

SUBMITTAL APPLICATION REPORT

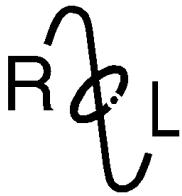
FOR GRANT OF CERTIFICATION

FOR

Model: HideRider TX-100
916 MHz
Low Power Transmitter
FCC ID: QXJHIDERIDE100

FOR

Iron Mountain Products LLC
849 North 1909 Road
LeCompton, KS 66050


Test Report Number: 121101

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #: 121101
Test to: FCC CFR 47 15.249
File: Iron Mtn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 1 of 23

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

Application for Grant of Certification Engineering Test Report

FOR
47CFR, PART 15C - Intentional Radiators
47CFR Paragraph 15.249
License Exempt Intentional Radiator

For

Iron Mountain Products LLC

849 North 1909 Road
LeCompton, KS 66050
Dennis Steinman
CEO

Low Power Transmitter
Model: HideRider TX-100
Frequency Range 916 MHz
FCC ID#: QXJHIDERIDE100

Test Date: November 1, 2012

Certifying Engineer: *Scot D. Rogers*

Scot D. Rogers
Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #:121101
Test to: FCC CFR 47 15.249
File: Iron Mtn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 2 of 23

Table Of Contents

TABLE OF CONTENTS.....	3
REVISIONS.....	4
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
ENVIRONMENTAL CONDITIONS.....	5
STATEMENT OF MODIFICATIONS AND DEVIATIONS	5
APPLICATION FOR CERTIFICATION.....	6
EQUIPMENT TESTED.....	7
Equipment Function and Configuration	7
Equipment Configuration.....	7
LIST OF TEST EQUIPMENT	8
UNITS OF MEASUREMENTS	9
TEST SITE LOCATIONS	9
APPLICABLE STANDARDS & TEST PROCEDURES	9
AC Line Conducted Emission Test Procedure	10
Diagram 1 Test arrangement for Conducted emissions	10
Radiated Emission Test Procedure.....	11
Diagram 2 Test arrangement for radiated emissions of tabletop equipment.....	12
Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)	13
INTENTIONAL RADIATORS.....	13
Antenna Requirements	13
Restricted Bands of Operation.....	14

Table 1 Radiated Emissions in Restricted Bands Data (worst-case)	14
Summary of Results for Radiated Emissions in Restricted Bands	14
AC Line Conducted Emissions Procedure	14
General Radiated Emissions Procedure.....	15
Table 2 General Radiated Emissions from EUT Data (Highest Emissions).....	15
Summary of Results for General Radiated Emissions	15
Low Power Transmitter Operation in the Band 902 – 928 MHz	16
Figure One Plot of Fundamental Operation in Frequency Band.....	16
Table 3 Transmitter Radiated Emission.....	17
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator.....	17
ANNEX.....	18
Annex A Measurement Uncertainty Calculations	19
Annex B Rogers Labs Test Equipment List.....	20
Annex C Rogers Qualifications	21
Annex D FCC Site Registration Letter.....	22
Annex E Industry Canada Site Registration Letter	23

Revisions

Revision 1, Report Issued November 14, 2012

Forward

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt Digital Transmission System Intentional Radiator operating under 47CFR Paragraph 15.249.

Name of Applicant:

Iron Mountain Products LLC
849 North 1909 Road
LeCompton, KS 66050

Model: HideRider TX-100

FCC I.D.: QXJHIDERIDE100 FRN: 0022 15 5600

Frequency Range: 916 MHz

Operating Power:

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Emissions as per 47CFR paragraphs 2 and 15.205	-41.1	Complies
Emissions as per 47CFR paragraphs 2 and 15.207	N/A	Complies
Emissions as per 47CFR paragraphs 2 and 15.209	-41.1	Complies
Emissions as per 47CFR paragraphs 2 and 15.249, Harmonics	-41.1	Complies

Environmental Conditions

Ambient Temperature 20.1° C

Relative Humidity 35%

Atmospheric Pressure 1015.6 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the design to demonstrate compliance with the CFR47 Part 15C emissions requirements. There were no deviations to the specifications.

