (if available) is connected during measurements.

Spatial Peak SAR Evaluation

Spatial Peak SAR for 1 g and 10 g

The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR values.

Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of (30mm)3 (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. extraction of the measured data (grid and values) from the Zoom Scan.
- 2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- 3. generation of a high-resolution mesh within the measured volume.
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid.
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
- 6. calculation of the averaged SAR within masses of 1 g and 10 g.

The significant parts are outlined in more detail within the following sections.

Interpolation, Extrapolation and Detection of Maxima

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY4, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method [1].

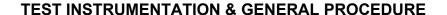
Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY4 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

TEST INSTRUMENTATION & GENERAL PROCEDURE

ANNEX A

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- the spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quatratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control paramaters that govern the behavior of the interpolation method . One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters


The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Important: To be processable by the interpolation/extrapolation scheme, the Area Scan requires at least 6 measurement points. The Cube Scan requires at least 10 measurement points to allow a application of these algorithms.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extrema of the SAR distribution. The uncertainty on the locations of the extrema is less than 1/20 of the grid size. Only local maxima within -2 dB of the global maximum are searched and passed for the Cube Scan measurement.

In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume (voxel).

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

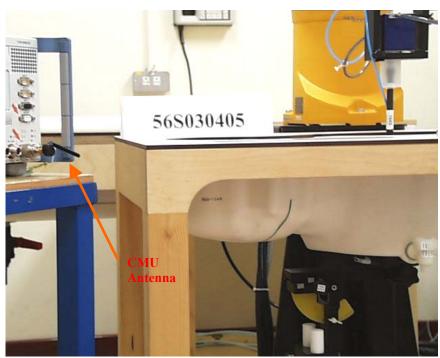
All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging, is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the Postprocessing engine.

TEST INSTRUMENTATION & GENERAL PROCEDURE

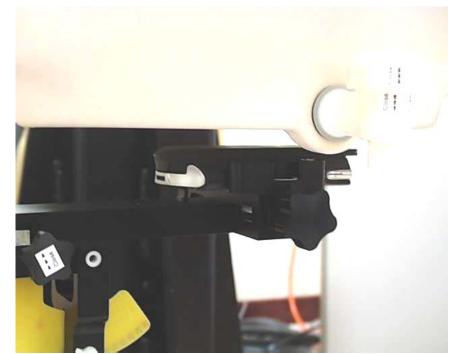
ANNEX A

Instrument	Model	S/No	Cal Due Date	
Boonton RF Power Meter (Dual Channel)	4532	72901	31 Aug 2003	×
Boonton Peak Power Sensor	56218-S/1	1417	31 Aug 2003	
Boonton Power Sensor	51075	32079	31 Aug 2003	×
Boonton Power Sensor	51075	51075	31 Aug 2003	×
Agilent Spectrum Analyzer (30Hz – 40GHz)	8564E	3846A09953	4 Aug 2003	×
S-Parameter Network Analyzer (30kHz – 3GHz)	HP8753ES	US37390533	17 Sep 2003	×
Agilient Signal Generator (10MHz – 20GHz)	83620B	3844A01337	11 Oct 2003	×
Amplifier Research Power Amplifier (1MHz – 1000MHz)	25W1000B	27225	-	
Amplifier Research Power Amplifier (800MHz – 4.2GHz)	25S1G4A	29346	-	×
Agilent Dual Directional Coupler	HP778D	18289	-	×
Radio Test Set	2967	296501/331	-	
R&S Universal Radio Communication Tester	CMU-200	837587/068	18 Sep 2003	
450MHz System Validation Dipole	D450V2	1004	4 Apr 2003	
835MHz System Validation Dipole	D835V2	447	12 Nov 2003	
900MHz System Validation Dipole	D900V2	134	11 Nov 2003	
1800MHz System Validation Dipole	D1800V2	2d019	11 Nov 2003	
1900MHz System Validation Dipole	D1900V2	546	25 Nov 2003	
2450MHz System Validation Dipole	D2450V2	715	25 Sep 2004	×
Data Acquisition Electronics (DAE)	DAE3V1	475	11 Nov 2003	×
Dosimetric E-field Probe	ET3DV6	1645	20 Nov 2003	×
Dosimetric E-field Probe	ET3DV6	1646	25 Nov 2002	
Dosimetric E-field Probe	ET3DV6	1647	20 Nov 2003	
Isotropic H-field Probe	H3DV6	6115	6 Mar 2003	



