

---

# **GSM1900 test report for NHL-12**

**CONTENTS**

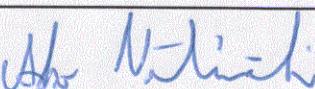
|      |                                                  |    |
|------|--------------------------------------------------|----|
| 1    | LABORATORY INFORMATION .....                     | 4  |
| 2    | CUSTOMER INFORMATION .....                       | 4  |
| 3    | SUMMARY OF TEST RESULTS.....                     | 5  |
| 4    | EUT INFORMATION.....                             | 6  |
| 4.1  | EUT description .....                            | 6  |
| 5    | EUT TEST SETUPS .....                            | 6  |
| 6    | APPLICABLE STANDARDS.....                        | 6  |
| 7    | RADIATED RF OUTPUT POWER .....                   | 7  |
| 7.1  | Test setup .....                                 | 7  |
| 7.2  | Test method .....                                | 7  |
| 7.3  | EUT operation mode.....                          | 8  |
| 7.4  | Limit .....                                      | 8  |
| 7.5  | Results .....                                    | 8  |
| 7.6  | EUT operation mode.....                          | 9  |
| 7.7  | Limit .....                                      | 9  |
| 7.8  | Results .....                                    | 9  |
| 8    | 99% OCCUPIED BANDWIDTH.....                      | 10 |
| 8.1  | Test setup .....                                 | 10 |
| 8.2  | EUT operation mode.....                          | 10 |
| 8.3  | Results .....                                    | 10 |
| 8.4  | Screen shot.....                                 | 11 |
| 8.5  | EUT operation mode.....                          | 12 |
| 8.6  | Results .....                                    | 12 |
| 9    | BANDEdge COMPLIANCE .....                        | 13 |
| 9.1  | Test setup .....                                 | 13 |
| 9.2  | EUT operation mode.....                          | 13 |
| 9.3  | Limit .....                                      | 13 |
| 9.4  | Results .....                                    | 14 |
| 9.5  | Screen shots .....                               | 14 |
| 9.6  | EUT operation mode.....                          | 16 |
| 9.7  | Limit .....                                      | 16 |
| 9.8  | Results .....                                    | 16 |
| 9.9  | Screen shots .....                               | 17 |
| 10   | SPURIOUS RADIATED EMISSION .....                 | 19 |
| 10.1 | Test setup .....                                 | 19 |
| 10.2 | Test method .....                                | 19 |
| 10.3 | EUT operation mode.....                          | 20 |
| 10.4 | Limit .....                                      | 20 |
| 10.5 | Results .....                                    | 20 |
| 10.6 | EUT operation mode.....                          | 21 |
| 10.7 | Limit .....                                      | 21 |
| 10.8 | Results .....                                    | 21 |
| 11   | FREQUENCY STABILITY, TEMPERATURE VARIATION ..... | 22 |
| 11.1 | Test setup .....                                 | 22 |
| 11.2 | Limit .....                                      | 22 |
| 11.3 | Test method .....                                | 22 |
| 11.4 | EUT operation mode.....                          | 22 |
| 11.5 | Results .....                                    | 23 |
| 12   | FREQUENCY STABILITY, VOLTAGE VARIATION .....     | 24 |
| 12.1 | Test setup .....                                 | 24 |
| 12.2 | EUT operation mode.....                          | 24 |
| 12.3 | Limit .....                                      | 24 |
| 12.4 | Test method .....                                | 24 |

---

|      |                              |    |
|------|------------------------------|----|
| 12.5 | Results.....                 | 24 |
| 13   | TEST EQUIPMENT .....         | 25 |
| 13.1 | Conducted measurements ..... | 25 |
| 13.2 | Radiated measurements .....  | 25 |
| 14   | TEST SETUP PHOTOGRAPHS.....  | 26 |

Tampere

## 1 LABORATORY INFORMATION


|                                             |                                                                                                      |
|---------------------------------------------|------------------------------------------------------------------------------------------------------|
| Test laboratory:                            | TCC Tampere<br>Sinitaival 5<br>FIN-33720 TAMPERE<br><br>Tel. +358 7180 46800<br>Fax. +358 7180 46880 |
| FCC registration number:<br>IC file number: | 94436 (June 14, 2002)<br>IC 3608 (March 5, 2003)                                                     |

## 2 CUSTOMER INFORMATION

|                  |                                                                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:          | Nokia Corporation<br>Multimedia Imaging BU<br>Mattilanniemi 6-8<br>FIN-40100 JYVÄSKYLÄ<br>FINLAND<br>Tel. +358-71-8008000<br>Fax. +358-71-8078000 |
| Contact person:  | Mikael Honkanen                                                                                                                                   |
| Receipt of EUT:  | 7.1.2004                                                                                                                                          |
| Date of testing: | 7.1-12.2.2004                                                                                                                                     |
| Date of report:  | 26.2.2004                                                                                                                                         |

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and IC standard RSS-133.

Contents approved:

|                                                                                     |
|-------------------------------------------------------------------------------------|
|  |
| Asko Välimäki<br>Quality Manager                                                    |



### 3 SUMMARY OF TEST RESULTS

| Section in CFR 47          | Section in RSS-133 |                                            | Result |
|----------------------------|--------------------|--------------------------------------------|--------|
| §2.1046 (a)                | 6.2                | Conducted RF output                        | -      |
| §24.232 (b)                | 6.2                | Radiated RF output                         | PASS   |
| §2.1049 (h)                | 5.6                | 99% occupied bandwidth                     | PASS   |
| §24.238 (a)                | 6.3                | Bandedge compliance                        | PASS   |
| §24.238 (a), §2.1051       | 6.3                | Spurious emissions at antenna terminals    | -      |
| §24.238 (a), §2.1053       | 6.3                | Spurious radiated emission                 | PASS   |
| §24.235, §2.1055 (a)(1)(b) | 7                  | Frequency stability, temperature variation | PASS   |
| §24.235, §2.1055 (d)(1)(2) | 7                  | Frequency stability, voltage variation     | PASS   |

PASS Pass  
FAIL Fail  
X Measured, but there is no applicable performance criteria  
- Not done

## 4 EUT INFORMATION

The EUT and accessories used in the tests are listed below. Later in this report only EUT numbers are used as reference.

|             | Device        | Type   | S/N                | EUT number |
|-------------|---------------|--------|--------------------|------------|
| EUT         | GSM Phone     | NHL-12 | 004400231656917    | 3376       |
|             | GSM Phone     | NHL-12 | 004400231656834    | 3392       |
| Accessories | Battery       | BL-5C  | 067040063563311211 | 3394       |
|             | Battery       | BL-5C  | 067039880257341411 | 3386       |
|             | Memory card   | DTS-32 | A200EJ85221        | 3377       |
|             | Memory card   | DTS-32 | -                  | 3393       |
|             | Dummy battery | -      | -                  | 3343       |

Notes: -

### 4.1 EUT description

The EUT is a triple band (850 MHz/1800 MHz/1900 MHz) E-GPRS (Edge) GSM mobile phone with bluetooth.