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #:121101
Test to: FCC CFR 47 15.249
File: Iron Mntn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 5 of 23

Application for Certification

(1) Manufacturer: Iron Mountain Products LLC
849 North 1909 Road
LeCompton, KS 66050

(2) Identification: Model: HideRider TX-100
FCC I.D.: QXJHIDERIDE100

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

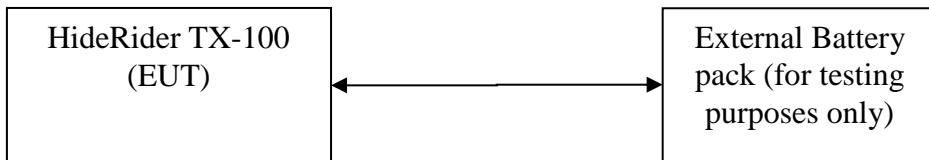
(8) List of Peripheral Equipment Necessary for operation. The design offers no provision for interfacing with peripheral equipment.

(9) Transition Provisions of 15.37 are not being requested.

(10) Not Applicable. The unit is not a scanning receiver.

(11) Not Applicable. The EUT does not operate in the 59 – 64 GHz frequency band.

(12) The equipment is not software defined and this section is not applicable.


Equipment Tested

<u>Equipment</u>	<u>Model</u>	<u>FCC I.D.</u>
EUT	HideRider TX-100	QXJHIDERIDE100

Equipment Function and Configuration

The EUT is a 916 MHz low power transmitter used in radio frequency location and tracking. The equipment is marketed for use to incorporate a wireless tracking link for the bow hunting enthusiast. The transmitter device attaches to arrow shaft for transfer to the animal. Transmitter is activated upon impact and transmits radio signal for use in tracking and location. For testing purposes the HideRider TX-100 transmitter was powered from the manufacturer supplied DC battery. Test software was installed in the test sample forcing the transmitter to 100% duty cycle for testing purposes. These modifications ensured maximum transmit power and worst-case harmonic emissions were present while performing testing. No interfacing options are provided on the design. The design incorporates a permanently attached antenna and offers no provision for replacement or modification. The antenna port connection complies with the unique antenna connection requirements.

Equipment Configuration

List of Test Equipment

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

HP 8591 EM Analyzer Settings		
Conducted Emissions		
RBW	AVG. BW	Detector Function
9 kHz	30 kHz	Peak / Quasi Peak
Radiated Emissions		
RBW	AVG. BW	Detector Function
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A Analyzer Settings		
RBW	Video BW	Detector Function
100 kHz	100 kHz	Peak
1 MHz	1 MHz	Peak / Average

Equipment	Manufacturer	Model	Band	Cal Date	Due
<input checked="" type="checkbox"/> LISN	Comp. Design	FCC-LISN-2-MOD.CD	.15-30MHz	10/12	10/13
<input type="checkbox"/> Antenna	ARA	BCD-235-B	20-350MHz	10/12	10/13
<input type="checkbox"/> Antenna	EMCO	3147	200-1000MHz	10/12	10/13
<input checked="" type="checkbox"/> Antenna	Com Power	AH-118	1-18 GHz	10/11	10/13
<input type="checkbox"/> Antenna	Com Power	AH-840	18-40 GHz	10/12	10/13
<input checked="" type="checkbox"/> Antenna	Standard	FXRY638A	10-18 GHz	3/12	5/13
<input checked="" type="checkbox"/> Antenna	EMCO	6509	.001-30 MHz	2/12	2/13
<input type="checkbox"/> Antenna	EMCO	3143	20-1200 MHz	5/12	5/13
<input checked="" type="checkbox"/> Antenna	Sunol	JB-6	30-1000 MHz	5/12	5/13
<input type="checkbox"/> Analyzer	HP	8591EM	9kHz-1.8GHz	5/12	5/13
<input type="checkbox"/> Analyzer	HP	8562A	9kHz-110GHz	5/12	5/13
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40	20Hz-40GHz	5/12	5/13
<input checked="" type="checkbox"/> Amplifier	Com-Power	PA-010	100Hz-30MHz	10/12	10/13
<input checked="" type="checkbox"/> Amplifier	Com-Power	CPPA-102	1-1000 MHz	10/12	10/13
<input checked="" type="checkbox"/> Amplifier	Com-Power	PA-122	0.5-22 GHz	10/12	10/13