ANNEX B TEST SETUP PHOTOGRAPHS

SAR Test Setup Photographs


SAR Test Setup At Flat Phantom - Far View

SAR Test Setup At Flat Phantom – Closer View showing CMU antenna distance with respect to SAM

SAR Test Setup Photographs

SAR Test Setup At Flat Phantom – Closer View (EUT Rear To Phantom, 15mm spacing)

SAR Test Setup Photographs

SAR Test Setup At Flat Phantom – Closer View (EUT Front Touched Phantom)

SAR Test Setup At Flat Phantom – Closer View (EUT Rear Touched Phantom)

Conducted Power Measurement Setup Photographs

Conducted Power Measurement Setup

EUT PHOTOGRAPHS

Front of EUT

56S030405/01_CORR01

PDA (HOST) PHOTOGRAPHS

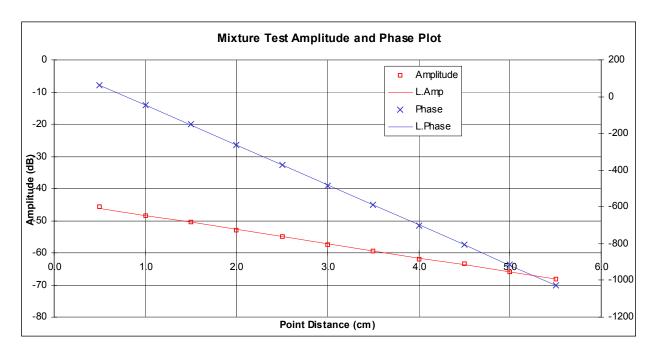
Front of PDA (Host)

Rear of PDA (Host)

PDA (HOST) HOLDER PHOTOGRAPHS

Rear of PDA Holder (Host)

ANNEX C TISSUE SIMULANT DATA SHEETS



Type of Tissue	Body			
Target Frequency (MHz)	2450			
Target Dielectric Constant	52.7			
Target Conductivity (S/m)	1.95			
Composition (by weight)	Ultra Pure Water (72.51%)			
	Ethanol (27.33%)			
	Sugar (0%)			
	Salt (0.11%)			
	HEC (0%)			
	Bactericide (0.06%)			
Measured Dielectric Constant	53.810			
Measured Conductivity (S/m)	1.997			
Probe Name	Dosimetric E-field Probe			
	ET3DV6			
Probe Serial Number	1645			
Dimension	Overall Length: 330mm (Tip: 16mm)			
	Tip Diameter: 6.8mm (Body: 12mm)			
Sensor Offset	2.7mm			
Conversion Factor	4.7 ± 8.9%			
Probe Calibration Due Date (DD/MM/YY)	20 Nov 2003			

Body Tissue at 2450MHz

Tested By:	Gary Ng	Ah Chye				Date:	4th June 03	
			Ultra-Pure Water R = 18.2M Ohms					
Frequency:	2450	MHz	Composition					
			Ultra-Pure Water	Ethanol	Sugar	Salt	HEC	Bactericide
			25500.00 g	9610.00 g	0.00 g	38.40 g	0.00 g	20.00 g
Mixture:	Body Tissue		72.51 %	27.33 %	0.00 %	0.11 %	0.00 %	0.06 %
# of Points:	11		Point Dist:	0.5	cm	Temperature:	23	°C
Point	Amplitude	Phase			-49.9			
1	-45.70	60.00			-51.6	-4.414545455		
2	-48.50	-46.00			-53.5	-43.92		
3	-50.50				-55.3	-217.7636364		
4	-53.00				-56.9	172.0181818		
5	-54.90							
6	-57.60				Omega:	15393804003		
7	-59.30				Epsilon 0:	8.85E-14		
8	-61.90				mu:	1.26E-08		
9	-63.30				alpha avg:	-0.508243328	1	
10	-65.80				beta avg:	-3.800692446	rad/cm	
11	-68.30	52.00						
Results:		Target	Low Limit	High Limit	% Off Target			
D. Const:	53.810	52.70	50.07	55.34	2.08			
Cond:	1.997	1.95	1.85	2.05	2.39			

