

FCC TEST REPORT

FCC 47 CFR Part 15C Industry Canada RSS-310

License exempt radio equipment

Report Reference No.: G0M-1509-5046-TFC209LP-V01

Testing Laboratory: Eurofins Product Service GmbH

Address: Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation:

A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970

IC OATS Filing assigned code: 3470A

Applicant's name Biotronik SE & Co. KG

Address: Woermannkehre 1

12359 Berlin GERMANY

Test specification:

Standard.....: 47 CFR Part 15C

RSS-310, Issue 3, 2010-12 RSS-Gen, Issue 4, 2014-11

ANSI C63.4:2014

Test scope.....: complete Radio compliance test (C2PC)

Equipment under test (EUT):

Product description Pacemaker family PRIMUS NXT

Model No. Eluna 8 HF-T

Additional Model(s) see page5: List of Models to be included in the family

Brand Name(s) BIOTRONIK

Hardware version ASM-0217_0B with BOM-0288_06_396062 (2230-04)

Firmware / Software version 7300RomRev 01.02/7474RamRev 04.02

FCC-ID: QRIPRIMUSNXT IC: 4708A-PRIMUSNXT

Test result Passed

Possible test case verdicts:

Testina:

 Test Lab Temperature
 : 20 – 23 °C

 Test Lab Humidity
 : 32 – 38 %

 Date of receipt of test item
 : 2015-10-02

- test object does not meet the requirement F (Fail)

Date (s) of performance of tests...... 2015-10-05 - 2015-10-08

Compiled by: Wilfried Treffke

Approved by (+ signature).....:
(Head of Lab)

Christian Weber

Date of issue 2015-11-11

Total number of pages 31

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

V. Trepl

Additional comments:

Family Explanation Primus NXT

All devices feature the two RF-Telemetry functions Home Monitoring and wireless Wand.

RF-Telemetry functions are using the MICS-Band (402MHz – 405MHz).

A "-T" inside the name of the device represents a device containing Home Monitoring capabilities.

HF-T are triple-chamber devices. (Master for all tests)

DR-T are dual-chamber devices.

SR-T are single-chamber devices.

DR are dual-chamber without home monitoring.

SR are single-chamber without home capabilities.

All of these differences are only relevant in terms of medical aspects. They do not interfere with the RF-performance.

Evaluation measurements were performed for worst case antenna selection and the Eluna 8 HF-T was selected. The model Eluna 8 HF-T, as the most complex model, was selected for the measurements.

BIOTRONIK SE & Co. KG - Postfach 470255 - 12311 Berlin

To whom it may concern

BIOTRONIK SE & Co. KG Woermannkehre 1 12359 Berlin, Germany

Tel +49 (0) 30 68905-1291 Fax +49 (0) 30 68905-1921 dirk.koenig@biotronik.com www.biotronik.com

Berlin, October 20, 2015

Gentlemen,

Herewith we, BIOTRONIK SE & Co. KG, declare the following changes that were done to the already approved product family PRIMUS NXT (FCC-ID: QRIPRIMUSNXT)

The major change filed under application is:

Change 1: The SAW filter was changed from the Vectron 403A to the Vectron 403B.

Change 2: Matching components for the SAW filter were changed

(L804 was 11nH and is now 36nH, L808 was 27nH and is now 30nH).

Change 3: The antenna design was modified to improve manufacturability. The electrical length remains the same.

According to our internal design validation no difference in conducted output power was observed as part of the design change.

