

EMC Test Report

Application for Class 2 Permissive Change/Re-assessment

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: WS-AP3710i

FCC ID: QQD10I

IC CERTIFICATION #: 5248S-10I

APPLICANT: Flextronics

21 Richardson Side Road

Kanata, ON K2K 2C1, Canada

TEST SITE(S): NTS Silicon Valley

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-5, 2845B-7

REPORT DATE: March 4, 2013

FINAL TEST DATES: December 31, 2012 and January 2, 3, 4, 7, 9, 10

and 17, 2013

TOTAL NUMBER OF PAGES: 81

PROGRAM MGR /

TECHNICAL REVIEWER:

David W. Bare Chief Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	March 4, 2013	Initial release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	14 1 <i>1</i>
INSTRUMENT CALIBRATION	14 1 <i>1</i>
TEST PROCEDURES EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	18
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONSSAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	26
FND OF REPORT	Q1

SCOPE

An electromagnetic emissions test has been performed on the Flextronics model WS-AP3710i, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC KDB 789033 and KDB 662911)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Silicon Valley test procedures:

ANSI C63.4:2003

FCC UNII test procedure, KDB 789033

FCC Multiple Transmitter Output Test Procedure, KDB 662911

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Flextronics model WS-AP3710i complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Flextronics model WS-AP3710i and therefore apply only to the tested sample. The sample was selected and prepared by Georges Fares of Flextronics.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.25 - 5.35 GHz Band

· F					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(a) (2)		Min 26dB Bandwidth	a: 24.3 MHz n20: 37.8 MHz n40: 46.1 MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (2)		Output Power	802.11a: 19.9 dBm n20: 22.4 dBm n40: 18.9 dBm	a:23.2dBm² n20: 24.0 n40: 24.0	Complies
	A9.2(2)	Output Fower	(Max eirp: 0.460 W) ¹	a: 22.5dBm ³ n20: 23.6 ³ n40: 24.0	Complies
15.407 (a) (2)	-	Power Spectral	a: 7.9 dBm/MHz n20: 10.0 dBm/MHz	10.2 ⁴ dBm/MHz	Complies
-	A9.2 (2) A9.4(2)	Density	n40: 4.2 dBm/MHz	10.2 QBIII/IVITIZ	Complies

Note 1: EIRP calculated using antenna gain of 6.8 dBi (three 2 dBi antennas) for the highest EIRP system in legacy mode.

Note 2: Limit reduced to 23.2 dBm from 24 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi for legacy mode.

Note 3: Limit reduced to 22.5/23.6 dBm from 24 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi for legacy mode and the minimum 99% BW is 17.1/18.1 MHz for 20 MHz modes.

Note 4: Limit reduced to 10.2 dBm from 11 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi.

Operation in the 5.47 - 5.6 MHz and 5.65 - 5.725 GHz Bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(a) (2)		Min 26dB Bandwidth	a: 22.7 MHz n20: 26.8 MHz n40: 45.5 MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (2)		Output Power	802.11a: 20.0 dBm n20: 22.6 dBm n40: 20.7 dBm	a:23.2dBm ² n20: 24.0 n40: 24.0	Complies
	A9.2(3)	Output I ower	(Max eirp: 0.471 W) ¹	a: 22.5dBm ³ n20: 23.5 ³ n40: 24.0	Complies
15.407 (a) (2)	-	Power Spectral	a: 8.1 dBm/MHz	10.2 ⁴ dBm/MHz	Complies
-	A9.2 (3) A9.4(2)	Density	n20: 10.1 dBm/MHz n40: 5.8 dBm/MHz	10.2 QBM/MHZ	Complies

Note 1: EIRP calculated using antenna gain of 6.8 dBi (three 2 dBi antennas) for the highest EIRP system in legacy mode.

Note 2: Limit reduced to 23.2 dBm from 24 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi for legacy mode.

Note 3: Limit reduced to 22.5/23.5 dBm from 24 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi for legacy mode and the minimum 99% BW is 16.9/18.0 MHz for 20 MHz modes.

Note 4: Limit reduced to 10.2 dBm from 4 dBm as effective antenna gain exceeded 6 dBi by 0.8 dBi.

Requirements for all U-NII/LELAN bands

Requirements for all U-NII/LELAN bands						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	A9.4(1)	Modulation	System uses 802.11a/n techniques	Digital modulation is required	Complies	
15.407(b) (6) / 15.209	A9.2(2) (3) / RSS-GEN	Spurious Emissions below 1GHz	No chang	ge from original filing		
15.407(b) (5) / 15.209	A9.2(2) (3) / RSS-GEN	Spurious Emissions above 1GHz	53.9 dBμV/m @ 5726.1 MHz (-0.1 dB)	Refer to page 22	Complies	
15.407(a)(6)	-	Peak Excursion Ratio	a: 9.0 dB n20: 7.7 dB n40: 7.4 dB	< 13dB	Complies	
	A9.4(3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A	
15		Channel Selection	Measurements on three channels in each band	and center channels in each band		
15.407 (c)	A9.4(4)	Operation in the absence of information to transmit	No change from original filing			
15.407 (g)		Frequency Stability	No chang	e from original filing		
15.407 (h) (1)		Transmit Power Control	Device does not exceed 500 mW EIRP	If power > 500 mW EIRP, TPC is required	Complies	
15.407 (h) (2)	A9.3	Dynamic frequency Selection	Refer to separate report R90941 N/A		N/A	
	A9.4(6) & (7)	User Manual information	No change from original filing			

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.407 (b) (6) / 15.207	RSS GEN Table 2	AC Conducted Emissions	No chang	ge from original filing	
15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.3	User Manual	No chang	ge from original filing	
-	RSP 100 RSS GEN 7.1.2	User Manual	No chang	ge from original filing	
-	RSP 100 RSS GEN 4.4.1 RSS-210 A9.2(2) (3)	99% Bandwidth	5250-5350 MHz a: 17.1 MHz n20: 24.0 MHz n40: 36.6 MHz 5470-5725 MHz a: 16.9 MHz n20: 19.1 MHz n40: 36.6 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Flextronics model WS-AP3710i is a multiple radio access point, each radio operating in 3x3 MIMO and 3 chain legacy modes. It incorporates both a 2.4 GHz band 802.11b/g/n and a 5 GHz band 802.11a/n radio in a single enclosure. Since the EUT could be placed in any position during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 48 Volts DC, 0.8 Amps.

The sample was received on November 29, 2012 and tested on December 31, 2012 and January 2, 3, 4, 7, 9, 10 and 17, 2013. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Flextronics	WS-AP3710i	Access Point	None	QQD10I

ANTENNA SYSTEM

The antenna system consists of three integral antennas for both radios.

ENCLOSURE

The EUT enclosure measures approximately 20 by 18.5 by 3 centimeters. It is constructed of uncoated plastic and cast metal.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
PowerDsine	9001G-40/SP	POE adapter	N114565190018	
		-	46A01	
Dell	Latitude D610	Laptop	26895386773	-
		Computer		

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Dont	Connected		Cable(s)	
Port	То	Description	Shielded or Unshielded	Length(m)
Ethernet/POE	Remote POE adapter or switch	Cat 5	Unshielded	10
Remote POE Data or switch	Laptop	Cat 5	Unshielded	2

The console port was not connected during testing as this is used only during configuration of the radio.

EUT OPERATION

During testing, the EUT was configured to transmit a continuous modulated signal at the selected frequency and power level on all three chains of both radios.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Lagation	
Site	FCC	Canada	Location
Chamber 7	A2LA accreditation	2845B-7	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

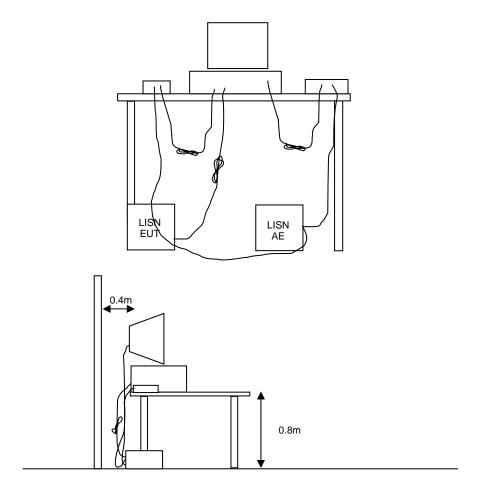
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

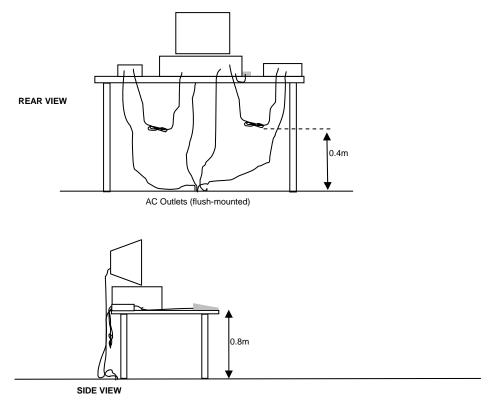
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

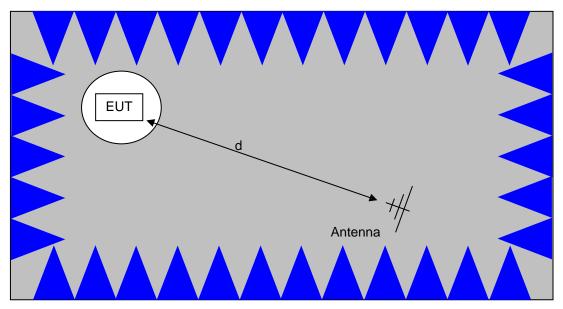
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

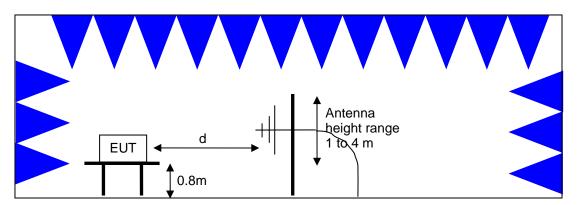

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

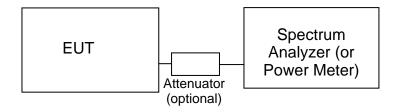
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

² If EIRP exceeds 500mW the device must employ TPC ³ If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed –7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Band Edge,				
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/12/2014
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/21/2013
	1,000 - 40,000 MHz, 02-Jan-13		_	
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	4/18/2013
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	8/2/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/1/2013
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	7/12/2014
Hewlett Packard	Head (Inc flex cable, (1742,1743) Blue)	84125C	1620	5/17/2013
A.H. Systems	Spare System Horn, 18-40GHz	SAS-574, p/n: 2581	2162	5/8/2013
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	10/4/2013
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2013
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/11/2013
Radio Antenna Port (Financial Manufacturer Elliott Laboratories Rohde & Schwarz	Power and Spurious Emissions), (Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz	02-Jan-13 <u>Model</u> EL30.300 ESIB7	Asset # 54 1756	Cal Due 4/18/2013 5/21/2013
Manufacturer Elliott Laboratories Rohde & Schwarz	<u>Description</u> Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz	Model EL30.300 ESIB7	54	4/18/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions,	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04-	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13	54 1756	4/18/2013 5/21/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model	54 1756 Asset #	4/18/2013 5/21/2013 Cal Due
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions,	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1-	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13	54 1756	4/18/2013 5/21/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039	54 1756 Asset # 54	4/18/2013 5/21/2013 Cal Due 4/18/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B	54 1756 Asset # 54 263	4/18/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard Hewlett Packard Hewlett Packard	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039 (84125C) 8564E (84125C)	54 1756 Asset # 54 263 1152 1393	4/18/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013 8/2/2013 5/1/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard Hewlett Packard	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Antenna, Horn, 1-18 GHz Head (Inc flex cable,	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039 (84125C)	54 1756 Asset # 54 263 1152	4/18/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013 8/2/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard Hewlett Packard Hewlett Packard EMCO Hewlett Packard	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Antenna, Horn, 1-18 GHz Head (Inc flex cable, (1742,1743) Blue)	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039 (84125C) 8564E (84125C) 3115 84125C	54 1756 Asset # 54 263 1152 1393 1561	A/18/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013 8/2/2013 5/1/2013 7/12/2014
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard Hewlett Packard Hewlett Packard EMCO	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Antenna, Horn, 1-18 GHz Head (Inc flex cable,	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039 (84125C) 8564E (84125C)	54 1756 Asset # 54 263 1152 1393 1561 1620	A/18/2013 5/21/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013 8/2/2013 5/1/2013 7/12/2014 5/17/2013
Manufacturer Elliott Laboratories Rohde & Schwarz Radiated Emissions, Manufacturer Elliott Laboratories Hewlett Packard Hewlett Packard Hewlett Packard EMCO Hewlett Packard A.H. Systems	Description Biconical Antenna, 30-300 MHz EMI Test Receiver, 20 Hz-7 GHz 1,000 - 40,000 MHz, 03-Jan-13, 04- Description Biconical Antenna, 30-300 MHz Microwave Preamplifier, 1- 26.5GHz High Pass filter, 8.2 GHz (Red System) SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Antenna, Horn, 1-18 GHz Head (Inc flex cable, (1742,1743) Blue) Spare System Horn, 18-40GHz Band Reject Filter, 5470-5725	Model EL30.300 ESIB7 Jan-13 and 07-Jan-13 Model EL30.300 8449B P/N 84300-80039 (84125C) 8564E (84125C) 3115 84125C SAS-574, p/n: 2581	54 1756 Asset # 54 263 1152 1393 1561 1620 2162	A/18/2013 5/21/2013 5/21/2013 Cal Due 4/18/2013 3/29/2013 8/2/2013 5/1/2013 7/12/2014 5/17/2013 5/8/2013

Test Report

Report Date: March 4, 2013

Radio Antenna Port	Power and Spur	rious Emissions). 09	-Jan-13 to 11-Jan-13

Manufacturer
AgilentDescription
50GHz PSA Spectrum AnalyzerModel
E4448A-M27Asset #
E4448A-M27Cal Due
199979

Radio Antenna Port (Power and Spurious Emissions), 17-Jan-13

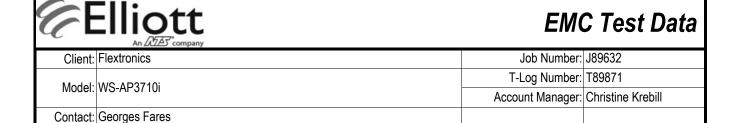
Manufacturer
AgilentDescription
50GHz PSA Spectrum AnalyzerModel
E4448A-M27Asset #
E4448A-M27Cal Due
199979

Appendix B Test Data

T89871 Pages 27 - 80

Ellio	tt Ecompany	El	MC Test Data
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
		Account Manager:	Christine Krebill
Contact:	Georges Fares		
Emissions Standard(s):	15.407, RSS-210	Class:	
Immunity Standard(s):		Environment:	Radio