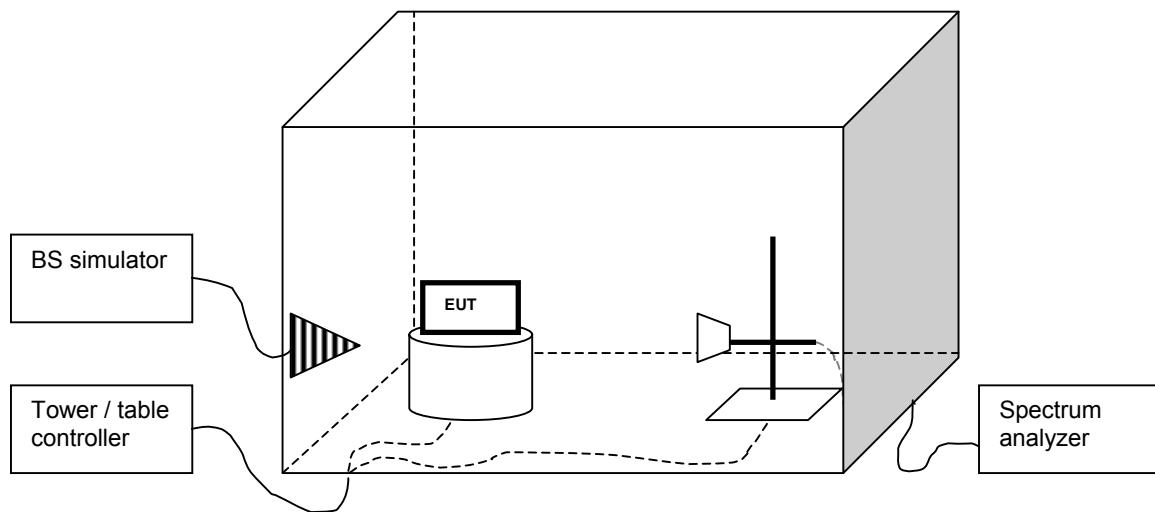
The EUT was not modified during the tests.

## 5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

The test setup photographs are in the document referenced in section 14.

## 6 APPLICABLE STANDARDS


The tests were performed in guidance of CFR 47 part 24, part 2, ANSI/TIA/EIA-603-A and RSS-133. Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.

## 7 RADIATED RF OUTPUT POWER

|                              |               |        |          |
|------------------------------|---------------|--------|----------|
| EUT                          | 3392          |        |          |
| Accessories                  | 3393, 3394    |        |          |
| Temp, Humidity, Air Pressure | 21 °C         | 45 RH% | 997 mbar |
| Date of measurement          | 7.2.2004      |        |          |
| FCC rule part                | §24.232 (b)   |        |          |
| RSS-133 section              | 6.2           |        |          |
| Measured by                  | Jari Jantunen |        |          |
| Result                       | PASS          |        |          |

### 7.1 Test setup

The EUT was set on a non-conductive turn table in a semi anechoic chamber. In the corner of the chamber there was a communication antenna, which was connected to the BS simulator located outside the chamber. The radiated power from the EUT was measured with an antenna fixed to a antenna tower. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.



### 7.2 Test method

- The maximum power level was searched by moving the turn table and measuring antenna and manipulating the EUT. This level ( $P_{EUT}$ ) was recorded.
- The EUT was replaced with a substituting antenna.
- The substituting antenna was fed with the power ( $P_{Subst\_TX}$ ) giving a convenient reading on the spectrum analyzer. That reading ( $P_{Subst\_RX}$ ) on spectrum analyzer was recorded.

### 7.3 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, GMSK modulation |
| EUT channel        | 512, 661, 810                                                                 |
| EUT TX power level | 0 (+30dBm)                                                                    |

### 7.4 Limit

|          |
|----------|
| EIRP [W] |
| ≤ 2      |

### 7.5 Results

The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{Subst\_TX}[dBm] + (P_{EUT}[dBm] - P_{Subst\_RX}[dBm]) + G_{Substitute\_antenna}[dBi] - L_{Cable}[dB]) / 10}}{1000}$$

where the variables are as follows:

|                                 |                                                                         |
|---------------------------------|-------------------------------------------------------------------------|
| $P_{EUT}$ [dBm]                 | Measured power level (from step a in 7.2) from the EUT                  |
| $P_{Subst\_TX}$ [dBm]           | Power (from step c in 7.2) fed to the substituting antenna              |
| $P_{Subst\_RX}$ [dBm]           | Power (from step c in 7.2) received with the spectrum analyzer          |
| $G_{Substitute\_antenna}$ [dBi] | Gain of the substitutive antenna over isotropic radiator                |
| $L_{Cable}$ [dB]                | Loss of the cable between signal generator and the substituting antenna |

Table 1 Radiated output power

| EUT Channel | $P_{EUT}$ [dBm] | $P_{Subst\_TX}$ [dBm] | $P_{Subst\_RX}$ [dBm] | Cable loss [dB] | Antenna gain [dBi] | EIRP [dBm] | EIRP [W] |
|-------------|-----------------|-----------------------|-----------------------|-----------------|--------------------|------------|----------|
| 512         | -15.17          | +10                   | -40.33                | 6.27            | 0.2                | 29.09      | 0.8110   |
| 661         | -15.68          | +10                   | -40.12                | 6.19            | -0.5               | 27.75      | 0.5957   |
| 810         | -18.17          | +10                   | -40.59                | 6.10            | -0.8               | 25.52      | 0.3565   |

## 7.6 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, 8PSK modulation |
| EUT channel        | 512, 661, 810                                                                 |
| EUT TX power level | 0 (+30dBm)                                                                    |

## 7.7 Limit

|          |
|----------|
| EIRP [W] |
| ≤ 2      |

## 7.8 Results

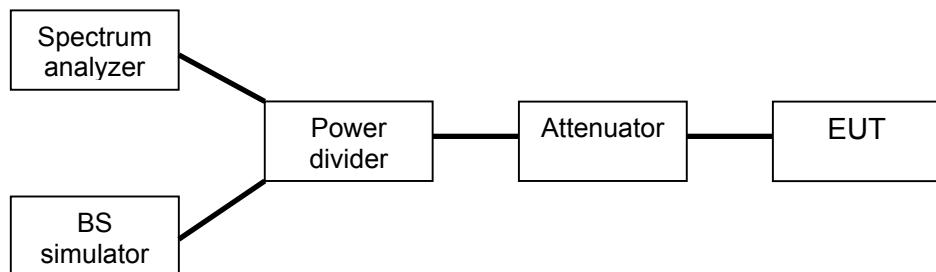
The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{Subst\_TX} [dBm] + (P_{EUT} [dBm] - P_{Subst\_RX} [dBm]) + G_{Substitute\_antenna} [dBi] - L_{Cable} [dB]) / 10}}{1000}$$

where the variables are as follows:

|                                 |                                                                         |
|---------------------------------|-------------------------------------------------------------------------|
| $P_{EUT} [dBm]$                 | Measured power level (from step a in 7.2) from the EUT                  |
| $P_{Subst\_TX} [dBm]$           | Power (from step c in 7.2) fed to the substituting antenna              |
| $P_{Subst\_RX} [dBm]$           | Power (from step c in 7.2) received with the spectrum analyzer          |
| $G_{Substitute\_antenna} [dBi]$ | Gain of the substitutive antenna over isotropic radiator                |
| $L_{Cable} [dB]$                | Loss of the cable between signal generator and the substituting antenna |

