Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CCS (Auden)

Certificate No: EX3-3554 Nov04

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE EX3DV4 - SN:3554 Object QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes November 19, 2004 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) ID# Primary Standards 5-May-04 (METAS, No. 251-00388) May-05 GR41293874 Power meter E4419B 5-May-04 (METAS, No. 251-00388) May-05 MY41495277 Power sensor E4412A SN: S5054 (3c) Aug-05 10-Aug-04 (METAS, No. 251-00403) Reference 3 dB Attenuator May-05 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) Aug-05 Reference 30 dB Attenuator SN: S5129 (30b) SN: 3013 8-Jan-04 (SPEAG, No. ES3-3013_Jan04) Jan-05 Reference Probe ES3DV2 SN: 617 26-May-04 (SPEAG, No. DAE4-617_May04) May-05 DAE4 Scheduled Check Secondary Standards ID# Check Date (in house) In house check: Oct 05 Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Dec-05 4-Aug-99 (SPEAG, in house check Dec-03) RF generator HP 8648C US3642U01700 In house check: Nov 04 US37390585 18-Oct-01 (SPEAG, in house check Nov-03) Network Analyzer HP 8753E Function Name Laboratory Technician Calibrated by: Nico Vetterli Technical Manager Approved by: Katja Pokovic Issued: December 7, 2004

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etalorinage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z diode compression point

DCP Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3554

Manufactured: Calibrated: July 13, 2004

November 19, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3554

Sensitivity in Free Space ^A	Diode Compression ^E
--	--------------------------------

NormX	0.39 ± 9.9%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	0.41 ± 9.9%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	0.42 ± 9.9%	$\mu V/(V/m)^2$	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

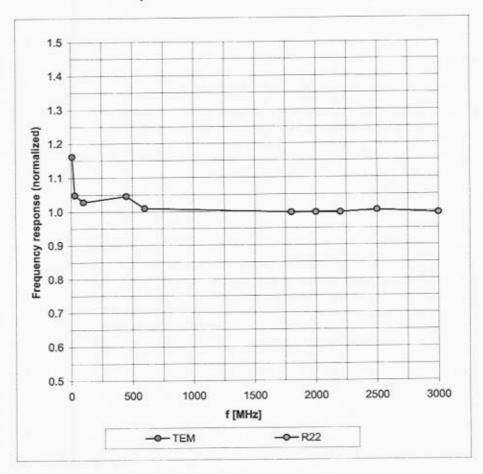
Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	3.7	1.1
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm	
SAR _{be} [%]	Without Correction Algorithm	4.8	2.4	
SAR _{be} [%]	With Correction Algorithm	0.8	8.0	

