

## DECLARATION OF COMPLIANCE FCC PART 22.901(d) EMC MEASUREMENTS

### Test Lab

**CELLTECH LABS INC.**  
Testing and Engineering Services  
1955 Moss Court  
Kelowna, B.C.  
Canada V1Y 9L3  
Phone: 250-448-7047  
Fax: 250-448-7046  
e-mail: info@celltechlabs.com  
web site: www.celltechlabs.com

### Applicant Information

**COMMERCIAINT L.P.**  
2901 Wilcrest, #250  
Houston, TX 77042

|                                   |                                                                |
|-----------------------------------|----------------------------------------------------------------|
| <b>FCC Rule Part(s):</b>          | 47 CFR §22.901(d), §2                                          |
| <b>Test Procedure(s):</b>         | FCC 47 CFR §22.901(d), §2; ANSI TIA/EIA-603-A-2001             |
| <b>FCC Device Classification:</b> | Licensed Non-Broadcast Station Transmitter (TNB)               |
| <b>Device Type:</b>               | Wireless Transaction Terminal with Novatel Expedite CDPD Modem |
| <b>FCC ID:</b>                    | QWLM105                                                        |
| <b>Model Name:</b>                | M                                                              |
| <b>Model No.:</b>                 | M105                                                           |
| <b>Modulation:</b>                | GMSK                                                           |
| <b>Tx Frequency Range:</b>        | 824.04 - 848.97 MHz                                            |
| <b>Rx Frequency Range:</b>        | 869.04 - 893.97 MHz                                            |
| <b>Max. RF Output Power:</b>      | 0.287 Watts (ERP)                                              |
| <b>Conducted Power Tested:</b>    | 28.0 dBm                                                       |
| <b>Emission Designator(s):</b>    | 28K8FXW                                                        |
| <b>Frequency Tolerance(s):</b>    | ± 0.00025 %                                                    |
| <b>Antenna Type:</b>              | External Dipole                                                |
| <b>Battery Type:</b>              | Lithium-Ion 4.2V (1800mAh)                                     |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC 47 CFR §22.901(d), §2, and ANSI TIA/EIA-603-A-2001.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.



**Russell Pipe**  
Senior Compliance Technologist  
Celltech Labs Inc.



## TABLE OF CONTENTS

|                                                     |                                                              |             |
|-----------------------------------------------------|--------------------------------------------------------------|-------------|
| <b>1.1</b>                                          | <b>SCOPE</b>                                                 | <b>3</b>    |
| <b>1.2</b>                                          | <b>GENERAL INFORMATION - §2.1033(a)</b>                      | <b>3</b>    |
| <b>2.1</b>                                          | <b>MEASUREMENT PROCEDURES</b>                                | <b>4</b>    |
| <b>2.2</b>                                          | <b>RF Output Power - §2.1046</b>                             | <b>4</b>    |
| <b>2.3</b>                                          | <b>Spurious Emissions at Antenna Terminal - §2.1051</b>      | <b>4</b>    |
| <b>2.4</b>                                          | <b>Receiver Spurious Emissions - §22.917(f)</b>              | <b>4</b>    |
| <b>2.5</b>                                          | <b>Occupied Bandwidth - §2.1049, §22.917</b>                 | <b>4</b>    |
| <b>2.6</b>                                          | <b>Field Strength of Spurious Radiation - §2.1053</b>        | <b>5</b>    |
| <b>2.7</b>                                          | <b>Effective Radiated Power Output - §22.913</b>             | <b>5</b>    |
| <b>2.8</b>                                          | <b>Radiated Measurement Test Setup</b>                       | <b>5</b>    |
| <b>2.9</b>                                          | <b>Frequency Stability / Temperature Variation - §2.1055</b> | <b>6</b>    |
| <b>3.1</b>                                          | <b>TEST DATA</b>                                             | <b>7</b>    |
| <b>3.2</b>                                          | <b>Effective Radiated Power Output - §22.913</b>             | <b>7</b>    |
| <b>3.3</b>                                          | <b>Field Strength of Spurious Radiation - §2.1053</b>        | <b>8-10</b> |
| <b>3.4</b>                                          | <b>Frequency Stability / Temperature Variation - §2.1055</b> | <b>11</b>   |
| <b>4.1</b>                                          | <b>LIST OF TEST EQUIPMENT</b>                                | <b>12</b>   |
| <b>5.1</b>                                          | <b>CONCLUSION</b>                                            | <b>13</b>   |
| <b>APPENDIX A - TEST PLOTS</b>                      |                                                              | <b>14</b>   |
| <b>APPENDIX B - RADIATED TEST SETUP PHOTOGRAPHS</b> |                                                              | <b>15</b>   |

## FCC PART 22.901(d) EMC MEASUREMENT REPORT

### 1.1 SCOPE

Measurement and determination of electromagnetic emissions (EME) from radio frequency devices for compliance with the technical rules and regulations of the Federal Communications Commission.

### 1.2 GENERAL INFORMATION - §2.1033(a)

| <u>APPLICANT</u>                         |                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>COMMERCIAINT L.P.</b>                 |                                                                                                      |
| 2901 Wilcrest, #250<br>Houston, TX 77042 |                                                                                                      |
|                                          |                                                                                                      |
| <b>FCC ID</b>                            | QWLM105                                                                                              |
| <b>Model(s)</b>                          | M105                                                                                                 |
| <b>Serial No.</b>                        | Pre-production                                                                                       |
| <b>EUT Type</b>                          | Wireless Transaction Terminal with Novatel Wireless Technologies Model: Expedite internal CDPD Modem |
| <b>FCC Rule Part(s)</b>                  | 47 CFR §22.901(d), §2                                                                                |
| <b>FCC Classification</b>                | Licensed Non-Broadcast Station Transmitter (TNB)                                                     |
| <b>Tx Frequency Range</b>                | 824.04 - 848.97 MHz                                                                                  |
| <b>Rx Frequency Range</b>                | 869.04 - 893.97 MHz                                                                                  |
| <b>Max. RF Output Power</b>              | 0.287 Watts (ERP)                                                                                    |
| <b>RF Conducted Output Power Tested</b>  | 28.0 dBm                                                                                             |
| <b>Emission Designator</b>               | 28K8FXW                                                                                              |
| <b>Frequency Tolerance</b>               | ± 0.00025 %                                                                                          |
| <b>Modulation</b>                        | GMSK                                                                                                 |
| <b>Battery Type</b>                      | Lithium-Ion 4.2V (1800 mAh)                                                                          |
| <b>Antenna Type</b>                      | External Dipole (Length: 137 mm)                                                                     |

## 2.1 MEASUREMENT PROCEDURES

### 2.2 RF OUTPUT POWER MEASUREMENT - §2.1046

The peak conducted power levels were measured with a Gigatronics 8650A Universal Power Meter in Continuous Wave mode. An offset was entered into the power meter to correct for the losses of the attenuator and cable installed before the sensor input. The transmitter terminal was coupled to the power meter and the EUT was placed into test mode via internal software. All subsequent tests were performed using the same tune-up procedures.

| Conducted Power Measurement |                  |
|-----------------------------|------------------|
| Frequency (MHz)             | Peak Power (dBm) |
| 824.04                      | 28.0             |
| 836.49                      | 28.0             |
| 848.97                      | 28.0             |

### 2.3 SPURIOUS EMISSIONS AT ANTENNA TERMINAL - §2.1051

The EUT was placed in test mode via internal software at a full rated power. The conducted power was measured with a Gigatronics 8650A Universal Power Meter. An offset was entered into the power meter to correct for all losses of the attenuator and cable installed before the sensor input. The level of the carrier and the various conducted spurious frequencies were measured by means of a calibrated spectrum analyzer. The resolution bandwidth and video bandwidth were set to 1MHz. The spectrum was scanned from 10MHz to 20GHz at the low, mid, and high channels. The radio transmitter was operating at maximum output power. The antenna output terminal of the EUT was connected to the input of a 50Ω spectrum analyzer through a matched 30dB attenuator and coaxial cable. The reported emissions were below the specified limit of -13dBm.

### 2.4 RECEIVER SPURIOUS EMISSIONS - §22.917(f)

Conducted spurious emissions were measured at the antenna terminal of the EUT using a spectrum analyzer. The transmitter of the EUT was placed into full power and the frequency span of the spectrum analyzer was set to the receiving band of the device. The recorded spurious emissions at the antenna terminal must be attenuated to a level not to exceed -80dBm.

### 2.5 OCCUPIED BANDWIDTH - §2.1049, §22.917

The EUT was placed in test mode via internal software at a full rated power. The EUT was connected to the input of a 50Ω spectrum analyzer through a matched 30dB attenuator. The resolution bandwidth and video bandwidth were set to 3kHz.

Specified Limits (as of February 18, 2003):

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) Alternative out of band emission limit. Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.
- (d) Interference caused by out of band emissions. If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

## 2.6 FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053

Radiated and harmonic emissions were measured on a 3-meter open area test site. The EUT was placed into test mode via internal software at a full rated power. The EUT was placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable received any signal radiated from the transmitter and its operating accessories. The receiving antenna was varied in height from 1 to 4 meters and the polarization was varied (horizontal and vertical) to determine the worst-case emission level. All spurious emissions made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier were investigated.