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS (dB μ V/m @ 3m) = FSM (dB μ V) + A.F. (dB) - Gain (dB)

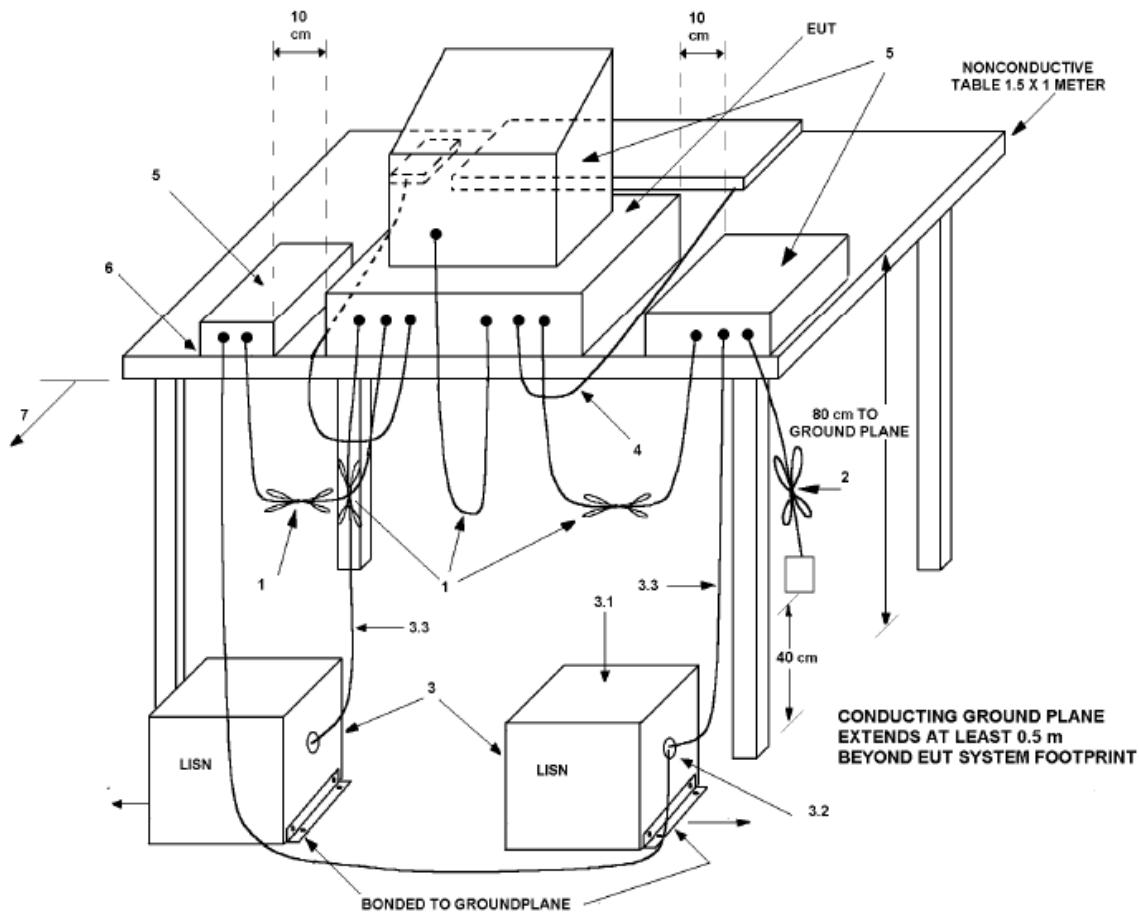
Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS

