

FCC IC Test Report

Report No.: FCC_IC_RF_SL20110901-JAD-004 Rev_1.0

FCC ID: QV5MERCURY6E-M

IC: 5407A-MERCURY6EM

Test Model: M6e-Micro

Variant Model: M6e-M

Received Date: 12/02/2020

Test Date: 12/12/2020

Issued Date: 12/29/2020

Applicant: JADAK, a business unit of Novanta Corporation

Address: 125 Middlesex Turnpike, Bedford, MA 01730

Manufacturer: JADAK, a business unit of Novanta Corporation

Address: 125 Middlesex Turnpike, Bedford, MA 01730

Issued By: Bureau Veritas Consumer Products Services, Inc.

Lab Address: 775 Montague Expressway, Milpitas, CA 95035

Test Location (1): 775 Montague Expressway, Milpitas, CA 95035

**FCC Registration /
Designation Number:** 540430

ISED# / CAB identifier: 4842D

TESTING CERT # 2742-01

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	6
2.2 Modification Record	6
3 General Information.....	7
3.1 General Description of EUT	7
3.2 Description of Test Modes.....	8
3.3 Description of Support Units	8
3.3.1 Configuration of System under Test	8
3.4 General Description of Applied Standards	9
4 Test Types and Results	10
4.1 Channel Bandwidth	10
4.1.1 Limits of Channel Bandwidth Measurement.....	10
4.1.2 Test Setup.....	10
4.1.3 Test Instruments	10
4.1.4 Test Procedure	10
4.1.5 Deviation from Test Standard	10
4.1.6 EUT Operating Condition	10
4.1.7 Test Results	11
4.2 Hopping Channel Separation	14
4.2.1 Limits of Hopping Channel Separation Measurement.....	14
4.2.2 Test Setup.....	14
4.2.3 Test Instruments	14
4.2.4 Test Procedure	14
4.2.5 Deviation from Test Standard	14
4.2.6 Test Results	15
4.3 Conducted Output Power Measurement.....	18
4.3.1 Limits of Conducted Output Power Measurement	18
4.3.2 Test Setup.....	18
4.3.3 Test Instruments	18
4.3.4 Test Procedures.....	18
4.3.5 Deviation from Test Standard	18
4.3.6 Test Results	19
4.4 Number of Hopping Frequency Used.....	23
4.4.1 Limits of Hopping Frequency Used Measurement	23
4.4.2 Test Setup.....	23
4.4.3 Test Instruments	23
4.4.4 Test Procedure	23
4.4.5 Deviation from Test Standard	23
4.4.6 Test Results	24
Appendix – Information on the Testing Laboratories	25

Release Control Record

Issue No.	Description	Date Issued
FCC_IC_RF_SL20110901-JAD-004	Orignal Release	12/14/2020
FCC_IC_RF_SL20110901-JAD-004 Rev_1.0	Add channel list description	12/29/2020

1 Certificate of Conformity

Product: RFID module

Brand: JADAK, a business unit of Novanta Corporation

Test Model: M6e-Micro, M6e-M

Sample Status: Engineering sample

Applicant: JADAK, a business unit of Novanta Corporation

Test Date: 12/11/2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

RSS-247 Issue 2, February 2017

ANSI C63.10: 2013

RSS-Gen Issue 5, March 2019

DA 00-705, 2000

The above equipment has been tested by **Bureau Veritas Consumer Products Services, Inc., Milpitas Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Deon, **Date:** 12/29/2020
Deon Dai / Compliance Engineer

Approved by : Gary Chou, **Date:** 12/29/2020
Gary Chou / Engineer Reviewer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	N/A	Device is DC powered.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.
15.247(a)(1)	1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.
15.205 & 209 & 15.247(d)	Radiated Emissions	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	Antenna connector is RP-TNC not a standard connector. Professional installation is required.

Refer to Original Report No.:

EM2037-1 Issue 1, 11/10/2012 tested by Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

This report details the partial testing for FCC ID: QV5MERCURY6E-M and IC: 5407A-MERCURY6EM) with the following modifications:

The channel plan was added via Firmware with a narrower spacing of 375 kHz instead of the original 500kHz.