EMC Test Data


For The

Flextronics

Model

WS-AP3710i

Date of Last Test: 1/17/2013

Class: N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements**

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Standard: 15.407, RSS-210

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 1/9/2013 and 1/10/2013 Config Change: None Test Engineer: Jack Liu / R. Varelas Test Location: FT Lab 4A EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

23 °C Temperature: 40 %

Rel. Humidity:

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
		15.407(a) (6)		a: 9 dB
1	Peak Excursion Envelope	13dB	Pass	n20: 7.7 dB
		TOUD		n40: 7.4 dB
2	20dB Signal Bandwidth	15.215	Doos	Signal remains withing allocated
2	2006 Signal Ballowidili	13.213	Pass	band.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

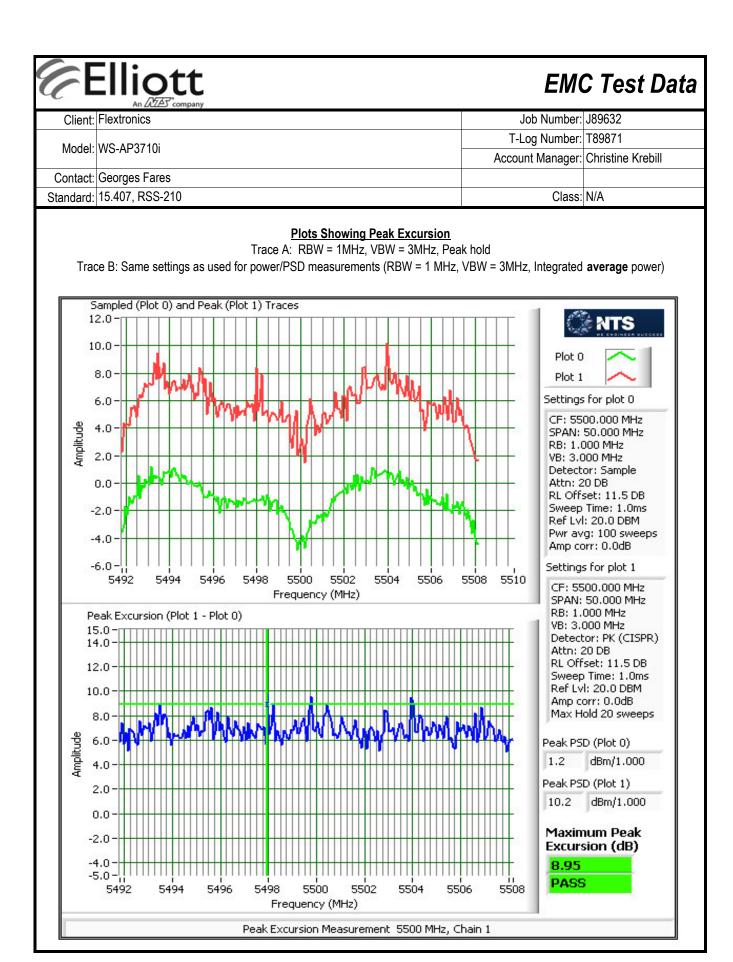
No deviations were made from the requirements of the standard.

EMC Test Data

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Madal	WS-AP3710i	T-Log Number:	T89871
Model:	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #1: Peak Excursion Measurement

a 20MHz: Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
			5260	7.0	13.0	5500	9.0	13.0
			5300	7.5	13.0	5580	7.6	13.0
			5320	7.8	13.0	5700	7.4	13.0

n 20MHz: Device meets the requirement for the peak excursion

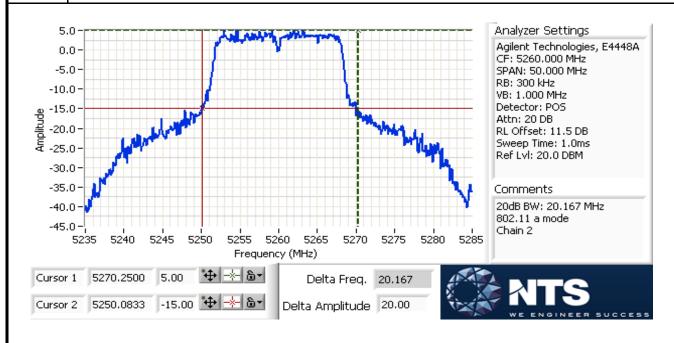
Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
			5260	7.5	13.0	5500	7.4	13.0
			5300	7.1	13.0	5580	7.2	13.0
			5320	7.7	13.0	5700	7.4	13.0

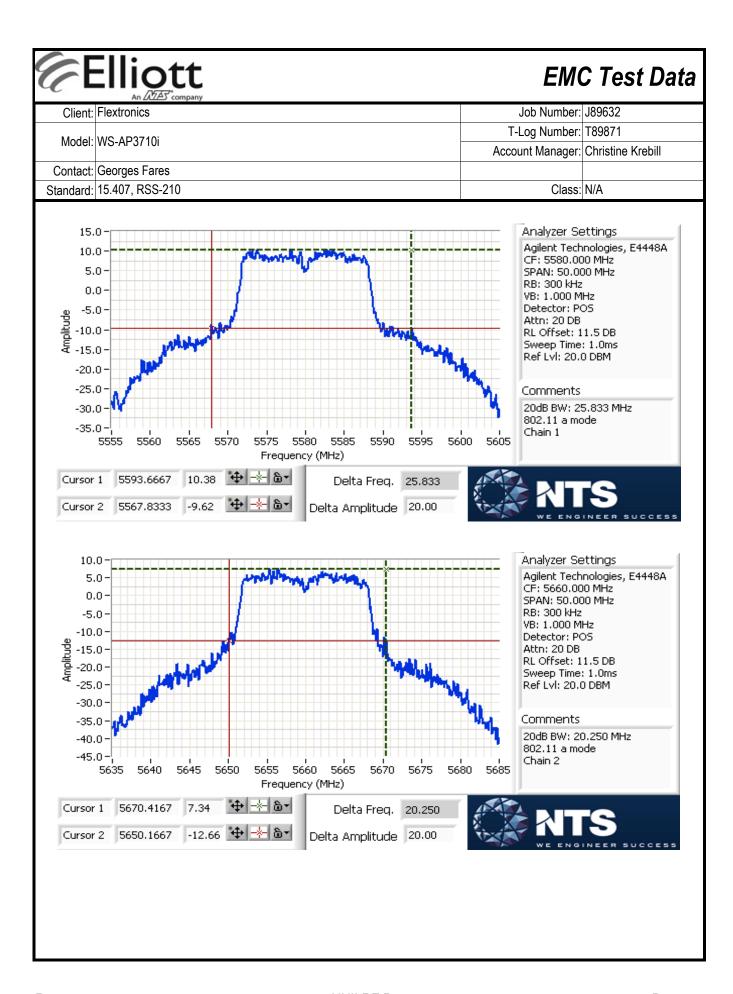
n 40MHz: Device meets the requirement for the peak excursion

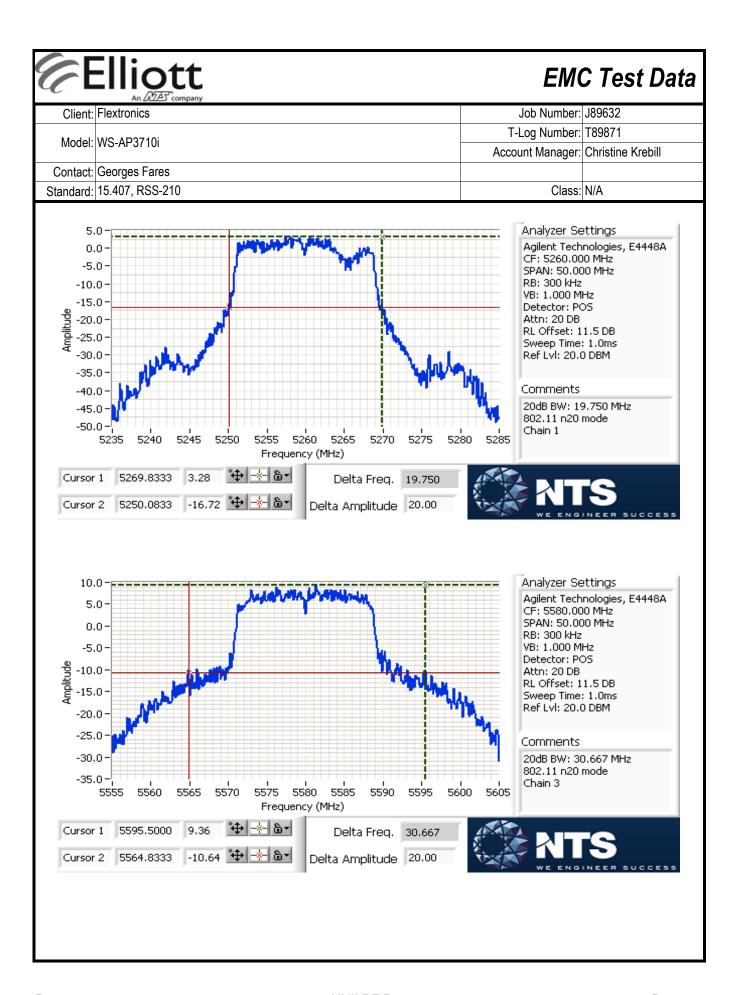
Freq	Peak Exc	Peak Excursion(dB)		Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
			5270	7.4	13.0	5510	7.5	13.0
			5310	7.2	13.0	5550	7.3	13.0
						5670	7.5	13.0

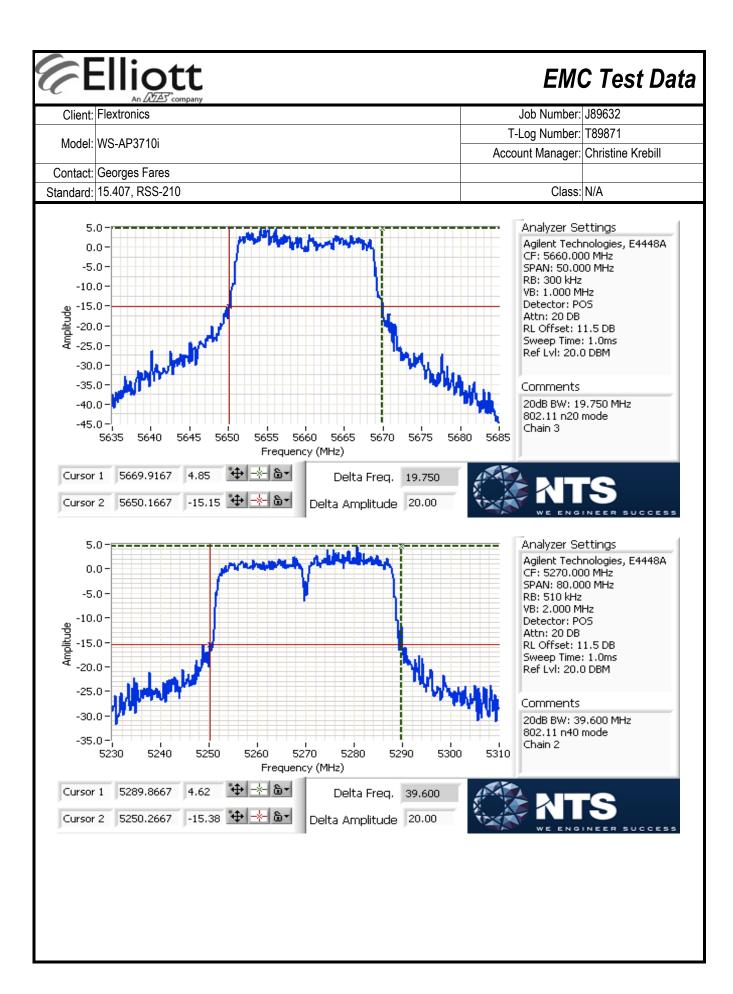
EMC Test Data

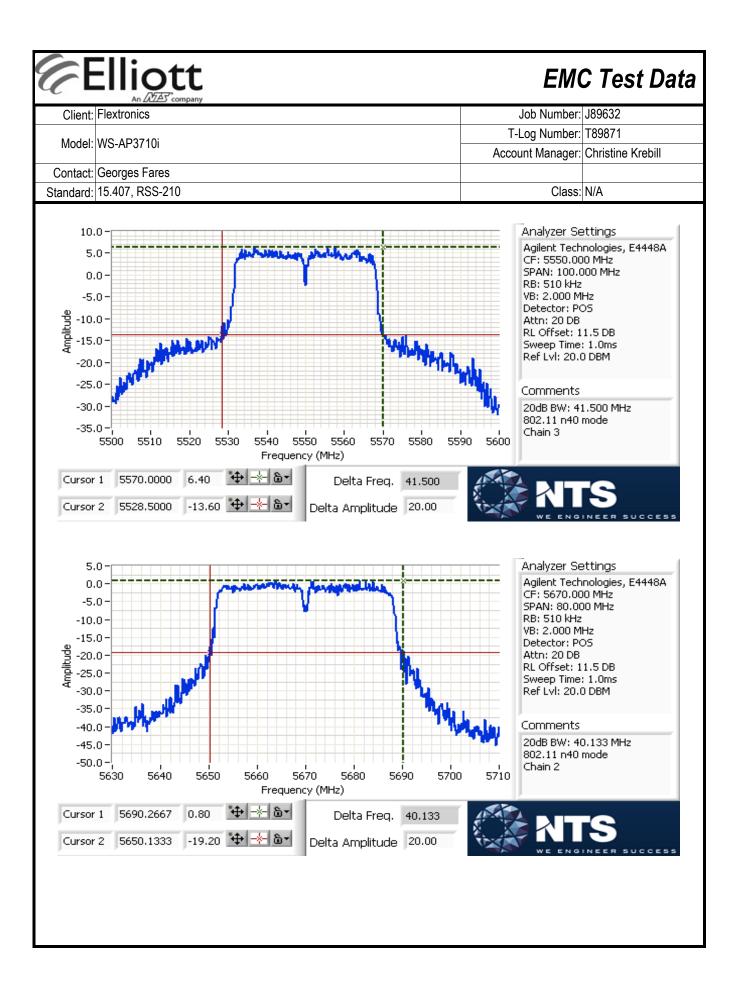
	An ZCZES company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
		Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A


Run #2: 20dB Signal Bandwidth


Shall remain in band and also not in 5600-5650 MHz band.


