

## TEST REPORT

**Report Number: 3036798-37-2-0**

**Project Number: 3036798**

**February 24, 2003**

**Testing performed on the  
Wireless ECG Patient Transceiver**

**Model Number: A2005**

**to**

**FCC Part 15.247**

**For GMP Wireless Medical, Inc.**

---

**Test Performed by:**

Intertek Testing Services  
1950 Evergreen Blvd., Suite 100  
Duluth, GA 30096

**Test Authorized by:**

GMP Wireless Medical, Inc.  
One East Broward Blvd.  
Fort Lauderdale, FL 33301

**Prepared by:**

Jeremy O. Pickens

**Date:**

**Reviewed by:**

Jeffrey D. Hiday

**Date:**

*All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services NA Inc. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.*

## TABLE OF CONTENTS

|          |                                                                                 |           |
|----------|---------------------------------------------------------------------------------|-----------|
| <b>1</b> | <b><u>Summary of Tests</u></b>                                                  | <b>4</b>  |
| <b>2</b> | <b><u>General Description</u></b>                                               | <b>5</b>  |
| 2.1      | <u>Product Description</u>                                                      | 5         |
| 2.2      | <u>Related Submittal(s) Grants</u>                                              | 6         |
| 2.3      | <u>Test Methodology</u>                                                         | 6         |
| 2.4      | <u>Test Facility</u>                                                            | 6         |
| <b>3</b> | <b><u>System Test Configuration</u></b>                                         | <b>7</b>  |
| 3.1      | <u>Support Equipment and description</u>                                        | 7         |
| 3.2      | <u>Block Diagram of Test Setup</u>                                              | 7         |
| 3.3      | <u>Justification</u>                                                            | 8         |
| 3.4      | <u>Software Exercise Program</u>                                                | 8         |
| 3.5      | <u>Mode of Operation During Test</u>                                            | 8         |
| 3.6      | <u>Modifications Required for Compliance</u>                                    | 8         |
| 3.7      | <u>Additions, deviations and exclusions from standards</u>                      | 8         |
| <b>4</b> | <b><u>Measurement Results</u></b>                                               | <b>9</b>  |
| 4.1      | <u>Conducted Output Power at Antenna Terminals</u>                              | 9         |
| 4.1.1    | <u>Requirements</u>                                                             | 9         |
| 4.1.2    | <u>Procedure</u>                                                                | 9         |
| 4.1.3    | <u>Test Results</u>                                                             | 9         |
| 4.2      | <u>Channel separation</u>                                                       | 11        |
| 4.2.1    | <u>Requirements</u>                                                             | 11        |
| 4.2.2    | <u>Procedure</u>                                                                | 11        |
| 4.2.3    | <u>Test Result</u>                                                              | 11        |
| 4.3      | <u>Channel Occupancy</u>                                                        | 14        |
| 4.3.1    | <u>Requirements</u>                                                             | 14        |
| 4.3.2    | <u>Procedure</u>                                                                | 14        |
| 4.3.3    | <u>Test Result</u>                                                              | 14        |
| 4.4      | <u>Out-of-Band Conducted Emissions</u>                                          | 17        |
| 4.4.1    | <u>Requirements</u>                                                             | 17        |
| 4.4.2    | <u>Procedure</u>                                                                | 17        |
| 4.5      | <u>Out-of-Band Radiated Emissions (except emissions in Restricted Bands)</u>    | 18        |
| 4.5.1    | <u>Requirements</u>                                                             | 18        |
| 4.5.2    | <u>Procedure</u>                                                                | 18        |
| 4.5.3    | <u>Test Result</u>                                                              | 18        |
| 4.6      | <u>Transmitter Radiated Emissions in Restricted Bands</u>                       | 19        |
| 4.6.1    | <u>Requirements</u>                                                             | 19        |
| 4.6.2    | <u>Procedure</u>                                                                | 19        |
| 4.6.3    | <u>Test Result</u>                                                              | 19        |
| 4.7      | <u>AC Line Conducted Emission</u>                                               | 21        |
| 4.8      | <u>Radiated Emissions from Digital Section of Transceiver</u>                   | 21        |
| 4.9      | <u>Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation)</u> | 21        |
| <b>5</b> | <b><u>Antenna Requirement</u></b>                                               | <b>21</b> |

# Intertek Testing Services

---

|          |                                                     |                           |
|----------|-----------------------------------------------------|---------------------------|
| <u>6</u> | <u><a href="#">List of test equipment</a></u> ..... | <u><a href="#">22</a></u> |
| <u>7</u> | <u><a href="#">Document History</a></u> .....       | <u><a href="#">23</a></u> |

