

TEST REPORT**Report No.: 24020660HKG-001**

Dyson Inc

Application For Original Grant of 47 CFR Part 15 Certification

Hair Styler

FCC ID: QVHHS08001**Prepared and Checked by:**

Signed on File

Leung Chun Ning, Peter
Assistant Engineer**Approved by:**Wong Cheuk Ho, Herbert
Assistant Supervisor
Date: March 18, 2024

TEST REPORT**GENERAL INFORMATION**

Grantee:	Dyson Inc
Grantee Address:	1330 W Fulton St 5th Fl, Chicago Illinois, 60607, United States.
Manufacturer Name:	Dyson Technology Limited
Manufacturer Address:	Tetbury Hill, Malmesbury, Wiltshire, SN16 0RP, United Kingdom.
FCC Specification Standard:	FCC Part 15, October 1, 2022 Edition
FCC ID:	QVHHS08001
FCC Model(s):	HS08
Type of EUT:	Spread Spectrum Transmitter
Description of EUT:	Hair Styler
Brand Name:	dyson
Sample Receipt Date:	February 28, 2024
Date of Test:	February 28, 2024 to March 04, 2024
Report Date:	March 18, 2024
Environmental Conditions:	Temperature: +10 to 40°C Relative Humidity: 10 to 90%
Conclusion:	Test was conducted by client submitted sample. The submitted sample as received complied with the 47 CFR Part 15.

TEST REPORT**SUMMARY OF TEST RESULT**

Test Items	FCC Part 15 Section	Results
Antenna Requirement	15.203	Complied
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	Complied
Min. 6dB RF Bandwidth	15.247(a)(2)	Complied
Max. Power Density (Average)	15.247(e)	Complied
Out of Band Antenna Conducted Emission	15.247(d)	Complied
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	Complied
AC Power Line Conducted Emission	15.207 & 15.107	Complied

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2022 Edition

TEST REPORT**TABLE OF CONTENTS**

EXHIBIT 1	GENERAL DESCRIPTION	5
1.1	Product Description	5
1.2	Test Methodology	5
1.3	Test Facility.....	5
1.4	Related Submittal(s) Grants	5
EXHIBIT 2	SYSTEM TEST CONFIGURATION	6
2.1	Justification	6
2.2	EUT Exercising Software.....	7
2.3	Support Equipment List and Description.....	7
2.4	Measurement Uncertainty.....	7
EXHIBIT 3	TEST RESULTS	8
3.1	Maximum Conducted (Peak) Output Power at Antenna Terminals.....	8
3.2	Minimum 6dB RF Bandwidth	10
3.3	Minimum Power Spectral Density	11
3.4	Out of Band Conducted Emissions.....	12
3.5	Field Strength Calculation	13
3.6	Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	14
3.7	Transmitter Duty Cycle Calculation	21
3.8	AC Power Line Conducted Emission	21
EXHIBIT 4	EQUIPMENT LIST	27

TEST REPORT

EXHIBIT 1 GENERAL DESCRIPTION

1.1 Product Description

The Equipment Under Test (EUT), is a 2.4GHz BLE Transceiver for a BLE hair styler. The sample supplied operated on 40 channels, normally at 2402 – 2480MHz. The channels are separated with 2MHz spacing.

The EUT is powered by 120VAC. After switching on the EUT, air with different strength and temperature will be exhausted based on the buttons pressed on the hair styler. The EUT can be paired up with a smartphone and different status and settings can be viewed through a mobile app.

The antenna(s) used in the EUT is integral, and the test sample is a prototype.

Peak Antenna Gain: 3dBi

The circuit description is saved with filename: descri.pdf.

1.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No. 558074 D01 v05r02 (April 02, 2019) All other measurements were made in accordance with the procedures in 47 CFR Part 2.

1.3 Test Facility

The radiated emission test site, AC power line conducted measurement facility and antenna port conducted measurement facility used to collect the radiated data, AC Power Line conducted data, and conductive data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong SAR, China. This test facility and site measurement data have been fully placed on file with the FCC.

1.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver.

TEST REPORT

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 120VAC.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

The rear of unit shall be flushed with the rear of the table.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 Limits.

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF*. The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 3MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

TEST REPORT

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst-case data is included in this report.