in in band and also not in 5600-5650 MHz band.						
Eroguopov (MHz)	Resolution	Bandwidth (MHz)	F _L or F _H Value (MHz)			
riequelicy (IVII IZ)	Bandwidth	20dB	T [OI T H Value (WIT 12)			
802.11a						
5260	300kHz	20.2	5250.083			
5580	300kHz	25.8	5567.833			
5660	300kHz	20.3	5650.167			
802.11n20						
5260	300kHz	19.8	5250.083			
5580	300kHz	30.6	5595.500			
5660	300kHz	19.8	5650.167			
802.11n40						
5270	500KHz	39.6	5250.267			
5550	500KHz	41.5	5570.000			
5670	500KHz	40.1	5650.133			
	5260 5580 5660 5260 5580 5660 5270 5550	Frequency (MHz) Resolution Bandwidth 5260 300kHz 5580 300kHz 5660 300kHz 5260 300kHz 5580 300kHz 5580 300kHz 5660 300kHz 5550 500KHz 5550 500KHz	Frequency (MHz) Resolution Bandwidth Bandwidth (MHz) 20dB 5260 300kHz 20.2 5580 300kHz 25.8 5660 300kHz 20.3 5260 300kHz 19.8 5580 300kHz 30.6 5660 300kHz 19.8 5570 500KHz 39.6 5550 500KHz 41.5			


Note 1: Measured on a single chain


Note 2: 20dB bandwidth measured with the instrument bandwidth > 1% of the 20dB Bandwidth

	An AZAS company	EMO	EMC Test Data		
Client:	Flextronics	Job Number:	J89632		
Model	WS-AP3710i	T-Log Number:	T89871		
wodei.		Account Manager:	Christine Krebill		
Contact:	Georges Fares				
Standard:	15.407. RSS-210	Class:	N/A		

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD and Bandwidth

Test Specific Details

← □ □ : - ++

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/9/2013 & 1/10/2013 & 1/17/2013 Config. Used: 1 Test Engineer: Jack Liu / R. Varelas Config Change: None Test Location: FT Lab 4A EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

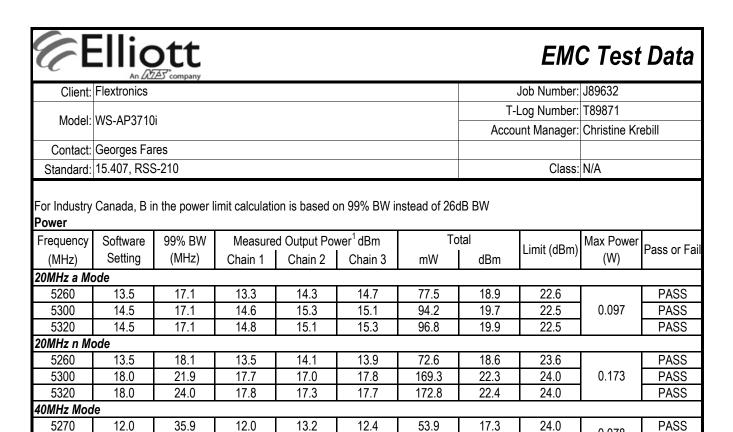
Temperature: 23 °C Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 96.8 mW 802.11n 20MHz: 172.8 mW 802.11n n40MHz: 165.1 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 7.9dBm/MHz 802.11n 20MHz: 10.4 dBm/MHz 802.11n n40MHz: 7.4 dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm.	-	Refer to the description of TPC in the operational description document.
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 99.1 mW 802.11n 20MHz: 182.3 mW 802.11n n40MHz: 118.1 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 8.1 dBm/MHz 802.11n 20MHz: 10.3 dBm/MHz 802.11n n40MHz: 5.8 dBm/MHz

E		ott Er company			EMO	C Test Data
Client:	Flextronics	•			Job Number:	J89632
Madalı	WS-AP3710i			T-Log Number: T89871		T89871
wodei.	WS-AP37 IUI			Accol	unt Manager:	Christine Krebill
Contact:	Georges Far	es				
Standard:	15.407, RSS	-210			Class:	N/A
Ru	n #	Test Performed	Limit	Pass / Fail	Result / Mar	gin
1	1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm.	-		description of TPC in nal description
1	1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for	all modes
1	1	99% Bandwidth	RSS 210 (Information only)	N/A		0 MHz NHz: 26.6 MHz MHz: 52.2 MHz

Antenna:


#	Model	Type	Freq. Band (GHz)	Gain (dBi)	Ind/Out	Xpol?	Pt to Pt?
1	(Antenna B & C)	IFA	5.2 & 5.6	2	Indoor	No	No

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E E	Ellic	ott						EMO	C Test	Data
Client:	Flextronics	company					,	Job Number:	J89632	
Madal	MC AD274	n:					T-Log Number: T89871			
Model:	WS-AP3710	ונ					Accou	unt Manager:	Christine Kr	ebill
Contact:	Georges Fa	res								
Standard:	15.407, RS	S-210						Class:	N/A	
		tput Power a	i		, ,					•
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	` ,	EIRP (dBm)	
Legacy		a Gain (dBi):	2	2	2	Yes	6.8	460.4	26.6	
MIMO	Antenn	a Gain (dBi):	2	2	2	No	2.0	273.9	24.4	
Power	Coffware	26dB BW	Magazza	d Output Po	wor ¹ dDm	Т	otal		Max Power	
Frequency	Software Setting	(MHz)					ī	Limit (dBm)	(W)	Pass or Fail
(MHz) 20MHz a M o	U	(IVII IZ)	Chain 1	Chain 2	Chain 3	mW	dBm		(۷۷)	
5260	13.5	24.3	13.3	14.3	14.7	77.5	18.9	23.2		PASS
5300	14.5	37.3	14.6	15.3	15.1	94.2	19.7	23.2	0.097	PASS
5320	14.5	34.9	14.8	15.1	15.3	96.8	19.9	23.2		PASS
20MHz n M	ode	<u> </u>		J.		<u> </u>	J.	<u> </u>	J.	
5260	13.5	37.8	13.5	14.1	13.9	72.6	18.6	24.0		PASS
5300	18.0	38.7	17.7	17.0	17.8	169.3	22.3	24.0	0.173	PASS
5320	18.0	46.6	17.8	17.3	17.7	172.8	22.4	24.0		PASS
40MHz Mod		1 400	40.0	40.0	104	T 50.0	47.0	1 040	1	DACC
5270 5310	12.0 13.0	46.9 46.1	12.0 13.7	13.2 13.8	12.4 14.8	53.9 77.6	17.3 18.9	24.0 24.0	0.078	PASS PASS
PSD	13.0	40.1	13.1	13.0	14.0	11.0	10.9	24.0		PASS
Frequency	99% ⁴	Total	P	SD ² dBm/Mł		Tota	PSD	Li	mit	
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass or Fail
20MHz a Mo			Onan i	01141112	onam o		QB111/1111112		1100 210	
5260	17.1	18.9	3.0	1.9	3.3	5.7	7.6	10.2	11.0	PASS
5300	17.1	19.7	3.1	3.0	2.9	6.0	7.8	10.2	11.0	PASS
5320	17.1	19.9	3.4	2.5	3.5	6.1	7.9	10.2	11.0	PASS
20MHz n Me										
5260	18.1	18.6	3.0	1.6	1.7	4.9	6.9	11.0	11.0	PASS
5300	21.9	22.3	6.7	4.4	5.4	10.9	10.4	11.0	11.0	PASS
5320	24.0	22.4	6.7	4.7	5.2	10.9	10.4	11.0	11.0	PASS
40MHz Mod		17.2	1 1	0.0	2.0	0.6	4.0	14.0	14.0	DACC
5270 5310	35.9	17.3	1.4	-2.2 1.5	-2.0 -0.8	2.6 2.5	4.2	11.0	11.0	PASS
5510	36.6	18.9	0.0	-1.5	-0.0	2.5	4.0	11.0	11.0	PASS

14.8

77.6

13.8

18.9

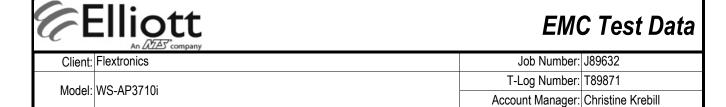
24.0

0.078

PASS

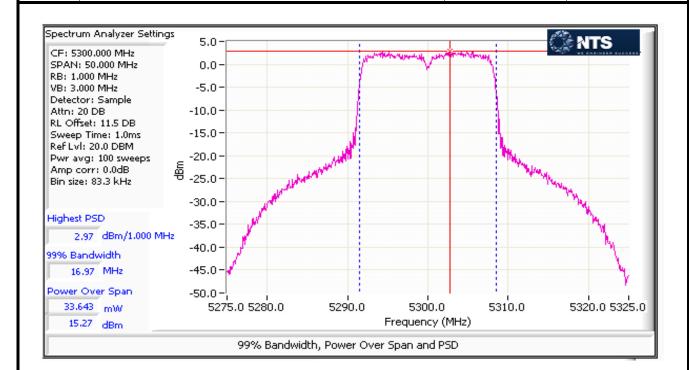
EIRP does not exceed 500mW, therefore TPC is not required.

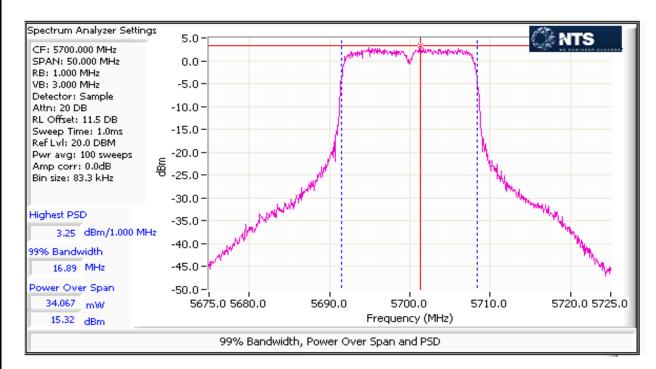
36.6

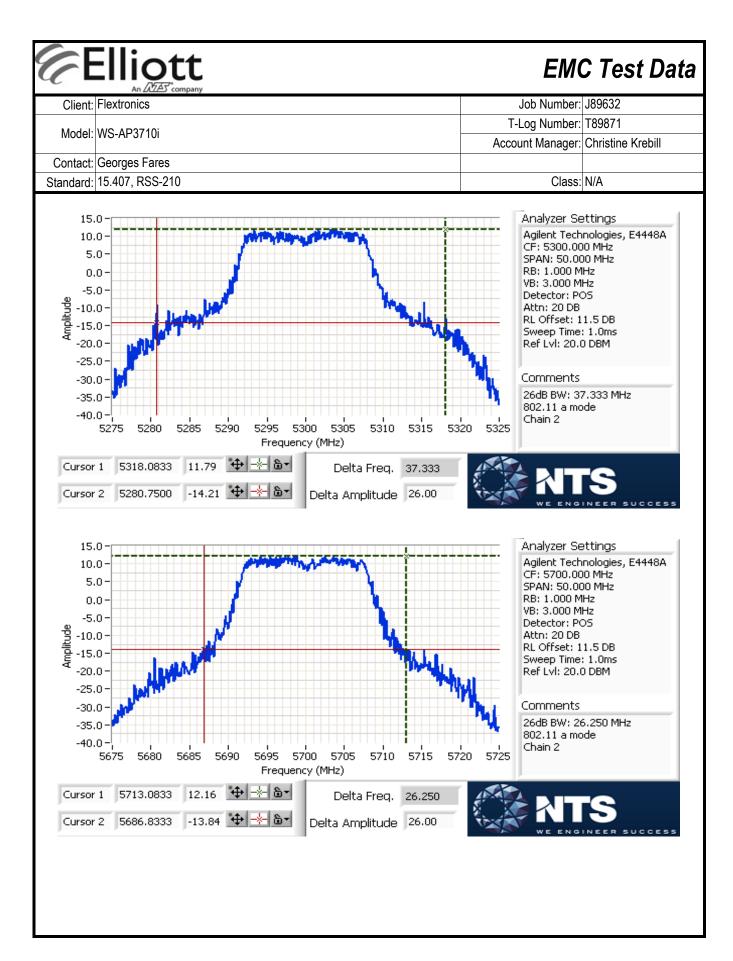

13.7

5310

13.0


	Ellic	DLL AS company						EM	C Test	Data
Client:	Flextronics	Company						Job Number:	J89632	
Marti	MO AD0740	۸۰					T-	Log Number:	T89871	
Model:	WS-AP3710)					Acco	unt Manager:	Christine Kr	ebill
Contact:	Georges Fa	res								
Standard:	15.407, RSS	S-210						Class:	N/A	
MIMO Devi	ce - 5470-57	25 MHz Band					I 5	Ising ()40	Ising (in)	1
	Δ	O : ' (ID')	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	` ′	EIRP (dBm))
Legacy		a Gain (dBi):	2	2	2	Yes	6.8	471.4	26.7	
MIMO	Antenn	a Gain (dBi):	2	2	2	No	2.0	288.9	24.6]
Power Frequency	Coffwara	26dB BW	Magaura	d Output Po	vor ¹ dDm	Т	otal		Max Power	
	Software Setting	(MHz)		• '			ī	Limit (dBm)	(W)	Pass or Fa
(MHz)	•	(IVII IZ)	Chain 1	Chain 2	Chain 3	mW	dBm		(۷۷)	
20MHz a M 5500	12.0	22.7	12.7	11.6	12.8	52.1	17.2	23.2	1	PASS
5580	16.0	23.2	15.3	15.2	15.0	98.2	19.9	23.2		PASS
5660	15.5	25.2	14.6	15.2	14.9	91.6	19.9	23.2	0.099	PASS
5700	15.5	26.3	15.2	15.1	15.1	99.1	20.0	23.2		PASS
20MHz n M		20.0	10.2	10.0	10.1	33.1	20.0	20.2		1 700
5500	13.0	29.7	13.2	12.6	12.5	57.1	17.6	24.0		PASS
5580	20.0	41.1	18.2	18.2	17.0	182.3	22.6	24.0		PASS
5660	14.0	26.8	13.7	14.2	13.6	72.7	18.6	24.0	0.182	PASS
5700	15.5	28.2	15.2	15.2	14.3	93.8	19.7	24.0		PASS
40MHz Mod	le			•	•	•	•	•	•	•
5510	9.5	45.5	9.7	9.0	9.5	26.2	14.2	24.0		PASS
5550	17.0	61.9	16.4	16.0	15.4	118.1	20.7	24.0	0.118	PASS
5670	11.0	47.1	10.8	11.5	10.2	36.6	15.6	24.0		PASS
PSD						_				_
Frequency	99% ⁴	Total	Р	SD ² dBm/Ml	Ηz	Tota	IPSD	Li	mit	Pass or Fa
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 455 01 1 4
20MHz a M	ode			•		•			•	
5500	16.9	17.2	1.2	-0.1	0.8	3.5	5.4	10.2	11.0	PASS
5580	16.9	19.9	3.6	2.9	3.0	6.2	8.0	10.2	11.0	PASS
5660	16.9	19.6	2.5	2.7	2.7	5.5	7.4	10.2	11.0	PASS
5700	16.9	20.0	3.8	3.3	2.9	6.5	8.1	10.2	11.0	PASS
20MHz Mod		4= 0	4.4					1 44 5	1	T 5:00
5500	18.0	17.6	1.4	0.8	0.4	3.7	5.6	11.0	11.0	PASS
5580	19.1	22.6	5.8	5.8	4.9	10.7	10.3	11.0	11.0	PASS
5660 5700	18.0 18.1	18.6 19.7	1.6	1.4 2.7	1.4 1.8	4.2 5.5	6.2	11.0 11.0	11.0 11.0	PASS PASS
40MHz Mod		19.7	3.4	Z.1	1.0	ა.5	7.4	11.0	11.0	FA33
5510	36.5	14.2	-5.2	-6.4	-5.7	0.8	-1.0	11.0	11.0	PASS
5550	36.6	20.7	1.7	0.8	0.4	3.8	5.8	11.0	11.0	PASS
	00.0	20.1	1.7	٥.0	٦.٦	0.0	0.0	1 1.0	11.0	1,700