Site Registration Refer to Annex for Site Registration Letters

NVLAP Accreditation Lab code 200087-0

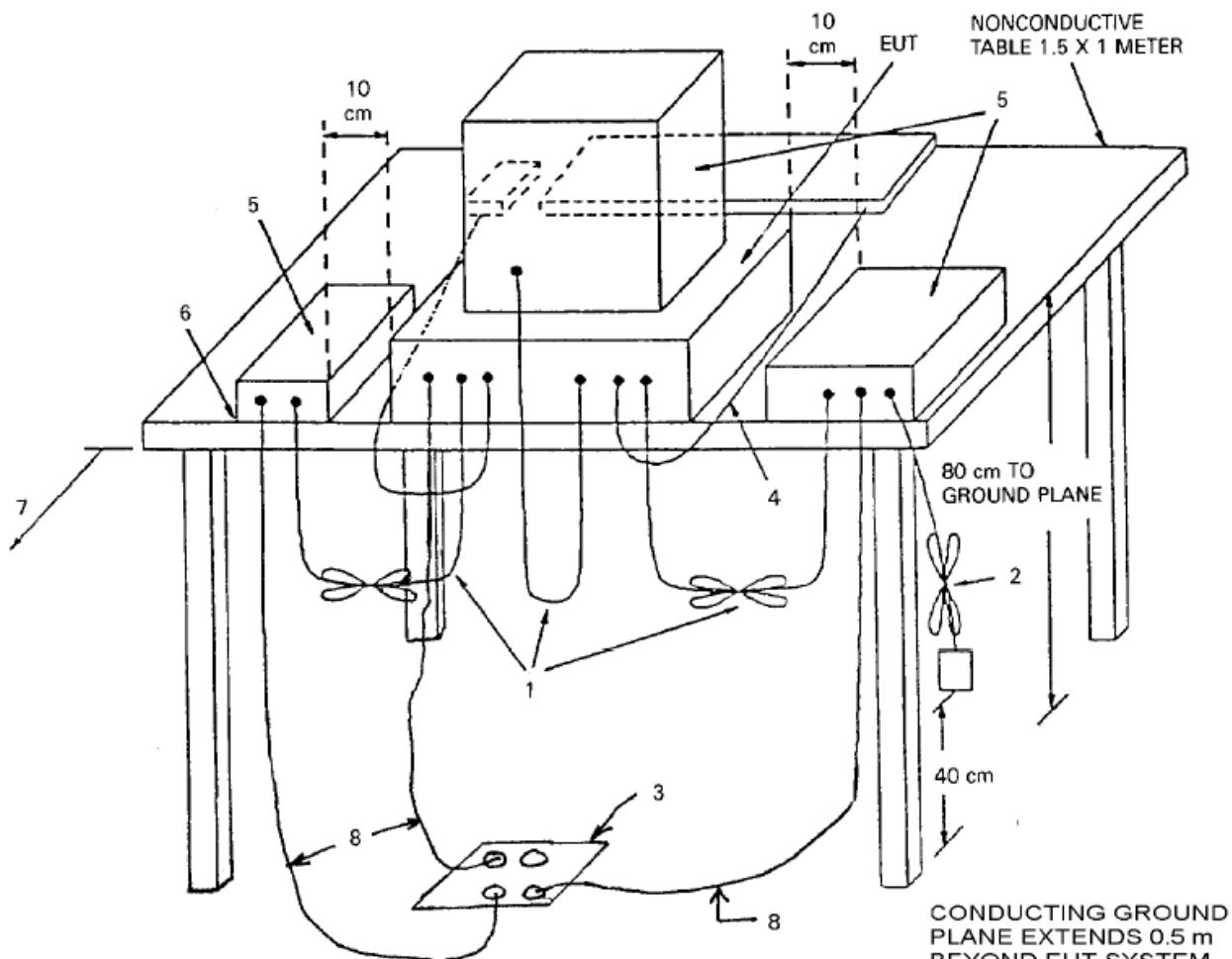

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2011, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.249 the following information is submitted. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI C63.4-2009 Document. Testing procedures include testing for the AC line-conducted emissions performed as defined in sections 7 and 13.1.3, testing of the radiated emissions performed as defined in sections 8 and 13.1.4 of ANSI C63.4-2009. Testing of the intentional radiated emissions was performed as defined in section 13 of ANSI C63.4-2009.