2.2 EUT Exercising Software

The EUT exercise program (Direct Test Mode v2.1.0) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

2.3 Support Equipment List and Description

Not Applicable

2.4 Measurement Uncertainty

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-3, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

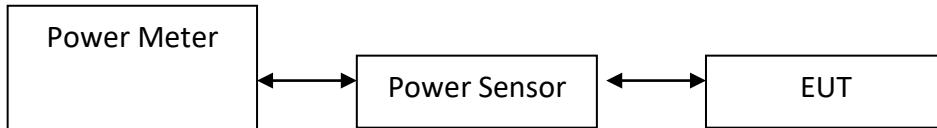

TEST REPORT

EXHIBIT 3 TEST RESULTS

3.1 Maximum Conducted (Peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

- The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals. The measurement procedure 8.3.2.3 was used.
- The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Peak Antenna Gain = 3 dBi (Refer to Test Data.pdf)

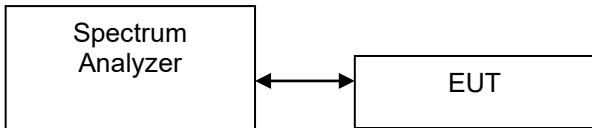
Frequency (MHz)	Output in dBm	Output in mW
Low Channel: 2402 (P.9)	2.39	1.7
Middle Channel: 2440 (P.28)	2.15	1.6
High Channel: 2480 (P.45)	1.43	1.4

TEST REPORT**3.1 Maximum Conducted (Peak) Output Power at Antenna Terminals (Cont'd)**

Cable loss: 0.7 dB External Attenuation: 0 dB

Cable loss, external attenuation: included in OFFSET function
 added to SA raw reading

Max. Conducted (Peak) Output Level = 2.39 dBm


Limits:

1W (30dBm) for antennas with gains of 6dBi or less

TEST REPORT

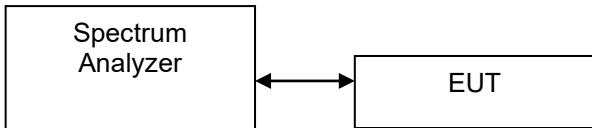
3.2 Minimum 6dB RF Bandwidth

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Refer to Test Data.pdf

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2402 (P.4)	0.6931
Middle Channel: 2440 (P.26)	0.7525
High Channel: 2480 (P.43)	0.6931


Limits:

6dB bandwidth shall be at least 500kHz.

TEST REPORT

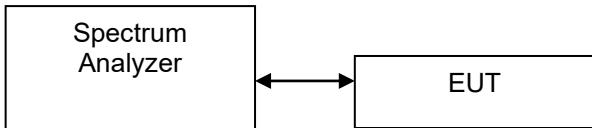
3.3 Minimum Power Spectral Density

The figure below shows the test setup, which is utilized to make these measurements.

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

Refer to Test Data.pdf

Frequency (MHz)	PSD in 100kHz (dBm)
Low Channel: 2402 (P.10)	2.780
Middle Channel: 2440 (P.32)	2.477
High Channel: 2480 (P.49)	1.599


Cable Loss: 0.7dB

Limit: 8dBm in 3kHz

TEST REPORT

3.4 Out of Band Conducted Emissions

The figure below shows the test setup, which is utilized to make these measurements.

The maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth.

The measurement procedures under sections 11 of KDB558074 D01 v05r02 (April 2, 2019) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

Limits:

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level.

Refer to Test Data.pdf

Frequency (MHz)	Out of Band Conducted Emissions	Band Edge
Low Channel: 2402	P.18	P.12
Middle Channel: 2440	P.35	N/A
High Channel: 2480	P.57	P.51

TEST REPORT

3.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$
 RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$
 CF = Cable Attenuation Factor in dB
 AF = Antenna Factor in dB
 AG = Amplifier Gain in dB
 PD = Pulse Desensitization in dB
 AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Example:

Assume a receiver reading of 62.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ is converted to its corresponding level in $\mu\text{V}/\text{m}$.