## 2.7 EFFECTIVE RADIATED POWER OUTPUT - §22.913

ERP measurements were performed using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001 on a 3-meter open area test site. The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A half-wave dipole was substituted in place of the EUT. A CW signal with the same bandwidth as the EUT was generated, amplified, and fed through a directional coupler. The height and direction of the dipole was adjusted in order to give the field of maximum intensity. The power to the dipole was adjusted in order to give the same field strength reading as previously recorded for the EUT. The power at the coupler port was recorded at this point. The feed point for the dipole was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the dipole antenna. The conducted power at the antenna feed point was recorded. The ERP level was determined by adding the dipole forward conducted power and the dipole gain in dB. For readings above 1GHz the above method is repeated using a standard gain horn antenna.

## 2.8 RADIATED MEASUREMENT TEST SETUP

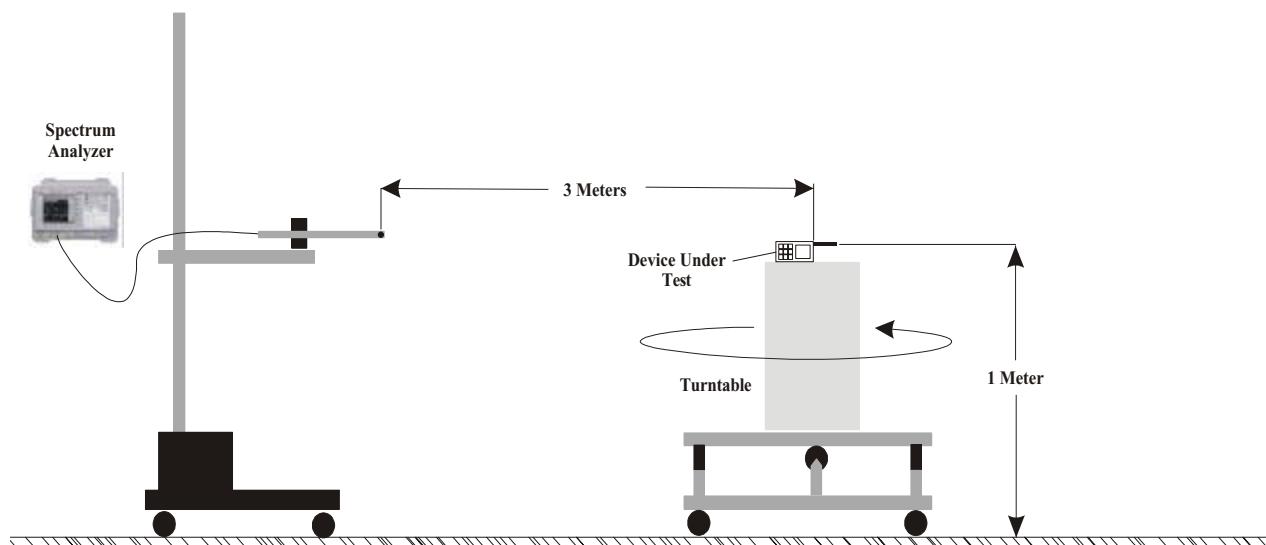



Figure 1. Radiated Measurement Test Setup Diagram

## 2.9 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

An HP 53181A Frequency Counter was used to measure the error in the fundamental frequency. The transmitter was set to maximum power at the center frequency of the band. The EUT was evaluated using the ESPEC ECT-2 temperature chamber.

### Measurement Method:

The frequency stability of the transmitter was measured by:

1. Temperature:

The temperature was varied from -30°C to +60°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment was allowed prior to each frequency measurement.

2. Primary Supply Voltage:

The primary supply voltage was set at the specified nominal rating and reduced to the battery operating endpoint specified by the manufacturer. The voltage was measured at the terminals of the power supply or at the input to the cable normally provided with the equipment.

### Time Period and Procedure:

1. The carrier frequency of the transmitter was measured at room temperature (25°C to 27°C to provide a reference).
2. The equipment was subjected to an overnight "soak" at -30°C without any power applied.
3. After the overnight "soak" at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
4. Frequency measurements were made at 10°C intervals up to +60°C, then back to room temperature. A minimum period of one hour was provided to allow stabilization of the equipment at each temperature level.

### 3.1 TEST DATA

### 3.2 EFFECTIVE RADIATED POWER OUTPUT - §22.913

| Freq.<br>Tuned | EUT<br>Conducted<br>Power | Maximum<br>Field<br>Strength<br>of EUT | Antenna<br>Polariz. | Dipole<br>Gain | Dipole<br>Forward<br>Conducted<br>Power | ERP of EUT<br>Dipole Gain<br>+<br>Dipole Forward<br>Conducted Power |       |
|----------------|---------------------------|----------------------------------------|---------------------|----------------|-----------------------------------------|---------------------------------------------------------------------|-------|
| MHz            | dBm                       | dBm                                    | H/V                 | dBd            | dBm                                     | dBm                                                                 | Watts |
| 824.04         | 28.0                      | -12.66                                 | V                   | - 1.44         | 25.32                                   | 23.88                                                               | 0.244 |
| 836.49         | 28.0                      | -13.15                                 | V                   | - 1.34         | 25.92                                   | 24.58                                                               | 0.287 |
| 848.97         | 28.0                      | -14.09                                 | V                   | - 1.24         | 25.08                                   | 23.84                                                               | 0.242 |

Notes:

1. ERP measurements were performed in both horizontal and vertical antenna polarizations and the worst-case configuration is reported.

### 3.3 FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053

**Operating Frequency (MHz):** 824.04  
**Channel:** 991 (Low)  
**EUT Conducted Pwr. (dBm):** 28.0  
**Measured ERP (dBm):** 23.88  
**Mode:** CW  
**Distance:** 3 Meters  
**Limit:**  $43 + 10 \log (W) = 36.87 \text{ dBc}$

| Frequency | Field Strength of Spurious Radiation | Horn Forward Conducted Power | Standard Gain Horn Antenna Gain | POL | EIRP   | ERP    | dBc   |
|-----------|--------------------------------------|------------------------------|---------------------------------|-----|--------|--------|-------|
| MHz       | dBm                                  | dBm                          | dBi                             | H/V | dBm    | dBm    |       |
| 1648.08   | -74.40                               | -41.51                       | 6.6                             | V   | -34.91 | -37.05 | 60.93 |
| 2472.12   | -73.64                               | -35.84                       | 7.8                             | V   | -28.04 | -30.18 | 54.06 |
| 3296.16   | -76.41                               | -39.83                       | 7.8                             | V   | -32.03 | -34.17 | 58.05 |
| 4120.20   | -77.10                               | -39.08                       | 7.6                             | V   | -31.48 | -33.62 | 57.50 |
| 4944.24   | -77.35                               | -40.99                       | 8.5                             | V   | -32.49 | -34.63 | 58.51 |
| 5768.28   | -77.08                               | -39.20                       | 8.8                             | V   | -30.40 | -32.54 | 56.42 |
| 6592.32   | -73.24                               | -35.36                       | 9.6                             | V   | -25.76 | -27.90 | 51.78 |
| 7416.36   | -73.12                               | -35.29                       | 9.0                             | V   | -26.29 | -28.43 | 52.31 |
| 8240.40   | -75.73                               | -39.52                       | 9.3                             | V   | -30.22 | -32.36 | 56.24 |

Notes:

1. Radiated spurious measurements were performed using the Signal Substitution Method per ANSI TIA/EIA-603-A-2001.
2. All other spurious emissions generated from the lowest frequency of the EUT to the tenth harmonic were investigated and found to be below the magnitude of each harmonic level.
3. Spurious emissions more than 20 dB below the limit are reported, though not required per §2.1051.

### FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053

**Operating Frequency (MHz):** 836.49  
**Channel:** 383 (Mid)  
**EUT Conducted Pwr. (dBm):** 28.0  
**Measured ERP (dBm):** 24.58  
**Mode:** CW  
**Distance:** 3 Meters  
**Limit:**  $43 + 10 \log (W) = 37.58 \text{ dBc}$

| Frequency | Field Strength of Spurious Radiation | Horn Forward Conducted Power | Standard Gain Horn Antenna Gain | POL | EIRP   | ERP    | dBc   |
|-----------|--------------------------------------|------------------------------|---------------------------------|-----|--------|--------|-------|
| MHz       | dBm                                  | dBm                          | dBi                             | H/V | dBm    | dBm    |       |
| 1672.98   | -74.35                               | -41.46                       | 6.6                             | V   | -34.86 | -37.00 | 61.58 |
| 2509.47   | -72.20                               | -34.40                       | 7.8                             | V   | -26.60 | -28.74 | 53.32 |
| 3345.96   | -75.38                               | -38.80                       | 7.8                             | V   | -31.00 | -33.14 | 57.72 |
| 4182.45   | -78.12                               | -40.10                       | 7.6                             | V   | -32.50 | -34.64 | 59.22 |
| 5018.94   | -77.23                               | -40.87                       | 8.5                             | V   | -32.37 | -34.51 | 59.09 |
| 5855.43   | -76.45                               | -38.57                       | 8.8                             | V   | -29.77 | -31.91 | 56.49 |
| 6691.92   | -74.68                               | -36.80                       | 9.6                             | V   | -27.20 | -29.34 | 53.92 |
| 7528.41   | -73.93                               | -36.10                       | 9.0                             | V   | -27.10 | -29.24 | 53.82 |
| 8364.90   | -74.76                               | -38.55                       | 9.3                             | V   | -29.25 | -31.39 | 55.97 |

Notes:

1. Radiated spurious measurements were performed using the Signal Substitution Method per ANSI TIA/EIA-603-A-2001.
2. All other spurious emissions generated from the lowest frequency of the EUT to the tenth harmonic were investigated and found to be below the magnitude of each harmonic level.
3. Spurious emissions more than 20 dB below the limit are reported, though not required per §2.1051.

### FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053

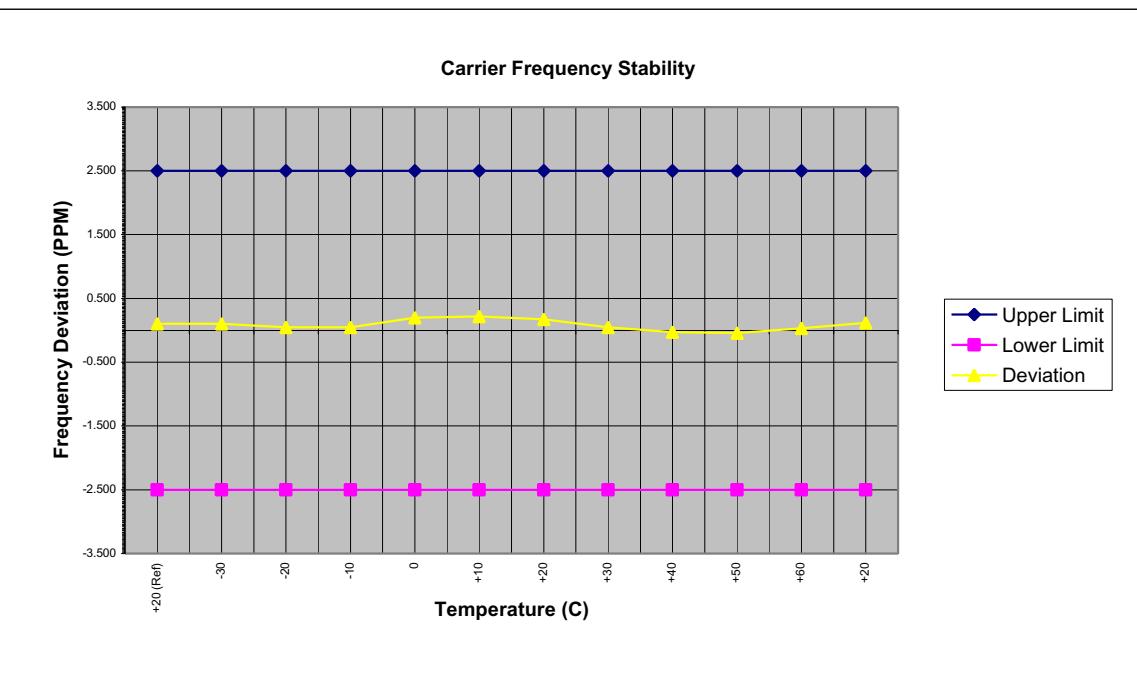
**Operating Frequency (MHz):** 848.97  
**Channel:** 799 (High)  
**EUT Conducted Pwr. (dBm):** 28.0  
**Measured ERP (dBm):** 23.84  
**Mode:** CW  
**Distance:** 3 Meters  
**Limit:**  $43 + 10 \log (W) = 36.84 \text{ dBc}$

| Frequency | Field Strength of Spurious Radiation | Horn Forward Conducted Power | Standard Gain Horn Antenna Gain | POL | EIRP   | ERP    | dBc   |
|-----------|--------------------------------------|------------------------------|---------------------------------|-----|--------|--------|-------|
| MHz       | dBm                                  | dBm                          | dBi                             | H/V | dBm    | dBm    |       |
| 1697.94   | -74.85                               | -41.96                       | 6.6                             | V   | -35.36 | -37.50 | 61.34 |
| 2546.91   | -75.04                               | -37.24                       | 7.8                             | V   | -29.44 | -31.58 | 55.42 |
| 3395.88   | -76.71                               | -40.13                       | 7.8                             | V   | -32.33 | -34.47 | 58.31 |
| 4244.85   | -77.86                               | -39.84                       | 7.6                             | V   | -32.24 | -34.38 | 58.22 |
| 5093.82   | -76.92                               | -40.56                       | 8.5                             | V   | -32.06 | -34.20 | 58.04 |
| 5942.79   | -76.36                               | -38.48                       | 8.8                             | V   | -29.68 | -31.82 | 55.66 |
| 6791.76   | -76.47                               | -38.59                       | 9.6                             | V   | -28.99 | -31.13 | 54.97 |
| 7640.73   | -74.62                               | -36.79                       | 9.0                             | V   | -27.79 | -29.93 | 53.77 |
| 8489.70   | -75.82                               | -39.61                       | 9.3                             | V   | -30.31 | -32.45 | 56.29 |

Notes:

1. Radiated spurious measurements were performed using the Signal Substitution Method per ANSI TIA/EIA-603-A-2001.
2. All other spurious emissions generated from the lowest frequency of the EUT to the tenth harmonic were investigated and found to be below the magnitude of each harmonic level.
3. Spurious emissions more than 20 dB below the limit are reported, though not required per §2.1051.

### 3.4 FREQUENCY STABILITY - §2.1055


Carrier Frequency (MHz): 836.49

Channel: 383

Mode: CW

Deviation Limit (PPM): 2.5

| Temperature<br>(C) | Voltage<br>(%)   | Power<br>(VDC) | Carrier Frequency Deviation |        | Specification     |                   |
|--------------------|------------------|----------------|-----------------------------|--------|-------------------|-------------------|
|                    |                  |                | (Hz)                        | (PPM)  | Lower Limit (PPM) | Upper Limit (PPM) |
| +20 (Ref)          | 100              | 4.2            | 83.14                       | 0.099  | 2.500             | -2.500            |
| -30                | 100              | 4.2            | 83.21                       | 0.099  | 2.500             | -2.500            |
| -20                | 100              | 4.2            | 38.44                       | 0.046  | 2.500             | -2.500            |
| -10                | 100              | 4.2            | 42.83                       | 0.051  | 2.500             | -2.500            |
| 0                  | 100              | 4.2            | 166.52                      | 0.199  | 2.500             | -2.500            |
| +10                | 100              | 4.2            | 181.16                      | 0.217  | 2.500             | -2.500            |
| +20                | 100              | 4.2            | 146.02                      | 0.175  | 2.500             | -2.500            |
| +30                | 100              | 4.2            | 36.67                       | 0.044  | 2.500             | -2.500            |
| +40                | 100              | 4.2            | -24.92                      | -0.030 | 2.500             | -2.500            |
| +50                | 100              | 4.2            | -35.58                      | -0.043 | 2.500             | -2.500            |
| +60                | 100              | 4.2            | 26.05                       | 0.031  | 2.500             | -2.500            |
| +20                | Battery Endpoint | 3.3            | 97.90                       | 0.117  | 2.500             | -2.500            |



## 4.1 TEST EQUIPMENT LIST

| TEST EQUIPMENT LIST              |                                    |            |                      |
|----------------------------------|------------------------------------|------------|----------------------|
| Equipment Type                   | Model                              | Serial No. | Calibration Due Date |
| HP Signal Generator              | 8648D (9kHz-4.0GHz)                | 3847A00611 | Feb 2004             |
| Rohde & Schwarz Signal Generator | SMR40 (10MHz-40GHz)                | 835537/022 | Nov 2003             |
| Gigatronics Power Meter          | 8652A                              | 1835272    | Feb 2004             |
| Gigatronics Power Sensor         | 80701A (0.05-18GHz)                | 1833535    | Feb 2004             |
| Gigatronics Power Sensor         | 80701A (0.05-18GHz)                | 1833542    | Feb 2004             |
| Amplifier Research Power Amp.    | 5S1G4 (5W, 800MHz-4.2GHz)          | 26235      | N/A                  |
| Microwave System Amplifier       | HP 83017A (0.5-26.5GHz)            | 3123A00587 | N/A                  |
| Network Analyzer                 | HP 8753E (30kHz-3GHz)              | US38433013 | Feb 2004             |
| Audio Analyzer                   | HP 8903B                           | 3729A18691 | Nov 2003             |
| Modulation Analyzer              | HP 8901A                           | 3749A07154 | July 2003            |
| Frequency Counter                | HP 53181A (3GHz)                   | 3736A05175 | May 2003             |
| DC Power Supply                  | HP E3611A                          | KR83015294 | N/A                  |
| Multi-Device Controller          | EMCO 2090                          | 9912-1484  | N/A                  |
| Mini Mast                        | EMCO 2075                          | 0001-2277  | N/A                  |
| Turntable                        | EMCO 2080-1.2/1.5                  | 0002-1002  | N/A                  |
| Double Ridged Horn Antenna       | ETS 3115 (1-18GHz)                 | 6267       | Oct. 2003            |
| Double Ridged Horn Antenna       | ETS 3115 (1-18GHz)                 | 6276       | Oct. 2003            |
| Horn Antenna                     | Chase BBHA 9120-A (0.7-4.8GHz)     | 9120A-239  | Sept 2003            |
| Horn Antenna                     | Chase BBHA 9120-A (0.7-4.8GHz)     | 9120A-240  | Sept 2003            |
| Roberts Dipoles                  | Compliance Design (2 sets) 3121C   |            | June 2003            |
| Spectrum Analyzer                | HP 8594E                           | 3543A02721 | Feb 2004             |
| Spectrum Analyzer                | HP E4408B                          | US39240170 | Nov 2003             |
| Shielded Screen Room             | Lindgren R.F. 18W-2/2-0            | 16297      | N/A                  |
| Environmental Chamber            | ESPEC ECT-2 (Temperature/Humidity) | 0510154-B  | Feb 2004             |