ANNEX D

ANNEX D SAR VALIDATION RESULTS

SAR Validation -Body Tissue at 2450MHz

Antenna Input Power: 250mW

Ambient Temperature: $23 \pm 1^{\circ}$ C Tissue Temperature: $23 \pm 1^{\circ}$ C Humidity: 57% to 60%

Date: 06/05/03 Test Laboratory: Telecom & EMC Testing Group File Name: 56S030405_2450Mhz Dipole Validation.da4 DUT: Dipole 2450MHz Type & Serial Number: 715 Program: Job No: 56S030405; 2450Mhz dipole validation Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Body 2450 MHz ($\sigma = 1.997 \text{ mho/m}, \ \epsilon = 53.81, \ \rho = 1000 \text{ kg/m}3$) Phantom section: FlatSection DASY4 Configuration: - Probe: ET3DV6 - SN1645; ConvF(4.7, 4.7, 4.7); Calibrated: 11/20/2002 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn475; Calibrated: 11/14/2002 - Phantom: - TP: - Software: DASY4, V4.0 Build 51 Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 91.9 V/m $Peak\ SAR = 26.5\ mW/g$ SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.81 mW/gPower Drift = 0.03 dBArea Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm SAR in mW/g 14.6 13.1 11.7 10.2 8.78 7.34 5 9 4.45 3.01 1.57 0.128

ANNEX E

VALIDATION DIPOLE CALIBRATION CERTIFICATES &

SAR PROBE CALIBRATION CERTIFICATES

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

2450 MHz System Validation Dipole

Type:	D2450V2
Serial Number:	715
Place of Calibration:	Zurich
Date of Calibration:	September 25, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

D. Kellew

Blanc Katza

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 715

Manufactured: July 5, 2002

Calibrated: September 25, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the new SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative permittivity 37.7 $\pm 5\%$ Conductivity 1.88 mho/m $\pm 10\%$

The DASY System with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.0 at 2450 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \text{ }\%$. The results are normalized to 1 W input power.

2.1. SAR Measurement with DASY3 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the worst-case extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 56.8 mW/g

averaged over 10 cm3 (10 g) of tissue: 26.2 mW/g

2.2 SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue: 53.6 mW/g

averaged over 10 cm³ (10 g) of tissue: 25.0 mW/g

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.155 ns (one direction)

Transmission factor: 0.980 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz: $Re\{Z\} = 52.3 \Omega$

Im $\{Z\} = 1.5 \Omega$

Return Loss at 2450 MHz - 31.3 dB

Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Schmid & Partner Engineering AG, Zurich, Switzerland

Validation Dipole D2450V2 SN715, d = 10 mm

V 8H (MALIAN) 1 (1977) 1 (1978) 1 (197 Cubes (2). Peak: 26.7 $\,$ mW/g ± 0.00 dB, SAR (1g): 13.4 $\,$ mW/g ± 0.01 dB, SAR (10g): 6.26 Penetration depth. 6.8 (6.7, 7.0) [mm] Powerdrift. -0.04 dB

SAR_{rot} [mW/g]

9.00E+0 4,00E+0 6,00E+0 1,00E+1 8.00E+0 5.00E+0 7.00E+0

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1645
Place of Calibration:	Zurich
Date of Calibration:	November 20, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

| Constant | C

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1645

Manufactured:

November 7, 2001

Last calibration:

November 26, 2001

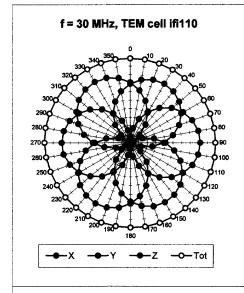
Recalibrated:

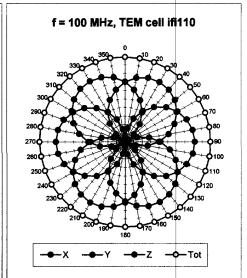
November 20, 2002

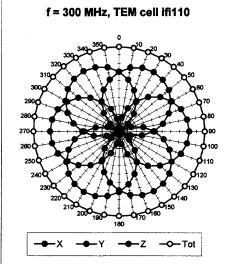
Calibrated for DASY Systems

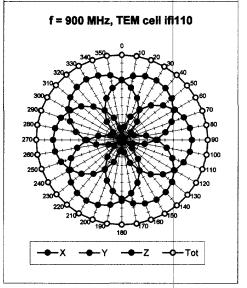
(Note: non-compatible with DASY2 system!)