) TT						EMO	C Test	Data		
Client:	Flextronics							Job Number:	J89632			
	11/0 A DOZAC						T	-Log Number:	T89871			
Model:	: WS-AP3710	i				F		ount Manager:		ebill		
Contact:	: Georges Far	eorges Fares										
	: 15.407, RSS							Class:	N/A			
0101.22.2.												
For Industry Power	Canada, B ir	n the power li	mit calculation	on is based o	on 99% BW in	stead of 26d	IB BW					
Frequency	Software	99% BW	Measure	d Output Pov	wer ¹ dBm	To	tal	Limit (dDm)	Max Power	Dana or Foi		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or Fai		
20MHz a Mo	ode							<u> </u>		ı		
5500	12.0	16.9	12.7	11.6	12.8	52.1	17.2	22.5		PASS		
5580	16.0	16.9	15.3	15.2	15.0	98.2	19.9	22.5	0.099	PASS		
5660	15.5	16.9	14.6	15.1	14.9	91.6	19.6	22.5	0.000	PASS		
5700	15.5	16.9	15.2	15.3	15.1	99.1	20.0	22.5		PASS		
20MHz n M								•	-			
5500	13.0	18.0	13.2	12.6	12.5	57.1	17.6	23.5		PASS		
5580	20.0	19.1	18.2	18.2	17.0	182.3	22.6	23.8	0.182	PASS		
5660	14.0	18.0	13.7	14.2	13.6	72.7	18.6	23.5	0.102	PASS		
5700		15.5 18.1 15.2 15.2 14.3 93.8 19.7 23.6 PASS										
40MHz Mod		-22.5				22.0	- : : : :	1 242		-100		
5510	9.5	36.5	9.7	9.0	9.5	26.2	14.2	24.0	0.140	PASS		
5550	17.0	36.6	16.4	16.0	15.4	118.1	20.7	24.0	0.118	PASS		
5670	11.0	36.5	10.8	11.5	10.2	36.6	15.6	24.0		PASS		
4	not exceed 50	00mW, theref	iore TPC is n	ot required.								
								B=3 MHz, # of				
	2*span/RBW	V, sample de	etector, powe					s=3 MHz, # of s) and power in				
Note 1:	2*span/RBW (method SA-	V, sample de -1 of KDB 789	etector, powe 9033).	er averaging o	on (transmitte	d signal was						
Note 1:	2*span/RBW (method SA- Measured us	V, sample de -1 of KDB 789 sing the same	etector, powe 9033). e analyzer se	er averaging of ettings used f	on (transmitted	d signal was ver.	continuous	s) and power in	ntegration ov	er 50 MHz		
Note 1:	2*span/RBW (method SA- Measured us For RSS-210	V, sample de -1 of KDB 789 sing the same 0 the limit for	etector, powe 9033). e analyzer se the 5150 - 5	er averaging of ettings used for 250 MHz bar	on (transmitted for output powers	d signal was ver. or the antenr	continuous	s) and power in	ntegration ov eirp allowed	er 50 MHz		
Note 1:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a	etector, powe 9033). e analyzer se the 5150 - 5 are also corre	er averaging of ettings used for 250 MHz bar ected for insta	on (transmitted for output pow nd accounts for ances where t	d signal was ver. or the antenr the highest m	na gain as t	the maximum alue of the PS	ntegration ov eirp allowed D exceeds th	is ne average		
Note 1:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the	etector, powe 9033). e analyzer se the 5150 - 5 are also corre e measured p	er averaging of ettings used f i250 MHz bar ected for insta power divided	on (transmitted for output power and accounts for ances where to the by the measure	d signal was ver. or the antenr the highest m	na gain as t	s) and power in	ntegration ov eirp allowed D exceeds th	is ne average		
Note 1: Note 2: Note 3:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the ed value exce	etector, powe 9033). e analyzer se the 5150 - 5 are also corre e measured p eeds the aver	er averaging of ettings used f i250 MHz bar ected for instate bower divided rage by more	for output pownd accounts for accounts for accounts for ances where the by the measure than 3dB.	d signal was ver. or the antenr the highest m ured 99% ba	na gain as t neasured va	the maximum alue of the PS y more than 3	ntegration ov eirp allowed D exceeds th	is ane average		
Note 1: Note 2: Note 3:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the ed value exce- idth measure	etector, powe 9033). e analyzer se the 5150 - 5 are also corre e measured p eds the aver ed in accorda	er averaging of ettings used f i250 MHz bar ected for instant bower divided rage by more ince with RSS	for output pownd accounts for accounts for accounts for ances where the by the measure than 3dB. S GEN - RB >	ver. or the antenr the highest m ured 99% ba	na gain as t neasured va andwidth) b	the maximum alue of the PS y more than 3	eirp allowed D exceeds the	is ne average nount that		
Note 1: Note 2: Note 3:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi For MIMO sy	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the ed value exceidth measure ystems, the to	etector, powe 9033). e analyzer se the 5150 - 5 are also corre e measured p eeds the aver ed in accorda otal output po	er averaging of ettings used for 250 MHz bar ected for instance bower divided rage by more ince with RSS ower and total	for output pownd accounts for accounts for accounts for ances where the bythe measure than 3dB. SIGEN - RB > all PSD are call	d signal was ver. or the antenr the highest n ured 99% ba 1% of span ilculated form	na gain as the neasured valued width) by and VB >=	the maximum alue of the PS y more than 30	eirp allowed D exceeds the dB by the am	is ne average nount that		
Note 1: Note 2: Note 3: Note 4:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi For MIMO sy (in linear terr	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the ed value exceidth measure ystems, the toms). The ant	etector, powe 9033). e analyzer se the 5150 - 5 are also corre e measured p eeds the aver ed in accordar otal output pot tenna gain us	ettings used for instance teter for instance with RSS ower and total seed to determine the teter of the teter	for output pownd accounts for accounts for accounts for ances where the street of the	ver. or the antenr the highest m ured 99% ba 1% of span cliculated form	na gain as the analysis and VB >= and VB >= or PSD/Out	the maximum alue of the PS y more than 30 3xRB	eirp allowed D exceeds the dB by the arrupt the individuends on the	is ne average nount that ual chains operating		
Note 1: Note 2: Note 3:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi For MIMO sy (in linear term mode of the	V, sample de -1 of KDB 789 sing the same 0 the limit for z. The limits a ated from the ed value exceidth measure ystems, the to ms). The ant MIMO device	etector, powe 9033). e analyzer set the 5150 - 5 are also correct measured peeds the avered in accordational output potenna gain use. If the sign	ettings used for instance detected for instance with RSS ower and total sed to determinate on the no	for output pownd accounts for ances where the by the measure than 3dB. S GEN - RB > B I PSD are cannine the EIRP on-coherent be	ver. or the antenrithe highest mured 99% ba 100 11% of spanulculated form and limits for etween the ti	na gain as t neasured va andwidth) b and VB >= n the sum o or PSD/Out ransmit cha	the maximum alue of the PS y more than 30 3xRB of the powers oput power dep	eirp allowed D exceeds the dB by the among the individual pends on the gain used to	is ne average nount that ual chains operating determine		
Note 1: Note 2: Note 3: Note 4:	2*span/RBW (method SA- Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi For MIMO sy (in linear terr mode of the the limits is t	V, sample de -1 of KDB 789 sing the same 0 the limits a ated from the ed value excedidth measure ystems, the toms). The ant MIMO device the highest garage.	etector, powe 9033). e analyzer set the 5150 - 5 are also correct measured production accordation output potenna gain use. If the sign ain of the ind	ettings used for instance the formal sected for instance with RSS ower and total sed to determinate on the notificial sed	for output power of accounts for accounts for accounts for ances where the strain of t	ver. or the antenre the highest mured 99% bath 1% of spanulculated form and limits for etween the tight.	na gain as the and VB >= not be sumed or PSD/Out the proof of the proo	the maximum alue of the PS y more than 30 street th	eirp allowed D exceeds the dB by the amount of the individual ends on the gain used to and power or	is ne average nount that ual chains operating determine neach		



Class: N/A

Contact: Georges Fares Standard: 15.407, RSS-210

	Eliott An ATAS company	EMC Test Data			
Client:	Flextronics	Job Number:	J89632		
Model	WS-AP3710i	T-Log Number:	T89871		
woder.	W3-AF37101	Account Manager:	Christine Krebill		
Contact:	Georges Fares				
Standard:	15.407, RSS-210	Class	N/A		

RSS 210 and FCC 15.407 (NII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 15-30 °C Rel. Humidity: 35-50 %

Summary of Results - Device Operating in the 5250-5350 MHz Band

Journal	or itesuit	S DCTIO	operating	9 111 1110 02	.00 0000 Miliz Dalla		
Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Run # 1	802.11a Chain A+B+C	#64 5320MHz	17.5	-	Restricted Band Edge at 5350 MHz	15.209	53.1 dBµV/m @ 5350.1 MHz (-0.9 dB)
Run # 2	802.11n20 Chain A+B+C	#64 5320MHz	18.0	-	Restricted Band Edge at 5350 MHz	15.209	73.7 dBµV/m @ 5351.8 MHz (-0.3 dB)
Run # 3	802.11n40 Chain A+B+C	#62 5310MHz	13.0	-	Restricted Band Edge at 5350 MHz	15.209	53.8 dBµV/m @ 5350.5 MHz (-0.2 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Elliott An DZAS company	EMC Test Data		
Client:	Flextronics	Job Number:	J89632	
Model	WS-AP3710i	T-Log Number:	T89871	
wouei.	WS-AP37 101	Account Manage		
Contact:	Georges Fares			
Standard:	15.407, RSS-210	Class:	N/A	

Summary of Results - Device Operating in the 5470-5725 MHz Band

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
		#100	12.0	_	Restricted Band Edge at	15.209	53.6 dBµV/m @ 5435.6
	802.11a	5500MHz	12.0		5460 MHz	10.200	MHz (-0.4 dB)
Run # 4	Chain	#100	12.0		Restricted Band Edge at	15.407	66.9 dBµV/m @ 5697.3
Null # 4	A+B+C	5500MHz	12.0	-	5470 MHz	13.407	MHz (-1.4 dB)
	A+D+C	#140	16.0		Restricted Band Edge at	15.407	53.9 dBµV/m @ 5726.1
		5700MHz	16.0	-	5725 MHz	15.407	MHz (-0.1 dB)
	000.4400	#100	12.0		Restricted Band Edge at	15.209	53.3 dBµV/m @ 5428.7
		5500MHz	13.0	-	5460 MHz	15.209	MHz (-0.7 dB)
Run # 5	802.11n20	#100	12.0		Restricted Band Edge at	15 407	67.5 dBµV/m @ 5697.1
Run # 5	Chain A+B+C	5500MHz	13.0	-	5470 MHz	15.407	MHz (-0.8 dB)
	A+b+C	#140	15.5		Restricted Band Edge at	15.407	52.3 dBµV/m @ 5725.0
		5700MHz	15.5	-	5725 MHz	15.407	MHz (-1.7 dB)
		#102	0.5		Restricted Band Edge at	15.209	47.6 dBµV/m @ 5452.9
	802.11n40	5510MHz	9.5	-	5460 MHz	15.209	MHz (-6.4 dB)
Run # 6		#102	0.5		Restricted Band Edge at	15.407	67.0 dBµV/m @ 5469.9
Ruil # 0	Chain A+B+C	5510MHz	9.5	-	5470 MHz	15.407	MHz (-1.3 dB)
	A+D+C	#134	17 N		Restricted Band Edge at	15.407	66.2 dBµV/m @ 5730.9
	5670MHz	17.0	-	5725 MHz	13.407	MHz (-2.1 dB)	

Antenna:

#	Model	Type	Freq. Band (GHz)	Gain (dBi)	Ind/Out	Xpol?	Pt to Pt?
1	(Antenna B & C)	IFA	5.2 & 5.6	2	Indoor	No	No

Notes

Antenna: antenna(s) connected

Duty Cycle: 99.0%

ART GUI (Singleradio test) Or Command Line Script (multiple radio test)

ART GUI Used: No

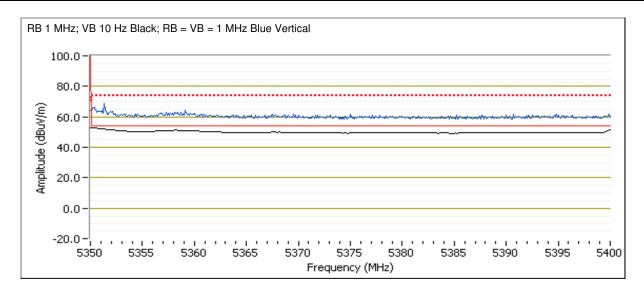
ART GUI Boot File: -

ART GUI Calibration file: -

 $\label{eq:command_line_script:} \textbf{Command Line Script:} \ \frac{3710 \text{i Pilot_935942 boot and initialize all 3 radios to NART Command Line Interface - High Power} \\$

	An ZZZZZ Company		
Client:	Flextronics	Job Number:	J89632
Madal	WS-AP3710i	T-Log Number:	T89871
woder.	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 1, Band Edge Field Strength - 802.11a, Chain A+B+C