## Index of Tables

|                                                                                             |                           |
|---------------------------------------------------------------------------------------------|---------------------------|
| <u><a href="#">Table 1: Radiated Power</a></u> .....                                        | <u><a href="#">10</a></u> |
| <u><a href="#">Table 2: Fundamental and Harmonics Field Strength Measurements</a></u> ..... | <u><a href="#">20</a></u> |

## Index of Plots

|                                                                                      |                           |
|--------------------------------------------------------------------------------------|---------------------------|
| <u><a href="#">Plot 1: Low Channel 20 dB RF Bandwidth</a></u> .....                  | <u><a href="#">12</a></u> |
| <u><a href="#">Plot 2: Channel spacing</a></u> .....                                 | <u><a href="#">13</a></u> |
| <u><a href="#">Plot 3: Channel occupancy with full sweep time</a></u> .....          | <u><a href="#">15</a></u> |
| <u><a href="#">Plot 4: Channel frequency with sweep time divided by 20</a></u> ..... | <u><a href="#">16</a></u> |

# Intertek Testing Services

---

## 1 Summary of Tests

**MODEL: A2005**  
**FCC ID: QXQ-A2005-PT01**

| TEST                                                                 | REFERENCE         | RESULTS                                                       |
|----------------------------------------------------------------------|-------------------|---------------------------------------------------------------|
| Output power                                                         | 15.247(b)         | Complies                                                      |
| Channel Separation                                                   | 15.247(a)(1)      | Complies                                                      |
| Occupancy                                                            | 15.247(a)(1)(iii) | Complies                                                      |
| Out-of-band Antenna Conducted Emission                               | 15.247(c)         | Not Applicable. The EUT uses a permanently fixed PCB antenna. |
| Out-of-band Radiated Emission (except emissions in restricted bands) | 15.247(c)         | Complies                                                      |
| Radiated Emission in Restricted Bands                                | 15.209, 15.205    | Complies                                                      |
| AC Line-conducted Emission                                           | 15.207            | Not Applicable. The EUT is battery powered.                   |
| Radiated Emission from Digital Part                                  | 15.109            | Complies                                                      |
| Radiated Emission from Receiver L.O.                                 | 15.109            | Not Applicable. The operating frequency is above 960 MHz      |
| RF Exposure Requirement                                              | 2.1091            | Complies, see exhibit "RF Exposure"                           |
| Antenna Requirement                                                  | 15.203            | Complies. The EUT uses a permanently connected antenna        |

**Test Engineer:** \_\_\_\_\_  
Jeremy O. Pickens

Date: \_\_\_\_\_

**Approved by:** \_\_\_\_\_  
Jeffrey D. Hiday

Date: \_\_\_\_\_

## 2 General Description

### 2.1 Product Description

#### Overview of Wireless ECG Patient Transceiver

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant                                      | GMP Wireless Medical, Inc.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trade Name & Model No.                         | Same / A2005                                                                                                                                                                                                                                                                                                                                                                                                                |
| FCC Identifier                                 | QXQ-A2005-PT01                                                                                                                                                                                                                                                                                                                                                                                                              |
| Use of Product                                 | The GMP Wireless electrocardiograph is intended to replace the present wired connection between a patient and an existing ECG device.                                                                                                                                                                                                                                                                                       |
| Manufacturer & Model of Spread Spectrum Module |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Type of Transmission                           | Frequency Hopping                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rated RF Output                                | +4dBm                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frequency Range                                | 2.402 GHz – 2.480 GHz                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of Channel(s)                           | 79                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Antenna(s) & Gain,                             | PCB                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Antenna Requirement                            | <input checked="" type="checkbox"/> The EUT uses a permanently connected antenna.<br><input type="checkbox"/> The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.<br><input type="checkbox"/> The EUT requires professional installation (attach supporting documentation if using this option). |
| Manufacturer name & address                    | GMP Wireless Medical, Inc., One East Broward Blvd., Fort Lauderdale, FL 33301                                                                                                                                                                                                                                                                                                                                               |

A Production version of the EUT was received on February 3, 2003 in good operating condition.

# Intertek Testing Services

---

## 2.2 Related Submittal(s) Grants

This report is for use with an application for certification of a low power transmitter. One transmitter is included in the application.