Page 1 of 10

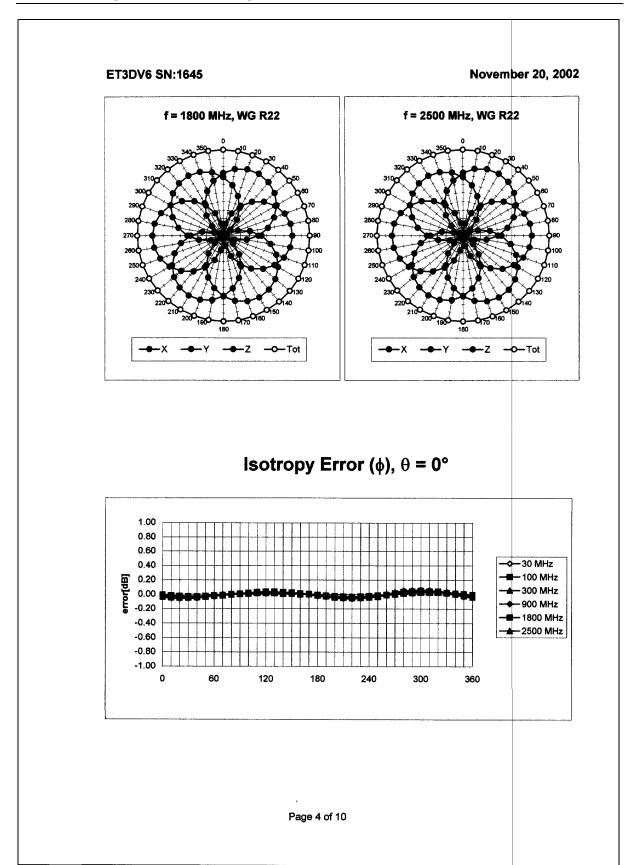



LIJUV	ET3DV6 SN:1645					Novembe	. 20, 2
DAS	Y - Para	meter	s of Probe:	ET3DV	6 SN:1	645	
Sensiti	vity in Fre	e Space		Diode C	Compres	sion	
	NormX	1.67	γ μV/(V/m)²		DCP X	94	mV
	NormY	1.77	7 μV/(V/m) ²		DCP Y	94	mV
	NormZ	1.7	I μV/(V/m) ²		DCP Z	94	mV
Sensiti	vity in Tiss	sue Sim	ulating Liquid				
Head Head		MHz MHz	ε _r = 41.5 ± 5 ε _r = 41.5 ± 5		0.97 ± 5% 0.90 ± 5%		
	ConvF X	6.7	7 ± 9.5% (k=2)		Boundary	effect:	
	ConvF Y	6.7	t 9.5% (k=2)		Alpha	0.36	
	ConvF Z	6.7	7 ± 9.5% (k=2)		Depth	2.71	
Head		MHz	ε _r = 40.0 ± 5		1.40 ± 5%	ľ	
Head		MHz	$\varepsilon_{\rm r}$ = 40.0 ± 5	5% σ=	1.40 ± 5%		
	ConvF X		5 ± 8.9% (k=2)		Boundary		
	ConvF Y		\$ ±8.9% (k=2)		Alpha	0.51	
	ConvF Z	5.0	£ 8.9% (k=2)		Depth	2.41	
Bound	ary Effect						
Head	900	MHz	Typical SAR gradi	ent: 5 % per n	nm		
	Probe Tip to	o Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without C	orrection Algorithm		10.4	6.0	
	SAR _{be} [%]	With Corn	ection Algorithm		0.4	0.7	
Head	1800	MHz	Typical SAR gradi	ent: 10 % per	mm		
	Probe Tip to	o Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without C	orrection Algorithm		12.2	8.1	
	SAR _{be} [%]	With Corr	ection Algorithm		0.2	0.2	
Senso	r Offset						
	Probe Tip to	Sensor C	enter	2.7		mm	
	Optical Surf	face Detect	ion	1.5 ± 0.2		mm	