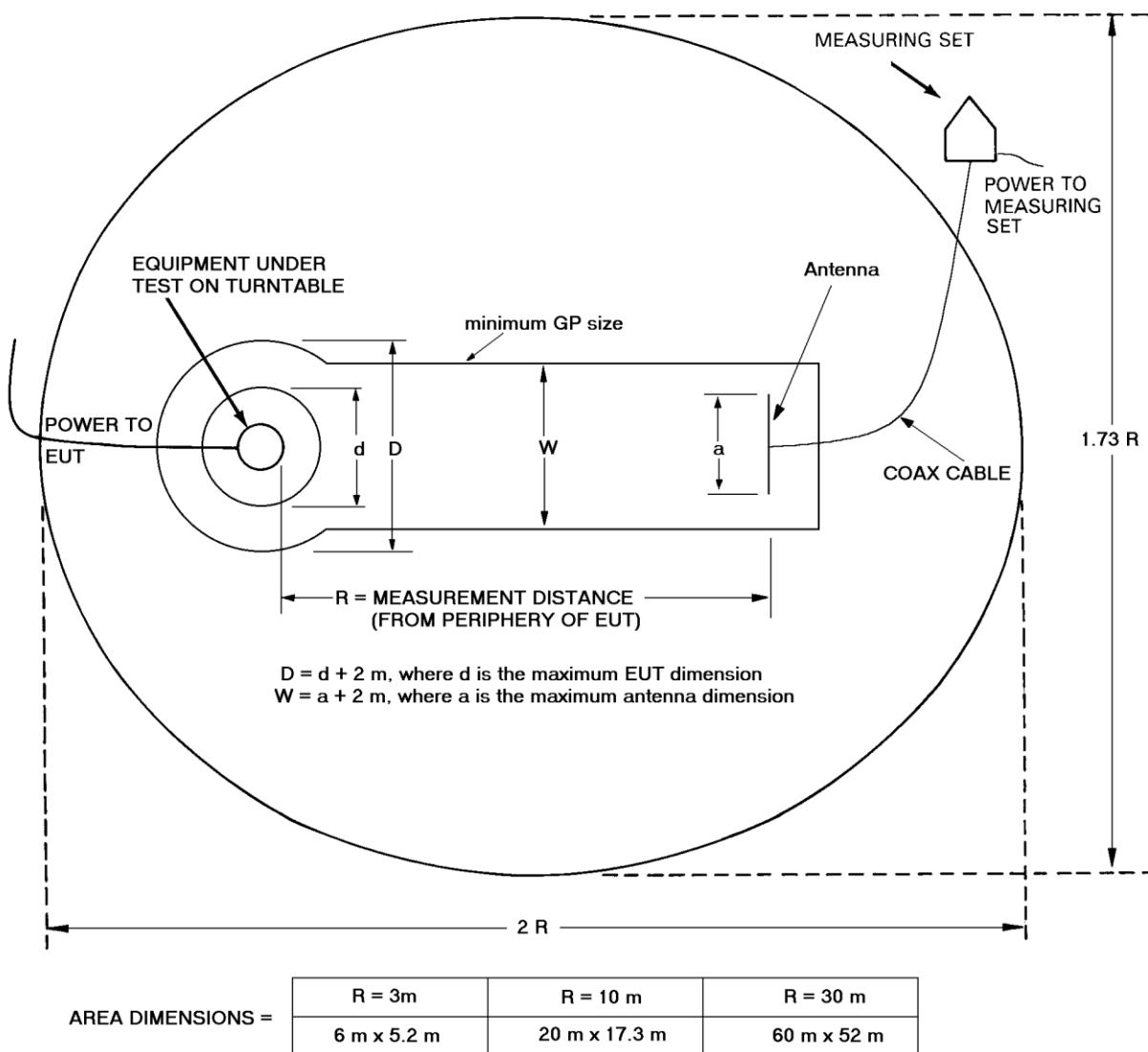
AC Line Conducted Emission Test Procedure

The design operates from direct current battery power only and offers no provision for connection to utility AC power systems. Therefore, no AC line conducted emissions testing is required. Testing for the AC line-conducted emissions testing would be performed as defined in sections 7 and 13.1.3 of ANSI C63.4-2009. The test setup including the EUT would be arranged in typical equipment configurations and placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system would be isolated from the power source using a standard LISN with a $50\text{-}\mu\text{H}$ choke. EMI would be coupled to the spectrum analyzer through a $0.1\text{ }\mu\text{F}$ capacitor internal to the LISN. The LISN is positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables would be draped over the back edge of the table. Refer to diagram 1 showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Diagram 1 Test arrangement for Conducted emissions