Table 2 Radiated output power


| EUT Channel | $P_{EUT}$ [dBm] | $P_{Subst\_TX}$ [dBm] | $P_{Subst\_RX}$ [dBm] | Cable loss [dB] | Antenna gain [dBi] | EIRP [dBm] | EIRP [W] |
|-------------|-----------------|-----------------------|-----------------------|-----------------|--------------------|------------|----------|
| 512         | -17.23          | +10                   | -40.33                | 6.27            | 0.2                | 27.03      | 0.5047   |
| 661         | -17.29          | +10                   | -40.12                | 6.19            | -0.5               | 26.14      | 0.4112   |
| 810         | -20.32          | +10                   | -40.59                | 6.10            | -0.8               | 23.37      | 0.2173   |

## 8 99% OCCUPIED BANDWIDTH

|                              |                |       |          |
|------------------------------|----------------|-------|----------|
| EUT                          | 3376           |       |          |
| Accessories                  | 3377, 3386     |       |          |
| Temp, Humidity, Air Pressure | 20°C           | 55RH% | 999 mbar |
| Date of measurement          | 9.2.2004       |       |          |
| FCC rule part                | §2.1049 (h)    |       |          |
| RSS-133 section              | 5.6            |       |          |
| Measured by                  | Jan-Erik Lilja |       |          |

### 8.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.



### 8.2 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, GMSK modulation |
| EUT channel        | 661                                                                           |
| EUT TX power level | 0 (+30dBm)                                                                    |

### 8.3 Results

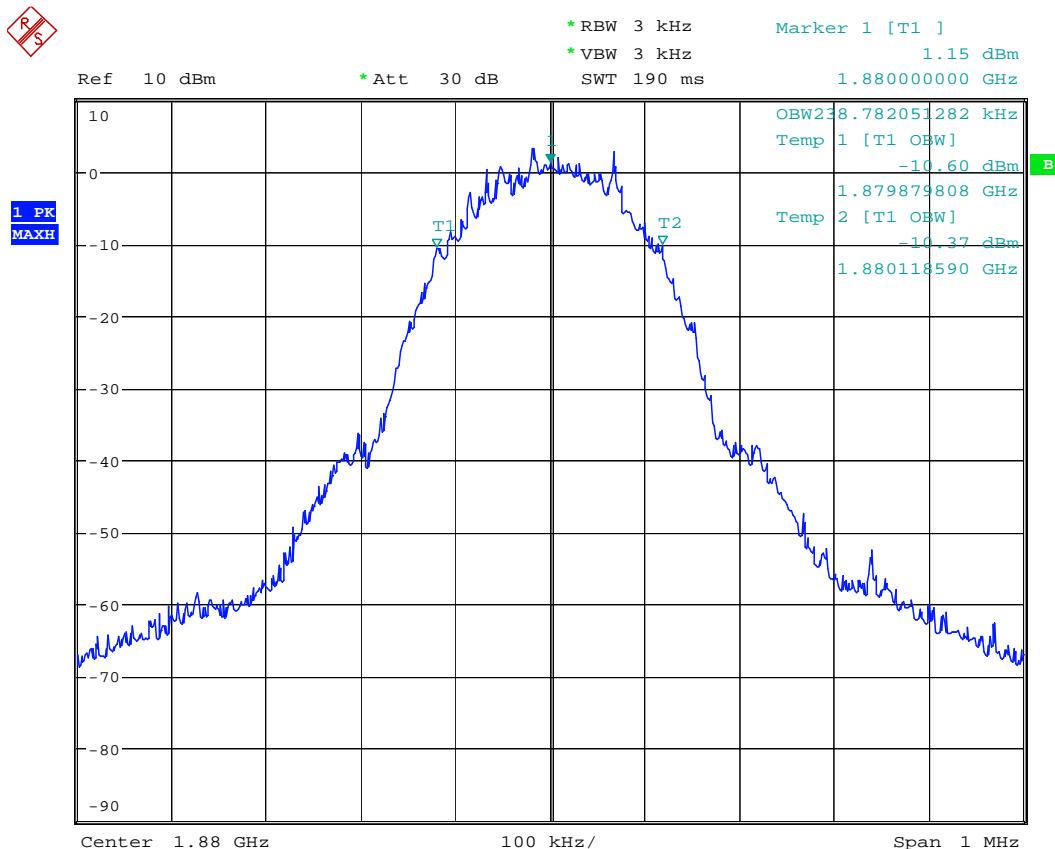

The 99% occupied bandwidth was measured using the in-built function of the spectrum analyzer.

Table 3 99% Occupied bandwidth

| EUT Channel | 99% occupied bandwidth [kHz] |
|-------------|------------------------------|
| 661         | 238.782                      |