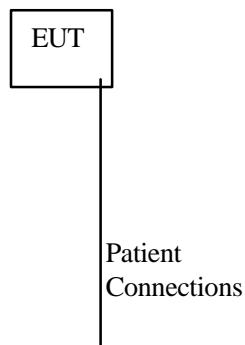
## 2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

## 2.4 Test Facility

The Duluth 10-meter chamber site is located at 1950 Evergreen Blvd., Suite 100, Duluth, Georgia. The test site is a 10-meter semi-anechoic chamber. The site meets the characteristics of CISPR 16-1: 1993 and ANSI C63.4: 1992. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters.

The A2LA accreditation code for this site is 121624 under certificate number 1455.01.


The Industry Canada file number for this site is IC 2077.

## 3 System Test Configuration

### 3.1 Support Equipment and description

| Item # | Description                              | Model No.  | Serial No. |
|--------|------------------------------------------|------------|------------|
| 1      | Jerome Industries, Corp. AC/DC Converter | RPHN50-02M | Sample 1   |
|        |                                          |            |            |
|        |                                          |            |            |

### 3.2 Block Diagram of Test Setup



# Intertek Testing Services

---

## 3.3 Justification

For emission testing, the test procedures, as described in American National Standards Institute C63.4-1992, were employed. The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it).

The EUT was rotated such that it was positioned in each of 3 axes. The tabular data reflect only the highest result for each orientation.

## 3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. Three samples were provided by GMP Wireless Medical, Inc. High, middle, and low channels were each represented. For emissions testing, each unit was setup to transmit continuously to simplify the measurement methodology. The EUT was powered from a freshly charged 5VDC battery.

## 3.5 Mode of Operation During Test

All three samples were configured to transmit continuously at full power.

## 3.6 Modifications Required for Compliance

No modifications were installed by Intertek Testing Services during compliance testing in order to bring the product into compliance (Please note that this does not include changes made specifically by GMP Wireless Medical, Inc. prior to compliance testing)

## 3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusions from the standard were made.

## 4 Measurement Results

### 4.1 Conducted Output Power at Antenna Terminals FCC Rules 15.247(b):

#### 4.1.1 Requirements

Except for Systems that are used exclusively for fixed, point-to-point operations, the maximum peak output power shall not exceed 1 W for antennas with gain of 6 dBi or less. For antennas with gain greater than 6 dBi, the maximum peak output power must be reduced by an amount equal to  $(GAIN - 6)$  dB.

For Systems operating in the band 2400-2483.5 MHz that are used exclusively for fixed, point-to-point operations and employ antennas with gain greater than 6 dBi, maximum peak output power must be reduced below 1 W by an amount equal to  $(GAIN - 6) / 3$  dB.

For Systems operating in the band 5725-5850 MHz that are used exclusively for fixed, point-to-point operations and employ antennas with gain greater than 6 dBi, maximum peak output power shall not exceed 1 Watt.

#### 4.1.2 Procedure

Testing of the conducted output power was not applicable because the antenna was a permanently connected PCB antenna. Radiated power was measured instead using the substitution method.

#### 4.1.3 Test Results

Refer to the following tables for the radiated power results:

Table 1: Radiated Power

# Intertek Testing Services

---

**Table 1: Radiated Power**

Company: **GMP Wireless Medicine, Inc.**  
Model: **Wireless ECG, DP2**  
Project Number: **3036798**  
Date: 02/28/03  
Notes: Patient Transceiver

Tested by: Matthew Van Steen  
Location: Duluth  
RX Antenna: AH Sys 571  
TX Antenna: EMCO 3115

| Ant.<br>Pol.<br>(V/H) | Frequency<br>MHz | EUT<br>Orientation | EUT<br>Reading<br>dBm<br><b>S1</b> | Reading<br>from Subs<br>Antenna<br><b>S2</b> | Sig Gen<br>Output<br>dBm<br><b>SG</b> | Path Loss<br>dB<br><b>SG-S2</b> | Antenna<br>Gain<br>dBi | Radiated<br>Power<br>dBm<br>ERP |
|-----------------------|------------------|--------------------|------------------------------------|----------------------------------------------|---------------------------------------|---------------------------------|------------------------|---------------------------------|
| H                     | 2405.000         | X-axis             | -51.9                              | -37.5                                        | -1.5                                  | 36.1                            | 7.5                    | -8.3                            |
| H                     | 2437.000         | X-axis             | -53.6                              | -37.9                                        | -1.7                                  | 36.2                            | 7.5                    | -9.9                            |
| H                     | 2479.000         | X-axis             | -54.0                              | -38.5                                        | -1.8                                  | 36.8                            | 7.5                    | -9.7                            |

## 4.2 Channel separation

FCC Rule 15.247(a)(1)