1. Interconnecting cables that hang closer than 40 cm to the ground plane were folded back and forth in the center forming a bundle 30 cm to 40 cm long.
2. Input/output (I/O) cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
3. EUT connected to one LISN. Unused LISN measuring port connectors are terminated into 50 Ω loads. LISN is placed on top of and bonded to reference ground plane.
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple outlet strips can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN is positioned at least 80 cm from nearest part of EUT chassis.
4. Cables of hand-operated devices, such as keyboards, mice, and so on, shall be placed as for normal use.
5. Non-EUT components of EUT system being tested.
6. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
7. Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 5.2.2 for options).


Radiated Emission Test Procedure

The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. Testing for the radiated emissions was performed as required by CFR47 15, RSS-210 and specified in sections 8 and 13.1.4 of ANSI C63.4-2009. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 25,000 MHz was searched for during preliminary investigation. Refer to diagrams 2 and 3 showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Diagram 2 Test arrangement for radiated emissions of tabletop equipment

1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center, forming a bundle 30 cm to 40 cm long.
2. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminating impedance. The total length shall not exceed 1 m.
3. If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground plane with the receptacle flush with the ground plane.
4. Cables of hand-operated devices, such as keyboards, mice, and so on, shall be placed as for normal use.
5. Non-EUT components of EUT system being tested.
6. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop (possibly center of table for transmitter equipment).
7. No vertical conducting plane used.
8. Power cords drape to the floor and are routed over to receptacle.

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Intentional Radiators

As per CFR47, Subpart C, paragraph 15.249 the following information is submitted.

Antenna Requirements

The EUT is produced with permanently attached antenna and offers no provision for antenna replacement or modification. The antenna connection point complies with the unique antenna connection requirements. The device is complaint with requirements of 47CFR 15.203. There are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were measured at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Table 1 Radiated Emissions in Restricted Bands Data (worst-case)

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)
2749.5	0.1	N/A	-2.8	13.5	N/A	12.9	54.0
3666.0	-2.7	N/A	-11.0	5.8	N/A	3.4	54.0
4582.5	-4.2	N/A	-16.8	-2.1	N/A	-12.3	54.0
7332.0	-1.8	N/A	-15.0	-1.9	N/A	-15.0	54.0
8248.5	-4.3	N/A	-17.2	-3.6	N/A	-16.8	54.0
9165.0	-1.5	N/A	-13.7	-1.3	N/A	-13.6	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C Intentional Radiators. The EUT demonstrated a minimum margin of -41.1 dB below the requirements. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

AC Line Conducted Emissions Procedure

The EUT operates solely from direct current battery power and offers no provision for connection to utility AC power systems. Therefore, no AC line conducted emissions testing was performed or required.

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #:121101
Test to: FCC CFR 47 15.249
File: Iron Mtn TX100 TstRpt 121101