Tampere

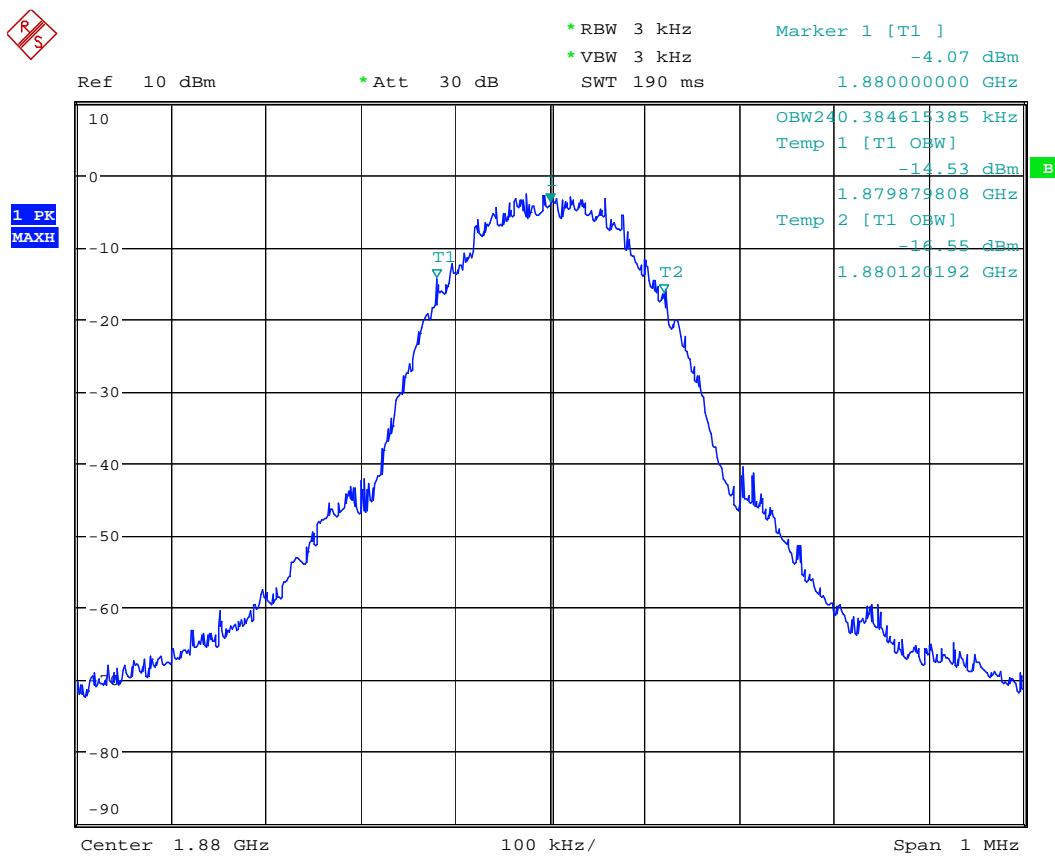
## 8.4 Screen shot



Date: 9.FEB.2004 13:51:44

Figure 1 99% occupied bandwidth, channel 661 GMSK modulation

## 8.5 EUT operation mode


|                    |                                                                                      |
|--------------------|--------------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, 8PSK modulation (EDGE) |
| EUT channel        | 661                                                                                  |
| EUT TX power level | 0 (+30dBm)                                                                           |

## 8.6 Results

The 99% occupied bandwidth was measured using the in-built function of the spectrum analyzer.

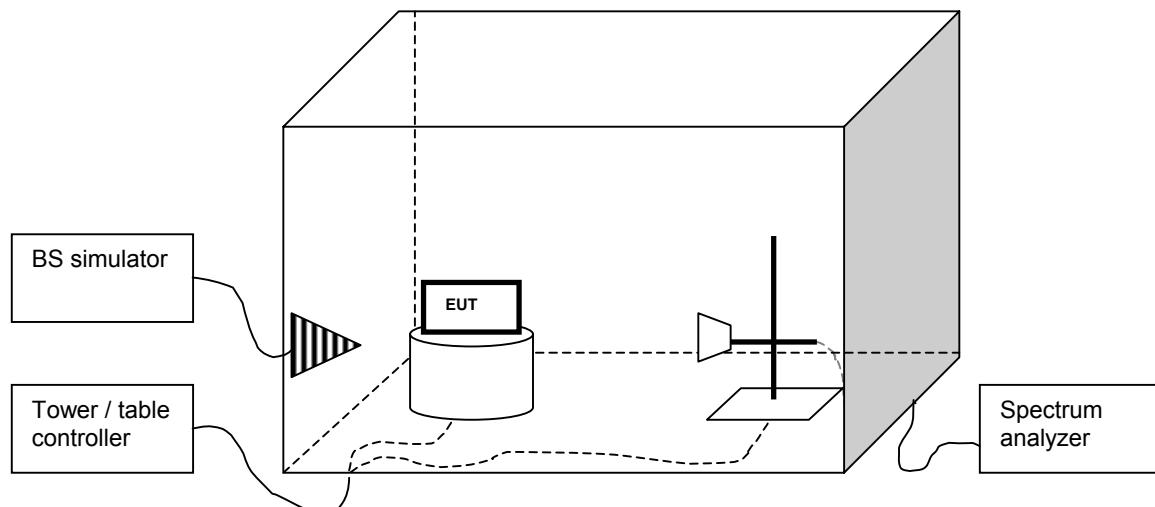
Table 4 99% Occupied bandwidth

| EUT Channel | 99% occupied bandwidth [kHz] |
|-------------|------------------------------|
| 661         | 240.385                      |



Date: 9.FEB.2004 14:52:06

Figure 2 99% occupied bandwidth, channel 661 8PSK modulation


## 9 BANDEDGE COMPLIANCE

|                              |               |        |           |
|------------------------------|---------------|--------|-----------|
| EUT                          | 3392          |        |           |
| Accessories                  | 3393, 3394    |        |           |
| Temp, Humidity, Air Pressure | 22 °C         | 45 RH% | 1007 mbar |
| Date of measurement          | 9.2.2004      |        |           |
| FCC rule part                | §24.238 (a)   |        |           |
| RSS-133 section              | 6.3           |        |           |
| Measured by                  | Jari Jantunen |        |           |
| Result                       | PASS          |        |           |

### 9.1 Test setup

This measurement was performed in conjunction of the ERP measurement.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.



### 9.2 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, GMSK modulation |
| EUT channel        | See section 9.4                                                               |
| EUT TX power level | 0 (+30dBm)                                                                    |

### 9.3 Limit

| Frequency [MHz] | Level [dBm] |
|-----------------|-------------|
| <1850 or 1910<  | -13         |

## 9.4 Results

The line in the screen shots is the -13dBm limit line. The results were corrected with measurement path loss set as "offset" in the spectrum analyzer.

Table 5 Lower and upper bandedge

| EUT Channel | Level [dBm] |
|-------------|-------------|
| 512         | -17.76      |
| 810         | -22.45      |