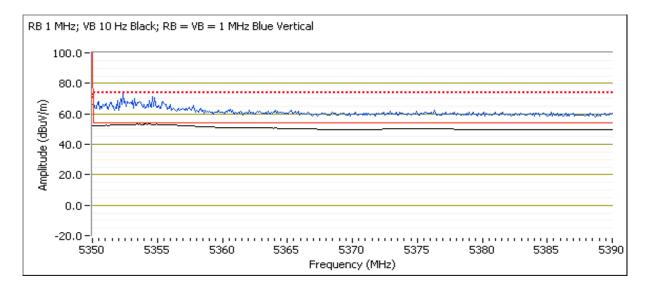

Date of Test: 12/31/2012 Test Location: FT Chamber #7

Test Engineer: David Bare Config Change: none

Run # 1a, EUT on Channel #64 5320MHz - 802.11a, Chain A+B+C

Radio	Freq	Power Setting
1	5320 MHz	17.5
2	2437 MHz	21.0

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.100	53.1	V	54.0	-0.9	AVG	9	1.5	POS; RB 1 MHz; VB: 10 Hz
5350.400	65.2	V	74.0	-8.8	PK	9	1.5	POS; RB 1 MHz; VB: 3 MHz
5350.000	50.6	Н	54.0	-3.4	AVG	154	1.4	POS; RB 1 MHz; VB: 10 Hz
5351.000	63.1	Н	74.0	-10.9	PK	154	1.4	POS; RB 1 MHz; VB: 3 MHz

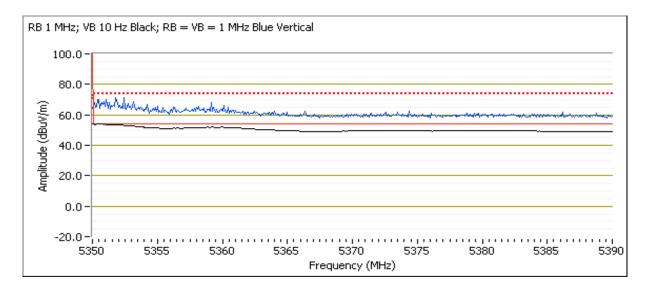

	An Z(ZE) company		
Client:	Flextronics	Job Number:	J89632
Model	WS-AP3710i	T-Log Number:	T89871
Model.	W3-AF37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 2, Band Edge Field Strength - 802.11n20, Chain A+B+C

Run # 2a, EUT on Channel #64 5320MHz - 802.11n20, Chain A+B+C

Radio	Freq	Power Setting
1	5320 MHz	18.0
2	2437 MHz	21.0

0000 111112	Total Lago Signar Radiatod From St.									
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5351.800	73.7	V	74.0	-0.3	PK	9	1.5	POS; RB 1 MHz; VB: 3 MHz		
5353.930	53.1	V	54.0	-0.9	AVG	9	1.5	POS; RB 1 MHz; VB: 10 Hz		
5350.000	49.4	Н	54.0	-4.6	AVG	172	1.2	POS; RB 1 MHz; VB: 10 Hz		
5350.320	70.4	Н	74.0	-3.6	PK	172	1.2	POS; RB 1 MHz; VB: 3 MHz		


	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model	WS-AP3710i	T-Log Number:	T89871
Model.	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 3, Band Edge Field Strength - 802.11n40, Chain A+B+C

Run # 3a, EUT on Channel #62 5310MHz - 802.11n40, Chain A+B+C

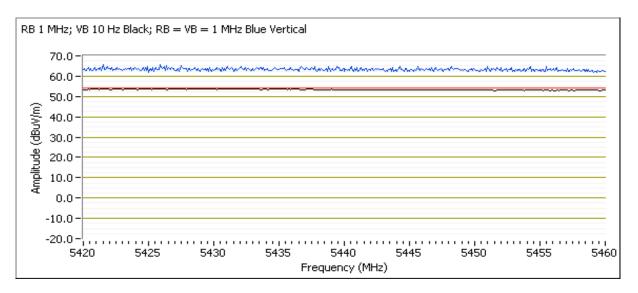
Radio	Freq	Power Setting
1	5310 MHz	13.0
2	2437 MHz	21.0

ooo iiii Bana Eago oigha Radiatoa i iola ottoriga										
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.480	53.8	V	54.0	-0.2	AVG	9	1.5	POS; RB 1 MHz; VB: 10 Hz		
5350.880	71.1	V	74.0	-2.9	PK	9	1.5	POS; RB 1 MHz; VB: 3 MHz		
5356.250	47.2	Η	54.0	-6.8	AVG	172	1.2	POS; RB 1 MHz; VB: 10 Hz		
5357.620	62.4	Η	74.0	-11.6	PK	172	1.2	POS; RB 1 MHz; VB: 3 MHz		

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model	WS-AP3710i	T-Log Number:	T89871
Model.	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 4, Band Edge Field Strength - 802.11a, Chain A+B+C

Run # 4a, EUT on Channel #100 5500MHz - 802.11a, Chain A+B+C


Radio	Freq	Power Setting
1	5500 MHz	12.0
2	2437 MHz	21.0

5460 MHz Band Edge Signal Field Strength

OTOO MILIE D	0400 Militz Band Edge Olghar Flora Galengar									
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5435.550	53.6	V	54.0	-0.4	AVG	90	1.4	POS; RB 1 MHz; VB: 10 Hz		
5442.040	65.2	V	74.0	-8.8	PK	90	1.4	POS; RB 1 MHz; VB: 3 MHz		
5439.880	46.0	Н	54.0	-8.0	AVG	160	1.2	POS; RB 1 MHz; VB: 10 Hz		
5423.450	57.7	Н	74.0	-16.3	PK	160	1.2	POS; RB 1 MHz; VB: 3 MHz		

5470 MHz Band Edge Signal Field Strength

			•						
Fred	quency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
١	ИНz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
569	97.310	66.9	V	68.3	-1.4	PK	90	1.4	POS; RB 1 MHz; VB: 3 MHz
546	66.570	58.7	Н	69.3	-10.6	PK	160	1.2	POS; RB 1 MHz; VB: 3 MHz

EMC Test Data Job Number: J89632 Client: Flextronics T-Log Number: T89871 Model: WS-AP3710i Account Manager: Christine Krebill Contact: Georges Fares Standard: 15.407, RSS-210 Class: N/A Run # 4b, EUT on Channel #140 5700MHz - 802.11a, Chain A+B+C **Power Setting** Radio Freq 16.0 1 5700 MHz 21.0 2437 MHz

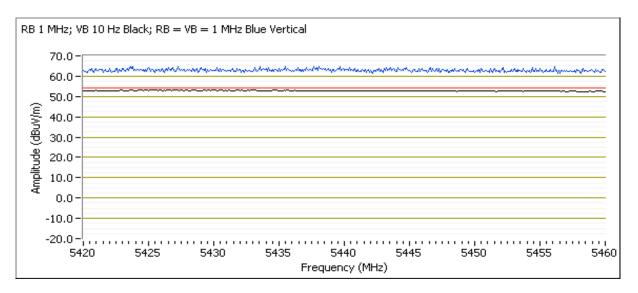
Frequency	Level	Pol	15.209	15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5726.070	53.9	٧	54.0	-0.1	AVG	188	1.3	POS; RB 1 MHz; VB: 10 Hz
5725.930	68.4	V	74.0	-5.6	PK	188	1.3	POS; RB 1 MHz; VB: 3 MHz
5725.520	61.2	Н	68.3	-7.1	PK	343	1.0	POS; RB 1 MHz; VB: 3 MHz

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15,209 limits may be used.

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 5, Band Edge Field Strength - 802.11n20, Chain A+B+C

Run # 5a, EUT on Channel #100 5500MHz - 802.11n20, Chain A+B+C


Radio	Freq	Power Setting
1	5500 MHz	13.0
2	2437 MHz	21.0

5460 MHz Band Edge Signal Field Strength

STOO WILLS	3700 Miliz Baha Lage Sighai Fleid Strength								
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5428.660	53.3	V	54.0	-0.7	AVG	90	1.4	POS; RB 1 MHz; VB: 10 Hz	
5424.330	65.4	V	74.0	-8.6	PK	90	1.4	POS; RB 1 MHz; VB: 3 MHz	
5459.930	45.9	Η	54.0	-8.1	AVG	160	1.2	POS; RB 1 MHz; VB: 10 Hz	
5457.520	58.1	Н	74.0	-15.9	PK	160	1.2	POS: RB 1 MHz: VB: 3 MHz	

5470 MHz Band Edge Signal Field Strength

			•						
	Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Г	5697.050	67.5	V	68.3	-0.8	PK	90	1.5	POS; RB 1 MHz; VB: 3 MHz
	5697.360	59.5	Н	68.3	-8.8	PK	160	1.2	POS; RB 1 MHz; VB: 3 MHz

	Elliott An ATAS company	EMC Test Data				
Client:	Flextronics	Job Number:	J89632			
Model	WS-AP3710i	T-Log Number:	T89871			
iviodei.		Account Manager:	Christine Krebill			
Contact:	Georges Fares					
Standard:	15.407, RSS-210	Class:	N/A			

Run # 5b, EUT on Channel #140 5725MHz - 802.11n20, Chain A+B+C

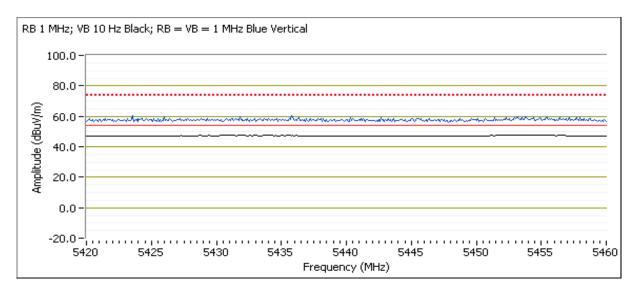
Radio	Freq	Power Setting
1	5700 MHz	15.5
2	2437 MHz	21.0

OT ZO MITTE D	or 20 Mill2 Bulla Eage Olghar Radiated Flora Otterigar									
Frequency	Level	Pol	15.209 / 15.407		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5725.010	52.3	V	54.0	-1.7	AVG	188	1.3	POS; RB 1 MHz; VB: 10 Hz		
5726.350	68.4	V	74.0	-5.6	PK	188	1.3	POS; RB 1 MHz; VB: 3 MHz		
5730.210	61.4	Н	68.3	-6.9	PK	343	1.0	POS; RB 1 MHz; VB: 3 MHz		
3730.210	01.4	11	00.0	-0.3	1 11	U + U	1.0	I OO, ND 1 WILL, VD. 3 WILL		

IZIOTA 1.	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used.

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run # 6a, EUT on Channel #102 5510MHz - 802.11n40, Chain A+B+C


Radio	Freq	Power Setting
1	5510 MHz	9.5
2	2437 MHz	21.0

5460 MHz Band Edge Signal Field Strength

0.00	100 III I Dana Dago dignar i lota da dingar								
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5452.870	47.6	V	54.0	-6.4	AVG	90	1.4	POS; RB 1 MHz; VB: 10 Hz	
5446.770	60.7	V	74.0	-13.3	PK	90	1.4	POS; RB 1 MHz; VB: 3 MHz	
5460.000	43.4	Н	54.0	-10.6	AVG	160	1.2	POS; RB 1 MHz; VB: 10 Hz	
5452.790	55.2	Н	74.0	-18.8	PK	160	1.2	POS; RB 1 MHz; VB: 3 MHz	

5470 MHz Band Edge Signal Field Strength

• • • • • • • • • • • • • • • • • • • •	·····									
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5469.900	67.0	V	68.3	-1.3	PK	90	1.4	POS; RB 1 MHz; VB: 3 MHz		
5468.040	66.2	Н	68.3	-2.1	PK	160	1.2	POS; RB 1 MHz; VB: 3 MHz		

Client: Flextronics Model: WS-AP3710i Contact: Georges Fares Standard: 15.407, RSS-210 EMC Test Data Job Number: J89632 T-Log Number: T89871 Account Manager: Christine Krebill Class: N/A

Run # 6b, EUT on Channel #134 5670MHz - 802.11n40, Chain A+B+C

Radio	Freq	Power Setting
1	5670 MHz	17.0
2	2437 MHz	21.0

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5730.850	66.2	V	68.3	-2.1	PK	188	1.3	POS; RB 1 MHz; VB: 3 MHz
5725.640	64.2	Н	68.3	-4.1	PK	343	1.0	POS; RB 1 MHz; VB: 3 MHz

	Elliott An AZAS company
Client:	Flextronics
Model:	WS-AP3710i

	All Della Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

RSS 210 and FCC 15.407 (NII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 23 °C Rel. Humidity: 40 %

Summary of Results - Device Operating in the 5250-5350 MHz and 5470-5725 MHz Bands

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
		2412 MHz	16.5				48.9 dBµV/m @ 5440.0
		5260 MHz	17.5			FCC 15.209 / 15.407	MHz (-5.1 dB)
		2437 MHz	21				53.0 dBµV/m @ 5440.0
	802.11b 802.11a	5300 MHz	18				MHz (-1.0 dB)
		2462 MHz	16.5				49.8 dBµV/m @ 5439.9
Run #1		5320 MHz	17.5		Radiated Emissions,		MHz (-4.2 dB)
Rull#1		2412 MHz	16.5		1 - 40 GHz		41.4 dBµV/m @ 1666.6
	Chain	5500 MHz	12				MHz (-12.6 dB)
	A+B+C	2437 MHz	21				50.8 dBµV/m @ 5360.1
		5580 MHz	20				MHz (-3.2 dB)
		2462 MHz	16.5				44.5 dBµV/m @
		5700 MHz	16				11397.6 MHz (-9.5 dB)

Ellic	tt					EM	C Test	Data
Slient: Flextronics	≙∫ company				J	lob Number:	J89632	
					T-L	.og Number:	T89871	
odel: WS-AP3710	l				Accou	nt Manager:	Christine Kr	ebill
ntact: Georges Far	es							
dard: 15.407, RSS	-210					Class:	N/A	
# Mode	Channel	Power Setting	Measured Power	Test Performed	Lir	nit	Result	/ Margin
	2412 MHz	12.5					52.7 dBµV/	m @ 5440
	5260 MHz	17.5					MHz (-	1.3 dB)
	2437 MHz	19.0					47.7 dBµV/	m @ 1624
802.11g	5300 MHz	18.0					MHz (-	6.3 dB)
	2462 MHz	13.5					49.9 dBµV/	m @ 5439
#2 802.11a	5320 MHz	17.5		Radiated Emissions,	FCC 15.20	0 / 15 /07		4.1 dB)
#2	2412 MHz	12.5		1 - 40 GHz	FCC 15.20	13 / 13.407	45.9 dBµV/	m @ 5365
Chain	5500 MHz	20.0						8.1 dB)
A+B+C	2437 MHz	19.0					46.9 dBµV/	m @ 1624
	5580 MHz	20.0						·7.1 dB)
	2462 MHz	13.5						μV/m @
	5700 MHz	20.0					11397.8 M	
	2412 MHz	12					51.4 dBµV/	•
	5260 MHz	18						2.6 dB)
	2437 MHz	18					50.5 dBµV/	_
802.11n20	5300 MHz	18						3.5 dB)
	2462 MHz	12.5					50.2 dBµV/	_
#3 802.11n20	5320 MHz	18		Radiated Emissions,	FCC 15.209 / 15.407			3.8 dB)
	2412 MHz	12		1 - 40 GHz	1 00 10.200 / 10.101	44.3 dBµV/	_	
Chain	5500 MHz	20						9.7 dB)
A+B+C	2437 MHz	18					48.7 dBµV/	_
	5580 MHz	20						5.3 dB)
	2462 MHz	12.5						μV/m @
	5700 MHz	20					11396.1 M	
	2422 MHz	10					51.4 dBµV/	_
902 11540	5270 MHz	18					49.4 dBµV/	2.6 dB)
802.11n40	2452 MHz	10.5					•	•
", 802.11n40	5310 MHz	13 10		Dadiated Emissions			43.6 dBµV/	4.6 dB)
#4 802.11n40	2422 MHz 5510 MHz			Radiated Emissions, 1 - 40 GHz	FCC 15.20	9 / 15.247		_
Chain	2452 MHz	15 10.5		1 - 40 GHZ			43.7 dBµV/	10.4 dB)
Chain A+B+C	5670 MHz	10.5						ന ക്ര ടാ <i>റ</i> 1 10.3 dB)
A+D+C	2437 MHz	13					44.7 dBµV/	
	5550 MHz	13 17						111 (W 1624 19.3 dB)
nna.			1		ı		(/
	del	Tv	/ne	Freg. Band (GHz)	Gain (dRi)	Ind/Out	Xnol?	Pt to Pt
				. ,				No
nna: Mod (Antenna		& C)		Type IFA				

