ETC Report No.: 06-03-MAS-272-03

Sheet 1 of 22 Sheets FCC ID.: QWTPPT-100

FOR FCC 47 CFR, Part 15 Subpart C

Report No.: 06-03-MAS-272-03

Client: CHUNG-HSIN ELECTRIC& MACHINERY MFG.. CORP

Product: Portable Data Terminal

Trade Name: Mobia

Model No.: PPT-100

FCC ID: QWTPPT-100

Manufacturer/supplier: CHUNG-HSIN ELECTRIC& MACHINERY MFG.. CORP

Date test item received: 2006/03/29
Date test campaign completed: 2007/01/30
Date of issue: 2007/06/12

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 22 pages

Total number of pages of photos: External photos 4 page

Internal photos 12 pages

Setup photos 3 pages

Test Engineer Checked By Approved By

ames James Joe Hsieh

ELECTRONICS TESTING CENTER, TAIWAN NO.8, LANE 29, WENMING RD., LESHAN TSUEN, GUISHAN SHIANG, TAOYUAN COUNTY, TAIWAN 33383, R.O.C.TAIWAN, R.O.C.

TEL: (03) 3276170~4 INT: +886-3-3276170~4 FAX: (03) 3276188 INT: +886-3-3276188

ETC Report No.: 06-03-MAS-272-03

Sheet 2 of 22 Sheets FCC ID.: QWTPPT-100

Client : CHUNG-HSIN ELECTRIC& MACHINERY MFG.. CORP

Address : NO.25, Wen-Te Rd., Lo-Shan Village, Kwei Shan Hsiang, Taoyuan Hsien,

Taiwan, R.O.C.

Manufacturer : CHUNG-HSIN ELECTRIC& MACHINERY MFG.. CORP

Address : NO.25, Wen-Te Rd., Lo-Shan Village, Kwei Shan Hsiang, Taoyuan Hsien,

Taiwan, R.O.C.

EUT : Portable Data Terminal

Trade name : Mobia

Model No. : PPT-100

Power Source : Adapter : DSA-0131F-06 US 12

Input: 100-240Vac, 50/60Hz, 0.3A

Output: DC 6V, 2A

Regulations applied: FCC 47 CFR, Part 15 Subpart C (2006)

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

The compliance test is only certified for the test equipment and the results of the testing report relate only to the item tested. The compliance test of this report was conducted in accordance with the appropriate standards. It's not intention to assure the quality and performance of the product. This report shall not be reproduced except in full, without the approval of ETC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Laboratory Introduction: Electronics Testing Center, Taiwan is recognized, filed and mutual recognition arrangement as following:

- ① ISO9001: TüV Product Service
- ② ISO/IEC 17025: BSMI, CNLA, DGT, NVLAP, CCIBLAC, UL, Compliance
- 3 Filing: FCC, Industry Canada, VCCI
- ④ MRA: Australia, Hong Kong, New Zealand, Singapore, USA, Japan, Korea, China, APLAC through CNLA
- ⑤ FCC Registration Number: 90588, 91094, 91095

NVLAP Lab Code 200133-0

Table of Contents

Page

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION	4 4 4
2. TEST SYSTEM AND LIMITATION	
2.1 DEVICE FOR TESTED SYSTEM 2.2 RESTRICTED BANDS OF OPERATION. 2.3 LIMITATION. 2.4 LABELING REQUIREMENT 2.5 USER INFORMATION.	
3. RADIATED EMISSION MEASUREMENT	8
3.1 APPLICABLE STANDARD. 3.2 MEASUREMENT PROCEDURE 3.3 TEST DATA. 3.4 CALCULATION. 3.5 RADIATED TEST EQUIPMENT 3.6 MEASURING INSTRUMENT SETUP.	
4. FREQUENCY STABILITY	16
4.1 APPLICABLE STANDARD	16
5. CONDUCTED EMISSION MEASUREMENT	19
5.1 STANDARD APPLICABLE	
5.5 CONDUCTED MEASUREMENT EQUIPMENT	

ETC Report No.: 06-03-MAS-272-03 Sheet 4 of 22 Sheets FCC ID.: QWTPPT-100

1. GENERAL INFORMATION

1.1 Product Description

a) Type of EUT : Portable Data Terminal

b) Model No. : PPT-100 c) Trade Name : Mobia

d) FCC ID : QWTPPT-100 e) Working Frequency : 13.56 MHz

1.2 Characteristics of Device:

The device under test is a Portable Data Terminal with bar code scan function. It inset 13.56 MHz RFID module to read and write RFID tags.