## 9.5 Screen shots

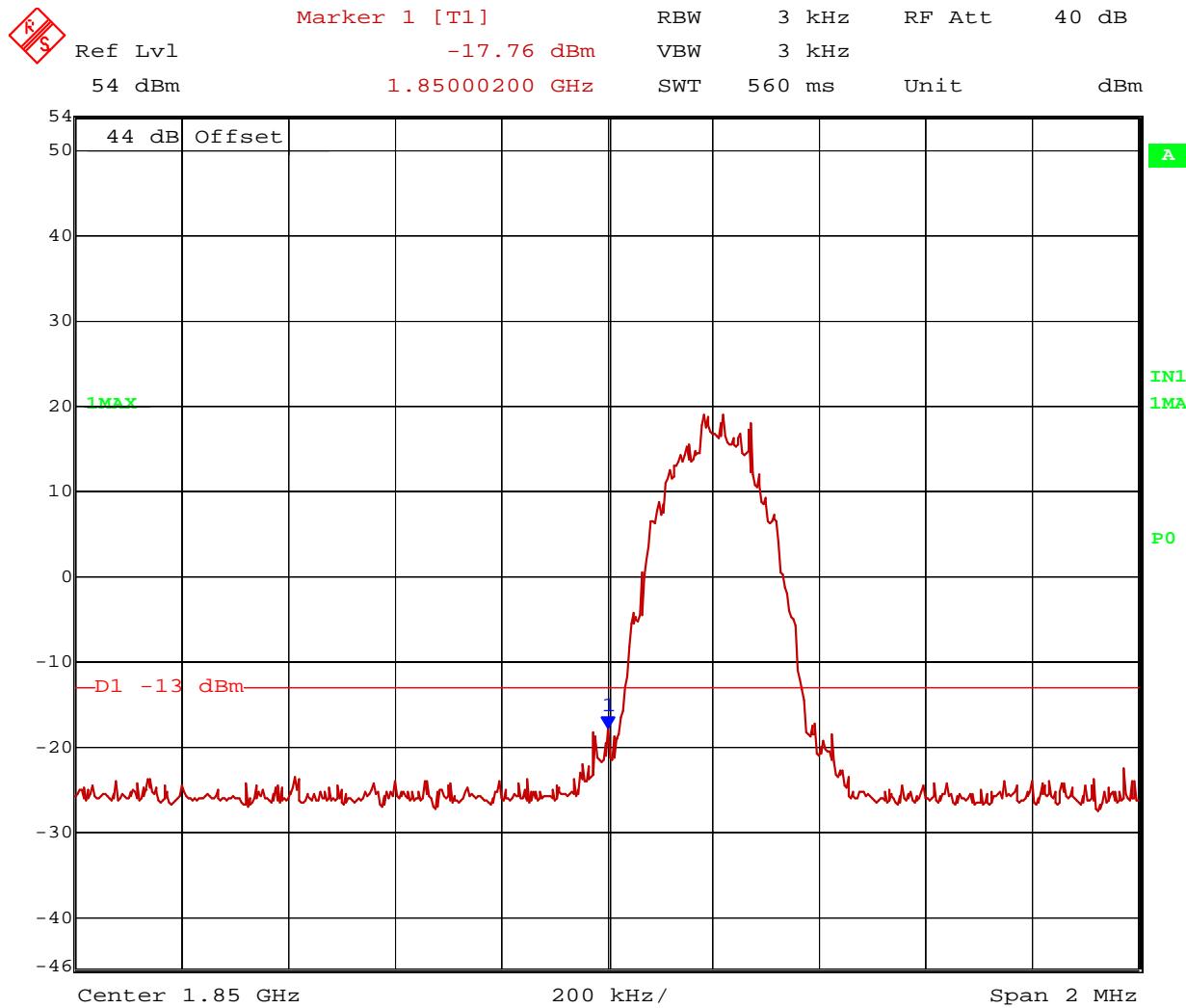



Figure 3 Lower bandedge, channel 512

Tampere

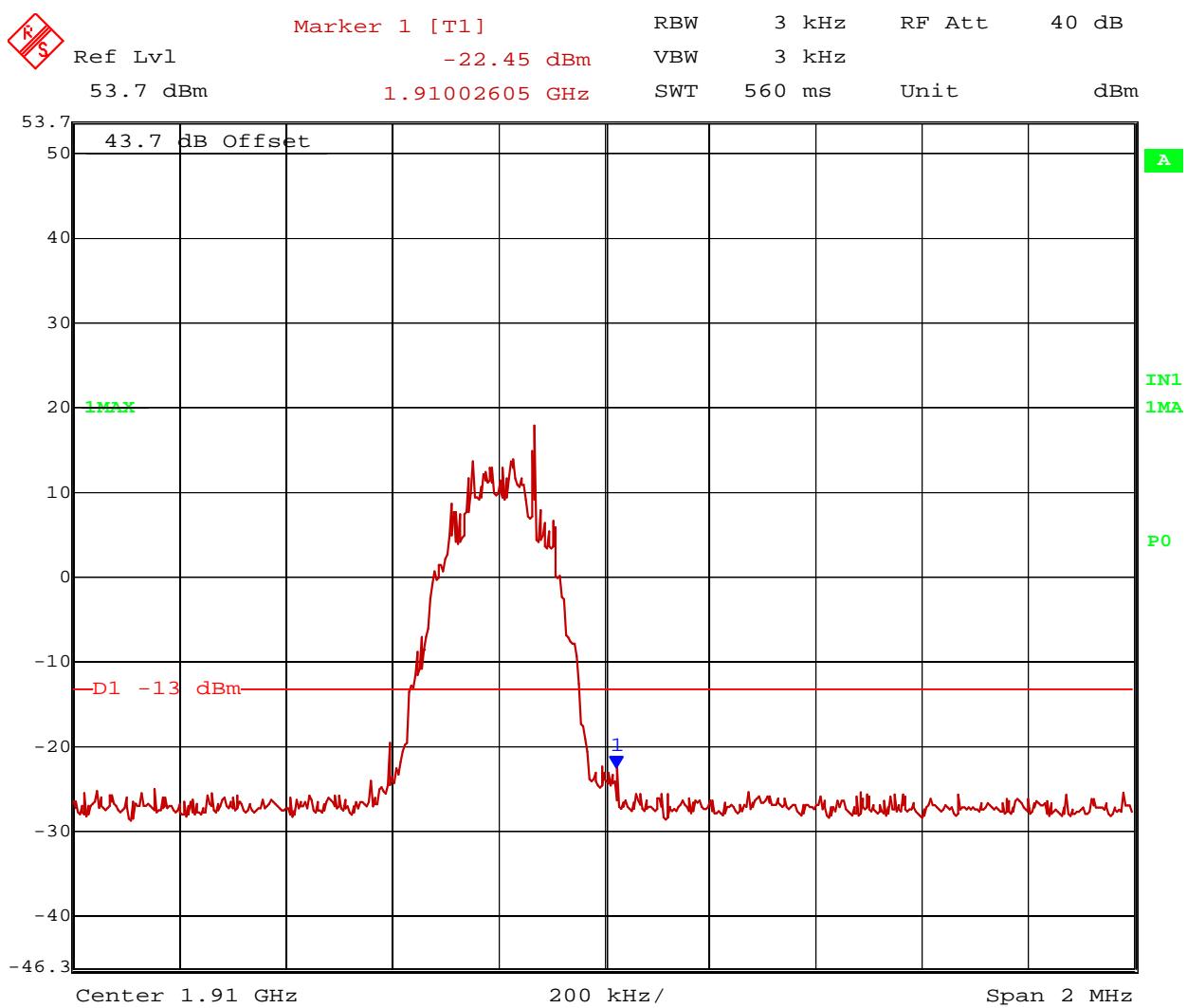



Figure 4 Upper bandedge, channel 810

## 9.6 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, 8PSK modulation |
| EUT channel        | See section 9.4                                                               |
| EUT TX power level | 0 (+30dBm)                                                                    |

## 9.7 Limit

| Frequency [MHz] | Level [dBm] |
|-----------------|-------------|
| <1850 or 1910<  | -13         |

## 9.8 Results

The line in the screen shots is the -13dBm limit line. The results were corrected with measurement path loss set as "offset" in the spectrum analyzer.