If you have any questions regarding this application, please feel free to contact

Contact name Dirk König

Company name<u>BIOTRONIK SE & CO, KG</u> Phone No.: +49 (0) 30 68905 1291

Sincerely,

Signature Dirk König

Manager Regulatory Affairs BIOTRONIK SE & CO. KG

> SIOTRONIK SE & Co. KG Woermannkehre 1 12359 Berlin Steuer-Nr.: 30/062/05167 USt.-Ident Nr.: DE136651322

Tel +49 (0) 30 68905-0 Fax+49 (0) 30 6844060 info@biotronik.com www.biotronik.com Geschäftsführende Direktoren: Dr. Lother Krings Joachim Langer Dr. Ralf Lieb Kommandikgesellschaft: HRA 6501 B, AG Berlin-Charlottenburg Komplementärin: BIOTRONIK MT SE HRB 118866 B, AG Berlin-Charlottenburg

PRIMUS NXT product family Family Certification List of the models to be included in the family

Applicant: BIOTRONIK SE & Co. KG

Certification Number: QRIPRIMUSNXT

Model	Description
Eluna 8 SR	One chamber, Coil telemetry and RF Transceiver
Eluna 8 SR-T	One chamber, Coil telemetry and RF Transceiver
Eluna 8 DR	Two chambers , Coil telemetry and RF Transceiver
Eluna 8 DR-T	Two chamber, Coil telemetry and RF Transceiver
Eluna 8 HF-T	Three chambers, Coil telemetry and RF Transceiver
Epyra 6 SR-T	One chamber, Coil telemetry and RF Transceiver
Epyra 6 DR-T	Two chambers , Coil telemetry and RF Transceiver
Epyra 8 SR-T	One chamber, Coil telemetry and RF Transceiver
Epyra 8 DR-T	Two chambers , Coil telemetry and RF Transceiver
Epyra 8 HF-T	Three chambers, Coil telemetry and RF Transceiver
Etrinsa 6 SR	One chamber, Coil telemetry and RF Transceiver
Etrinsa 6 SR-T	One chamber, Coil telemetry and RF Transceiver
Etrinsa 6 DR	Two chambers , Coil telemetry and RF Transceiver
Etrinsa 6 DR-T	Two chambers , Coil telemetry and RF Transceiver
Etrinsa 8 SR-T	One chamber, Coil telemetry and RF Transceiver
Etrinsa 8 DR-T	Two chambers , Coil telemetry and RF Transceiver
Etrinsa 8 HF-T	Three chambers, Coil telemetry and RF Transceiver

The BIOTRONIK PRIMUS NXT family of products includes the following models: Eluna, Epyra and Etrinsa.

All models comprise identical internal electronic including a low frequency telemetry coil and packaged in titanium cases with a header where the leads connect.

All devices include additional an internal RF Transceiver and an antenna within the header.

The internal electronic of HF-T devices differs slightly from SR and DR devices to include the third channel electronic. Therefore the device under test is three chambers model Eluna 8

HE T

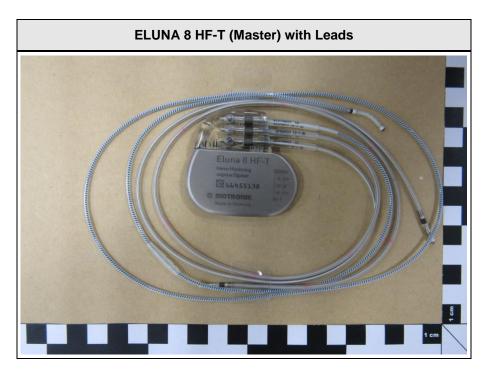
The PRIMUS NXT models contain a different therapeutic feature set. The features differ only by the number of connectable leads and software.

Version History

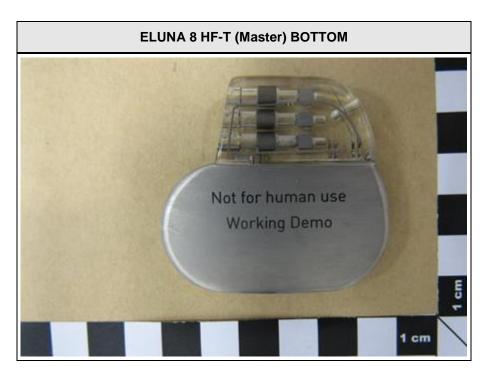
Version	Issue Date	Remarks	Revised by
01	2015-11-11	Initial Release	