### 4.2.1 Requirements

Frequency hopping systems shall have channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

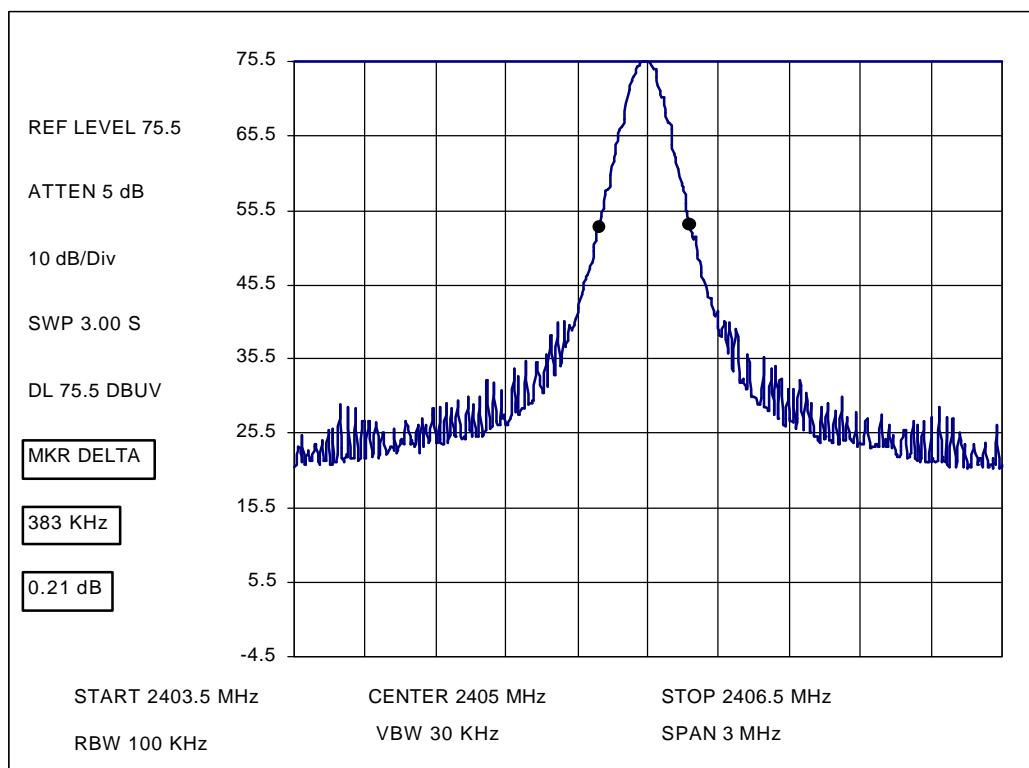
### 4.2.2 Procedure

A near field probe placed in close proximity to the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, and a marker frequency DELTA reading was taken across the carrier at 20dB down from the PEAK level.

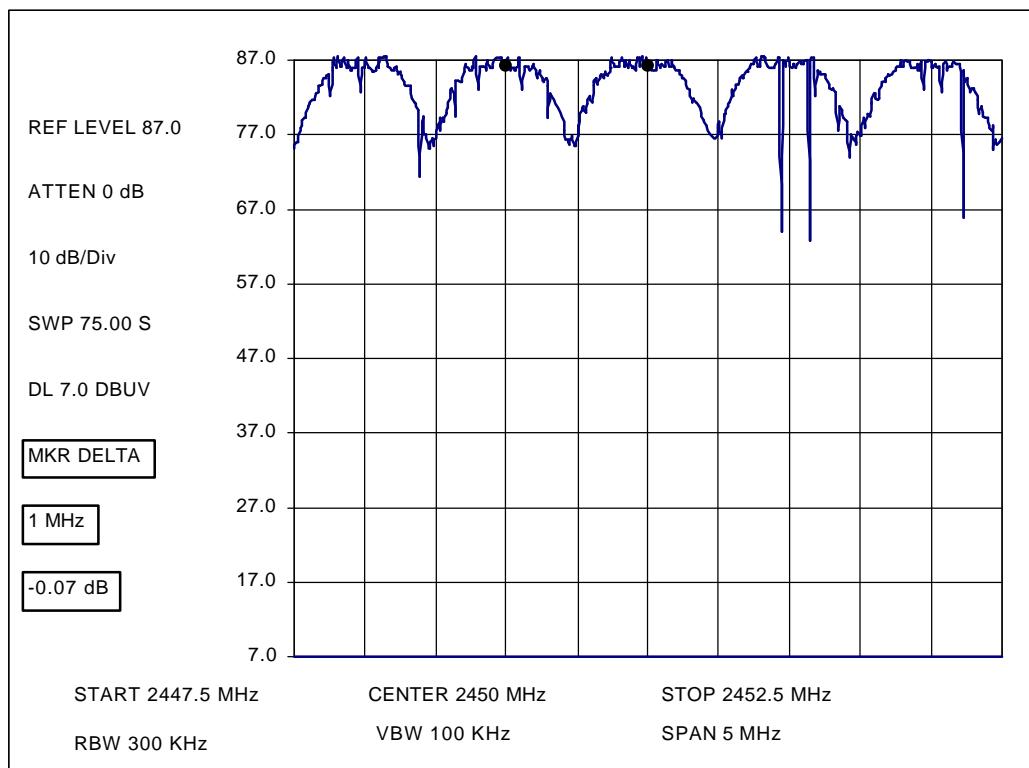
For channel spacing readings, the spectrum analyzer SPAN was set to 5 MHz, and the RES BW was set to 300 kHz. A PEAK output reading was taken, and a marker frequency DELTA reading was taken between the two nearest peaks.