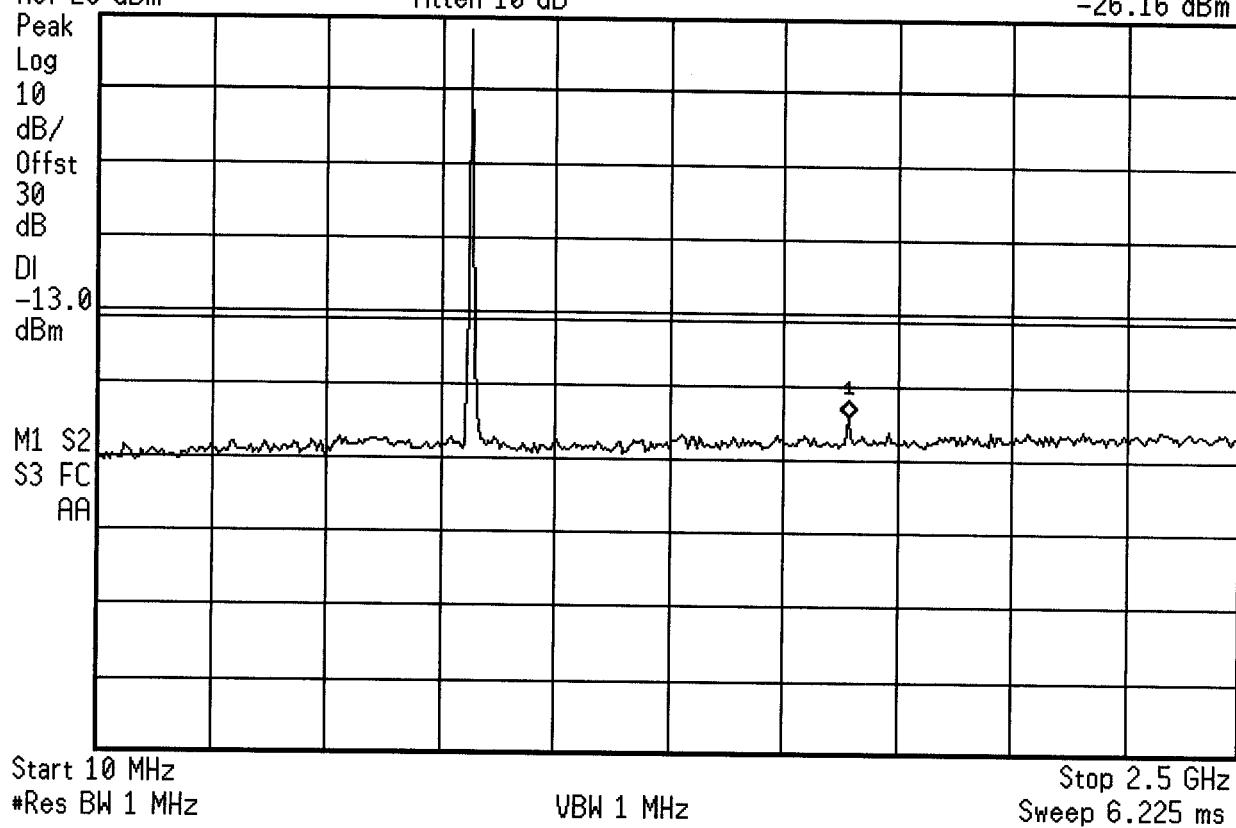
## 5.1 CONCLUSION

The data in this measurement report shows that the COMMERCIAINT L.P. Model: M105 FCC ID: QWLM105 Wireless Transaction Terminal with Novatel Wireless Technologies internal CDPD Modem Model: Expedite complies with the requirements of FCC Rule Parts §22.901(d), and §2.