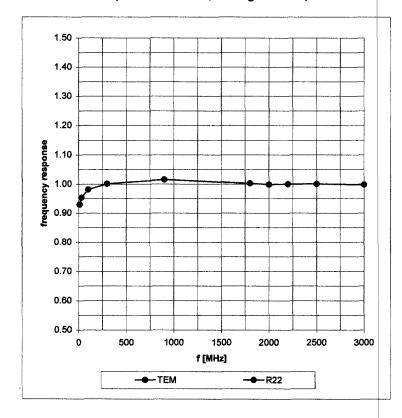


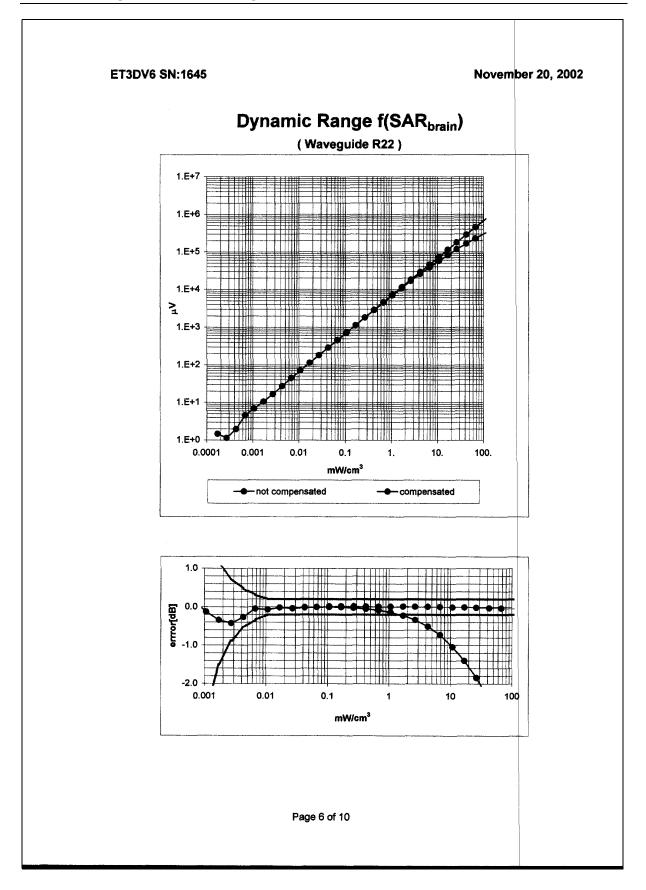


Receiving Pattern (ϕ), θ = 0°

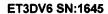


Page 3 of 10

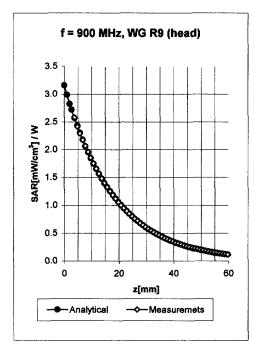


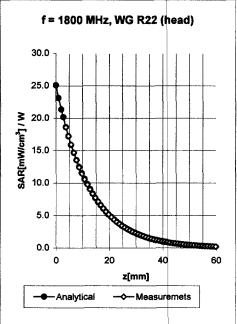

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)