1.3 Test Methodology

Both Conducted and radiated testing were performed according to the procedures in chapter 7 and chapter 8 of ANSI C63.4 (2003) and FCC 47 CFR Part 15.

1.4 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wen-ming Road, Lo-shan Tsun, Kweishan Hsiang, Taoyuan, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

1.5 Modification Record

One ferrite core (EROCORE / FH0900B) was cliped at signal cable with one circle. (Please refer to the photo of the test report.)

2. TEST SYSTEM AND LIMITATION

2.1 Device for Tested System

Device Manufacture		Model No.	S/N No.	Cable Description
*Portable Data Terminal	CHUNG-HSIN ELECTRIC& MACHINERY MFG CORP	PPT-100		1.8m*1, Unshielded Power Line/Adaptor 1.5m*1, Unshielded Signal Line
Notebook PC	ASUS	S1300		1.8m*1, Unshielded Power Line/Adaptor
*Lithium Battery	CHUNG-HSIN ELECTRIC& MACHINERY MFG CORP	NP120		

Remark "*" means equipment under test.

2.2 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

end spatie as timestens are permitted in any of the inequality can as institute the in-					
MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25		
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	Above 38.6		
13.36-13.41					
	1 1000 11				

Remark "**": Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.3 Limitation

(1) Conducted Emission Limits:

According to §15.107 and §15.207 Conducted limits.

For an unintentional and intentional radiator which is designed to be connected to the public utility (AC) power line, the conducted limit is the following:

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56	56-46
0.5 - 5.0	56	46
5.0 - 30.0	60	50

(2) Radiated Emission Limits:

According to §15.225 Operation within the band 13.110 – 14.010 MHz.

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

According to §15.109 and § 15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an unintentional and intentional radiator shall not exceed the field strength levels specified in the following table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 – 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Sheet 7 of 22 Sheets FCC ID.: QWTPPT-100

(3) Frequency Stability Limit

According to §15.225 Operation within the band 13.110 – 14.010 MHz.

(e) The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. To comply with the FCC RF exposure compliance requirement, the device and its antenna must not be co-located or operating to conjunction with any other antenna or transmitter.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

ETC Report No.: 06-03-MAS-272-03 Sheet 8 of 22 Sheets FCC ID.: QWTPPT-100

3. RADIATED EMISSION MEASUREMENT

3.1 Applicable Standard

According to §15.225 Operation within the band 13.110 – 14.010 MHz.

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

According to §15.109 and § 15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an unintentional and intentional radiator shall not exceed the field strength levels specified in the following table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

3.2 Measurement Procedure

A.Preliminary Measurement For Portable Devices.

For portable devices, the following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antennna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

ETC Report No. : 06-03-MAS-272-03

FCC ID.: QWTPPT-100

B. Final Measurement

1. Setup the configuration per figure 1 and 2 for frequencies measured below and above 30 MHz respectively. Turn on EUT and make sure that it is in continuous operating function.

- 2. For emission measured below 30 MHz, set the EMI Test Receiver on a 10 kHz and 30 kHz resolution bandwidth respectively for each frequency measured in step 2.
- 3. For emission measured above 30 MHz, set the EMI Test Receiver on a 120 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.

Sheet 9 of 22 Sheets

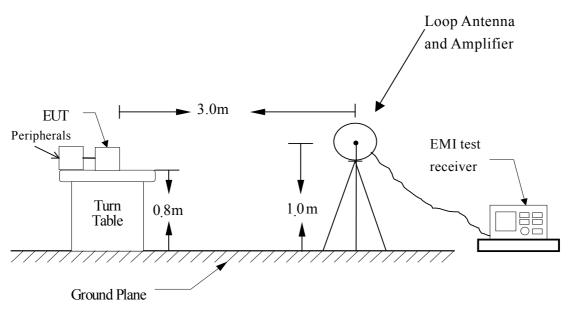
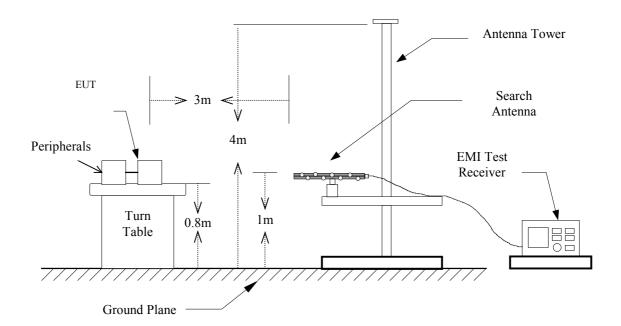