RA = 62.0 $\text{dB}\mu\text{V}$
AF = 7.4 dB
CF = 1.6 dB
AG = 29.0 dB
PD = 0.0 dB
AV = -10.0 dB
FS = $62.0 + 7.4 + 1.6 - 29.0 + 0.0 + -10.0 = 32.0 \text{ dB}\mu\text{V}/\text{m}$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32.0 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

TEST REPORT

3.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

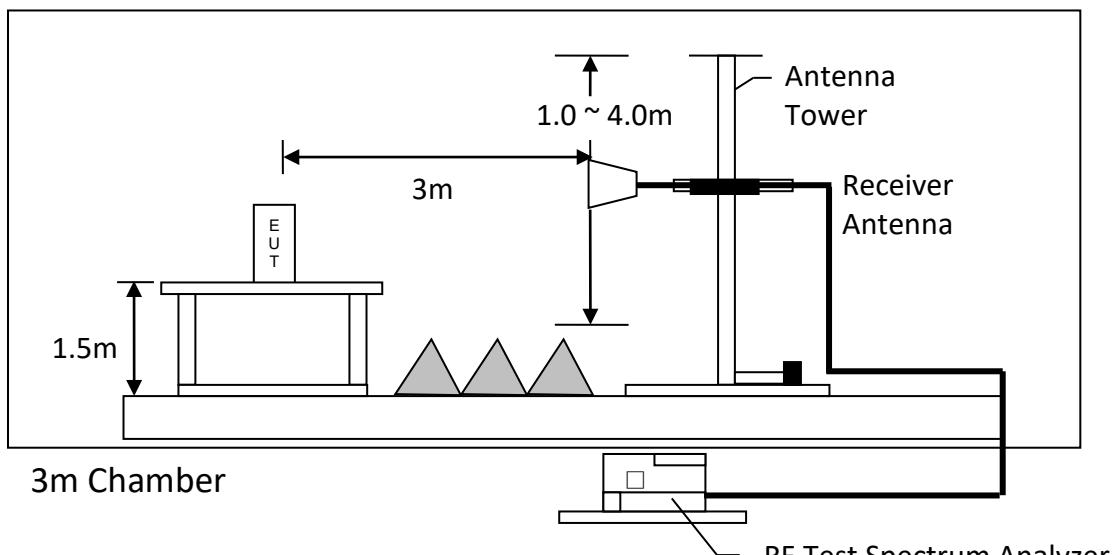
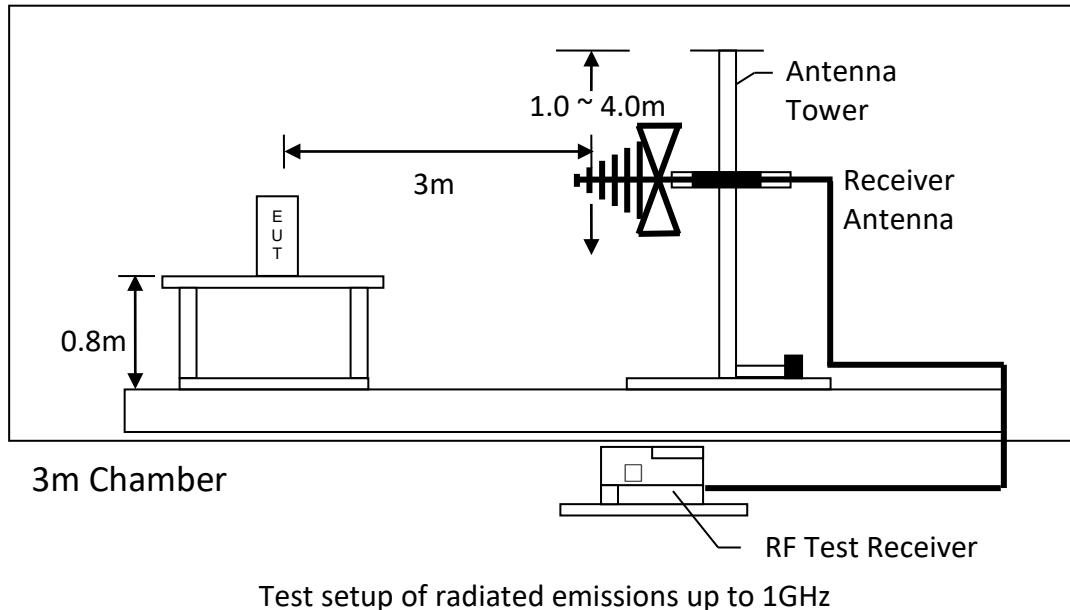
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

3.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission at 14412 MHz.

The worst case radiated emission configuration photographs are saved with filename:
Radiated Photos.pdf

3.6.2 Radiated Emission Data



The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.