	An ZiZE3 company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF3/ 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Antenna: antenna(s) connected

Duty Cycle: 99.0%

ART GUI (Singleradio test) Or Command Line Script (multiple radio test)

ART GUI Used: No

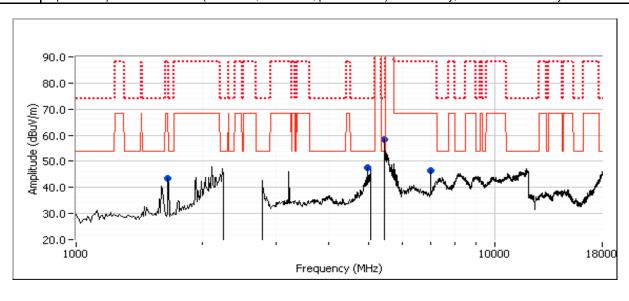
ART GUI Boot File: -

ART GUI Calibration file: -

 $\label{eq:command_line} \mbox{Command Line Script: } \frac{3710 \mbox{i Pilot_935942 boot and initialize all 3 radios to NART Command Line Interface - High Power} {\mbox{High Power}}$

	An ZCZEO company		
Client:	Flextronics	Job Number:	J89632
Madalı	WS-AP3710i	T-Log Number:	T89871
wouei.	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #1, Radiated Spurious Emissions, 1-40GHz, 802.11b/802.11a, Chain A+B+C


Run #1a, EUT on Channel #1 2412MHz - 802.11b and Channel #52 5260MHz - 802.11a - Chain A+B+C

Date of Test: 1/2/2013 Test Location: FT 7
Test Engineer: Jack Liu Config Change: None

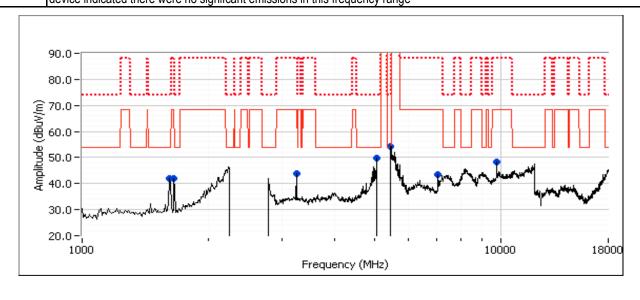
Radio	Freq	Power Setting
1	5260 MHz	17.5
2	2412 MHz	16.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.030	48.9	V	54.0	-5.1	AVG	164	1.4	RB 1 MHz;VB 10 Hz;Peak
5444.530	56.9	V	74.0	-17.1	PK	164	1.4	RB 1 MHz;VB 3 MHz;Peak
4960.030	38.3	V	54.0	-15.7	AVG	184	1.6	RB 1 MHz;VB 10 Hz;Peak
4960.060	47.2	V	74.0	-26.8	PK	184	1.6	RB 1 MHz;VB 3 MHz;Peak
1666.700	40.7	V	54.0	-13.3	AVG	282	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.750	43.3	V	74.0	-30.7	PK	282	1.0	RB 1 MHz;VB 3 MHz;Peak
7013.300	50.3	V	68.3	-18.0	PK	52	1.3	RB 1 MHz;VB 3 MHz;Peak

	An ZCZES company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #1b: , EUT on Channel #6 2437MHz - 802.11b and Channel #60 5300MHz - 802.11a, Chain A+B+C

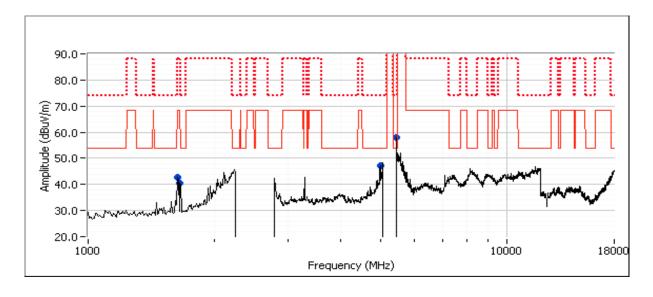

Radio	Freq	Power Setti
1	5300 MHz	18.0
2	2437 MHz	21.0

Spurious Radiated Emissions:

Frequency Le	vel	_	4 = 000					
1 requeries Le	VEI	Pol	15.209/	/15.407	Detector	Azimuth	Height	Comments
MHz dBµ	ιV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5439.980 53	3.0	V	54.0	-1.0	AVG	353	1.3	RB 1 MHz;VB 10 Hz;Peak
5440.110 59	9.5	V	74.0	-14.5	PK	353	1.3	RB 1 MHz;VB 3 MHz;Peak
1624.770 4	1.8	V	54.0	-12.2	AVG	204	1.8	RB 1 MHz;VB 10 Hz;Peak
1624.670 44	1.2	V	74.0	-29.8	PK	204	1.8	RB 1 MHz;VB 3 MHz;Peak
1666.660 40).9	V	54.0	-13.1	AVG	280	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.550 43	3.4	V	74.0	-30.6	PK	280	1.0	RB 1 MHz;VB 3 MHz;Peak
5000.020 44	1.1	V	54.0	-9.9	AVG	358	1.6	RB 1 MHz;VB 10 Hz;Peak
4999.800 5	1.2	V	74.0	-22.8	PK	358	1.6	RB 1 MHz;VB 3 MHz;Peak
9747.780 54	1.3	V	68.3	-14.0	PK	24	1.3	RB 1 MHz;VB 3 MHz;Peak
3249.570 46	6.4	V	68.3	-21.9	PK	137	1.3	RB 1 MHz;VB 3 MHz;Peak
7066.620 50	0.3	V	68.3	-18.0	PK	53	1.3	RB 1 MHz;VB 3 MHz;Peak

Note 1: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used.

Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range


An ACE company						
Client:	Flextronics	Job Number:	J89632			
Model:	WS-AP3710i	T-Log Number:	T89871			
	W5-AF3/101	Account Manager:	Christine Krebill			
Contact:	Georges Fares					
Standard:	15.407, RSS-210	Class:	N/A			

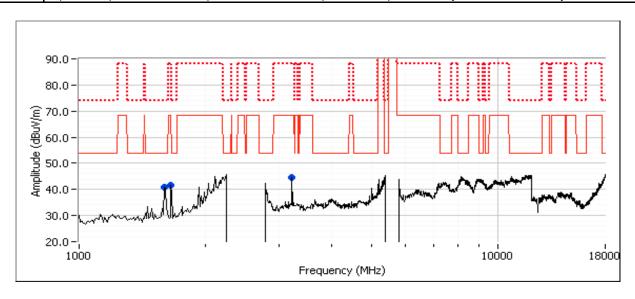
Run #1c: , EUT on Channel #11 2462MHz - 802.11b and Channel #64 5320MHz - 802.11a, Chain A+B+C

Radio	Freq	Power Setting
1	5320 MHz	17.5
2	2462 MHz	16.5

Spurious Radiated Emissions:

Sparious Radiated Ellissions.								
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5439.930	49.8	V	54.0	-4.2	AVG	166	1.4	RB 1 MHz;VB 10 Hz;Peak
5439.930	58.2	V	74.0	-15.8	PK	166	1.4	RB 1 MHz;VB 3 MHz;Peak
1641.400	44.9	V	68.3	-23.4	PK	211	1.0	RB 1 MHz;VB 3 MHz;Peak
1666.660	40.6	V	54.0	-13.4	AVG	279	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.780	43.5	V	74.0	-30.5	PK	279	1.0	RB 1 MHz;VB 3 MHz;Peak
4999.870	41.3	V	54.0	-12.7	AVG	242	1.1	RB 1 MHz;VB 10 Hz;Peak
4999.870	48.3	V	74.0	-25.7	PK	242	1.1	RB 1 MHz;VB 3 MHz;Peak

An ACE company						
Client:	Flextronics	Job Number:	J89632			
Model:	WS-AP3710i	T-Log Number:	T89871			
	W5-AF3/101	Account Manager:	Christine Krebill			
Contact:	Georges Fares					
Standard:	15.407, RSS-210	Class:	N/A			


Run #1d, EUT on Channel #1 2412MHz - 802.11b and Channel #100 5500MHz - 802.11a - Chain A+B+C

Date of Test: 1/2/2013 Test Location: FT 7
Test Engineer: Jack Liu Config Change: None

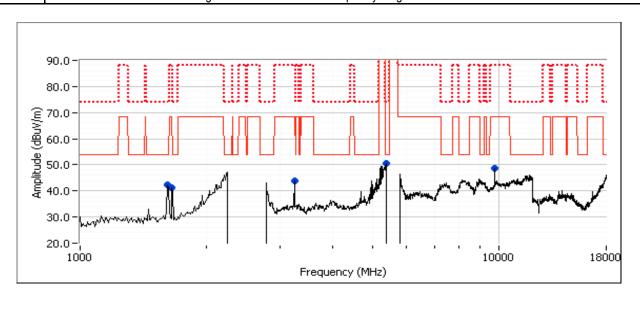
Radio	Freq	Power Setting
1	5500 MHz	12.0
2	2412 MHz	16.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1666.610	41.4	V	54.0	-12.6	AVG	281	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.700	44.1	V	74.0	-29.9	PK	281	1.0	RB 1 MHz;VB 3 MHz;Peak
3215.970	47.4	V	68.3	-20.9	PK	131	1.1	RB 1 MHz;VB 3 MHz;Peak
1608.050	40.8	V	54.0	-13.2	AVG	209	1.4	RB 1 MHz;VB 10 Hz;Peak
1608.080	43.7	V	74.0	-30.3	PK	209	1.4	RB 1 MHz;VB 3 MHz;Peak

An 2022 company						
Client:	Flextronics	Job Number:	J89632			
Model:	WS-AP3710i	T-Log Number:	T89871			
	W5-AF3/101	Account Manager:	Christine Krebill			
Contact:	Georges Fares					
Standard:	15.407, RSS-210	Class:	N/A			

Run #1e: , EUT on Channel #6 2437MHz - 802.11b and Channel #116 5580MHz - 802.11a, Chain A+B+C

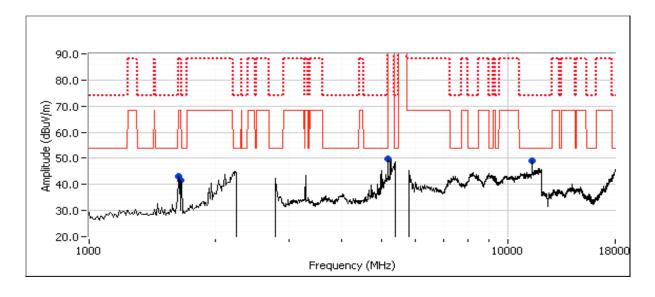

Radio	Freq	Power Settir
1	5580 MHz	20.0
2	2437 MHz	21.0

Spurious Radiated Emissions:

Sparious IX	Spurious Natifaceu Emissions.							
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5360.120	50.8	V	54.0	-3.2	AVG	186	1.5	RB 1 MHz;VB 10 Hz;Peak
5356.820	59.5	V	74.0	-14.5	PK	186	1.5	RB 1 MHz;VB 3 MHz;Peak
9747.780	53.7	V	68.3	-14.6	PK	24	1.3	RB 1 MHz;VB 3 MHz;Peak
3249.330	45.5	V	68.3	-22.8	PK	130	1.3	RB 1 MHz;VB 3 MHz;Peak
1624.700	41.6	V	54.0	-12.4	AVG	205	1.8	RB 1 MHz;VB 10 Hz;Peak
1624.770	43.9	V	74.0	-30.1	PK	205	1.8	RB 1 MHz;VB 3 MHz;Peak
1666.730	40.9	V	54.0	-13.1	AVG	282	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.550	44.1	V	74.0	-29.9	PK	282	1.0	RB 1 MHz;VB 3 MHz;Peak

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method Note 1: required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used. Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the Note 2:

device indicated there were no significant emissions in this frequency range


An ACE company						
Client:	Flextronics	Job Number:	J89632			
Model:	WS-AP3710i	T-Log Number:	T89871			
	W5-AF3/101	Account Manager:	Christine Krebill			
Contact:	Georges Fares					
Standard:	15.407, RSS-210	Class:	N/A			

Run #1f: , EUT on Channel #11 2462MHz - 802.11b and Channel #140 5700MHz - 802.11a, Chain A+B+C

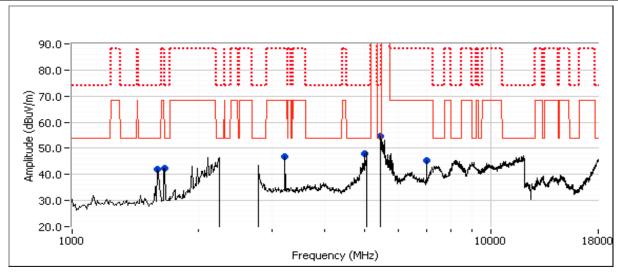
Radio	Freq	Power Settii
1	5700 MHz	16.0
2	2462 MHz	16.5

Spurious Radiated Emissions:

Spurious Radiated Emissions.								
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11397.600	44.5	V	54.0	-9.5	AVG	202	1.0	RB 1 MHz;VB 10 Hz;Peak
11397.730	54.7	V	74.0	-19.3	PK	202	1.0	RB 1 MHz;VB 3 MHz;Peak
1666.730	41.0	V	54.0	-13.0	AVG	280	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.600	44.4	V	74.0	-29.6	PK	280	1.0	RB 1 MHz;VB 3 MHz;Peak
5150.000	42.0	V	54.0	-12.0	AVG	341	1.6	RB 1 MHz;VB 10 Hz;Peak
5150.000	49.3	V	74.0	-24.7	PK	341	1.6	RB 1 MHz;VB 3 MHz;Peak
1641.410	44.3	Η	68.3	-24.0	PK	332	1.3	RB 1 MHz;VB 3 MHz;Peak