### 4.2.3 Test Result

| <b>Frequency<br/>MHz</b> | <b>20-dB Bandwidth<br/>MHz</b> |
|--------------------------|--------------------------------|
| 2405.0                   | 0.383                          |


| <b>Frequency<br/>MHz</b> | <b>Channel Spacing<br/>MHz</b> |
|--------------------------|--------------------------------|
| 2447.5 – 2452.5          | 1.0                            |

Refer to the following plots:


Plot 1: Low Channel 20 dB RF Bandwidth

Plot 2: Channel spacing

**Plot 1: Low Channel 20 dB RF Bandwidth**



**Plot 2: Channel spacing**



## 4.3 Channel Occupancy

FCC Rule 15.247(a)(1)(iii)

### 4.3.1 Requirements

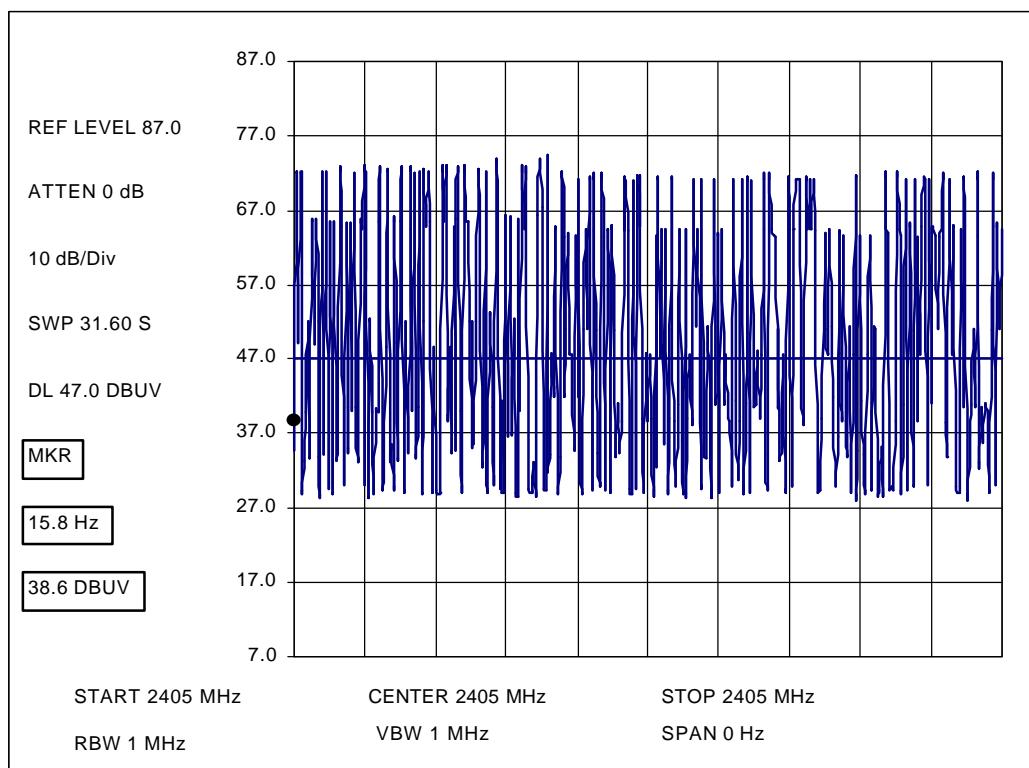
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### 4.3.2 Procedure

