FCC-TEST REPORT

REPORT NO.: 32284A/2/400F

No. 32284A/2/400F

Date: <u>2002-12-03</u> Page 2 of 12

FCC listed testlab acc. to Section 2.948 of the FCC - Rules

in compliance with the requirements of ANSI C63.4 - 1992

Product: Radio Control Mini Wheels

Product Class: Low Power Communication

Device Transmitter

Model : #8306A

Applicant: WAI DICK TOYS CO., LTD

No. 32284A/2/400F

Date: <u>2002-12-03</u>

Page 3 of 12

TABLE OF CONTENTS

1.	Cover	sheet

- 2. Introduction
- 3. Table of Contents
- 4. Laboratory Report
- 5. Summary of Testresults
- 6. Test Equipment List
- 7. Radiated Emission Testprocedure (> 30MHz)
- 8. Radiated Emission Testprocedure (9kHz-30MHz)
- 9. Interference Radiation (Datasheet)
- 10. Notes for Radiation Measurement (acc. to ANSI C63.4 1992)
- 11. Measurement of Emissions within Band Edges (Band Edges Plot)
- 12. Notes for Measurement of Emissions within Band Edges

No. 32284A/2/400F

Date: 2002-12-03

Page 4 of 12

LABORATORY - REPORT

APPLICANT: WAI DICK TOYS CO., LTD

ADDRESS: No. 6, 9/F, Block A, Hang Wai Industrial Centre

6 Kin Tai Street Tuen Mun

NT, HONG KONG

DATE OF SAMPLE RECEIVED: 2002-11-21

DATE OF TESTING: 2002-11-22

DESCRIPTION OF SAMPLE:

Product: Radio Control Mini Wheels

Product class: Low Power Communication Device Transmitter

Model number: #8306A

Rating: DC 3V ('AA' Size Battery x 2)

Country of Origin: P.R. CHINA

INVESTIGATIONS Measurements to the relevant clauses of F.C.C. Rules and Regulations

REQUESTED: Part 15 Subpart C - Intentional Radiators

RESULTS: See the attached test sheets

CONCLUSIONS From the measurement data obtained, the tested sample was considered

to have COMPLIED with the requirements for the relevant clauses of Federal Communications Commission Rules as specified above.

Authorized Signature

No. 32284A/2/400F

Date: <u>2002-12-03</u>

Page 5 of 12

Summary of Test Results

Interference Radiation:

Test result: O.K

Test data: See attached data sheet

Interference Voltage:

Test result: N.A. Test data: N.A.

Measurement of Emissions within Band Edges

Test result: O.K.

Test data: See attached data sheet

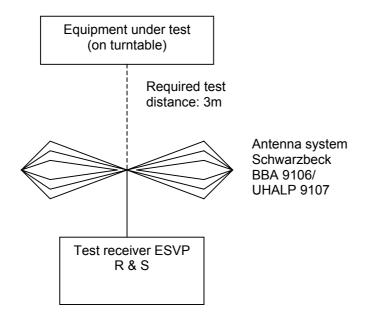
PHOTOGRAPH OF THE SAMPLE

No. 32284A/2/400F

Page 6 of 12

Date: 2002-12-03

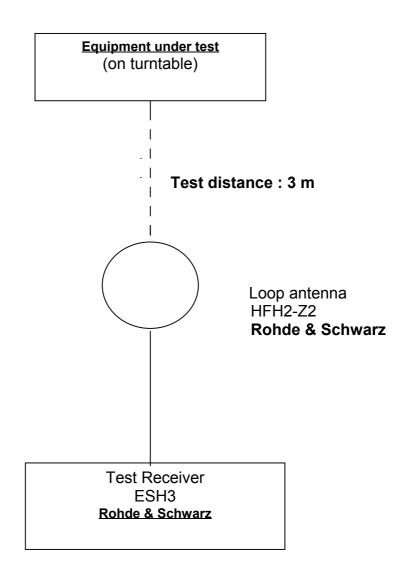
TEST EQUIPMENT LIST


Equipment	Manufacturer	Model	Serial No.	Remark
Test Receiver	Rohde & Schwarz	ESH 3	863497/015	10KHz – 30MHz
Test Receiver	Rohde & Schwarz	ESVP	860688/022	25MHz – 1,300 MHz
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127		2 x 10A, 50Ω, 50μH 10KHz-30MHz
Antenna System	Schwarzbeck	BBA 9106 / UHALP 9107		30MHz – 1000MHz
Antenna Mast System	Schwarzbeck	AM9104		Max. 4 meters height
Spectrum Analyzer with Q. Peak	Tektronix	2712	B023006	9KHz – 1.8GHz
Interface for Spectrum 2712	Tektronix	TD3F14A		
Loop Antenna	Rohde & Schwarz	HFH2-Z2	871336/48	9KHz-30MHz
Test Receiver	Rohde & Schwarz	ESH 3	892580/006	10KHz – 30MHz
Test Receiver	Rohde & Schwarz	ESVP	863512/012	25MHz – 1,300 MHz
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2		
Antenna System	Schwarzbeck	BBA 9106 / UHALP 9107		30MHz – 1000MHz
Signal Generator	Rohde & Schwarz	SWS 2	879113/42	100KHz – 1040 MHz
Digital Multimeter	Tektronix	DM2510G	DM- 2510GTW10555	10KHz – 30MHz
Turntable with Controller	Drehtisch	DT312		ф120 cm