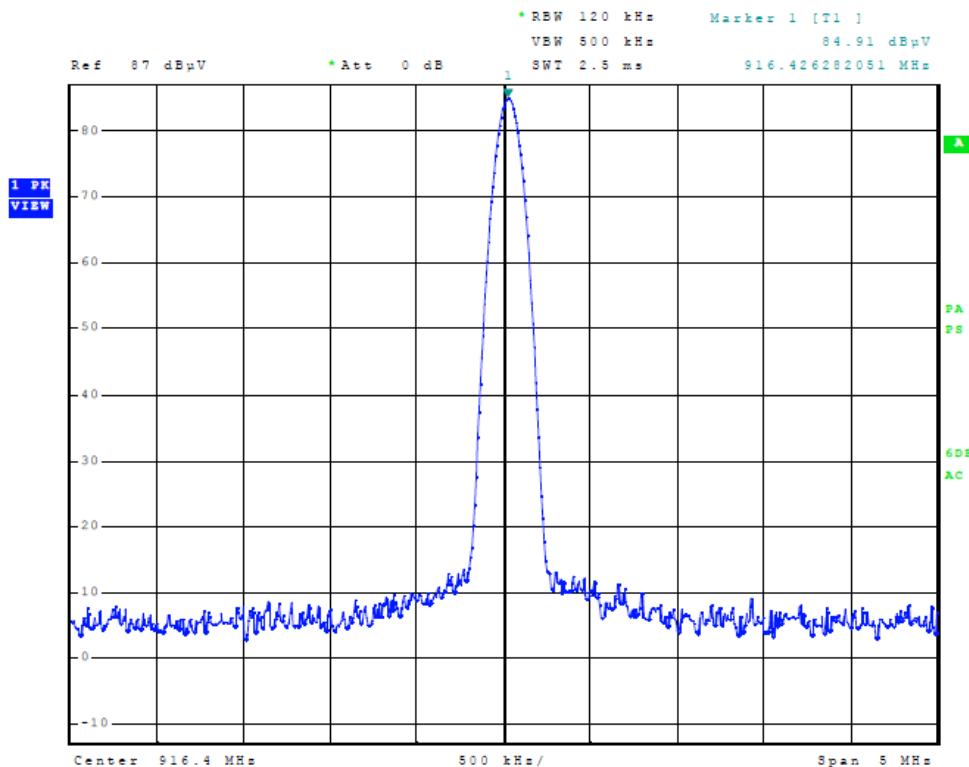
FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 14 of 23

General Radiated Emissions Procedure

The EUT was arranged in the testing configuration emulating a typical equipment configuration for testing purposes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz MHz to 12,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used include Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers from 1 GHz to 40 GHz, notch filters and appropriate amplifiers and external mixers.

Table 2 General Radiated Emissions from EUT Data (Highest Emissions)

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Average Limit @ 3m (dB μ V/m)
1833.0	-10.4	N/A	-19.1	4.8	N/A	3.8	54.0
2749.5	0.1	N/A	-2.8	13.5	N/A	12.9	54.0


Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR47 Part 15C paragraph 15.209 Intentional Radiators. The EUT demonstrated a minimum margin of -41.1 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Low Power Transmitter Operation in the Band 902 – 928 MHz

The power output was measured on the OATS at a three-meter distance. The EUT was placed on a wooden turntable 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of radiated emissions below 1000 MHz were measured using a test receiver and/or spectrum analyzer. The peak and average amplitude of radiated emissions above 1000 MHz were measured using a test receiver and/or spectrum analyzer with data recorded from the test instrument measurement result. The data reported below represents the worst-case operational conditions. A plot was taken of the fundamental emission operation in the 902-928 MHz frequency band. Refer to figure one showing for plot of the EUT performance displaying compliance with the specifications.

Table 3 Transmitter Radiated Emission

Frequency in MHz	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Average Limit @ 3m (dB μ V/m)
916.5	--	37.3	N/A	--	52.1	N/A	94.0
1833.0	-10.4	N/A	-19.1	4.8	N/A	3.8	54.0
2749.5	0.1	N/A	-2.8	13.5	N/A	12.9	54.0
3666.0	-2.7	N/A	-11.0	5.8	N/A	3.4	54.0
4582.5	-4.2	N/A	-16.8	-2.1	N/A	-12.3	54.0
5499.0	-1.9	N/A	-14.3	-1.2	N/A	-13.9	54.0
6415.5	-4.7	N/A	-17.3	-4.7	N/A	-16.8	54.0
7332.0	-1.8	N/A	-15.0	-1.9	N/A	-15.0	54.0
8248.5	-4.3	N/A	-17.2	-3.6	N/A	-16.8	54.0
9165.0	-1.5	N/A	-13.7	-1.3	N/A	-13.6	54.0

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the emissions requirements for CFR47 Part 15.249 Intentional Radiators. The EUT presented a minimum margin of -41.9 dB below the fundamental emission requirement and -41.1 dB below harmonic emission requirement. There were no other significantly measurable emissions in restricted bands than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. The EUT demonstrated compliance with specifications of 15.249. There are no deviations or exceptions to the requirements.