Figure 1: Frequencies measured below 30 MHz configuration

Figure 2: Frequencies measured above 30 MHz configuration

ETC Report No. : 06-03-MAS-272-03 Sheet 11 of 22 Sheets FCC ID.: QWTPPT-100

3.3 Test Data

Operated mode : <u>Continue Transmitting</u>

Test Date : <u>Jan. 30, 2007</u> Temperature : $\underline{19 \ ^{\circ}C}$ Humidity : $\underline{70 \ \%}$

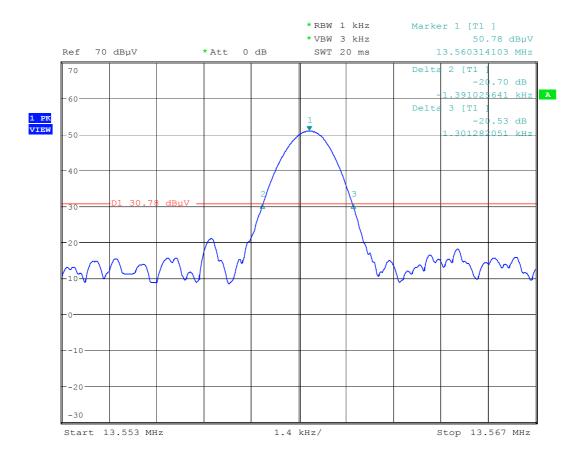
3.3.1 Fundamental

Frequency	Meter Reading (dBuV/m)	Corrected Factor	Result @3m (dBuV/m)	Resulot @30m (mV/m)	Limit @30m (mV/m)	Margin (mV/m)
(MHz)	QP	(dB)	QP	QP	QP	
13.56	50.8	6.9	57.7	0.0077	15.848	-15.8403

3.3.2 Harmonic

Frequency (kHz)	Meter Reading (dBuV) QP	Corrected Factor (dB)	Result @3m (dBuV/m) QP	Limit @3m (dBuV/m) QP	Margin @3m (dB)
27.120		5.5		69.5	
40.680		14.7		40.0	
54.240		9.4		40.0	
67.800		7.3		40.0	
81.360		8.4		40.0	
94.920		10.2		43.5	
108.480		13.3		43.5	
122.040		13.7		43.5	
135.600		13.3		43.5	

Note:


- 1. Place of Measurement: Measuring site of the ETC.
- 2. Test Result = Meter Reading + Correct Factor
- 3. If the result of peak value is under the limit of Quasi-Peak, the Quasi-Peak value doesn't need to be measured.

With a distant extrapolation of $40\log(30\text{m}/3\text{m})$ on the offset level of receiver during the test.

Limit Calculation:

Harmonic ($\S15.225(d)$): $20 \log (30) + 40 \log (30/3) = 69.5 \text{ dBuV/m}$

Occupied Bandwidth Measurement

ETC Report No. : 06-03-MAS-272-03 Sheet 13 of 22 Sheets FCC ID.: QWTPPT-100

3.3.3 Other Emission

EUT : RFID	Model:	Status:	
Condition : Horizontal	Date: 2007/1/31	Temp. : 19℃	Humi.: 75%

	Freq (MHz)	QP Level (dBuV)	Factor (dB/m)	QP Result (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dB)	Ant Height	Table Degree
1	162.184	22.7	14.9	37.6	43.5	-5.9	108	65
2	189.399	27.0	13.4	40.4	43.5	-3.1	110	214
3	203.006	27.2	13.1	40.3	43.5	-3.2	106	235
4	216.613	26.0	13.6	39.6	46.0	-6.4	104	301
5	331.303	26.2	17.5	43.7	46.0	-2.3	111	315
6	383.788	23.7	18.9	42.6	46.0	-3.4	109	241

EUT : RFID	Model:	Status:	
Condition : Vertical	Date: 2007/1/31	Temp. : 19℃	Humi.: 75%

	Freq (MHz)	QP Level (dBuV)	Factor (dB/m)	QP Result (dBuV/m)	QP Limit (dBuV/m)	QP Margin (dB)	Ant Height	Table Degree
1	39.719	25.6	13.0	38.6	40.0	-1.4	103	39
2	189.399	23.3	13.4	36.7	43.5	-6.8	108	69
3	383.788	23.2	18.9	42.1	46.0	-3.9	108	145
4	480.982	21.3	21.4	42.7	46.0	-3.3	104	264
5	527.635	22.9	22.4	45.3	46.0	-0.7	110	335
6	576.232	18.9	23.0	41.9	46.0	-4.1	109	304

Note:

- 1. Place of Measurement: Measuring site of the ETC.
- 2. Peak Result = Peak Reading + Correct Factor
- 3. AVG Result = Peak Result + Duty Factor
- 4. If the result of peak value is under the limit of Quasi-Peak, the Quasi-Peak value doesn't need to be measured.