	An ZCZES company		
Client:	Flextronics	Job Number:	J89632
Model: WS-AP3710i	NAC AD2710;	T-Log Number:	T89871
	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #2, Radiated Spurious Emissions, 1-40GHz, 802.11g/802.11a, Chain A+B+C


Run #2a, EUT on Channel #1 2412MHz - 802.11g and Channel #52 5260MHz - 802.11a - Chain A+B+C

Date of Test: 1/3/2013 Test Location: FT 7
Test Engineer: Jack Liu Config Change: None

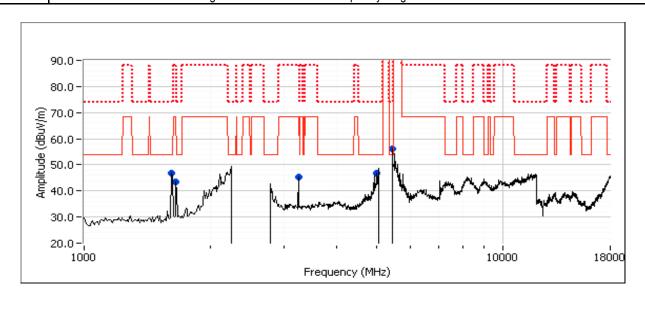
Radio	Freq	Power Setting		
1	5260 MHz	17.5		
2	2412 MHz	12.5		

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.050	52.7	V	54.0	-1.3	AVG	189	1.3	RB 1 MHz;VB 10 Hz;Peak
5439.960	59.2	V	74.0	-14.8	PK	189	1.3	RB 1 MHz;VB 3 MHz;Peak
7013.420	50.1	V	68.3	-18.2	PK	60	1.3	RB 1 MHz;VB 3 MHz;Peak
3216.020	49.1	V	68.3	-19.2	PK	140	1.3	RB 1 MHz;VB 3 MHz;Peak
5000.020	43.2	V	54.0	-10.8	AVG	190	2.0	RB 1 MHz;VB 10 Hz;Peak
4999.870	51.4	V	74.0	-22.6	PK	190	2.0	RB 1 MHz;VB 3 MHz;Peak
1666.640	43.0	V	54.0	-11.0	AVG	224	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.670	45.1	V	74.0	-28.9	PK	224	1.0	RB 1 MHz;VB 3 MHz;Peak
1608.000	42.9	Н	54.0	-11.1	AVG	86	1.4	RB 1 MHz;VB 10 Hz;Peak
1608.100	44.9	Η	74.0	-29.1	PK	86	1.4	RB 1 MHz;VB 3 MHz;Peak

	An 2(22) company		
Client:	Flextronics	Job Number:	J89632
Model: V	WS 4D2710i	T-Log Number:	T89871
	W3-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #2b: , EUT on Channel #6 2437MHz - 802.11g and Channel #60 5300MHz - 802.11a, Chain A+B+C


Radio	Freq	Power Settir
1	5300 MHz	18.0
2	2437 MHz	19.0

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1624.690	47.7	Н	54.0	-6.3	AVG	242	1.3	RB 1 MHz;VB 10 Hz;Peak
1624.590	49.4	Н	74.0	-24.6	PK	242	1.3	RB 1 MHz;VB 3 MHz;Peak
3249.380	47.4	V	68.3	-20.9	PK	143	1.3	RB 1 MHz;VB 3 MHz;Peak
5439.950	45.0	V	54.0	-9.0	AVG	14	1.1	RB 1 MHz;VB 10 Hz;Peak
5442.930	55.7	V	74.0	-18.3	PK	14	1.1	RB 1 MHz;VB 3 MHz;Peak
1666.680	42.4	V	54.0	-11.6	AVG	228	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.600	44.7	V	74.0	-29.3	PK	228	1.0	RB 1 MHz;VB 3 MHz;Peak
4999.870	42.0	V	54.0	-12.0	AVG	242	1.3	RB 1 MHz;VB 10 Hz;Peak
5000.000	51.2	V	74.0	-22.8	PK	242	1.3	RB 1 MHz;VB 3 MHz;Peak

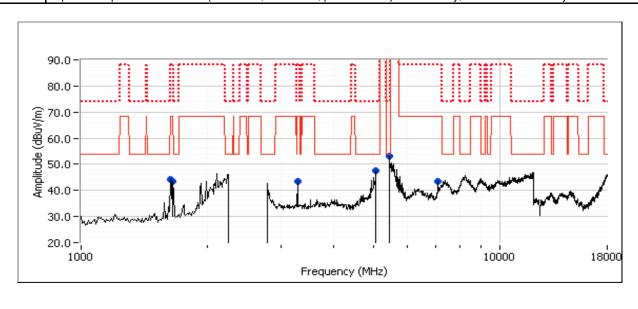
Note 1: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used.

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

	An Z(ZE) company		
Client:	Flextronics	Job Number:	J89632
Model	WS-AP3710i	T-Log Number:	T89871
woder:	W3-AF37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #2c: , EUT on Channel #11 2462MHz - 802.11g and Channel #64 5320MHz - 802.11a, Chain A+B+C

Date of Test: 1/3/2013 Test Location: FT 7
Test Engineer: Rafael Varelas Config Change: None


 Radio
 Freq
 Power Setting

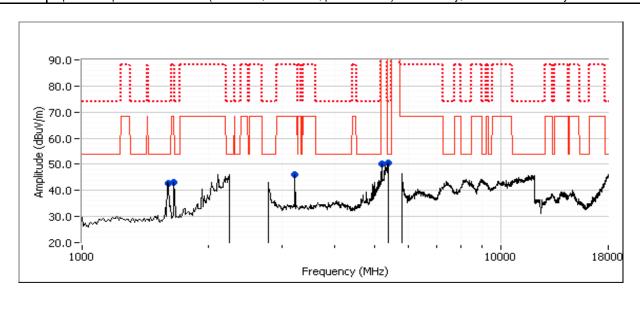
 1
 5320 MHz
 17.5

 2
 2462 MHz
 13.5

Spurious Radiated Emissions:

oparioac ru	44.4to4 =	00.00.						
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5439.930	49.9	V	54.0	-4.1	AVG	190	1.6	RB 1 MHz;VB 10 Hz;Peak
5439.900	58.3	V	74.0	-15.7	PK	190	1.6	RB 1 MHz;VB 3 MHz;Peak
1641.390	47.5	Η	68.3	-20.8	PK	245	1.4	RB 1 MHz;VB 3 MHz;Peak
5039.960	40.7	V	54.0	-13.3	AVG	232	1.2	RB 1 MHz;VB 10 Hz;Peak
5039.040	52.4	V	74.0	-21.6	PK	232	1.2	RB 1 MHz;VB 3 MHz;Peak
1666.640	42.6	V	54.0	-11.4	AVG	228	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.610	45.0	V	74.0	-29.0	PK	228	1.0	RB 1 MHz;VB 3 MHz;Peak
3282.710	47.0	V	68.3	-21.3	PK	140	1.5	RB 1 MHz;VB 3 MHz;Peak
7092.950	49.6	V	68.3	-18.7	PK	53	1.0	RB 1 MHz;VB 3 MHz;Peak

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model: WS-AP3710	M/C AD2710;	T-Log Number:	T89871
	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A


Run #2d, EUT on Channel #1 2412MHz - 802.11g and Channel #100 5500MHz - 802.11a - Chain A+B+C

Date of Test: 1/3/2013 Test Location: FT 7
Test Engineer: Rafael Varelas Config Change: None

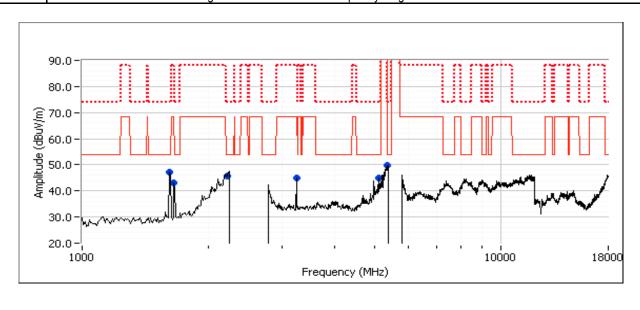
Radio	Freq	Power Setting
1	5500 MHz	20.0
2	2412 MHz	12.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5365.470	45.9	V	54.0	-8.1	AVG	11	1.4	RB 1 MHz;VB 10 Hz;Peak
5367.030	55.5	V	74.0	-18.5	PK	11	1.4	RB 1 MHz;VB 3 MHz;Peak
1608.040	42.7	Η	54.0	-11.3	AVG	80	1.3	RB 1 MHz;VB 10 Hz;Peak
1607.930	45.2	Η	74.0	-28.8	PK	80	1.3	RB 1 MHz;VB 3 MHz;Peak
3215.970	48.0	V	68.3	-20.3	PK	133	1.1	RB 1 MHz;VB 3 MHz;Peak
1666.640	42.6	V	54.0	-11.4	AVG	228	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.700	45.4	V	74.0	-28.6	PK	228	1.0	RB 1 MHz;VB 3 MHz;Peak
5199.750	51.1	V	68.3	-17.2	PK	303	1.3	RB 1 MHz;VB 3 MHz;Peak

	An ZiZE3 company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #2e: , EUT on Channel #6 2437MHz - 802.11g and Channel #116 5580MHz - 802.11a, Chain A+B+C

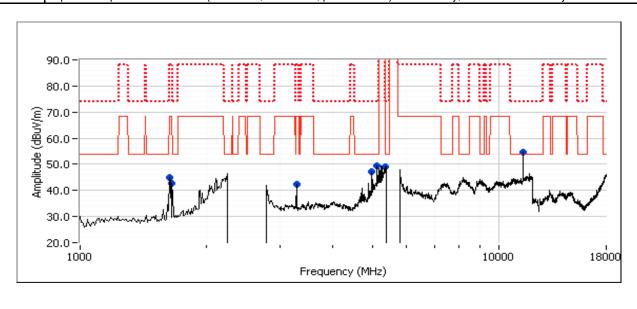

Radio	Freq	Power Setting
1	5580 MHz	20.0
2	2437 MHz	19.0

Spurious Radiated Emissions:

opanoae n		00.00.						
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1624.490	46.9	Н	54.0	-7.1	AVG	235	1.3	RB 1 MHz;VB 10 Hz;Peak
1624.700	49.1	Η	74.0	-24.9	PK	235	1.3	RB 1 MHz;VB 3 MHz;Peak
2239.990	45.2	V	54.0	-8.8	AVG	332	1.0	RB 1 MHz;VB 10 Hz;Peak
2240.300	57.0	V	74.0	-17.0	PK	332	1.0	RB 1 MHz;VB 3 MHz;Peak
1666.650	43.1	V	54.0	-10.9	AVG	226	1.1	RB 1 MHz;VB 10 Hz;Peak
1666.640	45.5	V	74.0	-28.5	PK	226	1.1	RB 1 MHz;VB 3 MHz;Peak
5119.810	41.2	V	54.0	-12.8	AVG	188	1.9	RB 1 MHz;VB 10 Hz;Peak
5120.060	48.5	V	74.0	-25.5	PK	188	1.9	RB 1 MHz;VB 3 MHz;Peak
5365.060	45.8	V	54.0	-8.2	AVG	185	1.4	RB 1 MHz;VB 10 Hz;Peak
5365.170	55.3	V	74.0	-18.7	PK	185	1.4	RB 1 MHz;VB 3 MHz;Peak
3249.420	47.5	V	68.3	-20.8	PK	136	1.2	RB 1 MHz;VB 3 MHz;Peak

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method Note 1: required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used. Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the Note 2:

device indicated there were no signifcant emissions in this frequency range


	An ZCZES company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

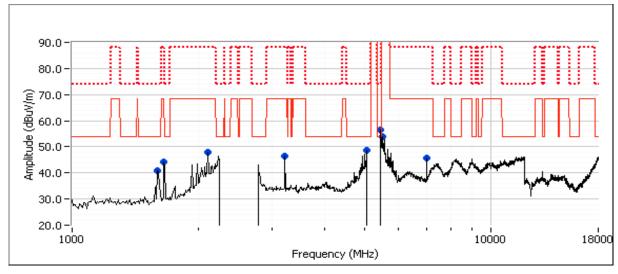
Run #2f: , EUT on Channel #11 2462MHz - 802.11g and Channel #140 5700MHz - 802.11a, Chain A+B+C

Radio	Freq	Power Sett
1	5700 MHz	20.0
2	2462 MHz	13.5

Spurious Radiated Emissions:

opulious N	adiated Eiiii	3310113.						
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11397.770	53.3	V	54.0	-0.7	AVG	41	1.1	RB 1 MHz;VB 10 Hz;Peak
11407.040	64.2	V	74.0	-9.8	PK	41	1.1	RB 1 MHz;VB 3 MHz;Peak
5359.930	46.9	V	54.0	-7.1	AVG	5	1.0	RB 1 MHz;VB 10 Hz;Peak
5359.650	55.2	V	74.0	-18.8	PK	5	1.0	RB 1 MHz;VB 3 MHz;Peak
3282.620	46.2	V	68.3	-22.1	PK	138	1.3	RB 1 MHz;VB 3 MHz;Peak
4959.920	43.8	V	54.0	-10.2	AVG	188	1.8	RB 1 MHz;VB 10 Hz;Peak
4959.950	48.4	V	74.0	-25.6	PK	188	1.8	RB 1 MHz;VB 3 MHz;Peak
1641.420	46.2	V	68.3	-22.1	PK	215	1.0	RB 1 MHz;VB 3 MHz;Peak
5119.850	44.9	V	54.0	-9.1	AVG	341	1.0	RB 1 MHz;VB 10 Hz;Peak
5120.000	51.6	V	74.0	-22.4	PK	341	1.0	RB 1 MHz;VB 3 MHz;Peak
1625.000	29.4	Н	54.0	-24.6	AVG	148	1.0	RB 1 MHz;VB 10 Hz;Peak
1625.000	37.8	Н	74.0	-36.2	PK	148	1.0	RB 1 MHz;VB 3 MHz;Peak

	An ZAZEO company		
Client:	Flextronics	Job Number:	J89632
Madal	WS-AP3710i	T-Log Number:	T89871
woder.	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A


Run #3, Radiated Spurious Emissions, 1-40GHz, 802.11n20/802.11n20, Chain A+B+C
Run #3a, EUT on Channel #1 2412MHz - 802.11n20 and Channel #52 5260MHz - 802.11n20 - Chain A+B+C