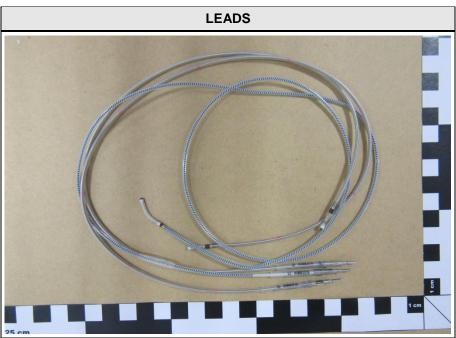
REPORT INDEX

1	EQUIPMENT (TEST ITEM) DESCRIPTION	8
1.1	Photos – Equipment External	9
1.1	Photos – Equipment internal	13
1.2	Photos – Test setup	15
1.3	Photos – Auxiliary/Associated Equipment	16
1.4	Supporting Equipment Used During Testing	17
1.5	Test Modes	18
1.6	Test Equipment Used During Testing	19
1.7	Sample emission level calculation	20
2	RESULT SUMMARY	21
3	TEST CONDITIONS AND RESULTS	22
3.1	Test Conditions and Results – Occupied Bandwidth	22
3.2	Test Conditions and Results – Fundamental field strength emissions	24
3.4	Test Conditions and Results – Receiver radiated emissions	26
	IEX A Transmitter radiated spurious emissions IEX B Receiver radiated spurious emissions	28 30

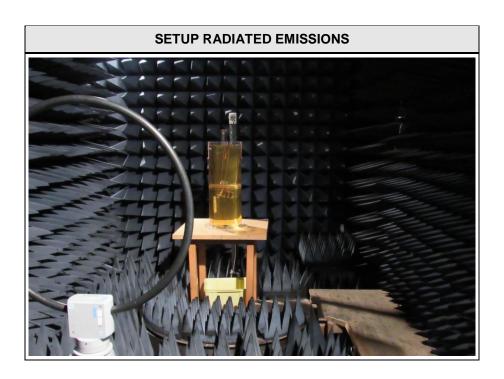


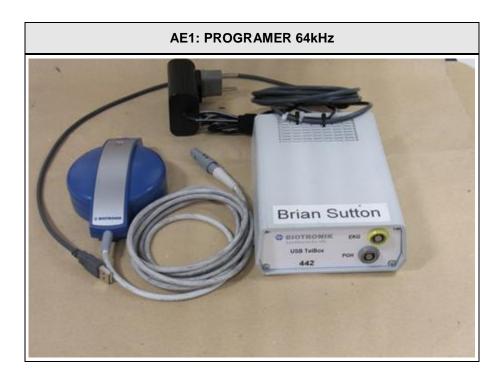
1 Equipment (Test item) Description


Description	Pacemaker family PRIMUS NXT			
Model	Eluna 8 HF-T			
Additional Model(s)	see page5: Lis	t of N	Models to be included in the family	
Brand Name(s)	BIOTRONIK			
Serial number	66455138			
Hardware version	ASM-0217_0B	with	BOM-0288_06_396062 (2230-04)	
Software / Firmware version	7300RomRev	_01.0	02/7474RamRev_04.02	
FCC-ID	QRIPRIMUSN	XT		
IC	4708A-PRIMU	SNX	Т	
Equipment type	End product			
Radio type	Transceiver			
Radio technology	custom			
Operating frequency range	64 kHz			
Frequency range	F _{MID}		64 kHz	
Modulations	ООК			
Number of channels	1			
Channel spacing	None			
Number of antennas	1			
	Туре	inte	grated	
Antenna	Model	loop	o antenna	
Antenna	Manufacturer	Biot	tronik SE & Co. KG	
	Gain unspecified		pecified	
Manufacturer	Biotronik SE & Woermannkeh 12359 Berlin GERMANY		KG	
	V _{NOM}		3.0 VDC (Lithium-Battery)	
Power supply	V _{MIN}		N/A	
	V _{MIN}		N/A	
	Model		N/A	
AC/DC-Adaptor	Vendor		N/A	
ACIDG-Adaptor	Input		N/A	
	Output		N/A	