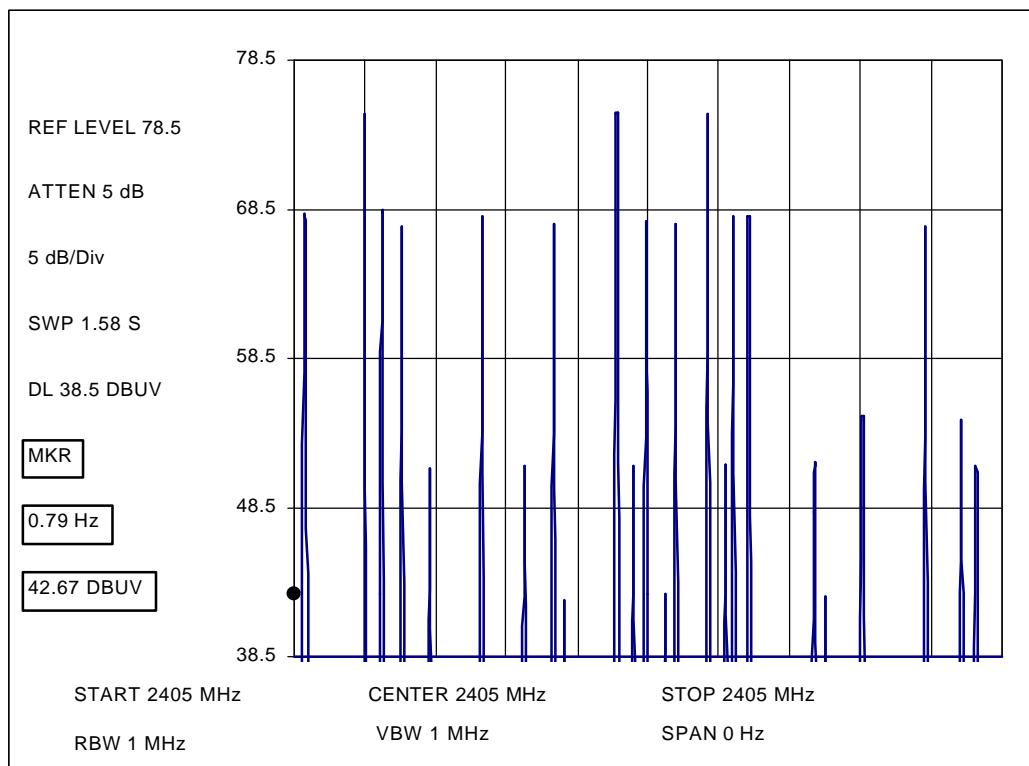
The spectrum analyzer was set to a SPAN of 0 and centered on a single hopping channel of the EUT. The spectrum analyzer RES BW was set to 1 MHz. The sweep was set to 0.4 multiplied by the number of hopping channels:  $0.4 \times 79 = 31.6$  seconds. One sweep was recorded. Due to the lack of resolution, the occupancy time could not be determined. The sweep time was reduced by a factor of 20 to 1.58 seconds, and the number of pulses was counted. The resolution and sweep time were further adjusted until a single pulse could be captured. The time on for a single pulse was then measured. The occupancy for a single channel was calculated as follows:

$$\begin{aligned}\text{OCCUPANCY (SEC)} &= (T_{\text{pulse}} * N_{\text{pulses}}) * [(0.4 * N_{\text{channels}})/T_{\text{sweep}}] \\ &= (0.0009 * 20) * [(0.4 * 79)/1.58] = 0.36 \text{ seconds}\end{aligned}$$

### 4.3.3 Test Result


| Frequency<br>MHz | Occupancy<br>Sec |
|------------------|------------------|
| 2405             | 0.36             |

Refer to the following plots for occupancy data:


Plot 3: Channel occupancy with full sweep time

Plot 4: Channel frequency with sweep time divided by 20

**Plot 3: Channel occupancy with full sweep time**



**Plot 4: Channel frequency with sweep time divided by 20**



## 4.4 Out-of-Band Conducted Emissions FCC Rule 15.247(c)

### 4.4.1 Requirements

In any 100 kHz bandwidth outside the EUT passband, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

### 4.4.2 Procedure

Testing of the out-of-band conducted emissions was not applicable because the antenna was a permanently connected PCB antenna.