Page 5 of 10

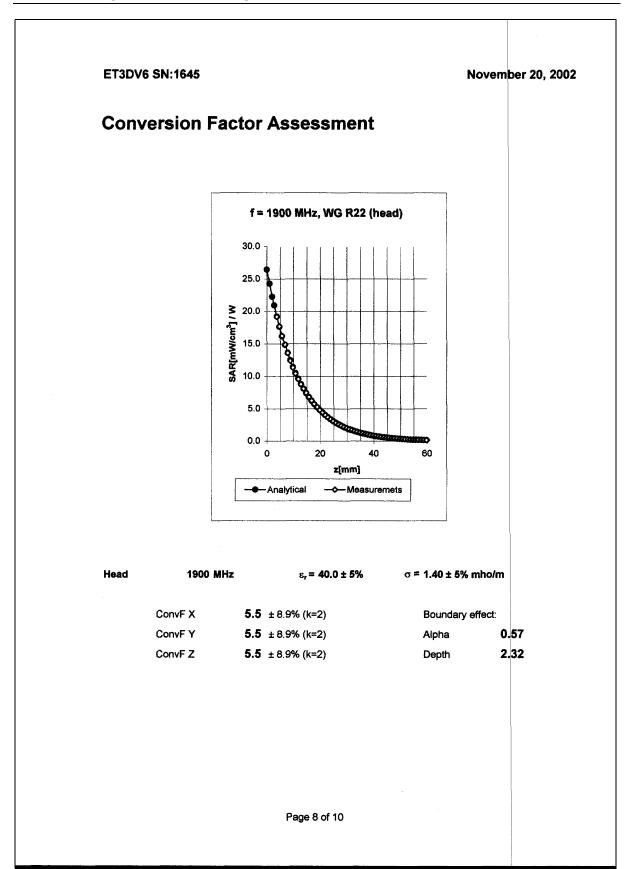




Conversion Factor Assessment

Head	900 MHz	ε _r = 41.5 ± 5%	$\sigma = 0.97 \pm 5\% \text{ mho/m}$	
Head	835 MHz	$\varepsilon_{\rm r}$ = 41.5 ± 5%	$\sigma = 0.90 \pm 5\% \text{ mho/m}$	
	ConvF X	6.7 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	6.7 ± 9.5% (k=2)	Alpha 0.	36
	ConvF Z	6.7 ± 9.5% (k=2)	Depth 2.	71

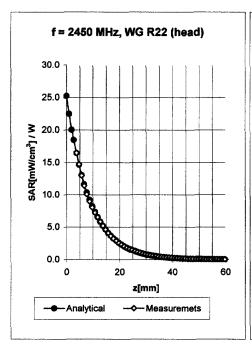
 Head
 1800 MHz
 ϵ_r = 40.0 ± 5%
 σ = 1.40 ± 5% mho/m

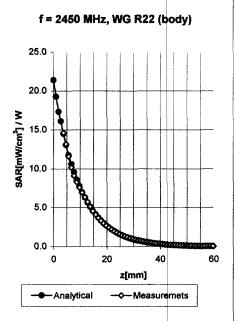

 ConvF X
 5.6 ± 8.9% (k=2)
 Boundary effect:

 ConvF Y
 5.6 ± 8.9% (k=2)
 Alpha
 0.51

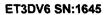
 ConvF Z
 5.6 ± 8.9% (k=2)
 Depth
 2.41

Page 7 of 10

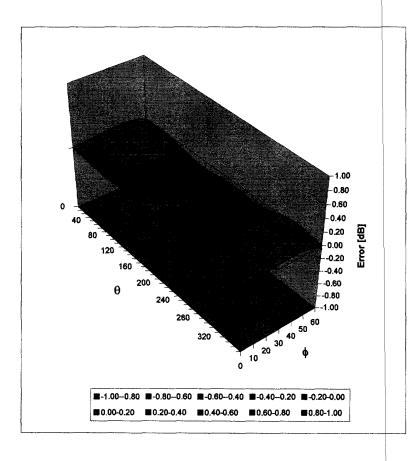




Conversion Factor Assessment



2450	Head	MHz	ε _r = 39.2 ± 5%	σ = 1.80 ± 5% mho/m	
	ConvF X	5.2	± 8.9% (k=2)	Boundary effect:	
	ConvF Y	5.2	± 8.9% (k=2)	Alpha 1	.00
	ConvF Z	5.2	± 8.9% (k=2)	Depth 1	.69
2450	Body	MHz	ε _r = 52.7 ± 5%	σ = 1.95 ± 5% mho/m	
	ConvF X	4.7	± 8.9% (k=2)	Boundary effect:	
	ConvF Y	4.7	± 8.9% (k=2)	Alpha 1	00.
	ConvF Z	4.7	± 8.9% (k=2)	Depth 1	.68


Page 9 of 10

Deviation from Isotropy in HSL

Error (θ, ϕ) , f = 900 MHz

Page 10 of 10

REFERENCES ANNEX F

ANNEX F REFERENCES

REFERENCES ANNEX F

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title		
Supplement C (Edition 01- 01) to FCC OET Bulletin 65 (Edition 97-01)	2001	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio Frequency Fields"		
IEEE Standard 1528-200X	2000	"Product Performance Standards Relative to the safe Use of Electromagnetic Energy"		
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave"		
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"		
ACA, Radio	2000	"Radiocommunication (Electromagnetic Radiation - Human		
Communications	(No.2)	Exposure)"		
(EMR Human Exposure)				
EN50360	2001	Product Standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz – 3GHz)		
EN50361	2001	Basic Standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phone (300MHz – 3GHz)		