Table 6 Lower and upper bandedge

| EUT Channel | Level [dBm] |
|-------------|-------------|
| 512         | -22.79      |
| 810         | -22.32      |

Tampere

## 9.9 Screen shots

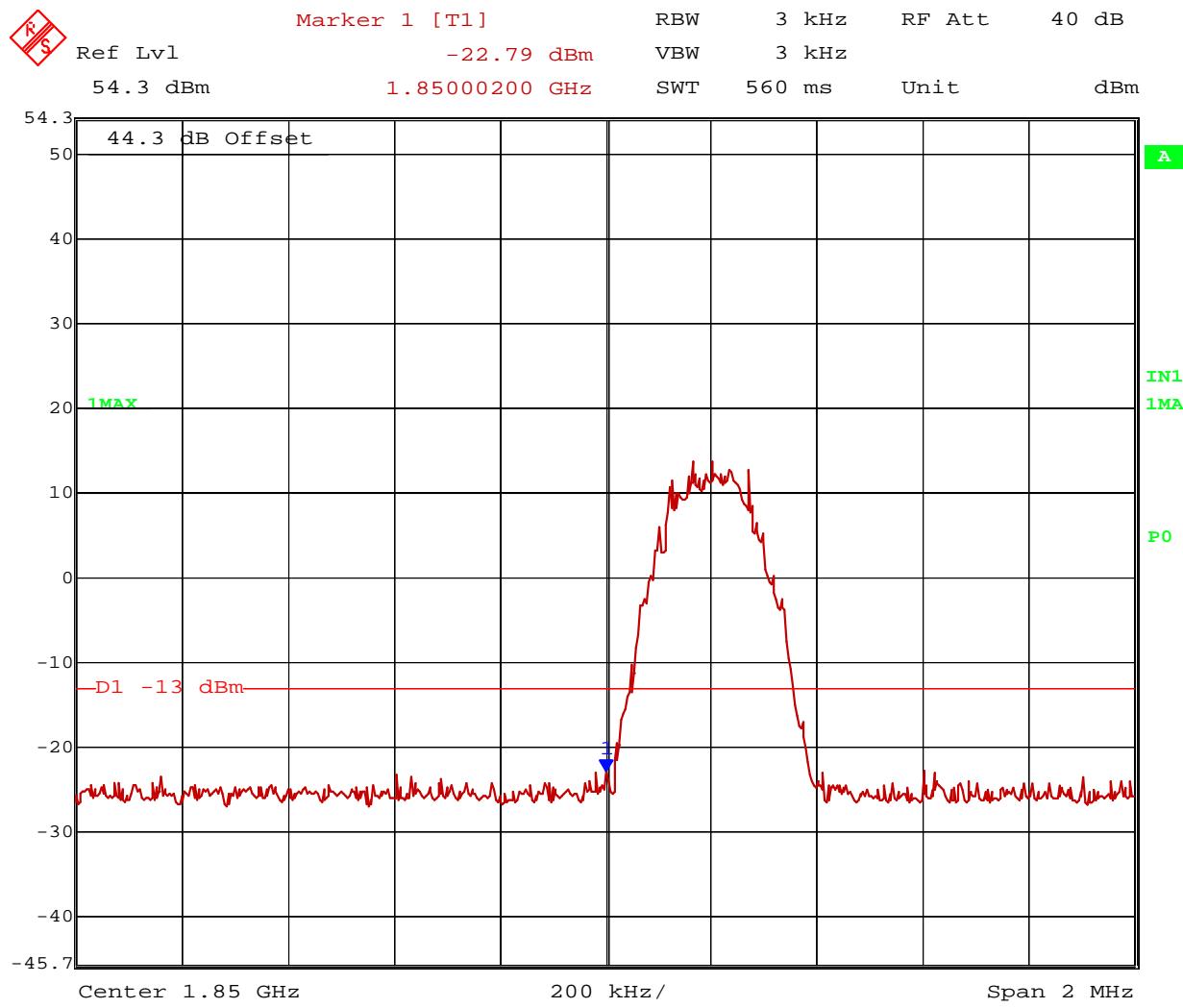
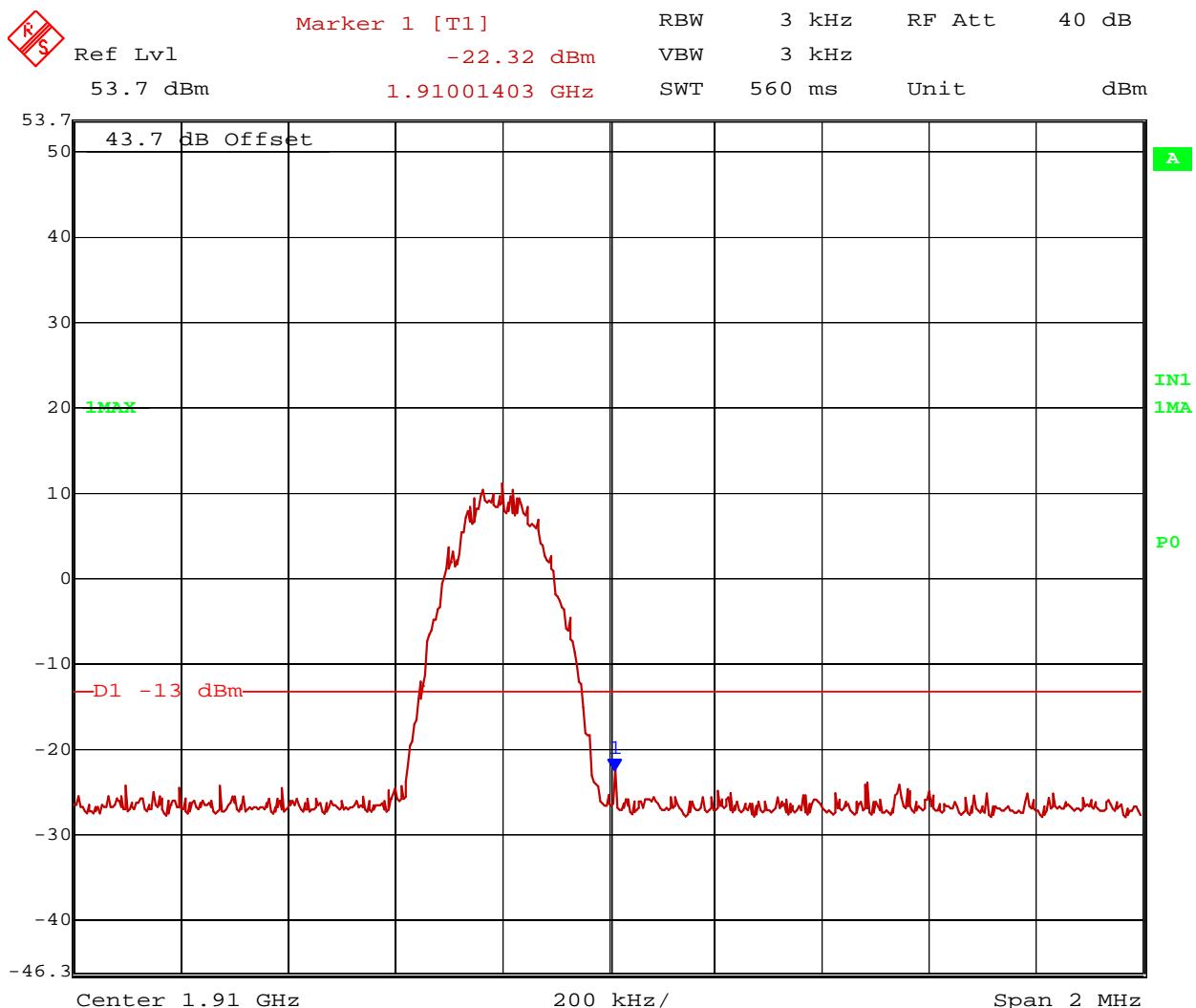
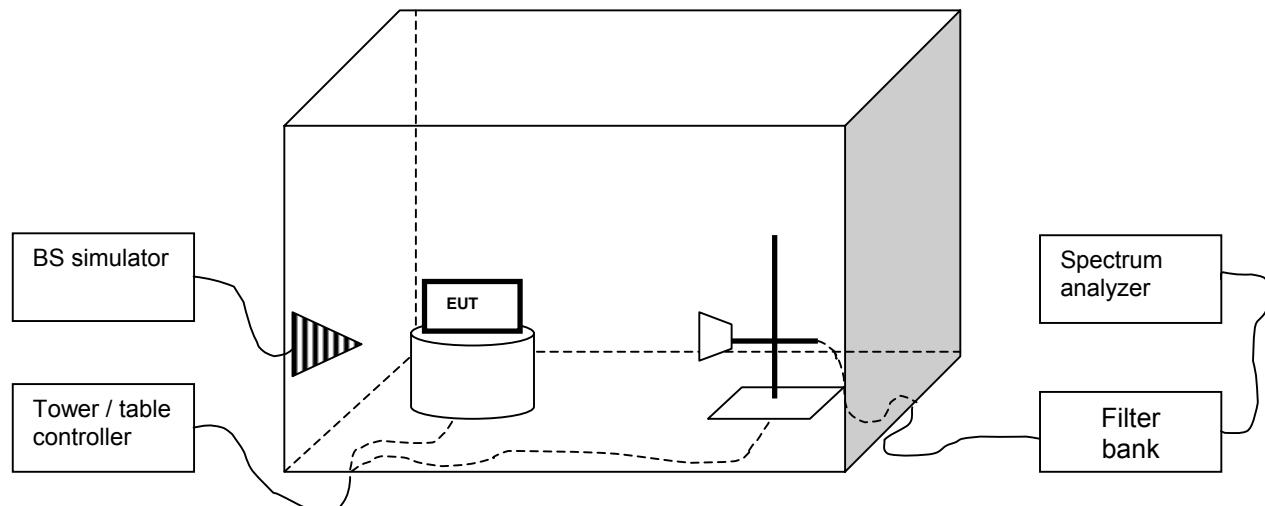