1.1 Photos – Equipment External





1.2 Photos - Test setup

1.3 Photos – Auxiliary/Associated Equipment

1.4 Supporting Equipment Used During Testing

Product Type*	Device	Manufacturer	Model No.	Comments	
AE1	Programer	Biotronik	USB TelBox	64kHz system	

*Note: Use the following abbreviations:

AE : Auxiliary/Associated Equipment, or SIM : Simulator (Not Subjected to Test)

CABL : Connecting cables

1.5 Test Modes

Mode #	Description				
	General conditions:	EUT powered by fully charged battery			
Single Radio conditions:		Mode = standalone transmit Modulation = OOK Power level = Maximum			
	General conditions:	EUT powered by fully charged battery			
Receive	Radio conditions:	Mode = standalone receive Modulation = OOK			

1.6 Test Equipment Used During Testing

Measurement Software					
Description	Manufacturer	Name	Version		
EMC Test Software	EMC Test Software Dare Instruments		2014.1.15		

Occupied Bandwidth						
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due	
Spectrum Analyzer	R&S	FSP 30	EF00312	2015-02	2016-02	

Field strength emissions							
Description Manufacturer Model Identifier Cal. Date Cal. Due							
Semi-anechoic chamber	I Frankonia		EF00062	-	-		
Spectrum Analyzer	R&S	FSIQ26	EF00242	2015-04	2016-04		
Loop antenna	R&S	HFH2-Z2	EF00184	2014-11	2016-11		

1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer ($dB\mu V$) + A.F. (dB) = Net field strength ($dB\mu V/m$)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of $dB\mu V/m$). The FCC limits are given in units of $\mu V/m$. The following formula is used to convert the units of $\mu V/m$ to $dB\mu V/m$:

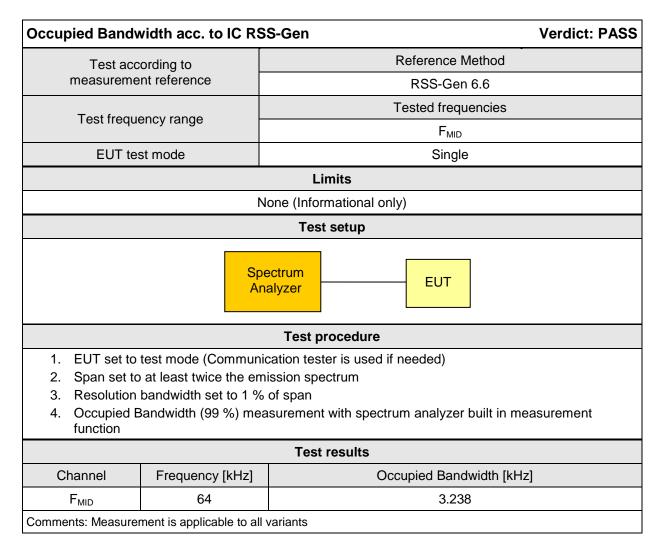
Limit (dB μ V/m) = 20*log (μ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB μ V + 26 dB = 47.5 dB μ V/m : 47.5 dB μ V/m - 57.0 dB μ V/m = -9.5 dB


2 Result Summary

FCC 47 CFR Part 15C, IC RSS-310								
Product Specific Standard Section	Requirement – Test	Reference Method	Result	Remarks				
RSS-Gen 6.6	Occupied Bandwidth	RSS-Gen 6.6	N/R	Informational only				
FCC 15.201(a), FCC 15.209 IC RSS-310 3.7	Field strength emissions	ANSI C63.4	PASS					
IC RSS-310 2.3 IC RSS-Gen 7.1	Receiver radiated spurious emissions	ANSI C63.4	PASS					