---

## APPENDIX A - TEST PLOTS

**hp**


11:05:20 Feb 14, 2003

COMMERCIAL COND SPURS CH 991

Ref 28 dBm

Atten 10 dB

Mkr1 1.647 GHz  
-26.16 dBm



**hp**

11:06:56 Feb 14, 2003

COMMERCIAINT COND SPURS CH 991

Ref 28 dBm

Atten 10 dB

Mkr1 6.831 GHz  
-29.33 dBm

Peak

Log

10

dB/

Offst

30

dB

DI

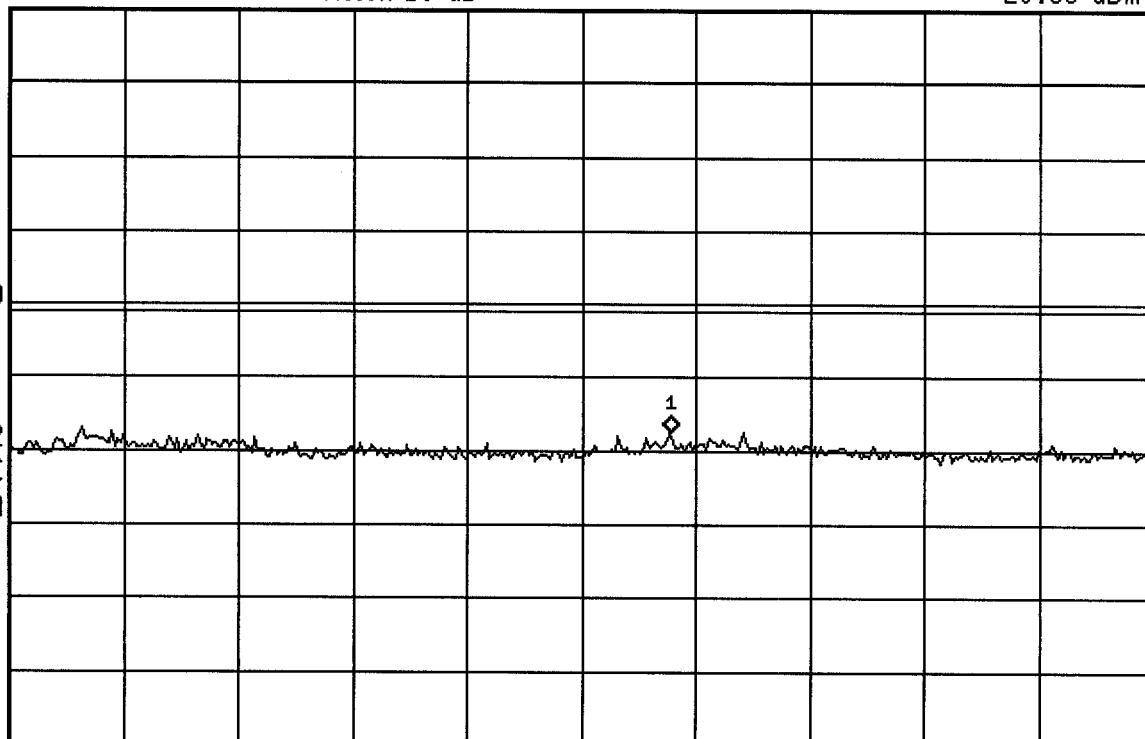
-13.0

dBm

M1 S2

\$3 FC

AA


Start 2.5 GHz

#Res BW 1 MHz

VBW 1 MHz

Stop 10 GHz

Sweep 18.75 ms



**hp** 11:09:03 Feb 14, 2003

COMMERCIAL COND SPURS CH 991

Ref 28 dBm

Atten 10 dB

Mkr1 13.35 GHz  
-27.93 dBm

Peak

Log

10

dB/

Offst

30

dB

DI

-13.0

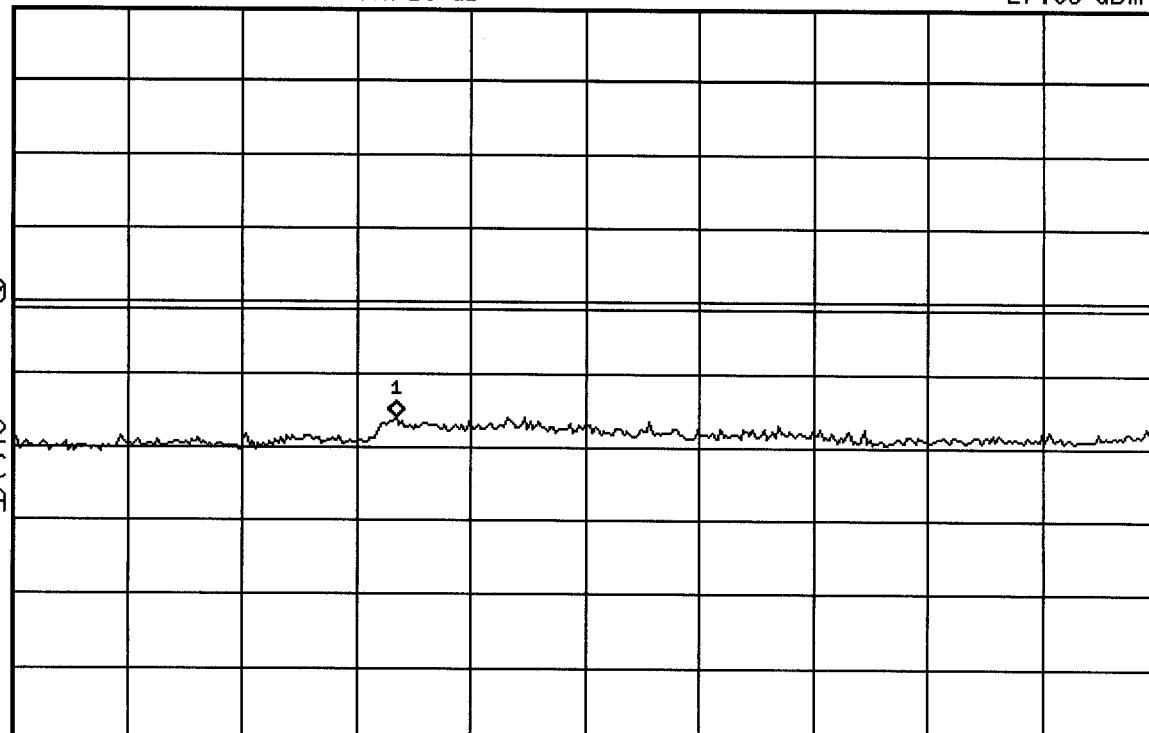
dBm

M1 S2

S3 FC

AA

Start 10 GHz


#Res BW 1 MHz

VBW 1 MHz

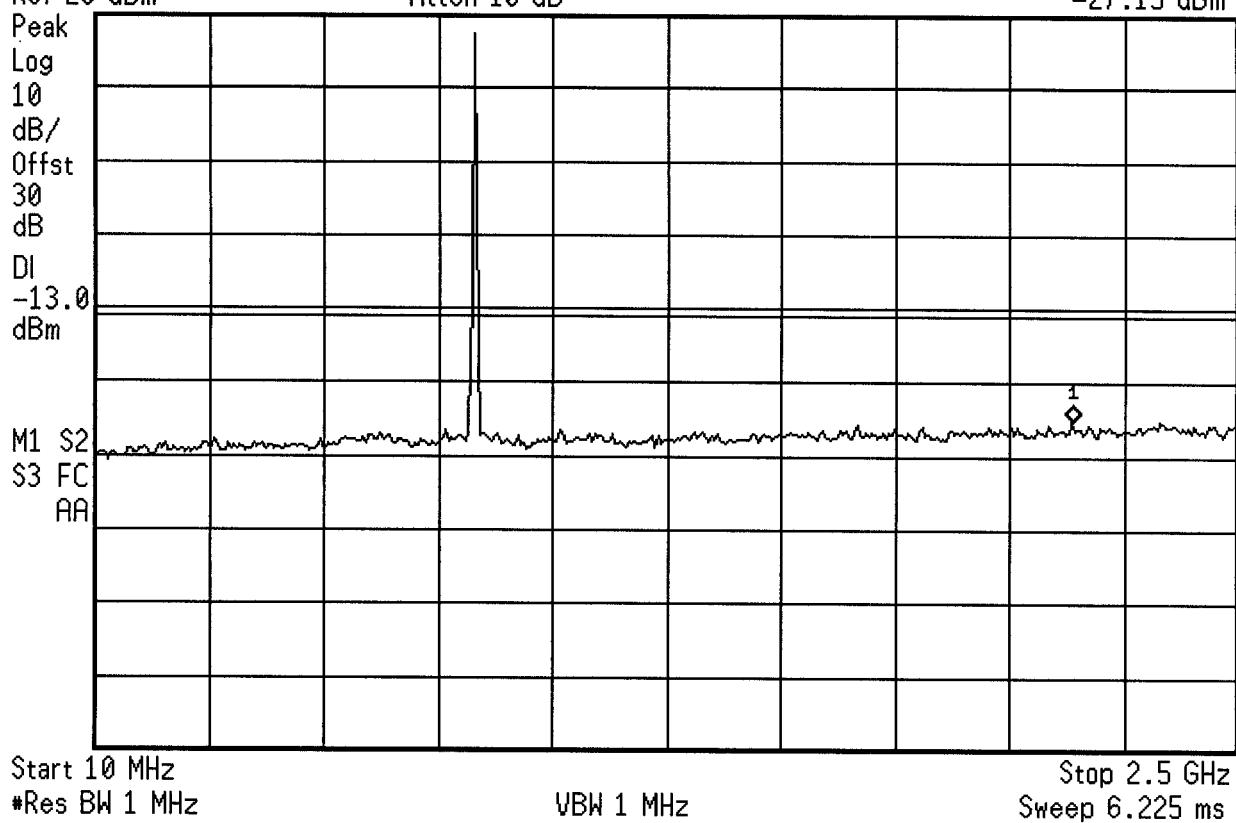
Stop 20 GHz

Sweep 100 ms

1



**hp** 11:15:31 Feb 14, 2003


COMMERCIAL COND SPURS CH 383