Channel list

902.625, 903, 903.375, 903.75, 904.125, 904.5, 904.875, 905.25, 905.625, 906, 906.375, 906.750, 907.125, 907.5, 907.875, 908.25, 908.625, 909, 909.375, 909.75, 910.125, 910.5, 910.875, 911.25, 912, 912.375, 912.75, 913.125, 913.5, 913.875, 914.25, 914.625, 915, 915.375, 915.75, 916.125, 916.5, 916.875, 917.25, 917.625, 918, 918.375, 918.75, 919.125, 919.5, 919.875, 920.25, 920.625, 921

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.51dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	3.73dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	4.64dB
	6GHz ~ 18GHz	4.82dB
	18GHz ~ 40GHz	4.91dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	RFID module
Brand	JADAK, a business unit of Novanta Corporation
Test Model	M6e-Micro, M6e-M
Variant Model	M6e-M
Identification No. of EUT	262034801007
Status of EUT	Engineering sample
Power Supply Rating	5Vdc
Modulation Type	ASK
Modulation Technology	FHSS
Transfer Rate	160kHz
Operating Frequency	902.675-921.00MHz
Number of Channel	50
Output Power	<p>Power at the output of module: 29.88 dBm</p> <p>Output Power at the end of the cable: 28.38 dBm.</p>
Antenna Info	<p>ANT 1:</p> <p>Antenna Type: RHCP Patch Antenna</p> <p>Gain: 9.5 dBiC(6.5 dbi) Typical</p> <p>Brand: MTI Wireless Edge Ltd.</p> <p>Model No: MT-242043/TRH/A/K</p> <p>ANT2:</p> <p>Antenna Type: Dipole</p> <p>Gain: 4 dBd (6.15 dBi)</p> <p>Brand: Laird Technologies</p> <p>Model No: S8964B</p>
Antenna Connector	RP-TNC

3.2 Description of Test Modes

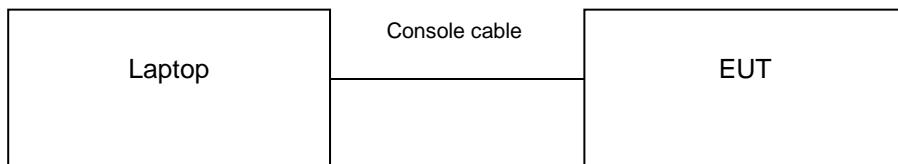
50 channels are provided to this EUT:

Mode 1(NA4)

Channel	Frequency (MHz)
Low	902.625
Mid	911.625
High	921.000

3.3 Description of Support Units

The RFID module (which is the EUT) is soldered to the CARRIER BOARD.


The M6E-DEVKIT provides power to the module and has Serial and USB interfaces to support both board-to-board and board-to-host connectivity.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	DC power supply	RIGOL	DP712	SED234155	N/A	N/A
B.	Laptop	Dell	XPS	C1MR31G5G944	N/A	N/A
C.	M6E-DEVKIT	JADAK, a business unit of Novanta Corporation	540-0061-01	N/A	N/A	N/A
D.	12 ft. cable	ThingMagic	CBL-P12	N/A	N/A	N/A

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB console cable	1	0.8	N	0	Provided by Customer

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C (Section 15.247)

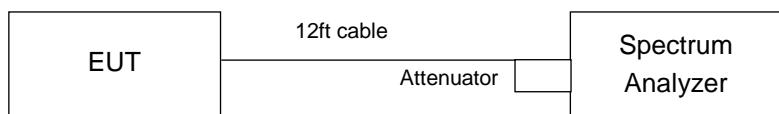
RSS 247 Issue2, February 2017

ANSI C63.10: 2013

RSS Gen Issue5, March 2019

DA 00-705, 2000

All test items have been performed and recorded as per the above standards.


4 Test Types and Results

4.1 Channel Bandwidth

4.1.1 Limits of Channel Bandwidth Measurement

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.1.2 Test Setup

4.1.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.1.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.1.5 Deviation from Test Standard

No deviation.

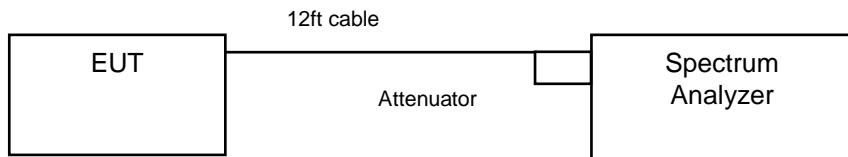
4.1.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
Low	902.625	76.11
Mid	911.625	75.97
High	921.000	80.35

Test Plots:



4.2 Hopping Channel Separation

4.2.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

4.2.2 Test Setup

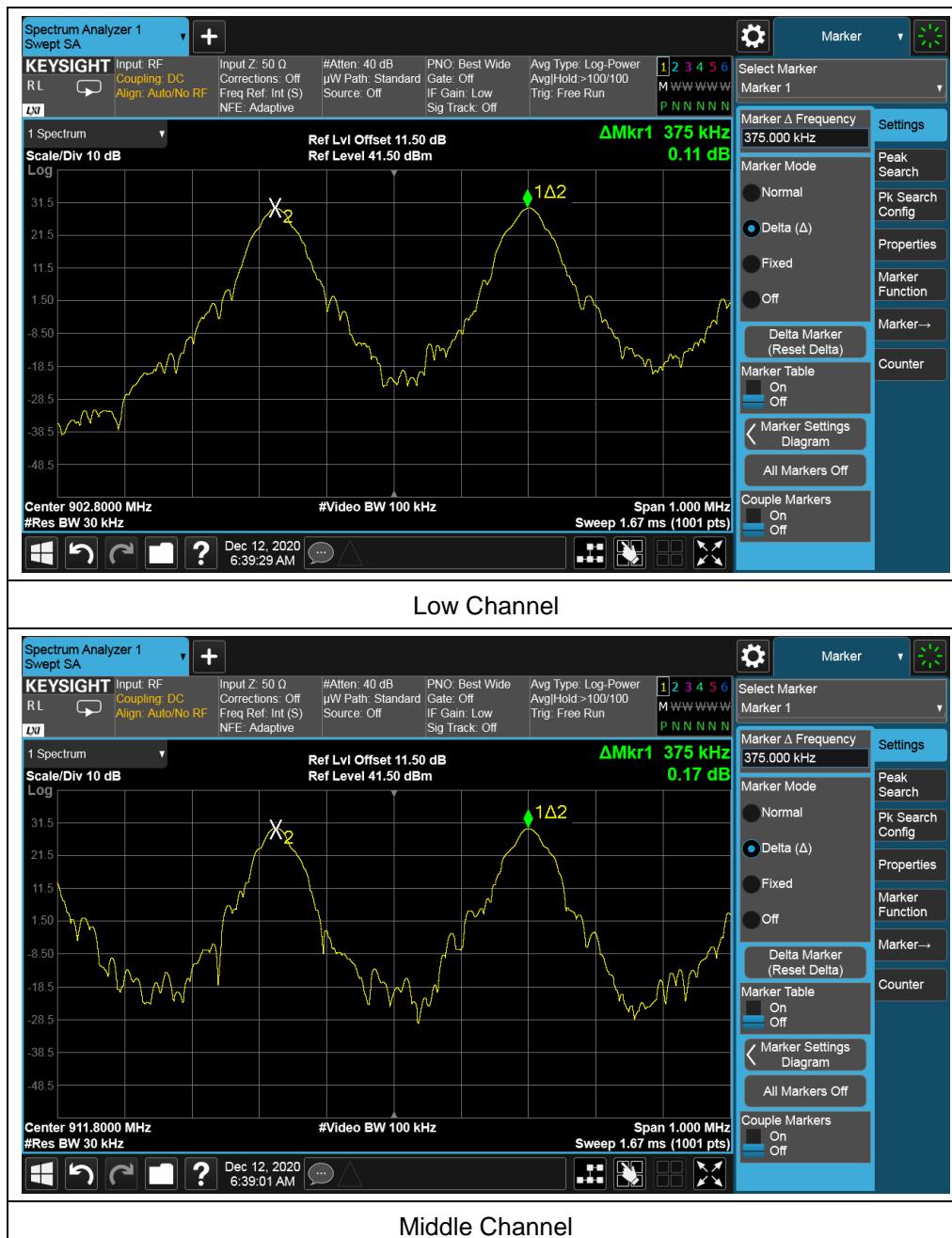
4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.2.5 Deviation from Test Standard

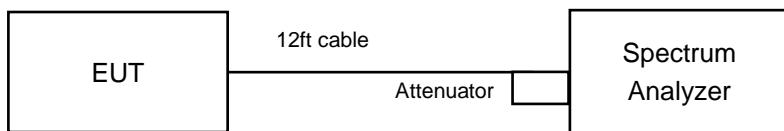
No deviation.

4.2.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (kHz)	20dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	902.625	375	76.11	50.74	Pass
Mid	911.625	375	75.97	50.65	Pass
High	921.000	375	80.35	53.57	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.

Test Plots:



4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 1MHz RBW and 3 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

ANT1 Port:

Channel	Frequency (MHz)	Conducted Power at the end of the cable (dBm)	Limit (dBm)	Pass/Fail
Low	902.625	29.88	30	Pass
Mid	911.625	29.69	30	Pass
High	921.000	29.53	30	Pass

Note: The power result is measured at antenna port, the actual power from module is 1.5dB higher, a cable with adapters with total loss of 1.5 dB is connected between the module and the antenna.

Test Plots:



ANT2 Port:

Channel	Frequency (MHz)	Conducted Power at the end of the cable (dBm)	Limit (dBm)	Pass/Fail
Low	902.625	29.51	30	Pass
Mid	911.625	29.59	30	Pass
High	921.000	29.86	30	Pass

Note: The power result is measured at antenna port, the actual power from module is 1.5dB higher, a cable with adapters with total loss of 1.5 dB is connected between the module and the antenna.