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #:121101
Test to: FCC CFR 47 15.249
File: Iron Mntn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 18 of 23

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	U _(lab)
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Annex B Rogers Labs Test Equipment List

<u>Equipment</u>	<u>Calibration Date</u>
Spectrum Analyzer: Rohde & Schwarz ESU40	5/12
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520	5/12
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
Spectrum Analyzer: HP 8591EM	5/12
Antenna: EMCO Biconilog Model: 3143	5/12
Antenna: Sunol Biconilog Model: JB6	10/12
Antenna: EMCO Log Periodic Model: 3147	10/12
Antenna: Antenna Research Biconical Model: BCD 235	10/12
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/50 ohm/0.1 µf	10/12
R.F. Preamp PA-010	10/12
R.F. Preamp CPPA-102	10/12
R.F. Preamp PA-122	10/12
Cable assembly: (L1) consisting of Belden RG-58, HP11509A, CAT-3	10/12
Cable assembly: (L2) consisting of Belden RG-58, HP11509A, CAT-3	10/12
Cable: (L3) Belden 8268	10/12
Cable: Time Microwave: 4M-750HF290-750	10/12
Cable: Time Microwave: 10M-750HF290-750	10/12
Frequency Counter: Leader LDC825	2/12
Oscilloscope Scope: Tektronix 2230	2/12
Wattmeter: Bird 43 with 50 Ohm Load 8085	2/12
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/12
R.F. Generators: HP 606A, HP 8614A, HP 8640B	2/12
R.F. Power Amp 65W Model: 470-A-1010	2/12
R.F. Power Amp 50W M185- 10-501	2/12
R.F. Power Amp A.R. Model: 10W 1010M7	2/12
R.F. Power Amp EIN Model: A301	2/12
LISN: Compliance Eng. Model 240/20	2/12
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08	2/12
Antenna: EMCO Dipole Set 3121C	2/12
Antenna: Compliance Design B-101	2/12
Antenna: Solar 9229-1 & 9230-1	2/12
Antenna: EMCO 6509	2/12
Audio Oscillator: HP 201CD	2/12
Peavey Power Amp Model: IPS 801	2/12
ELGAR Model: 1751	2/12
ELGAR Model: TG 704A-3D	2/12
ESD Test Set 2010i	2/12
Fast Transient Burst Generator Model: EFT/B-101	2/12
Field Intensity Meter: EFM-018	2/12
KEYTEK Ecat Surge Generator	2/12
Shielded Room 5 M x 3 M x 3.0 M	

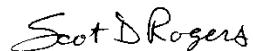
Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held


Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

Annex D FCC Site Registration Letter**FEDERAL COMMUNICATIONS COMMISSION**

**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

November 01, 2011

Registration Number: 90910

Rogers Labs, Inc.
4405 West 259th Terrace,
Louisburg, KS 66053

Attention: Scot Rogers,
Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: November 01, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish
Industry Analyst

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #:121101
Test to: FCC CFR 47 15.249
File: Iron Mtn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 22 of 23

Annex E Industry Canada Site Registration Letter

December 28, 2011

OUR FILE: 46405-3041
Submission No: 152685

Rogers Labs Inc.
4405 West 259th Terrace
Louisburg, KS, 66053
USA

Attention: Mr. Scot D. Rogers

Dear Sir/Madame:

The Bureau has received your application for the renewal of 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (**Site# 3041A-1**). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: **3041A**

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to **exceed three years**. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;
http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca Please reference our file and submission number above for all correspondence.

Yours sincerely,

A handwritten signature in black ink that reads "Dalwinder Gill".

Dalwinder Gill
For: Wireless Laboratory Manager
Certification and Engineering Bureau
3701 Carling Ave., Building 94
P.O. Box 11490, Station "H"
Ottawa, Ontario K2H 8S2
Email: dalwinder.gill@ic.gc.ca
Tel. No. (613) 998-8363
Fax. No. (613) 990-4752

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 1

Iron Mountain Products LLC
Model: HideRider TX-100
Test #: 121101
Test to: FCC CFR 47 15.249
File: Iron Mtn TX100 TstRpt 121101

FCC ID: QXJHIDERIDE100
SN: E1
Date: November 14, 2012
Page 23 of 23