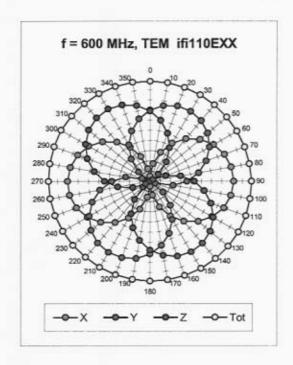
Sensor Offset

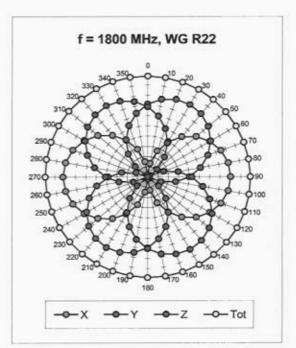
Probe Tip to Sensor Center 1.0 mm

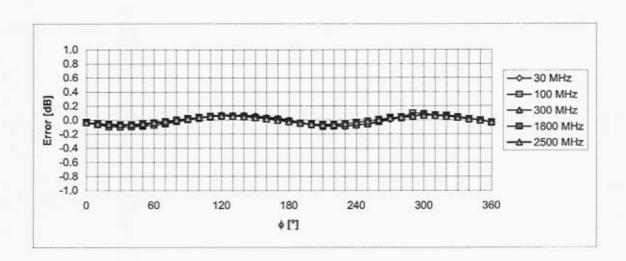

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

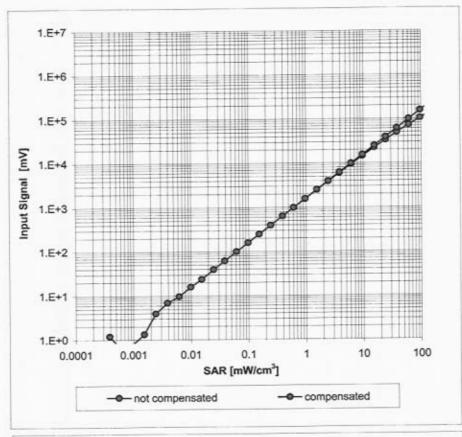

Frequency Response of E-Field

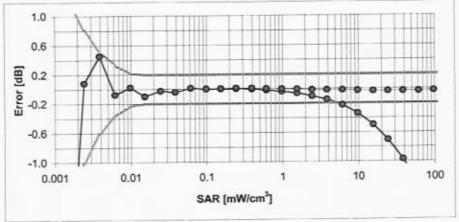

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

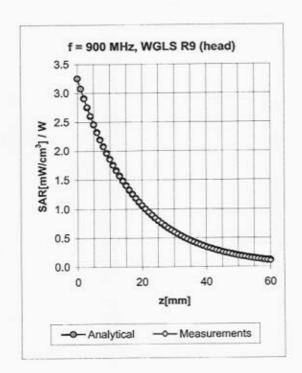
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

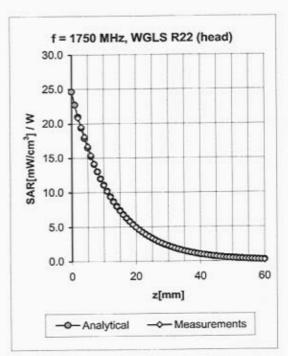




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

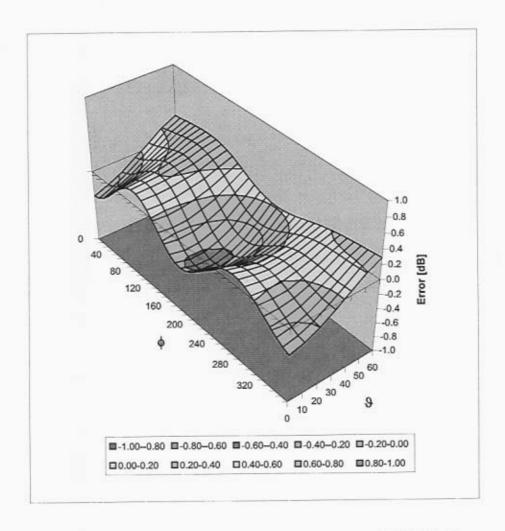
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



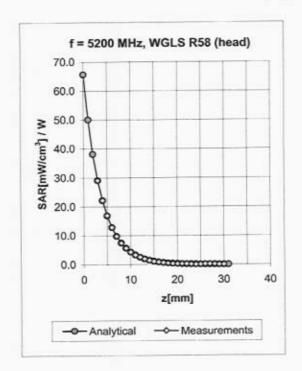
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.91	0.66	7.94 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.01	0.61	7.58 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.65	0.80	6.85 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	0.89	6.61 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.67	0.74	6.20 ± 11.8% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.96	0.66	7.81 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	1.06	0.61	7.57 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.52	1.15	6.40 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.46	1.35	6.24 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.79	0.67	6.14 ± 11.8% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY 4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Deviation from Isotropy in HSL


Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix^D

f [MHz] ^D	Validity [MHz]	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
5200	± 50	Head	36.0 ± 5%	4.66 ± 5%	0.48	1.80	4.27	± 13.6% (k=2)
5500	± 50	Head	35.6 ± 5%	4.96 ± 5%	0.46	1.80	3.87	± 13.6% (k=2)
5800	± 50	Head	35.3 ± 5%	5.27 ± 5%	0.46	1.80	3.85	± 13.6% (k=2)
5200	± 50	Body	49.0 ± 5%	5.30 ± 5%	0.47	1.80	4.04	± 13.6% (k=2)
5500	± 50	Body	48.6 ± 5%	5.65 ± 5%	0.48	1.90	3.63	± 13.6% (k=2)
5800	± 50	Body	48.2 ± 5%	6.00 ± 5%	0.48	1.90	3.62	± 13.6% (k=2)

⁰ Accreditation for ConvF assessment above 3000 MHz is currently applied for. Accreditation is expected at the beginning of 2005.