Test Plots:

4.4 Number of Hopping Frequency Used

4.4.1 Limits of Hopping Frequency Used Measurement

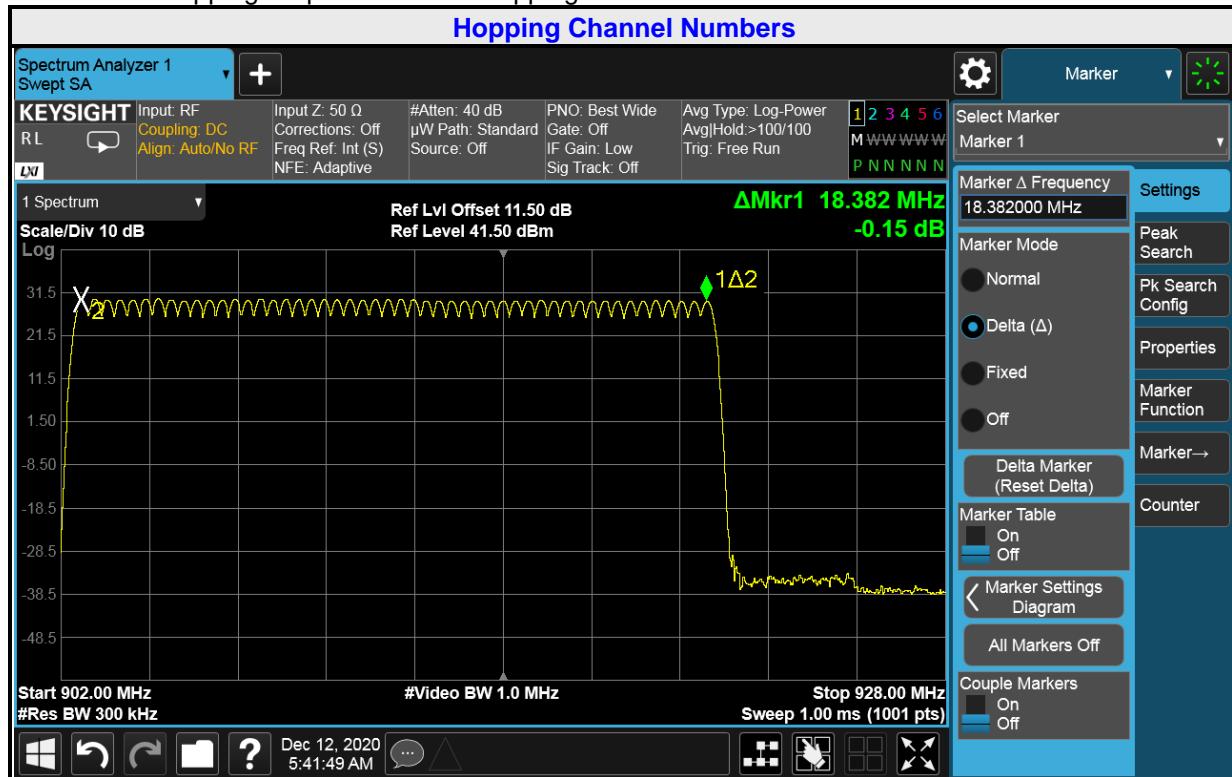
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

There are 50 hopping frequencies in the hopping mode.

Appendix – Information on the Testing Laboratories

Bureau Veritas is a global leader in testing, inspection and certification (TIC) services. We help businesses improve safety, sustainability and productivity; and our clients include the majority of leading brands in retail, manufacturing and other industries. With a presence in every major country around the world, our quality assurance and compliance solutions are vital in helping our customers enhance product quality and concept-to-consumer journeys. We also assist with increasing speed to market, profitability and brand equity throughout the supply chain. Bureau Veritas is a leading wireless/IoT testing, inspection, audit and certification provider, with a global network of test laboratories to support the IoT industry in areas of connectivity, security, interoperability as well as quality, health & safety, and environmental/chemical requirements.

If you have any comments, please feel free to contact us at the following:

Milpitas EMC/RF/Safety/Telecom Lab
775 Montague Expressway, Milpitas, CA 95035
Tel: +1 408 526 1188

Sunnyvale OTA/Bluetooth Lab
1293 Anvilwood Avenue, Sunnyvale, CA
94089
Tel: +1 669 600 5293

Littleton EMC/RF/Safety/Environmental Lab
1 Distribution Center Cir #1, Littleton, MA 01460
Tel: +1 978 486 8880

Email: sales.eaw@us.bureauveritas.com
Web Site: www.cpsusa-bureauveritas.com

The address and road map of all our labs can be found in our web site also.

--- END ---