Ref 28 dBm

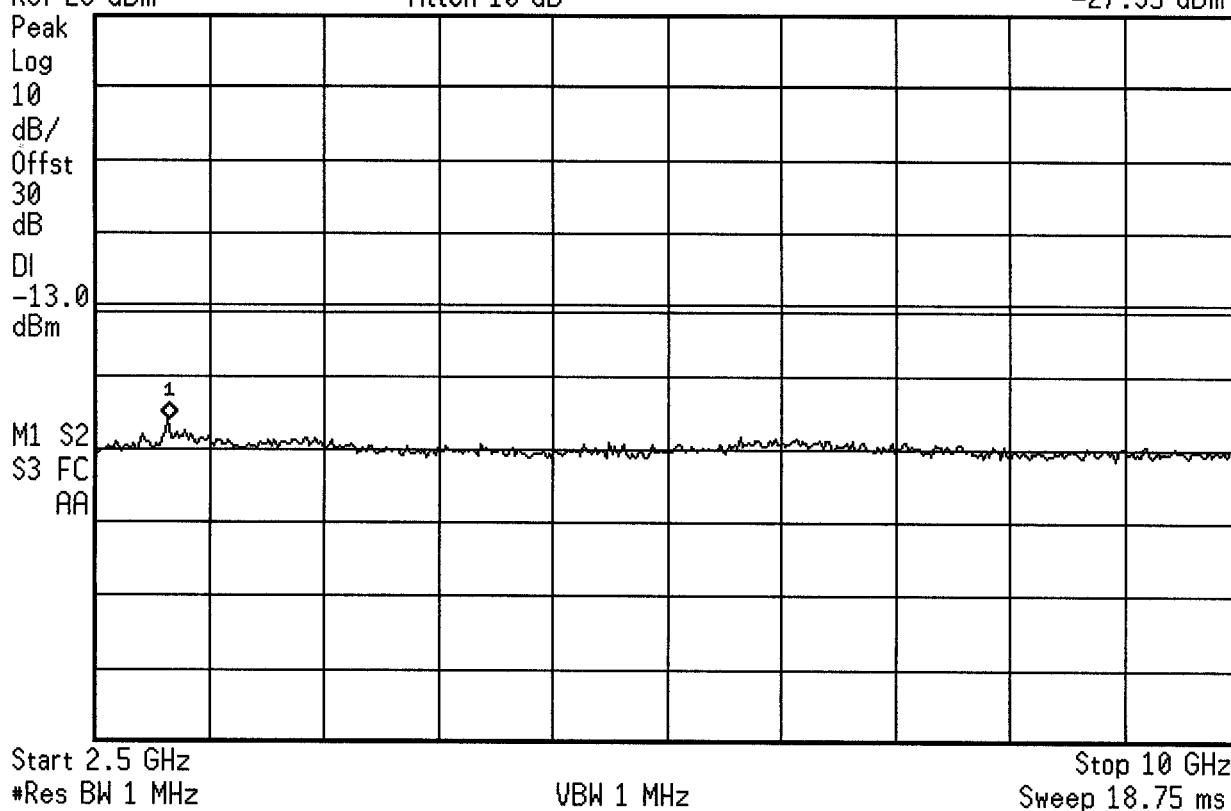
Atten 10 dB

Mkr1 2.139 GHz

-27.15 dBm



hp 11:16:57 Feb 14, 2003


COMMERCIAL COND SPURS CH 383

Ref 28 dBm

Atten 10 dB

Mkr1 2.988 GHz

-27.95 dBm



**hp** 11:18:29 Feb 14, 2003

COMMERCIAL COND SPURS CH 383

Ref 28 dBm

Atten 10 dB

Mkr1 13.23 GHz

-27.84 dBm

Peak

Log

10

dB/

Offst

30

dB

DI

-13.0

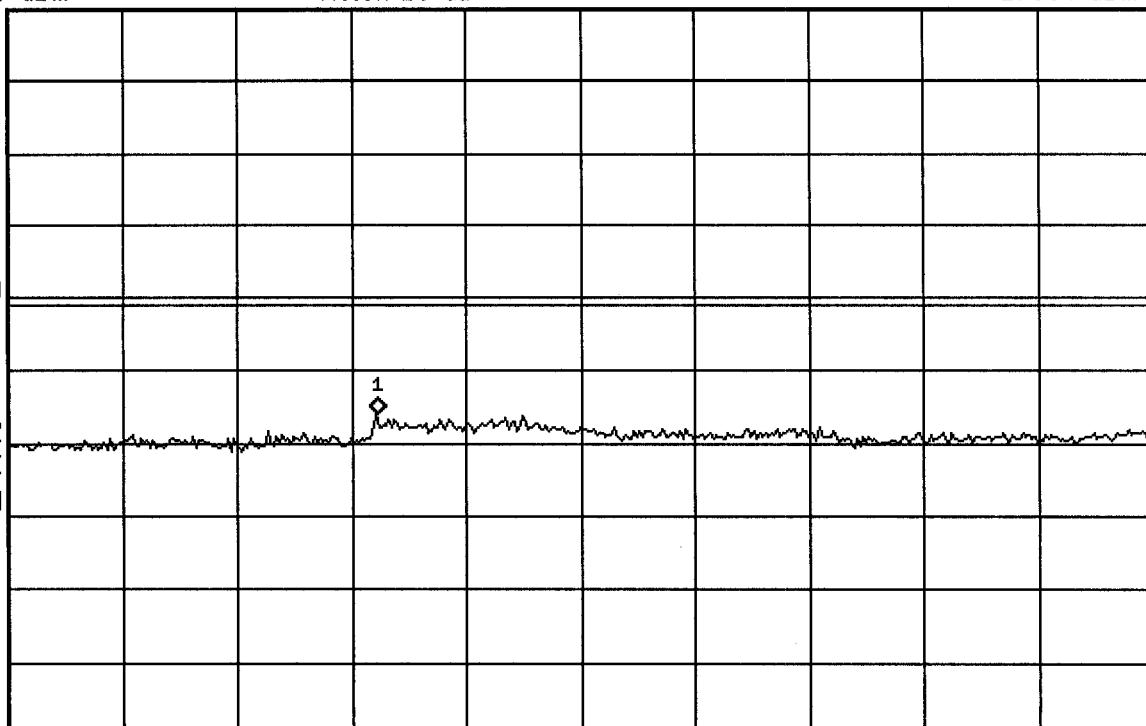
dBm

M1 S2

S3 FC

AA

Start 10 GHz


#Res BW 1 MHz

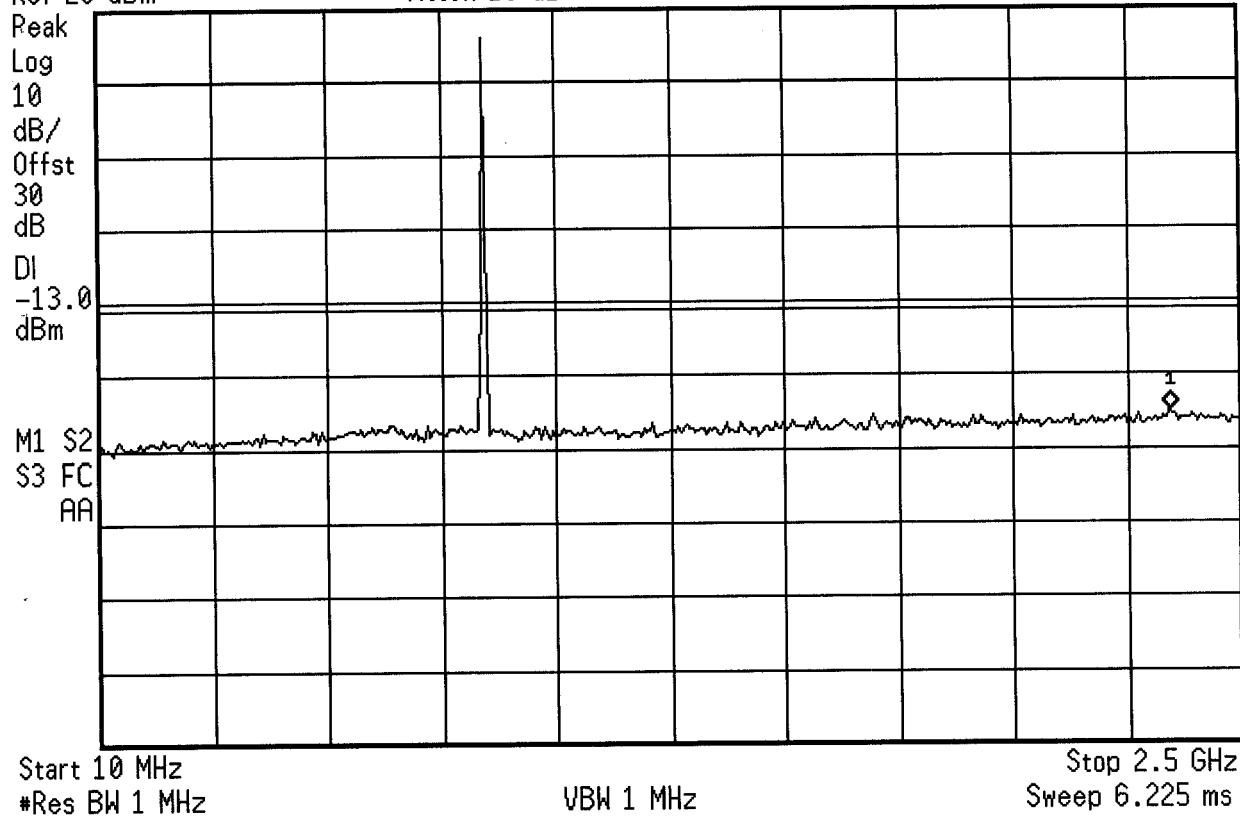
VBW 1 MHz

Stop 20 GHz

Sweep 100 ms

1




hp 11:23:47 Feb 14, 2003

COMMERCIAL COND SPURS CH 799

Ref 28 dBm

Atten 10 dB

Mkr1 2.344 GHz  
-26.89 dBm



**[hp]** 11:24:54 Feb 14, 2003

COMMERCIAL COND SPURS CH 799

Ref 28 dBm

Atten 10 dB

Mkr1 2.988 GHz  
-29.4 dBm

Peak

Log

10

dB/

Offst

30

dB

DI

-13.0

dBm