3.4 Calculation

Field Strength:

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

RESULT = READING + CORR. FACTOR

where CORR. FACTOR = Antenna FACTOR + Cable FACTOR

3.5 Radiated Test Equipment

The following instrument are used for radiated emissions measurement:

Equipment	Manufacturer	Model No.	Next Cal. Due	
EMI Receiver	R&S	ESIB 7	05/16/2008	
PRE-Amplifier	ADVANTEST	BB525C	09/17/2007	
BiLog Antenna	Schaffner	CBL 6112B	06/19/2008	
Loop Antenna	EMCO	6512	07/15/2007	
Spectrum Analyzer	R&S	FSU46	10/31/2007	

Note: The standards used to perform this calibration are traceable to NML/ROC, NIST/USA and NPL.

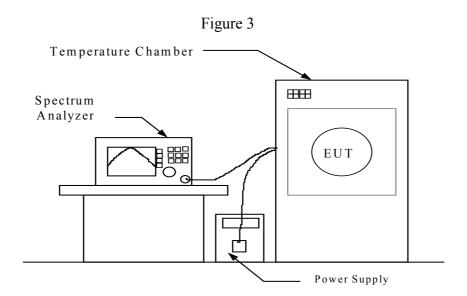
3.6 Measuring Instrument Setup

Measuring instrument setup in measured frequency band when specified detector function is used :

Frequency Band (MHz)	Instrument	Function	Resolution Bandwidth	Video Bandwidth
0.009 to 30	EMI Test Receiver	Peak	10 kHz	30 kHz
30 to 1000	EMI Test Receiver	Peak	120 kHz	300 kHz

4. FREQUENCY STABILITY

4.1 Applicable Standard


According to §15.225 Operation within the band 13.110 – 14.010 MHz.

(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.2 Test Equipment

Equipment	Manufacturer	Model No.	Next Cal. Date
Spectrum Analyzer	Agilent	8564EC	09/22/2007
Temperature Chamber	ESPEC	EBR-3HW2P3A-22	05/02/2008
DC Power Supply	GW	GPC-3030D	N/A
Digital Multi Meter	YF-FONG	YF1069	04/17/2008

4.3 Test Setup

ETC Report No.: 06-03-MAS-272-03 Sheet 17 of 22 Sheets FCC ID.: QWTPPT-100

4.4 Test Procedure

A. Frequency stability vs. temperature measurement

- 1. The EUT was placed into the constant temperature chamber.
- 2. The spectrum analyzer (a wide band antenna connected to the spectrum analyzer) was used to read the EUT operating frequency.
- 3. Set the constant temperature chamber temperature within the range of -20° C to $+50^{\circ}$ C, and measured the EUT operating frequency at start-up, and two, five, and ten minutes after startup.

B. Frequency stability vs. input voltage measurement

- 1. The EUT was placed into the constant temperature chamber and set the temperature to 20°C .
- 2. The spectrum analyzer (a wide band antenna connected to the spectrum analyzer) was used to read the EUT operating frequency.
- 3. The EUT is powered with the DC Power Supply, supplied it with 85% and 115% voltage, and measured the EUT operating frequency.

ETC Report No.: 06-03-MAS-272-03 Sheet 18 of 22 Sheets FCC ID.: QWTPPT-100

4.4 Test Data

: Continue Transmitting Operated mode

Temperature : 19 ℃ Humidity : <u>70 %</u> Test Date : Jan. 30, 2007

A. Frequency Stability Versus Environment Temperature ($50^{\circ}\text{C} \sim 0^{\circ}\text{C}$):

Reference Frequency: 13.5603 MHz					Limit : <u>+</u> 0.01%				
Environment	Frequency Measure with Time Elapsed								
Temperature	0 Minutes		2 Minutes		5 Minutes		10 Minutes		
(°C)	MHz	%	MHz	%	MHz	%	MHz	%	
50	13.5606	0.0022	13.5605	0.0015	13.5606	0.0022	13.5606	0.0022	
40	13.5605	0.0015	13.5603	0	13.5605	0.0015	13.5605	0.0015	
30	13.5603	0	13.5603	0	13.5603	0	13.5603	0	
20	13.5603	0	13.5603	0	13.5603	0	13.5603	0	
10	13.5603	0	13.5603	0	13.5603	0	13.5603	0	
0	13.5601	-0.0015	13.5600	-0.0022	13.5601	-0.0015	13.5601	-0.0015	

Note: The "operating temperature range ($50^{\circ}\text{C} \sim 0^{\circ}\text{C}$)" base on the user manual.