3 Test Conditions and Results

3.1 Test Conditions and Results - Occupied Bandwidth

Occupied Bandwidth - F_{MID}

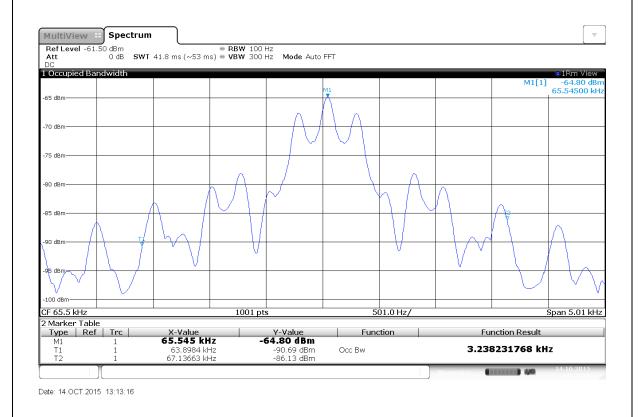
Occupied Bandwidth acc. to RSS-Gen

Project Number: G0M-1509-5046

Applicant: Biotronik SE & Co. KG

EUT Name: Pacemaker family PRIMUS NXT

Model: Eluna 8 HF-T

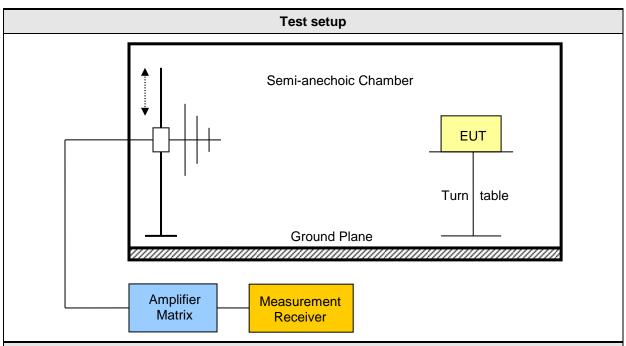

Test Site: Eurofins Product Service GmbH

Operator: Wilfried Treffke
Test Conditions: Tnom / Vnom
Mode: Tx 64 kHz
Test Date: 2015-10-14

Verdict: NONE (INFORMATION ONLY)

Note 1: A spectrum analyzer with an integrated 99% power bandwidth function is used

Note 2: Near-field measurement test fixture / 64 kHz system



3.2 Test Conditions and Results – Fundamental field strength emissions

Field strength emission	ield strength emissions acc. to FCC 47 CFR 15.201 / IC RSS-310 Verdict: PASS							
Test according refe	renced		Reference Method					
standards		FCC 15.20	01(a) + 15.209 / IC F	RSS-310 3.7				
Test according to			Reference Method					
measurement reference			ANSI C63.4					
T			Tested frequencies	3				
Test frequency ra	ange		9 kHz – 10 th Harmor	nic				
EUT test mod	le	Single						
		Limits						
Frequency range [MHz]	Detector	Limit [µV/m]	Limit [dBµV/m]	Limit Distance [m]				
0.009 - 0.490	Quasi-Peak	2400/F[kHz]	48.5 – 13.8	300				
0.490 - 1.705	Quasi-Peak	2400/F[kHz]	13.8 – 1.4	30				
1.705 – 30	Quasi-Peak	30	29.5	30				
30 – 88	Quasi-Peak	100	40	3				
88 – 216	Quasi-Peak	150	43.5	3				
216 – 960	Quasi-Peak	200	46	3				
960 – 1000	Quasi-Peak	500	54	3				
> 1000	Average	500	54	3				

The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test procedure

- 1. EUT set to test mode
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to maximum emission levels

	Test results							
Channel	Frequency [kHz]	Emission [kHz]	Level [dbµV/m]	Detector	Pol.	Limit [dbµV/m]	Limit distance [m]*	Margin [dB]
F _{MID}	64	100.32	-61.50	pk	ver	27.60	3	-89.06
F _{MID}	64	1257	-06.40	pk	ver	25.60	3	-32.01

Comments: * Physical distance between EUT and measurement antenna.