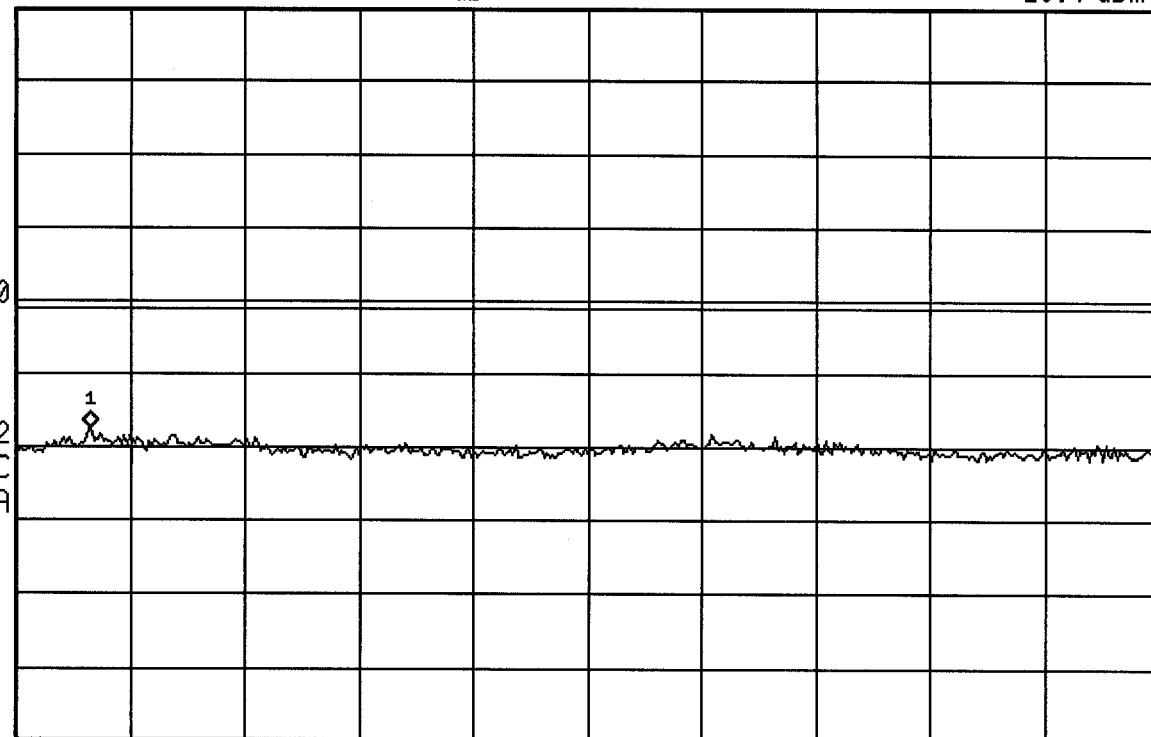
-

M1 S2

1

S3 FC

AA


Start 2.5 GHz

#Res BW 1 MHz

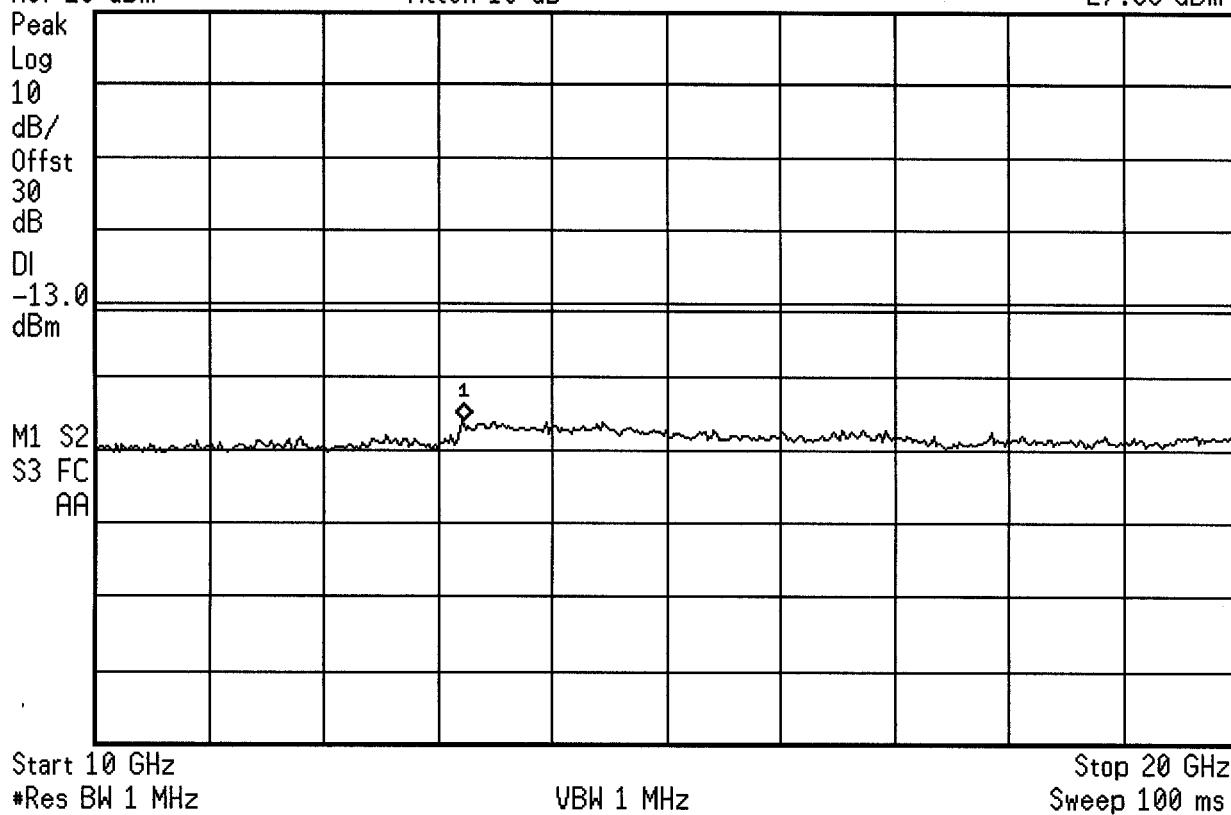
VBW 1 MHz

Stop 10 GHz

Sweep 18.75 ms



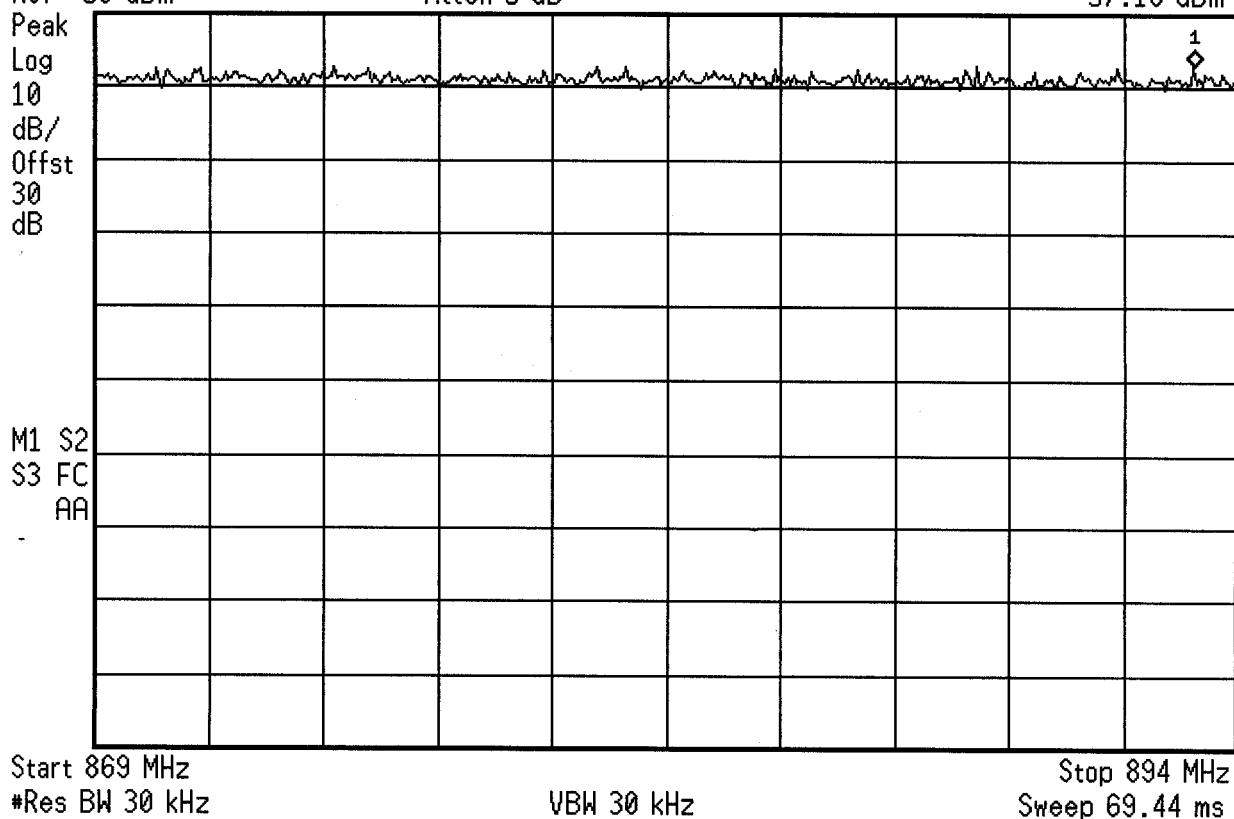
**[hp]** 11:26:38 Feb 14, 2003


COMMERCIAL COND SPURS CH 799

Ref 28 dBm

Atten 10 dB

Mkr1 13.23 GHz


-27.86 dBm



**[hp]** 10:30:51 Feb 14, 2003

COMMERCIAL RECEIVER SPURS CDPD MODE  
Ref -50 dBm Atten 5 dB

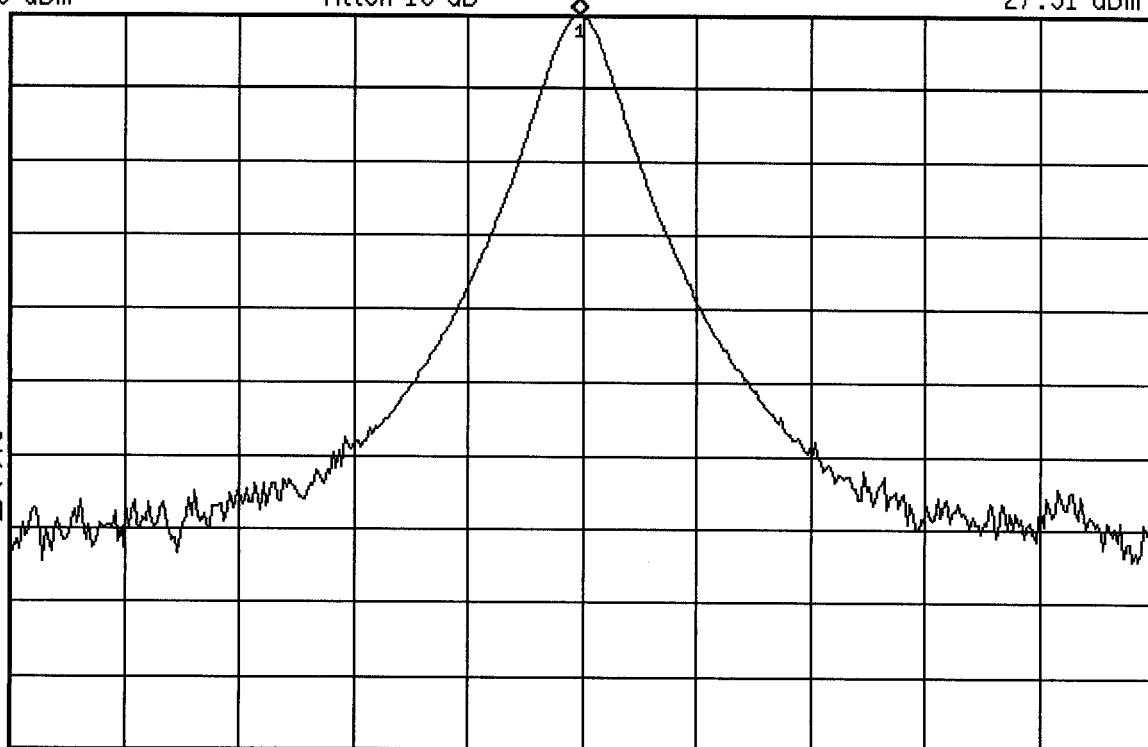
Mkr1 893.06 MHz  
-57.16 dBm



**hp** 18:40:17 Feb 14, 2003

COMMERCIAL OCCUPIED BANDWIDTH

Ref 28 dBm


Atten 10 dB

Mkr1 836.0103 MHz

27.91 dBm

Peak  
Log  
10  
dB/  
Offset  
30  
dB

W1 S2  
S3 FC  
AA



Center 836 MHz  
#Res BW 3 kHz

VBW 3 kHz

Span 100 kHz  
#Sweep 500 ms

**[hp]** 11:16:05 Feb 14, 2003

COMMERCIAL OCCUPIED BANDWIDTH

Ref 28 dBm

Atten 10 dB