Judgement – Passed by 12.5 dB margin

TEST REPORT

3.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

TEST REPORT

RADIATED EMISSION DATA

Mode: TX-Channel 2402MHz

Table 1

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (average) (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	2390.000	43.3	33	29.4	39.7	54.0	-14.3
V	4804.000	26.8	33	34.9	28.7	54.0	-25.3
H	7206.000	27.7	33	37.9	32.6	54.0	-21.4
H	9608.000	27.5	33	40.4	34.9	54.0	-19.1
H	12010.000	29.9	33	40.5	37.4	54.0	-16.6
H	14412.000	34.5	33	40.0	41.5	54.0	-12.5

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	2390.000	56.8	33	29.4	53.2	74.0	-20.8
V	4804.000	40.5	33	34.9	42.4	74.0	-31.6
H	7206.000	41.0	33	37.9	45.9	74.0	-28.1
H	9608.000	40.9	33	40.4	48.3	74.0	-25.7
H	12010.000	43.3	33	40.5	50.8	74.0	-23.2
H	14412.000	48.8	33	40.0	55.8	74.0	-18.2

Notes:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement.
3. All measurements were made at 3 meters.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. Measurement Uncertainty is ± 5.3 dB at a level of confidence of 95%.

TEST REPORT

RADIATED EMISSION DATA

Mode: TX-Channel 2440MHz

Table 2

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (average) (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	26.9	33	34.9	28.8	54.0	-25.2
H	7320.000	28.5	33	37.9	33.4	54.0	-20.6
V	9760.000	28.4	33	40.4	35.8	54.0	-18.2
H	12200.000	30.0	33	40.5	37.5	54.0	-16.5
H	14640.000	35.9	33	38.4	41.3	54.0	-12.7

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	40.6	33	34.9	42.5	74.0	-31.5
H	7320.000	42.1	33	37.9	47.0	74.0	-27.0
V	9760.000	42.2	33	40.4	49.6	74.0	-24.4
H	12200.000	43.6	33	40.5	51.1	74.0	-22.9
H	14640.000	49.2	33	38.4	54.6	74.0	-19.4

Notes:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement.
3. All measurements were made at 3 meters.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. Measurement Uncertainty is ± 5.3 dB at a level of confidence of 95%.

TEST REPORT

RADIATED EMISSION DATA

Mode: TX-Channel 2480MHz

Table 3

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (average) (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	2483.500	44.9	33	29.4	41.3	54.0	-12.7
V	4960.000	27.3	33	34.9	29.2	54.0	-24.8
H	7440.000	28.8	33	37.9	33.7	54.0	-20.3
V	9920.000	28.1	33	40.4	35.5	54.0	-18.5
H	12400.000	30.2	33	40.5	37.7	54.0	-16.3
V	14880.000	35.0	33	38.4	40.4	54.0	-13.6

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	2483.500	59.0	33	29.4	55.4	74.0	-18.6
V	4960.000	40.3	33	34.9	42.2	74.0	-31.8
H	7440.000	42.6	33	37.9	47.5	74.0	-26.5
V	9920.000	41.6	33	40.4	49.0	74.0	-25.0
H	12400.000	44.2	33	40.5	51.7	74.0	-22.3
V	14880.000	48.8	33	38.4	54.2	74.0	-19.8

Notes:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement.
3. All measurements were made at 3 meters.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. Measurement Uncertainty is ± 5.3 dB at a level of confidence of 95%.

TEST REPORT**RADIATED EMISSION DATA**

Mode: BLE Operating (Serial Number: 533617-US-EVT1-A0165)

Table 4

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
H	30.970	14.3	16	10.0	8.3	40.0	-31.7
H	214.421	5.0	16	17.0	6.0	43.5	-37.5
H	340.521	2.6	16	24.0	10.6	46.0	-35.4
V	488.083	5.4	16	26.0	15.4	46.0	-30.6
H	701.483	7.2	16	30.0	21.2	46.0	-24.8
H	945.074	6.8	16	33.0	23.8	46.0	-22.2

Notes:

1. Quasi-Peak detector is used for the emission measurement.
2. All measurements were made at 3 meters.
3. Negative value in the margin column shows emission below limit.
4. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205.
5. Measurement Uncertainty is ± 5.3 dB at a level of confidence of 95%.