Figure 5 Lower bandedge, channel 512

Tampere



Date: 9.FEB.2004 12:50:28


Figure 6 Upper bandedge, channel 810

## 10 SPURIOUS RADIATED EMISSION

|                              |                      |        |           |
|------------------------------|----------------------|--------|-----------|
| EUT                          | 3376                 |        |           |
| Accessories                  | 3377,3378            |        |           |
| Temp, Humidity, Air Pressure | 20 °C                | 45 RH% | 1026 mbar |
| Date of measurement          | 12.2.2004            |        |           |
| FCC rule part                | §24.238 (a), §2.1053 |        |           |
| RSS-133 section              | 6.3                  |        |           |
| Measured by                  | Jari Jantunen        |        |           |
| Result                       | PASS                 |        |           |

### 10.1 Test setup

A set of LP/HP/BS filters was used to prevent overloading the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns. The test was done using an automated test system, where the measurement devices were controlled by a computer.



### 10.2 Test method

- The emissions were searched and maximized by moving the turn table and measuring antenna and manipulating the EUT.
- All suspicious frequencies with emission levels were recorded.
- The EUT was replaced with a substituting antenna.
- For each frequency recorded, the substituting antenna was fed with the power (from signal generator) giving the same reading as in (b). These power levels were reported.

### 10.3 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, GMSK modulation |
| EUT channel        | 661                                                                           |
| EUT TX power level | 0 (+30dBm)                                                                    |

### 10.4 Limit

| Frequency [MHz] | Level [dBm] |
|-----------------|-------------|
| 30 – 19100      | -13         |

### 10.5 Results

The formula below was used to calculate the EIRP of the spurious emissions. If there were no emissions closer than 20dB below the limit line, then the emission levels were measured at the transmitter's harmonics.

$$P_{\text{Emission}}[\text{dBm}] = P_{\text{SubstTX}}[\text{dBm}] - L_{\text{Cable}}[\text{dB}] + G_{\text{Antenna}}[\text{dBi}]$$

where the variables are as follows:

|                              |                                                                              |
|------------------------------|------------------------------------------------------------------------------|
| $P_{\text{Measured}}$ [dBm]  | Measured emission level (from step b in 10.2)                                |
| $P_{\text{Subst\_TX}}$ [dBm] | Signal generator power (from step d in 10.2) fed to the substituting antenna |
| $L_{\text{Cable}}$ [dB]      | Loss of the cable between antenna and signal generator (from step d in 10.2) |
| $G_{\text{Antenna}}$ [dBi]   | Gain of the substitutive antenna over isotropic radiator                     |

Table 7 Emission levels, channel 661

| Frequency [MHz] | $P_{\text{Measured}}$ [dBm] | $P_{\text{Subst\_TX}}$ [dBm] | $L_{\text{Cable}}$ [dB] | $G_{\text{Antenna}}$ [dBi] | $P_{\text{Emission}}$ [dBm] |
|-----------------|-----------------------------|------------------------------|-------------------------|----------------------------|-----------------------------|
| 3760,00         | -57.80                      | -42.50                       | 8.10                    | 8.47                       | -42.13                      |
| 4230.3          | -58.32                      | -43.20                       | 8.10                    | 9.81                       | -41.49                      |

## 10.6 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, 8PSK modulation |
| EUT channel        | 661                                                                           |
| EUT TX power level | 0 (+30dBm)                                                                    |

## 10.7 Limit

| Frequency [MHz] | Level [dBm] |
|-----------------|-------------|
| 30 – 19100      | -13         |

## 10.8 Results

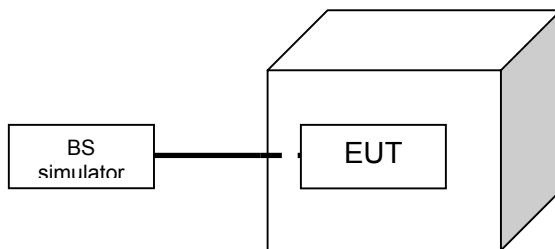
The formula below was used to calculate the EIRP of the spurious emissions. If there were no emissions closer than 20dB below the limit line, then the emission levels were measured at the transmitter's harmonics.