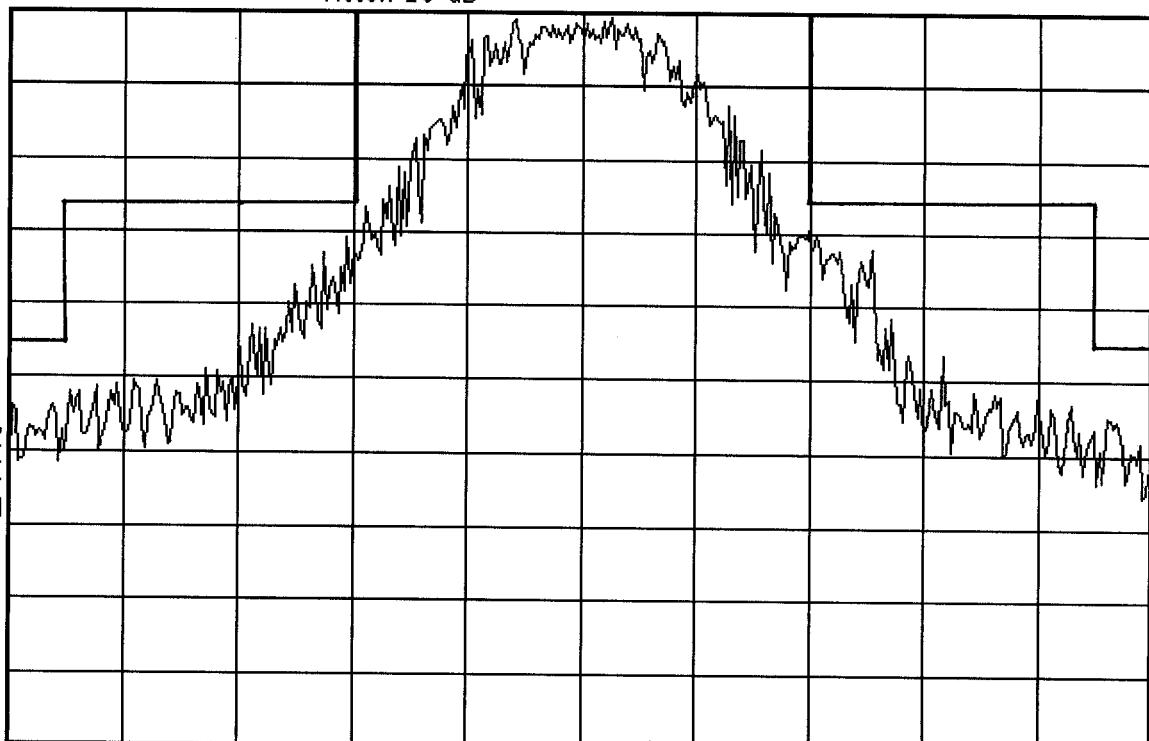
Peak

Log

10

dB/

Offst


30

dB

W1 S2

S3 FC

AA



Center 824 MHz

#Res BW 3 kHz

VBW 3 kHz

Span 100 kHz

#Sweep 500 ms

**[hp]** 11:04:00 Feb 14, 2003

COMMERCIAL OCCUPIED BANDWIDTH

Ref 28 dBm

Atten 10 dB

Peak

Log

10

dB/

Offst

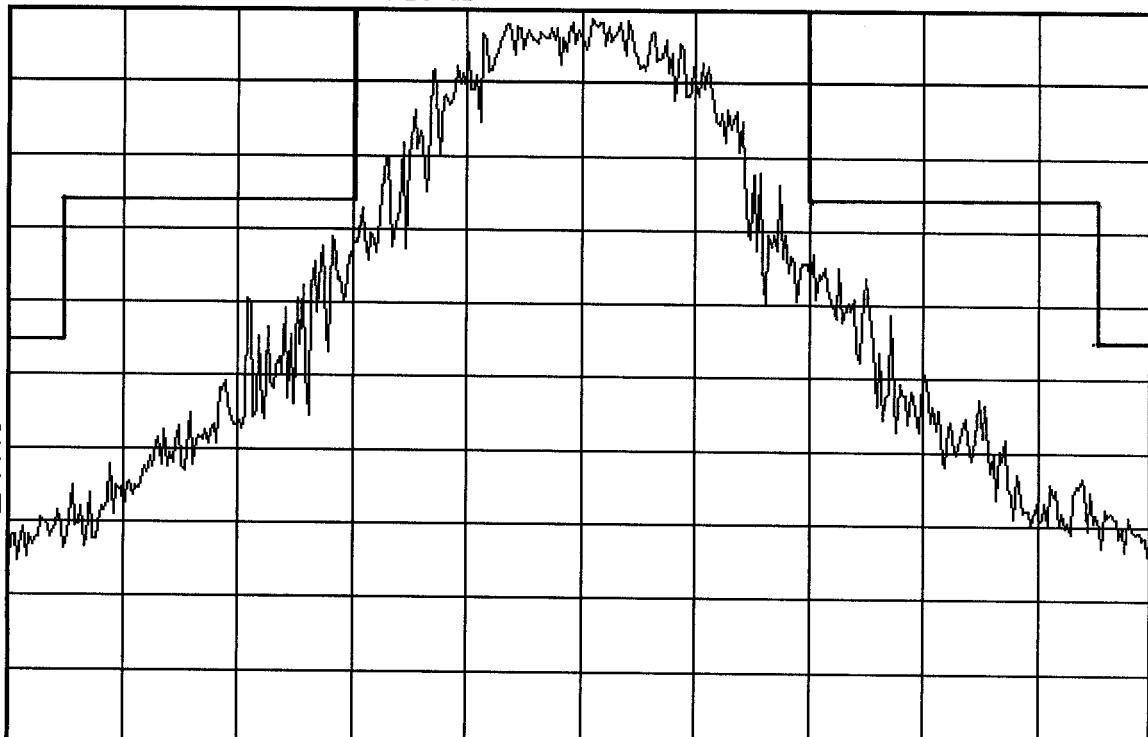
30

dB

W1 S2

S3 FC

AA


Center 836 MHz

#Res BW 3 kHz

VBW 3 kHz

Span 100 kHz

\*Sweep 500 ms



**hp**

11:20:06 Feb 14, 2003

COMMERCIAL OCCUPIED BANDWIDTH

Ref 28 dBm

Atten 10 dB

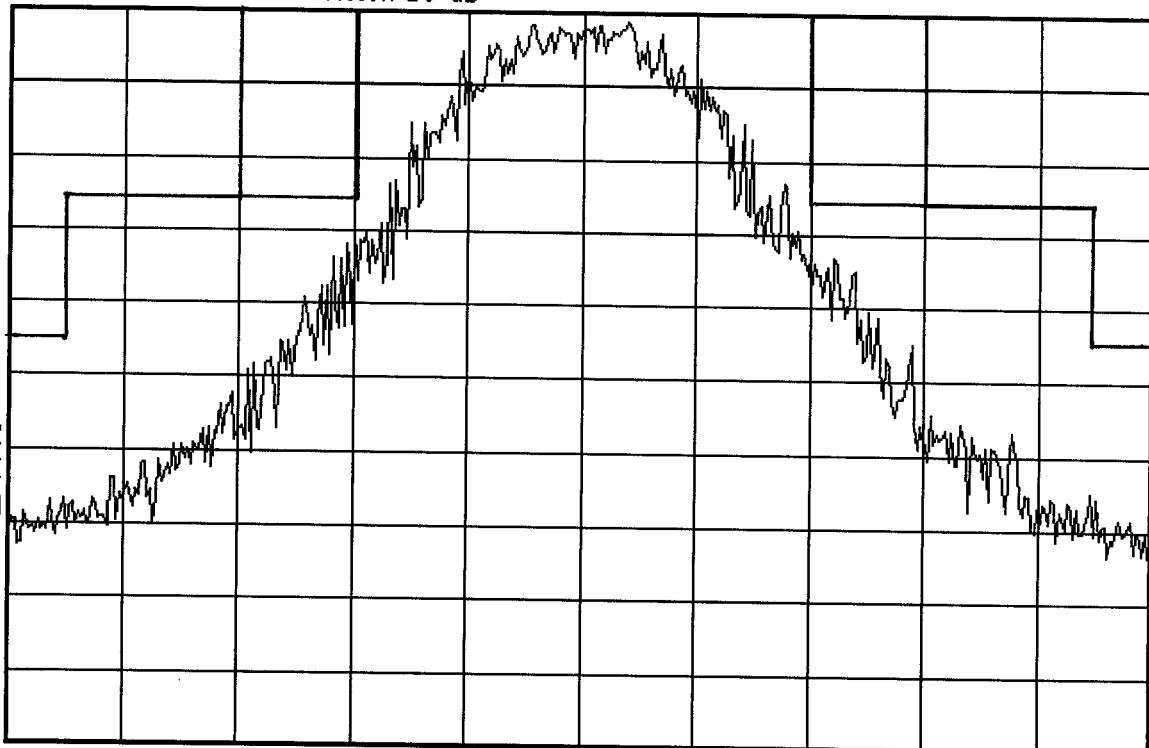
Peak

Log

10

dB/

Offst


30

dB

W1 S2

S3 FC

AA



Center 849 MHz

#Res BW 3 kHz

VBW 3 kHz

Span 100 kHz

#Sweep 500 ms

---

## APPENDIX B - RADIATED TEST SETUP PHOTOGRAPHS

## RADIATED TEST SETUP PHOTOGRAPHS

Vertical Polarization



**RADIATED TEST SETUP PHOTOGRAPHS**  
Horizontal Polarization