No. 32284A/2/400F

Date: <u>2002-12-03</u>

Page 7 of 12


Radiated Emission Test Procedure (> 30MHz)

No. 32284A/2/400F

Date: <u>2002-12-03</u> Page 8 of 12

Radiated Emission Test Procedure (9kHz - 30MHz)

Interference Radiation

Date : 2002-12-03 Page: 9 of 12

Measurement of Radiated Emissions Acc: FCC Part 15 Subpart C

IECC Ref: 32284A/2/400F

Model: #8306A Applicant: WAI DICK TOYS CO., LTD

Antenna: Schwarzbeck BBA 9106 and UHALP 9107

Ser.Nr.:

Set under test: Radio Control Mini Wheels Connected sets:

Power "On"

A. Radiation Measurement below 30MHz

1. Fundamental Frequency

Operating mode:

Frequency (MHz) Maximum Test Result (dB(µV/m)) <u>Peak</u> 65.5

FCC Limit (dB(µV/m)) Average <u>Average</u> <u>Peak</u> 57.5 100 80

Test Equipment

Receiver: ESVP Rohde & Schwarz

2. The measured radiation outside the operation band were negliginle

B. Radiation Measurement over 30MHz

27.145

		Frequency (MHz)	Horz. Reading dB(µV)		Vert. Reading dB(µV)		Antenna Factor (dB)		oriz. Test Result dB(µV/m)	Vert. Test Result dB(µV/m)	Limit dB(μV/m)
Harm.	2	54.29	<	16	<	16	10.2	<	26.2	< 26.2	40.0
Harm.	3	81.44	<	16		16	7.1	<	23.1	23.1	40.0
Harm.	4	108.58	<	16	<	16	11.6		27.6	< 27.6	43.5
Harm.	5	135.73	<	16	<	16	14.3	<	30.3	< 30.3	43.5
Harm.	6	162.87	<	16	<	16	15.6	<	31.6	< 31.6	43.5
Harm.	7	190.02	<	16	<	16	16.3	٧	32.3	< 32.3	43.5
Harm.	8	217.16	<	16	<	16	16.9	٧	32.9	< 32.9	46.0
Harm.	9	244.31		19		16	17.6		36.6	33.6	46.0
Harm.	10	271.45	<	16	<	16	18.5	<	34.5		46.0
	11	298.60	<	16	<	16	19.9	<	35.9		46.0
Harm.	12	325.74	<	16	<	16	16.8	<	32.8		46.0
Harm.	13	352.89	<	16	<	16	17.5	٧	33.5	< 33.5	46.0
Harm.	14	380.03	<	16	<	16	18.0	٧	34.0	< 34.0	46.0
Harm.	15	407.18	<	16	<	16	18.4	٧	34.4	< 34.4	46.0
Harm.	16	434.32	<	16	<	16	18.8	٧	34.8	< 34.8	46.0
Harm.	17	461.47	<	16	<	16	19.2	٧	35.2		46.0
Harm.	18	488.61	<	16	<	16	19.5	٧	35.5	< 35.5	46.0
Harm.	19	515.76	<	16	<	16	19.9	٧	35.9	< 35.9	46.0
	20	542.90	<	16	<	16	20.1	٧	36.1		46.0
Harm.	21	570.05	<	16	<	16	20.5	٧	36.5	< 36.5	46.0
	22	597.19	<	16	<	16	20.9	<	36.9	< 36.9	46.0
Harm.	23	624.34	<	16	<	16	21.2	<	37.2	< 37.2	46.0
	24	651.48	<	16	<	16	21.6	<	37.6	< 37.6	46.0
Harm.		678.63	<	16	<	16	22.1	<	38.1	< 38.1	46.0
Harm.	26	705.77	<	16	<	16	22.5	<	38.5	< 38.5	46.0
	27	732.92	<	16	<	16	22.8	<	38.8	< 38.8	46.0
	28	760.06	<	16	<	16	23.2	<	39.2	< 39.2	46.0
Harm.	29	787.21	<	16	<	16	23.5	<	39.5	< 39.5	46.0
	30	814.35	<	16	<	16	23.9	<	39.9	< 39.9	46.0
Harm.	31	841.50	<	16	<	16	24.3	٧	40.3	< 40.3	46.0
	32	868.64	<	16	<	16	24.6	٧	40.6	< 40.6	46.0
Harm.	33	895.79	<	16	<	16	24.9	٧	40.9	< 40.9	46.0
Harm.	34	922.93	<	16	<	16	25.4	<	41.4	< 41.4	46.0
Harm.	35	950.08	<	16	<	16	25.8	<	41.8	< 41.8	46.0
Harm.	36	977.22	<	16	<	16	26.2	<	42.2	< 42.2	54.0

Remark: All frequencies in the required range have been scanned and only those

significant and representative readings are reported above. All emissions not reported above are all well below the limit.