3.4 Test Conditions and Results - Receiver radiated emissions

Receiver radiated emis	sions acc.	to I	C RSS-310				Verdict: PASS	
Test according referenced standards		Reference Method						
		IC RSS-310 3.7						
Test according to		Reference Method						
measurement reference		ANSI C63.4						
Tool from the part of the part		Tested frequencies						
Test frequency range			30 MHz – 5 th Harmonic					
EUT test mode			Receive					
			Limits					
Frequency range [MHz]	Detecto	r	Limit [µV/m]		Limit [dBµV/m]	Limit Distance [m]	
0.009 - 0.490	Quasi-Peak		2400/F[kHz]		48.5 – 13.8		300	
0.490 – 1.705	Quasi-Peak		2400/F[kHz]		13.8 – 1.4		30	
1.705 – 30	Quasi-Peak		30		29.5		30	
30 – 88	Quasi-Peak		100		40		3	
88 – 216	Quasi-Peak		150		43.5		3	
216 – 960	Quasi-Peak		200		46		3	
960 – 1000	Quasi-Peak		500		54		3	
> 1000	Average		500		54		3	
			Test setup					
*			Semi-anechoic (Cham	EU	T table	— e	
	Ground Plane							
	plifier atrix	N	Measurement Receiver					

Test procedure

- 1. EUT set to receive mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels

Test results							
Channel	Frequency [kHz]	Emission [kHz]	Emission Level [dbµV/m]	Det.	Limit [dBdµV/m]	Margin [dBµV/m]	
F _{MID}	64	100.36	-60.60	pk	27.6	-88.17	
F _{MID}	64	25278	-05.30	pk	29.5	-34.81	
Comments	:						

ANNEX A Transmitter radiated spurious emissions

Spurious emissions according to FCC 15.209

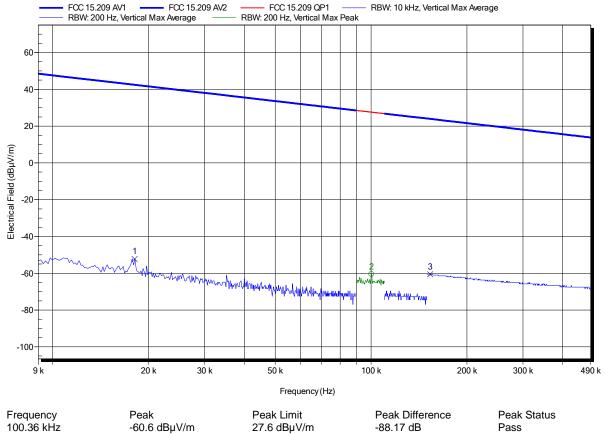
Project number: G0M-1509-5046

Applicant: Biotronik SE & Co. KG

EUT Name: Pacemaker family PRIMUS NXT

Model: Eluna 8 HF-T

Test Site: Eurofins Product Service GmbH


Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC battery Antenna: Rohde & Schwarz HFH 2-Z2

Measurement distance: 3 m converted to 300 m

Mode: TX; 64 kHz Test Date: 2015-10-07

Note:

Frequency	Peak	Peak Limit	Peak Difference	Peak Status
100.36 kHz	-60.6 dBµV/m	27.6 dBµV/m	-88.17 dB	Pass
Frequency	Average	Average Limit	Average Difference	Average Status
18.072 kHz	-52.3 dBμV/m	42.4 dBµV/m	-94.71 dB	Pass
153.4 kHz	-60.6 dBμV/m	23.9 dBµV/m	-84.46 dB	Pass

Spurious emissions according to FCC 15.209

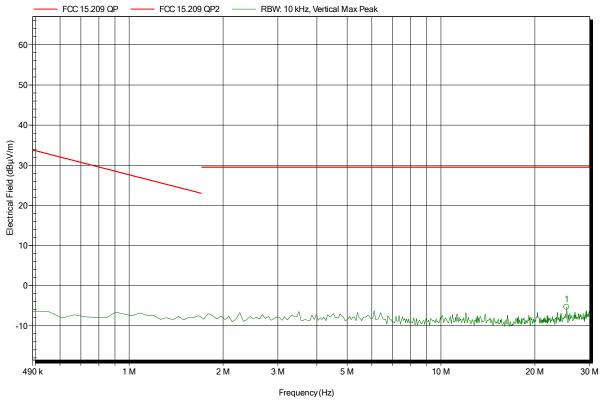
Project number: G0M-1509-5046

Applicant: Biotronik SE & Co. KG

EUT Name: Pacemaker family PRIMUS NXT

Model: Eluna 8 HF-T

Test Site: Eurofins Product Service GmbH


Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 3V DC battery Antenna: Rohde & Schwarz HFH 2-Z2