TEST REPORT**RADIATED EMISSION DATA**

Mode: BLE Operating (Serial Number: 533617-US-EVT1-A0350)

Table 5

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	57.281	18.4	16	11.0	13.4	40.0	-26.6
V	68.679	20.5	16	8.0	12.5	40.0	-27.5
V	119.483	6.8	16	14.0	4.8	43.5	-38.7
V	167.983	7.3	16	18.0	9.3	43.5	-34.2
V	191.141	10.3	16	16.0	10.3	43.5	-33.2
H	716.275	6.5	16	30.0	20.5	46.0	-25.5

Notes:

1. Quasi-Peak detector is used for the emission measurement.
2. All measurements were made at 3 meters.
3. Negative value in the margin column shows emission below limit.
4. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205.
5. Measurement Uncertainty is ± 5.3 dB at a level of confidence of 95%.

TEST REPORT

3.7 Transmitter Duty Cycle Calculation

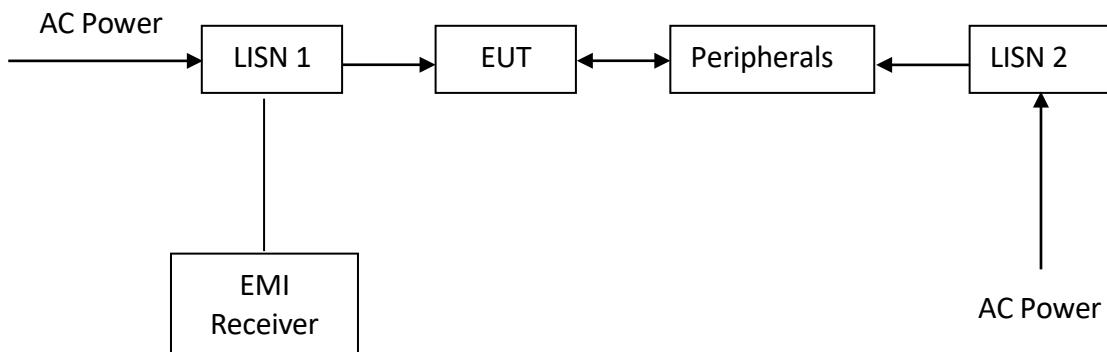
Not Applicable – No average factor is required

3.8 AC Power Line Conducted Emission

- Not Applicable – EUT is only powered by battery for operation.
- EUT connects to AC power line. Emission Data is listed in following pages.
- Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

3.8.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration at 0.150 MHz.