Note: Unless otherwise indicated, the recorded readings are in quasi-peak values.

No. 32284A/2/400F

Date: 2002-12-03

Page 10 of 12

Notes for Radiation Measurement

1. Measurement facility:

Measurement facility located at Fanling (Hong Kong), placed on file with the FCC Pursuant to Section 2.948 of the FCC Rules.

2. Distance between the EUT and measuring antenna:

3 meters.

3. Measuring instrumentations:

Rohde & Schwarz ESVP Test Receiver (20 - 1300 MHz) with a CISPR weighting QP detector, 6 dB bandwidth set at 120 KHz.

In the frequency range above 1000 MHz Spectrum Analyzer FMSM26 and Analyzer Display Unit FSAD are used, bandwidth set at 100 kHz.

4. Measuring antenna:

Broad-band antenna for the frequency range 30 - 300 MHz and frequency range 300 - 1000 MHz, connected with 10 meters coaxial cable. Cable loss of the coaxial cable included in the Antenna Factor for measurement data. The antennas are capable of measuring both horizontal and vertical polarizations.

Loop antenna for the frequency range 9KHz – 30MHz, connected with 10 meters coaxial cable. Cable loss of the coaxial cable included in the measurement data. The center of the loop 1 m above the ground plane, positioned with its plane vertical at the specified distance and rotated about its vertical axis and placed horizontal for maximum response at each azimuth about the EUT.

In the frequnecy range above 1 GHz horn-antenna RGA 50/60 is used.

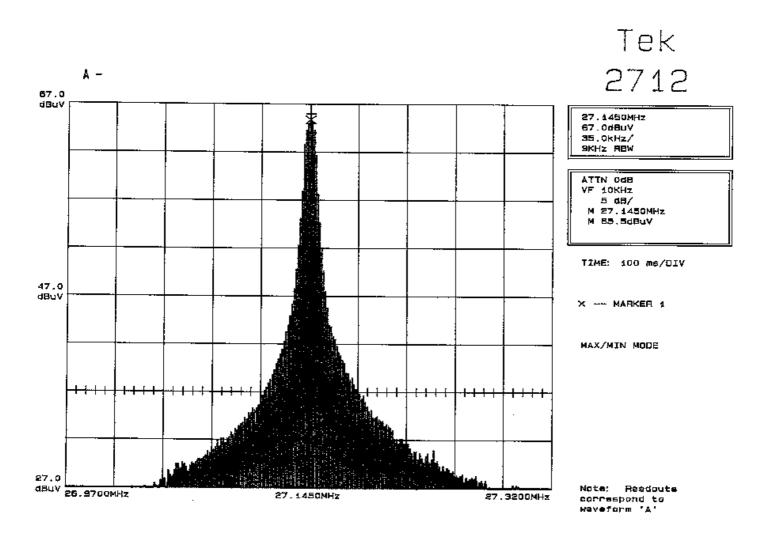
5. Frequency range scanned:

The frequency range 30 - 5000 MHz has been scanned. Readings of the highest emissions relating to the limit were reported as above.

6. Arrangement of EUT:

During the test, the sample was operated at rated supply voltage and arranged for maximum emissions. To find the maximum emission, the antenna was raised from 1 to 4 meters and was stopped at the maximum emission point.

7. Measuring Procedure:


In accordance with the relevant sections of the American National Standards Institute (ANSI) C63.4-1992 'Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9KHz to 40GHz'.

No. 32284A/2/400F

Date: 2002-12-03

Page 11 of 12

Measurement Data of Emissions within Band Edges

Result : The field strength of any emission within the operation band did not exceed 80 dB(μ V/m) for average value or 100 dB(μ V/m) for peak value. Refer to page 9 for the recorded value for the emission at the fundamental frequency.

No. 32284A/2/400F

Date: <u>2002-12-03</u>

Page 12 of 12

Notes for Measurement of Emissions within Band Edges

1. Measurement facility:

Measurement facility located at Fanling (Hong Kong) placed on file with the FCC Pursuant to Section 2.948 of the FCC Rules.

2. Measuring instrumentations:

Spectrum Analyzer: Tektronix 2712

3. Frequency range scanned:

The frequency range acc. to FCC rules and regulations part 15 subpart C - Intentional Radiators.

4. Arrangement of EUT:

During the test, the sample was operated.

5. Measuring Procedure:

In accordance with the relevant sections of American National Standards Institute (ANSI) C63.4 - 1992 'Methods of Measurement od Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz'.