$$P_{\text{Emission}}[\text{dBm}] = P_{\text{SubstTX}}[\text{dBm}] - L_{\text{Cable}}[\text{dB}] + G_{\text{Antenna}}[\text{dBi}]$$

where the variables are as follows:

|                              |                                                                              |
|------------------------------|------------------------------------------------------------------------------|
| $P_{\text{Measured}}$ [dBm]  | Measured emission level (from step b in 10.2)                                |
| $P_{\text{Subst\_TX}}$ [dBm] | Signal generator power (from step d in 10.2) fed to the substituting antenna |
| $L_{\text{Cable}}$ [dB]      | Loss of the cable between antenna and signal generator (from step d in 10.2) |
| $G_{\text{Antenna}}$ [dBi]   | Gain of the substitutive antenna over isotropic radiator                     |

Table 8 Emission levels, channel 661


| Frequency [MHz] | $P_{\text{Measured}}$ [dBm] | $P_{\text{Subst\_TX}}$ [dBm] | $L_{\text{Cable}}$ [dB] | $G_{\text{Antenna}}$ [dBi] | $P_{\text{Emission}}$ [dBm] |
|-----------------|-----------------------------|------------------------------|-------------------------|----------------------------|-----------------------------|
| 3760,00         | -60.82                      | -47.50                       | 8.10                    | 8.47                       | -47.13                      |
| 4230.1          | -63.64                      | -45.10                       | 8.10                    | 9.81                       | -43.39                      |

## 11 FREQUENCY STABILITY, TEMPERATURE VARIATION

|                              |                            |       |          |
|------------------------------|----------------------------|-------|----------|
| EUT                          | 3392                       |       |          |
| Accessories                  | 3393, 3343                 |       |          |
| Temp, Humidity, Air Pressure | 20°C                       | 50RH% | 1008mbar |
| Date of measurement          | 10-11.2.2004               |       |          |
| FCC rule part                | §24.235, §2.1055 (a)(1)(b) |       |          |
| RSS-133 section              | 7                          |       |          |
| Measured by                  | Jan-Erik Lilja             |       |          |
| Result                       | PASS                       |       |          |

### 11.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.



### 11.2 Limit

| Frequency deviation [ppm] |
|---------------------------|
| ± 2.5                     |

### 11.3 Test method

- The climate chamber temperature was set to the minimum value and the temperature was allowed to stabilize.
- The EUT was placed in the chamber
- The EUT was set in idle mode for 45 minutes.
- The EUT was set to transmit.
- The transmit frequency error was measured immediately
- The steps c - e were repeated for each temperature

### 11.4 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation, GMSK modulation |
| EUT channel        | 661                                                                           |
| EUT TX power level | 0 (+30dBm)                                                                    |

**11.5 Results**

Table 9 Frequency deviation, temperature variation

| Temperature [°C] | Deviation [Hz] | Deviation [ppm] |
|------------------|----------------|-----------------|
| -30              | *)             | *)              |
| -20              | *)             | *)              |
| -10              | 38             | 0.0202          |
| 0                | 33             | 0.0176          |
| 10               | 31             | 0.0165          |
| 20               | 33             | 0.0176          |
| 30               | 25             | 0.0133          |
| 40               | 24             | 0.0128          |
| 50               | 24             | 0.0128          |

**Note:** \*) Phone did not work at this temperature

## 12 FREQUENCY STABILITY, VOLTAGE VARIATION

|                              |                            |       |           |
|------------------------------|----------------------------|-------|-----------|
| EUT                          | 3392                       |       |           |
| Accessories                  | 3393, 3343                 |       |           |
| Temp, Humidity, Air Pressure | 20 °C                      | 45RH% | 1026 mbar |
| Date of measurement          | 12.2.2004                  |       |           |
| FCC rule part                | §24.235, §2.1055 (d)(1)(2) |       |           |
| RSS-133 section              | 7                          |       |           |
| Measured by                  | Jan-Erik Lilja             |       |           |
| Result                       | PASS                       |       |           |

### 12.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.



### 12.2 EUT operation mode

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| EUT operation mode | TX on, 1 time slot transmission, PRBS 2E9-1 audio modulation. GMSK modulation |
| EUT channel        | 661                                                                           |
| EUT TX power level | 0 (+30dBm)                                                                    |

### 12.3 Limit

| Frequency deviation [ppm] |
|---------------------------|
| ± 2.5                     |

### 12.4 Test method

The EUT battery was replaced with an adjustable power supply. The frequency stability was measured at nominal voltage and at the battery cut-off point.

### 12.5 Results

Table 10 Frequency deviation, voltage variation

| Level                 | Voltage [V] | Deviation [Hz] | Deviation [ppm] |
|-----------------------|-------------|----------------|-----------------|
| Nominal               | 3.9         | 28             | 0.0335          |
| Battery cut-off point | 3.1         | 26             | 0.0311          |

## 13 TEST EQUIPMENT

Each test equipment is calibrated once a year.

### 13.1 Conducted measurements

| Equipment                  | Manufacturer    | Model     |
|----------------------------|-----------------|-----------|
| EMI receiver               | Rohde & Schwarz | FSU26     |
| Radio communication tester | Rohde & Schwarz | CMU-200   |
| Attenuator 10 dB           | Huber+Suhner AG | 6251.17.A |
| Power splitter             | Hewlett-Packard | 11667A    |
| Temperature chamber        | Vötsch          | VT4002    |
| DC power supply            | Hewlett&Packard | 6632A     |
| Multimeter                 | Hewlett&Packard | 34401A    |

### 13.2 Radiated measurements

| Equipment                       | Manufacturer    | Model                |
|---------------------------------|-----------------|----------------------|
| 3m semi-anechoic chamber        | TDK             |                      |
| EMI receiver                    | Rohde & Schwarz | ESI 40               |
| Preamplifier                    | Hewlett-Packard | 8447F                |
| Preamplifier                    | Hewlett-Packard | 8449B                |
| Biconilog antenna               | EMCO            | 3142                 |
| Double ridged waveguide antenna | EMCO            | 3115                 |
| Double ridged waveguide antenna | EMCO            | 3115                 |
| Horn antenna                    | EMCO            | 3116                 |
| Reference dipole set            | Schwarzbeck     | UHAP/VHAP            |
| Fixed dipole                    | EMCO            | 3125-1880            |
| Communication antenna           | EMC Automation  | LPA-8020             |
| Radio communication tester      | Rohde & Schwarz | CMU-200              |
| Signal generator                | Hewlett-Packard | 83640L               |
| Step attenuator 110dB           | Hewlett-Packard | 8496A                |
| Power splitter                  | Hewlett-Packard | 11667A               |
| High pass filter                | Trilithic       | WHK2010-10SS         |
| Low pass filter                 | Trilithic       | WLK1750-10SS         |
| Tunable notch filter            | Wainwright      | WRCD1850/1910-0.2/40 |
| Antenna/turntable controller    | Deisel          | HD-100               |
| Antenna mast                    | Deisel          | MA240                |
| Turntable                       | Deisel          | DS412                |

---

## 14 TEST SETUP PHOTOGRAPHS

See " NHL-12 Test setup photographs.doc ".