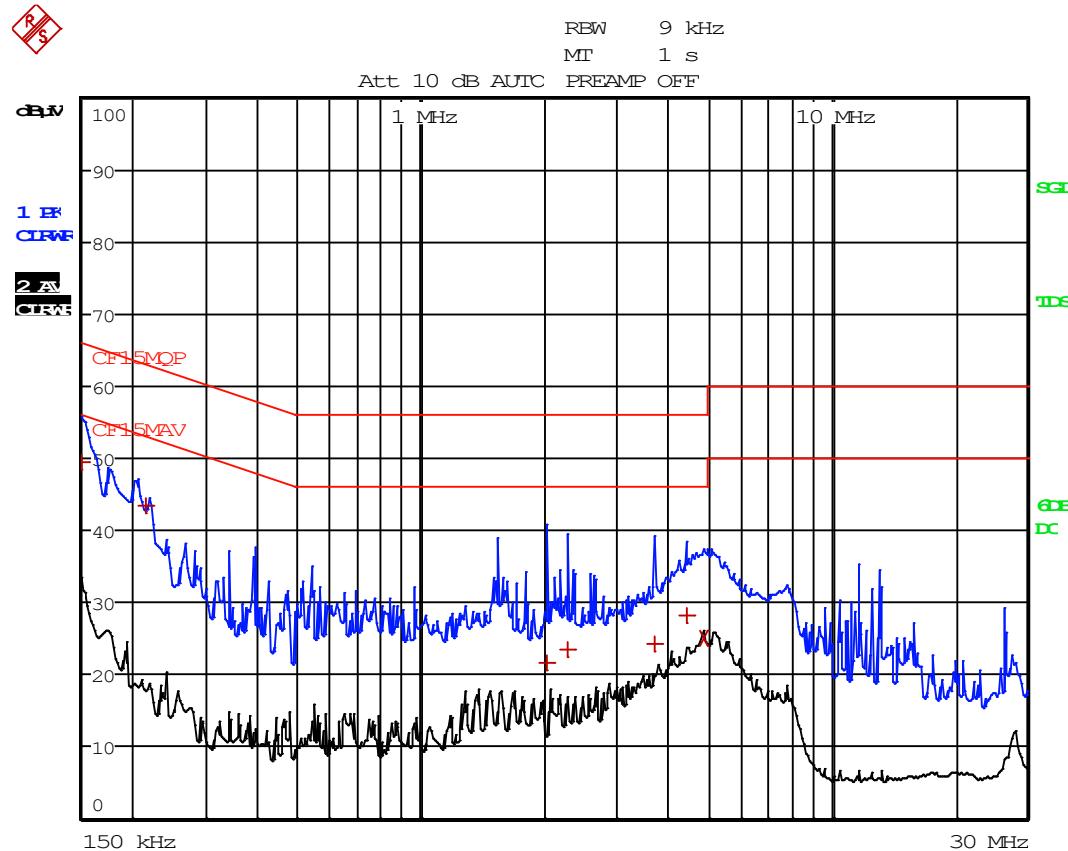

The worst-case line conducted configuration photographs are attached in the Appendix and saved with filename: Setup Photos.pdf.

3.8.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 9.0 dB margin

3.8.3 Conducted Emission Test Setup

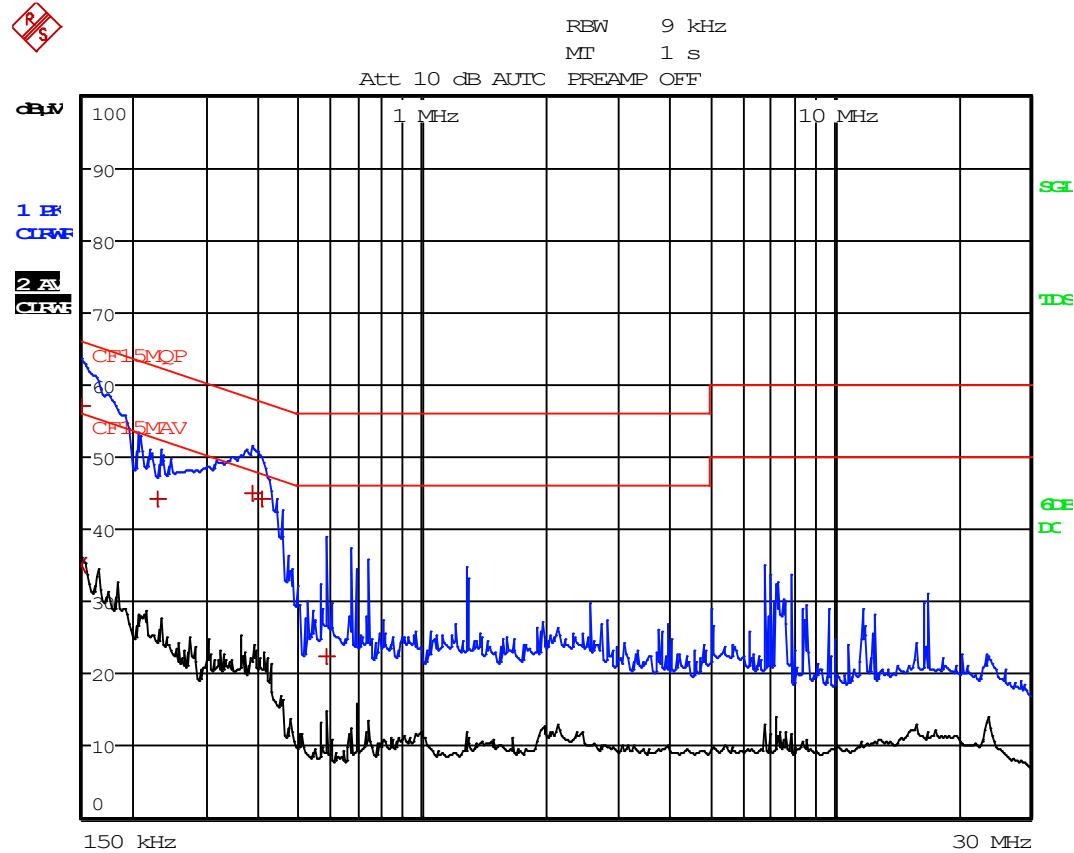


The EUT along with its peripherals were placed on a 1.0m(W)×1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were moved to find the maximum emission.