Measurement distance: 3 m converted to 30 m

Mode: TX; 64 kHz Test Date: 2015-10-07

Note:

Frequency Peak Peak Limit Peak Difference Peak Status 25.278 MHz -5.3 dB μ V/m 29.5 dB μ V/m -34.81 dB Pass

ANNEX B Receiver radiated spurious emissions

Spurious emissions according to RSS-Gen

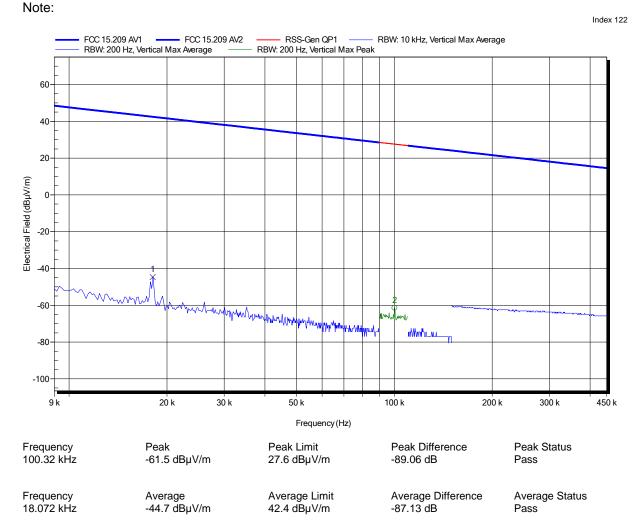
Project number: G0M-1509-5046

Applicant: Biotronik SE & Co. KG

EUT Name: Pacemaker family PRIMUS NXT

Model: Eluna 8 HF-T

Test Site: Eurofins Product Service GmbH


Operator: Treffke

Test Conditions: Tnom: 25°C, Vnom: 3 V DC battery

Antenna: Rohde & Schwarz HFH 2-Z2
Measurement distance: 3 m converted to 300 m

Mode: RX; 64 kHz

Test Date: 2015-10-07

Spurious emissions according to RSS-Gen

Project number: G0M-1509-5046

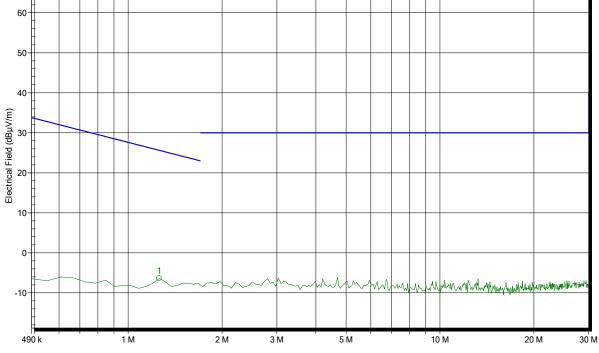
Applicant: Biotronik SE & Co. KG

EUT Name: Pacemaker family PRIMUS NXT

Model: Eluna 8 HF-T

Test Site: Eurofins Product Service GmbH

Operator: Treffke


Test Conditions: Tnom: 25°C, Vnom: 3 V DC battery Rohde & Schwarz HFH 2-Z2 Antenna:

Measurement distance: 3 m converted to 30 m

RX; 64 kHz Mode: Test Date: 2015-10-07

Note:

RSS-Gen QP -RSS-Gen QP2 — - RBW: 10 kHz, Vertical Max Peak

Frequency (Hz)

Frequency Peak Peak Limit Peak Difference Peak Status 1.257 MHz -6.4 dBµV/m 25.6 dBµV/m -32.01 dB Pass

Index 123