B. Frequency Stability Versus Input Power (±15%): Environment Temperature : 20 °C

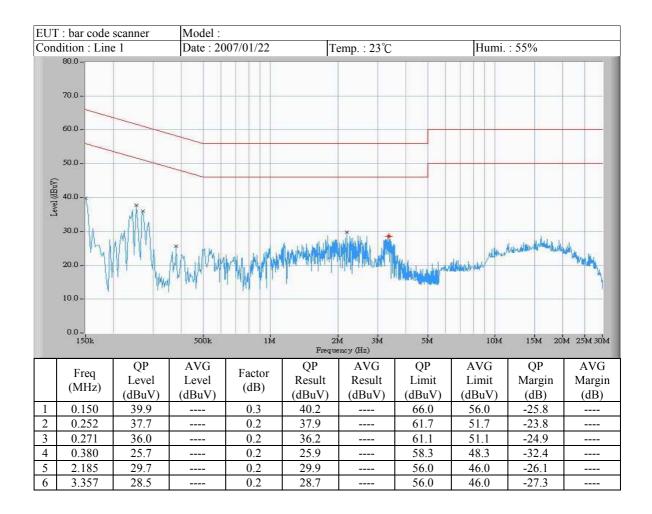
Reference Frequency:				Limit : <u>+</u> 0.01%				
Power		Frequency Measure with Time Elapsed						
Supplied	0 Minutes 2 Minutes			nutes	5 Minutes		10 Minutes	
(Vac)	MHz	%	MHz	%	MHz	%	MHz	%
93.5	13.5603	0	13.5603	0	13.5603	0	13.5603	0
126.5	13.5603	0	13.5603	0	13.5603	0	13.5603	0

5. CONDUCTED EMISSION MEASUREMENT

5.1 Standard Applicable

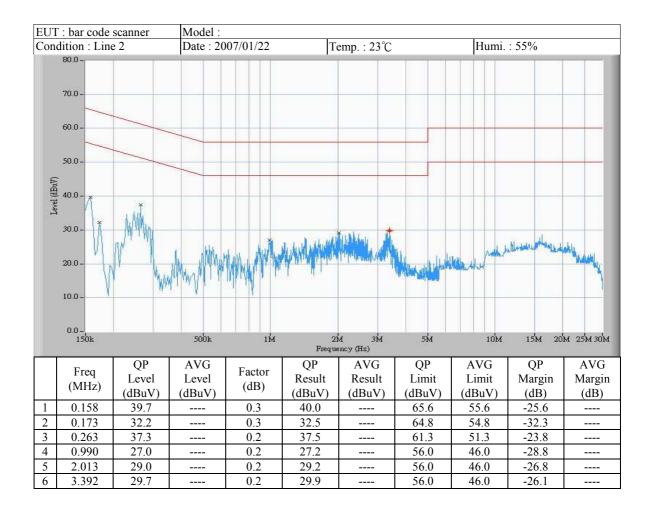
For unintentional and intentional device, Line Conducted Emission Limits are in accordance to §15.107(a) and §15.207(a) respectively. Both Limits are identical specification.

5.2 Measurement Procedure


- 1. Setup the configuration per figure 4.
- 2. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
- 3. Record the 6 highest emissions relative to the limit.
- 4. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then record the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
- 5. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
- 6. Repeat all above procedures on measuring each operation mode of EUT.

Vertical Reference
Ground Plane

Test Receiver


Figure 4: Conducted emissions measurement configuration

5.3 Conducted Emission Data

Note:

- 1. "***" means the value was too low to be measured.
- 2. If the data table appeared symbol of "----" means the Q.P. value is under the limit of AVG. so, the AVG. value doesn't need to be measured.
- 3. The estimated measurement uncertainty of the result measurement is ±2.5dB.

Note:

- 1. "***" means the value was too low to be measured.
- 2. If the data table appeared symbol of "----" means the Q.P. value is under the limit of AVG. so, the AVG. value doesn't need to be measured.
- 3. The estimated measurement uncertainty of the result measurement is ± 2.5 dB.

5.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation calculation is as follows:

RESULT = READING + LISN FACTOR (Included Cable Loss)

5.5 Conducted Measurement Equipment

The following test equipment are used during the conducted test.

Equipment	Manufacturer	Model No.	Next Cal. Due	
RF Test Receiver	Rohde and Schwarz	ESCS30	07/16/2007	
LISN	TELEMETER	NNB-2/16Z	03/30/2008	