TEST REPORT**AC POWER LINE CONDUCTED EMISSION**

Worst Case: BLE Operating (Serial Number: 533617-US-EVT1-A0165)

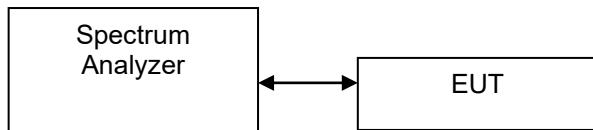

TEST REPORT**AC POWER LINE CONDUCTED EMISSION**

Worst Case: BLE Operating (Serial Number: 533617-US-EVT1-A0165)

EDIT PEAK LIST (Final Measurement Results)				
Trace1:	CF15MQP	LEVEL dB μ V	DELTA	LIMIT dB
Trace2:	CF15MAV			
Trace3:	---			
TRACE	FREQUENCY	LEVEL dB μ V	DELTA	LIMIT dB
1	Quasi Peak 150 kHz	49.54	N	-16.45
1	Quasi Peak 217.5 kHz	43.45	N	-19.45
1	Quasi Peak 2.022 MHz	21.69	L1	-34.31
1	Quasi Peak 2.292 MHz	23.45	N	-32.54
1	Quasi Peak 3.696 MHz	24.38	N	-31.61
1	Quasi Peak 4.4475 MHz	28.29	N	-27.70
2	CISPR Average 4.8975 MHz	25.13	L1	-20.86

TEST REPORT**AC POWER LINE CONDUCTED EMISSION**

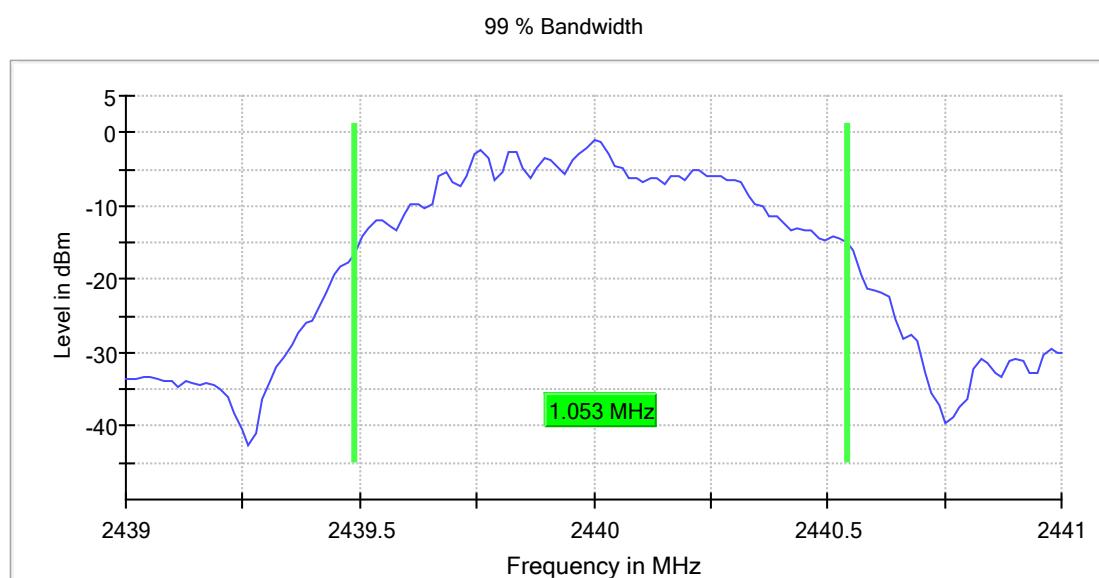
Worst Case: BLE Operating (Serial Number: 533617-US-EVT1-A0350)


TEST REPORT**AC POWER LINE CONDUCTED EMISSION**

Worst Case: BLE Operating (Serial Number: 533617-US-EVT1-A0350)

EDIT PEAK LIST (Final Measurement Results)				
TRACE	FREQUENCY	LEVEL dB _μ V	DELTA	LIMIT dB
1	Quasi Peak 150 kHz	57.03 L1	-8.96	
2	CISPR Average 150 kHz	35.02 L1	-20.97	
1	Quasi Peak 231 kHz	44.12 N	-18.29	
1	Quasi Peak 384 kHz	44.94 L1	-13.25	
1	Quasi Peak 406.5 kHz	44.33 L1	-13.38	
1	Quasi Peak 582 kHz	22.46 N	-33.53	

TEST REPORT**OCCUPIED BANDWIDTH**


The figure below shows the test setup, which is utilized to make these measurements.