# Intertek Testing Services

---

## 4.5 Out-of-Band Radiated Emissions (except emissions in Restricted Bands) FCC Rule 15.247(c)

### 4.5.1 Requirements

In any 100 kHz bandwidth outside the EUT passband, the radiated emission shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

### 4.5.2 Procedure

For out-of-band conducted emissions that are close to or that exceed the 20 dB attenuation requirement described in the section 4.4, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the 20 dB attenuation requirement.

### 4.5.3 Test Result

The EUT met the out-of-band radiated emissions requirements.

Refer to the following data table(s) for radiated emissions data:

Table 2: Fundamental and Harmonics Field Strength Measurements

## 4.6 Transmitter Radiated Emissions in Restricted Bands

FCC Rules 15.205, 15.209

### 4.6.1 Requirements

The emission shall not exceed the Field Strength levels specified in 15.209.

### 4.6.2 Procedure

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. The signal is maximized through rotation and placement in the three orthogonal axes.

During the test the EUT is rotated and the antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

Radiated emission measurements were performed from 30 MHz to 25000 MHz.

Analyzer resolution is:

- 100 kHz or greater for frequencies 1000 MHz and below,
- 1 MHz for frequencies above 1000 MHz. For those frequencies peak and average values were measured.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength in dB ( $\mu$ V/m)

RA = Receiver Amplitude (including preamplifier) in dB ( $\mu$ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

If the EUT is operating in the 2.4 - 2.4835 GHz band, the Band-edge radiated emission measurements were performed using the "Marker-delta" method.

### 4.6.3 Test Result

Refer to Table 2 for a list of the emission frequencies, the limit, and the margin of compliance.

# Intertek Testing Services

---

**Table 2: Fundamental and Harmonics Field Strength Measurements**

Company: **GMP Wireless Medicine, Inc.**  
 Model: **Wireless ECG, DP2**  
 Project No.: **3036798**  
 Date: 02/04/03  
 Standard: Res-Bands  
 Class: B Group: None  
 Notes: Patient Transceiver

Tested by: Jeremy O. Pickens  
 Location: Duluth  
 Detector: HP8546  
 Antenna: AH571  
 PreAmp: HP8449B  
 Cable(S): Cable TW3 HS7000 N-SMA  
 Distance: 1

| Ant.<br>Pol.<br>(V/H)                                                                | Frequency<br>MHz | Reading<br>dB(uV) | Antenna<br>Factor<br>dB(1/m) | Cable<br>Loss<br>dB | Pre-amp<br>Factor<br>dB | Distance<br>Factor<br>dB | Net<br>dB(uV/m) | Limit<br>dB(uV/m) | Margin<br>dB |
|--------------------------------------------------------------------------------------|------------------|-------------------|------------------------------|---------------------|-------------------------|--------------------------|-----------------|-------------------|--------------|
| <b>TX: 2405MHz, S/N: 70000-A2005-0019</b>                                            |                  |                   |                              |                     |                         |                          |                 |                   |              |
| <b>Fundamental Readings Taken at 3m</b>                                              |                  |                   |                              |                     |                         |                          |                 |                   |              |
| H, X-Axis                                                                            | 2405.000         | 55.1              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 93.5            | 137.0             | -43.5        |
| H, Y-Axis                                                                            | 2405.000         | 53.1              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 91.5            | 137.0             | -45.5        |
| H, Z-Axis                                                                            | 2405.000         | 52.7              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 91.1            | 137.0             | -45.9        |
| <b>Harmonic Readings: Taken at worst-case orientation - X-axis, 1m Test Distance</b> |                  |                   |                              |                     |                         |                          |                 |                   |              |
| h                                                                                    | 4810.000         | 39.1              | 34.1                         | 12.6                | 34.9                    | 9.5                      | 41.3            | 54.0              | -12.7        |
| v                                                                                    | 4810.000         | 39.7              | 34.1                         | 12.6                | 34.9                    | 9.5                      | 41.9            | 54.0              | -12.1        |
| No other harmonics detected.                                                         |                  |                   |                              |                     |                         |                          |                 |                   |              |
| <b>TX: 2437MHz, S/N: 70000-A2005-0020</b>                                            |                  |                   |                              |                     |                         |                          |                 |                   |              |
| <b>Fundamental Readings Taken at 3m</b>                                              |                  |                   |                              |                     |                         |                          |                 |                   |              |
| H, X-Axis                                                                            | 2437.000         | 53.4              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 91.8            | 137.0             | -45.2        |
| H, Y-Axis                                                                            | 2437.000         | 50.9              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 89.3            | 137.0             | -47.7        |
| H, Z-Axis                                                                            | 2437.000         | 51.9              | 29.2                         | 9.2                 | 0.0                     | 0.0                      | 90.3            | 137.0             | -46.7        |
| <b>Harmonic Readings: Taken at worst-case orientation - X-axis, 1m Test Distance</b> |                  |                   |                              |                     |                         |                          |                 |                   |              |
| h                                                                                    | 4874.000         | 37.9              | 34.3                         | 12.7                | 34.9                    | 9.5                      | 40.4            | 54.0              | -13.6        |
| v                                                                                    | 4874.000         | 40.2              | 34.3                         | 12.7                | 34.9                    | 9.5                      | 42.7            | 54.0              | -11.3        |
| No other harmonics detected.                                                         |                  |                   |                              |                     |                         |                          |                 |                   |              |
| <b>TX: 2479MHz, S/N: 70000-A2005-0021</b>                                            |                  |                   |                              |                     |                         |                          |                 |                   |              |
| <b>Fundamental Readings Taken at 3m</b>                                              |                  |                   |                              |                     |                         |                          |                 |                   |              |
| H, X-Axis                                                                            | 2479.000         | 53.0              | 29.1                         | 9.3                 | 0.0                     | 0.0                      | 91.4            | 137.0             | -45.6        |
| H, Y-Axis                                                                            | 2479.000         | 46.5              | 29.1                         | 9.3                 | 0.0                     | 0.0                      | 84.9            | 137.0             | -52.1        |
| H, Z-Axis                                                                            | 2479.000         | 51.5              | 29.1                         | 9.3                 | 0.0                     | 0.0                      | 89.9            | 137.0             | -47.1        |
| <b>Harmonic Readings: Taken at worst-case orientation - X-axis, 1m Test Distance</b> |                  |                   |                              |                     |                         |                          |                 |                   |              |
| h                                                                                    | 4958.000         | 38.8              | 34.6                         | 12.8                | 34.8                    | 9.5                      | 41.8            | 54.0              | -12.2        |
| v                                                                                    | 4958.000         | 40.8              | 34.6                         | 12.8                | 34.8                    | 9.5                      | 43.8            | 54.0              | -10.2        |