Occupied Bandwidth Results:

Frequency (MHz)	Occupied Bandwidth (kHz)
Low Channel: 2402 (P.6)	1038
Middle Channel: 2440 (P.29)	1053
High Channel: 2480 (P.46)	1038

The worst case is shown as below:

TEST REPORT

EXHIBIT 4 EQUIPMENT LIST

1) Radiated Emissions Test

Equipment	EMI Test Receiver (9kHz to 26.5GHz)	Biconical Antenna (30MHz to 300MHz)	Log Periodic Antenna
Registration No.	EW-3156	EW-3241	EW-3244
Manufacturer	ROHDE SCHWARZ	EMCO	EMCO
Model No.	ESR26	3110C	3148B
Calibration Date	January 31, 2024	February 26, 2022	August 30, 2022
Calibration Due Date	January 31, 2025	May 26, 2024	May 30, 2024
Equipment	Double Ridged Guide Antenna (1GHz - 18GHz)	Active Loop Antenna (H-field) (9kHz to 30MHz)	RF Preamplifier (9kHz to 6000MHz)
Registration No.	EW-0194	EW-3326	EW-3006b
Manufacturer	EMCO	EMCO	SCHWARZBECK
Model No.	3115	6502	BBV9718
Calibration Date	May 10, 2023	January 05, 2024	October 20, 2023
Calibration Due Date	November 10, 2024	July 05, 2025	October 20, 2024
Equipment	2.4GHz Notch Filter	14m Double Shield RF Cable (9kHz - 6GHz)	RF Cable 14m (1GHz to 26.5GHz)
Registration No.	EW-3435	EW-2376	EW-2781
Manufacturer	MICROWAVE	RADIALL	GREATBILLION
Model No.	N0324413	n m/br56/bnc m 14m	SMA m/SHF5MPU /SMA m ra14m,26G
Calibration Date	September 26, 2023	September 19, 2023	January 16, 2024
Calibration Due Date	September 26, 2024	September 19, 2024	January 16, 2025
Equipment	12 metre RF Cable (1-40)GHz	Pyramidal Horn Antenna	
Registration No.	EW-2774	EW-0905	
Manufacturer	GREATBILLION	EMCO	
Model No.	SMA m-m ra 12m 40G outdoor	3160-09	
Calibration Date	January 16, 2024	December 15, 2023	
Calibration Due Date	January 16, 2025	June 15, 2025	

TEST REPORT**EXHIBIT 4 EQUIPMENT LIST (CONT'D)**

2) Conductive Measurement Test

Equipment	5m RF Cable (40GHz)	RF Power Meter with Power Sensor (N1921A)	EMI Test Receiver (9kHz to 26.5GHz)
Registration No.	EW-2701	EW-3309	EW-3156
Manufacturer	RADIALL	ROHDE SCHWARZ	ROHDE SCHWARZ
Model No.	Sma m-m 5m 40G	NRP-Z81	ESR26
Calibration Date	November 24, 2020	February 14, 2023	January 31, 2024
Calibration Due Date	May 24, 2024	May 14, 2024	January 31, 2025

3) Conducted Emissions Test

Equipment	RF Cable 240cm (RG142) (9kHz to 30MHz)	Artificial Mains Network	EMI Test Receiver (9kHz to 3GHz)
Registration No.	EW-2454	EW-3360	EW-3095
Manufacturer	RADIALL	ROHDE SCHWARZ	ROHDE SCHWARZ
Model No.	Bnc m st / 142 / bnc mra 240cm	ENV-216	ESCI
Calibration Date	June 13, 2023	April 07, 2024	January 18, 2024
Calibration Due Date	June 13, 2024	April 07, 2025	January 18, 2025

4) Control Software for Radiated Emission

Software Information	
Software Name	EMC32
Manufacturer	ROHDE SCHWARZ
Software version	10.50.40

END OF TEST REPORT