No other harmonics detected.

# Intertek Testing Services

---

## 4.7 AC Line Conducted Emission FCC Rule 15.207

AC line conducted emission test was not required because the EUT was battery powered.

## 4.8 Radiated Emissions from Digital Section of Transceiver

- Not required - No digital part
- Test results are attached
- Included in the separate verification report.

## 4.9 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation) FCC Rule 15.109, 15.111

- Not required - EUT operation above 960 MHz only
- Not required - EUT is transmitter only
- Test results are attached

## 5 Antenna Requirement

|   |                                                                                                                                                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X | The transmitter uses a permanently connected antenna.                                                                                                                           |
|   | The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but does NOT use a standard antenna jack or electrical connector. |
|   | The EUT requires professional installation.                                                                                                                                     |

Please refer to the attached documentation for details.

## 6 List of test equipment

| Description        | Make         | Model            | Serial #    | Cal Date |
|--------------------|--------------|------------------|-------------|----------|
| EMI Receiver       | HP           | 85462A           | 3410A00173  | 3/28/02  |
| RF Filter Selector | HP           | 85460A           | 3348A00203  | 3/28/02  |
| PreAmp             | HP           | 8449B            | 3008A0089   | 10/24/02 |
| PreAmp             | HP           | 8447D            | 2648A04296  | 8/9/02   |
| BiLog Antenna      | Chase        | CBL6112B         | 2622        | 8/26/02  |
| Horn Antenna       | EMCO         | 3115             | 9208-3919   | 2/20/02  |
| Horn Antenna       | AH Systems   | SAS200/571       | 246         | 1/31/03  |
| Cable              | Huber-Suhner | HS7000N-SMA      | 211266      | 12/4/02  |
| Cable              | Andrews      | CableTW2         | 211411      | 12/4/02  |
| Cable              | Andrews      | CableTW3         | 211412      | 12/4/02  |
| LISN               | Fischer      | FCC-LISN-50-50-M | 2019        | 8/6/02   |
| Cable              | Andrews      | Cable TT4        | ITS# 211404 | 12/4/02  |

## 7 Document History

| Revision/<br>Job Number | Writer<br>Initials | Date              | Change            |
|-------------------------|--------------------|-------------------|-------------------|
| 1.0 / 3036798           |                    | February 24, 2003 | Original document |
|                         |                    |                   |                   |
|                         |                    |                   |                   |
|                         |                    |                   |                   |
|                         |                    |                   |                   |
|                         |                    |                   |                   |