Date of Test: 1/4/2013 Test Location: FT 7
Test Engineer: Jack Liu Config Change: None

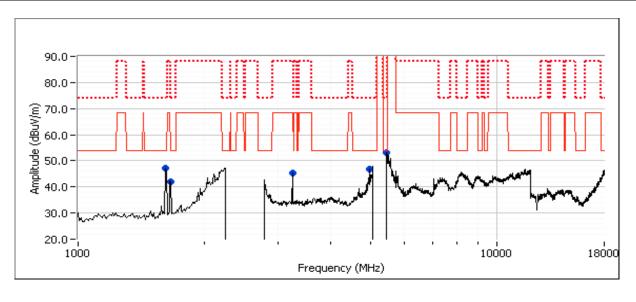
Radio	Freq	Power Setting
1	5260 MHz	18.0
2	2412 MHz	12.0

Spurious Radiated Emissions:

opulious IN	adiated Eiiii	3310113.						
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.100	51.4	V	54.0	-2.6	AVG	192	1.3	RB 1 MHz;VB 10 Hz;Peak
5443.560	58.3	V	74.0	-15.7	PK	192	1.3	RB 1 MHz;VB 3 MHz;Peak
5040.000	44.0	V	54.0	-10.0	AVG	188	1.3	RB 1 MHz;VB 10 Hz;Peak
5037.870	52.7	V	74.0	-21.3	PK	188	1.3	RB 1 MHz;VB 3 MHz;Peak
1666.660	43.1	V	54.0	-10.9	AVG	228	1.1	RB 1 MHz;VB 10 Hz;Peak
1666.530	45.4	V	74.0	-28.6	PK	228	1.1	RB 1 MHz;VB 3 MHz;Peak
1608.030	43.0	Η	54.0	-11.0	AVG	84	1.3	RB 1 MHz;VB 10 Hz;Peak
1608.030	45.6	Η	74.0	-28.4	PK	84	1.3	RB 1 MHz;VB 3 MHz;Peak
7013.480	50.1	V	68.3	-18.2	PK	179	1.3	RB 1 MHz;VB 3 MHz;Peak
3216.070	48.8	V	68.3	-19.5	PK	139	1.2	RB 1 MHz;VB 3 MHz;Peak
2112.060	50.2	V	68.3	-18.1	PK	218	1.6	RB 1 MHz;VB 3 MHz;Peak

	An 2(22) company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #3b: , EUT on Channel #6 2437MHz - 802.11n20 and Channel #60 5300MHz - 802.11n20, Chain A+B+C

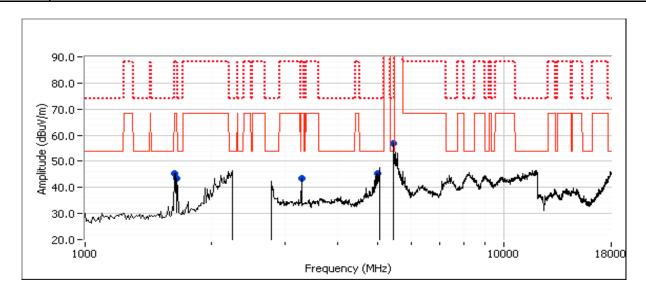

Radio	Freq	Power Settin
1	5300 MHz	18.0
2	2437 MHz	18.0

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.030	50.5	V	54.0	-3.5	AVG	188	1.4	RB 1 MHz;VB 10 Hz;Peak
5439.950	58.9	V	74.0	-15.1	PK	188	1.4	RB 1 MHz;VB 3 MHz;Peak
1624.690	48.1	Η	54.0	-5.9	AVG	244	1.4	RB 1 MHz;VB 10 Hz;Peak
1624.700	50.1	Η	74.0	-23.9	PK	244	1.4	RB 1 MHz;VB 3 MHz;Peak
4959.960	45.6	V	54.0	-8.4	AVG	0	1.1	RB 1 MHz;VB 10 Hz;Peak
4959.900	51.2	V	74.0	-22.8	PK	0	1.1	RB 1 MHz;VB 3 MHz;Peak
1666.650	43.2	V	54.0	-10.8	AVG	226	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.650	45.3	V	74.0	-28.7	PK	226	1.0	RB 1 MHz;VB 3 MHz;Peak
3249.280	46.9	V	68.3	-21.4	PK	202	1.6	RB 1 MHz;VB 3 MHz;Peak

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method Note 1: required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used. Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the

Note 2: device indicated there were no significant emissions in this frequency range


l	All Deed Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

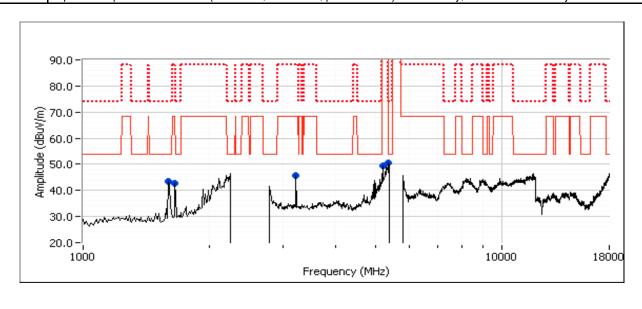
Run #3c: , EUT on Channel #11 2462MHz - 802.11n20 and Channel #64 5320MHz - 802.11n20, Chain A+B+C

Radio	Freq	Power Setti
1	5320 MHz	18.0
2	2462 MHz	12.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5399.910	50.2	V	54.0	-3.8	AVG	9	1.5	POS; RB 1 MHz; VB: 10 Hz
5400.060	63.2	V	74.0	-10.8	PK	9	1.5	POS; RB 1 MHz; VB: 3 MHz
1666.700	43.3	V	54.0	-10.7	AVG	229	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.580	45.1	V	74.0	-28.9	PK	229	1.0	RB 1 MHz;VB 3 MHz;Peak
5000.050	40.6	V	54.0	-13.4	AVG	244	1.0	RB 1 MHz;VB 10 Hz;Peak
4998.820	49.6	V	74.0	-24.4	PK	244	1.0	RB 1 MHz;VB 3 MHz;Peak
1641.310	47.1	V	68.3	-21.2	PK	211	1.0	RB 1 MHz;VB 3 MHz;Peak
3282.700	47.1	V	68.3	-21.2	PK	140	1.5	RB 1 MHz;VB 3 MHz;Peak

	An Z(ZE) company		
Client:	Flextronics	Job Number:	J89632
Model	WS-AP3710i	T-Log Number:	T89871
woder.	W3-AF37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A


Run #3d, EUT on Channel #1 2412MHz - 802.11n20 and Channel #100 5500MHz - 802.11n20 - Chain A+B+C

Date of Test: 1/4/2012 Test Location: FT7
Test Engineer: Rafael Varelas Config Change: None

Radio	Freq	Power Setting
1	5500 MHz	20.0
2	2412 MHz	12.0

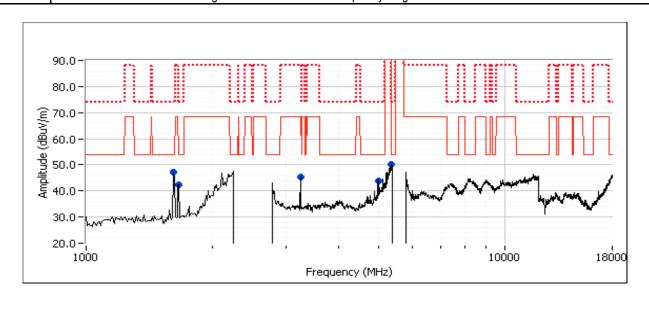
Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5360.210	44.3	V	54.0	-9.7	AVG	189	1.2	RB 1 MHz;VB 10 Hz;Peak
5358.920	54.6	V	74.0	-19.4	PK	189	1.2	RB 1 MHz;VB 3 MHz;Peak
1608.010	43.4	Н	54.0	-10.6	AVG	84	1.3	RB 1 MHz;VB 10 Hz;Peak
1608.020	45.5	Н	74.0	-28.5	PK	84	1.3	RB 1 MHz;VB 3 MHz;Peak
1666.650	42.4	V	54.0	-11.6	AVG	232	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.670	45.3	V	74.0	-28.7	PK	232	1.0	RB 1 MHz;VB 3 MHz;Peak
5200.050	52.0	V	68.3	-16.3	PK	343	1.2	RB 1 MHz;VB 3 MHz;Peak
3216.020	48.8	V	68.3	-19.5	PK	136	1.2	RB 1 MHz;VB 3 MHz;Peak

	An ZZZZ Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #3e: , EUT on Channel #6 2437MHz - 802.11n20 and Channel #116 5580MHz - 802.11n20, Chain A+B+C

Radio	Freq	Power Settin
1	5580 MHz	20.0
2	2437 MHz	18.0

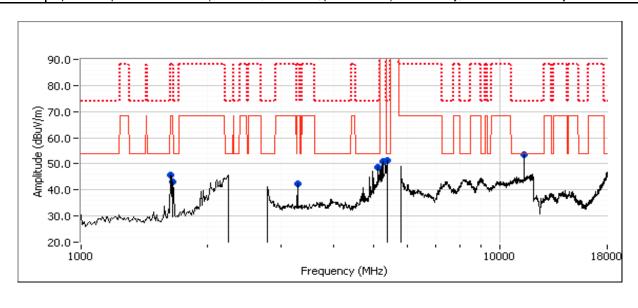

Spurious Radiated Emissions:

								-
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1624.660	48.7	Н	54.0	-5.3	AVG	246	1.3	RB 1 MHz;VB 10 Hz;Peak
1624.790	50.1	Η	74.0	-23.9	PK	246	1.3	RB 1 MHz;VB 3 MHz;Peak
1666.670	41.3	Η	54.0	-12.7	AVG	216	1.2	RB 1 MHz;VB 10 Hz;Peak
1666.650	44.4	Η	74.0	-29.6	PK	216	1.2	RB 1 MHz;VB 3 MHz;Peak
5000.000	39.3	V	54.0	-14.7	AVG	89	1.4	RB 1 MHz;VB 10 Hz;Peak
5000.030	47.5	V	74.0	-26.5	PK	89	1.4	RB 1 MHz;VB 3 MHz;Peak
5369.410	44.4	V	54.0	-9.6	AVG	12	1.0	RB 1 MHz;VB 10 Hz;Peak
5372.080	55.1	V	74.0	-18.9	PK	12	1.0	RB 1 MHz;VB 3 MHz;Peak
3249.290	47.4	V	68.3	-20.9	PK	198	1.5	RB 1 MHz;VB 3 MHz;Peak

Note 1: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used.

Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range


	An ZAZZES company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #3f: , EUT on Channel #11 2462MHz - 802.11n20 and Channel #140 5700MHz - 802.11n20, Chain A+B+C

Radio	Freq	Power Settin
1	5700 MHz	20.0
2	2462 MHz	12.5

Spurious Radiated Emissions:

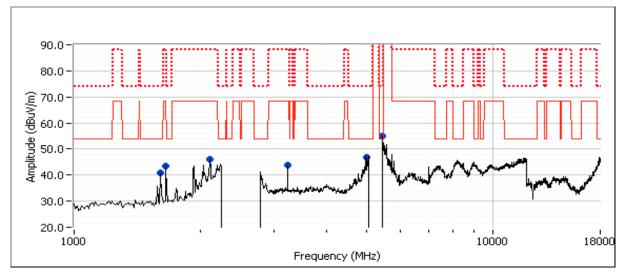
	opunious realiated Ennocional								
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11396.120	50.5	V	54.0	-3.5	AVG	341	1.0	RB 1 MHz;VB 10 Hz;Peak	
11395.790	62.2	V	74.0	-11.8	PK	341	1.0	RB 1 MHz;VB 3 MHz;Peak	
5359.970	46.9	V	54.0	-7.1	AVG	196	1.5	RB 1 MHz;VB 10 Hz;Peak	
5360.040	54.8	V	74.0	-19.2	PK	196	1.5	RB 1 MHz;VB 3 MHz;Peak	
1666.670	42.9	V	54.0	-11.1	AVG	230	1.0	RB 1 MHz;VB 10 Hz;Peak	
1666.570	45.3	V	74.0	-28.7	PK	230	1.0	RB 1 MHz;VB 3 MHz;Peak	
5120.130	47.3	V	54.0	-6.7	AVG	343	1.2	RB 1 MHz;VB 10 Hz;Peak	
5119.970	52.6	V	74.0	-21.4	PK	343	1.2	RB 1 MHz;VB 3 MHz;Peak	
5239.900	53.1	V	68.3	-15.2	PK	190	1.8	RB 1 MHz;VB 3 MHz;Peak	
1641.260	47.0	V	68.3	-21.3	PK	216	1.0	RB 1 MHz;VB 3 MHz;Peak	
3282.560	46.8	V	68.3	-21.5	PK	140	1.5	RB 1 MHz;VB 3 MHz;Peak	

	An Z(ZE) company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #4, Radiated Spurious Emissions, 1-40GHz, 802.11n40/802.11n40, Chain A+B+C

Run #4a, EUT on Channel #3 2422MHz - 802.11n40 and Channel #54 5270MHz - 802.11n40 - Chain A+B+C

Date of Test: 1/4/2013 and 1/7/2013 Test Location: FT 7
Test Engineer: Jack Liu/ Rafael Varelas Config Change: None


 Radio
 Freq
 Power Setting

 1
 5270 MHz
 18.0

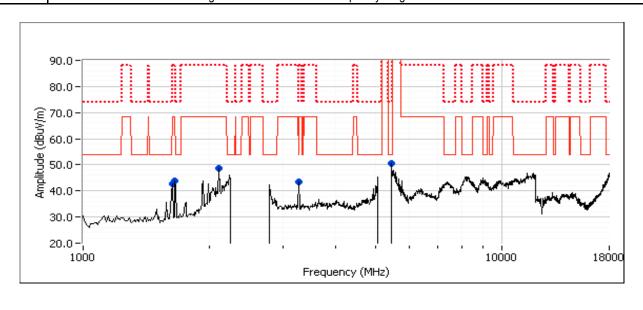
 2
 2422 MHz
 10.0

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5439.930	51.4	V	54.0	-2.6	AVG	360	1.5	RB 1 MHz;VB 10 Hz;Peak
5440.060	58.7	V	74.0	-15.3	PK	360	1.5	RB 1 MHz;VB 3 MHz;Peak
1614.630	41.2	Н	54.0	-12.8	AVG	90	1.3	RB 1 MHz;VB 10 Hz;Peak
1614.680	43.3	Н	74.0	-30.7	PK	90	1.3	RB 1 MHz;VB 3 MHz;Peak
4999.600	42.6	V	54.0	-11.4	AVG	100	1.3	RB 1 MHz;VB 10 Hz;Peak
4999.600	52.3	V	74.0	-21.7	PK	100	1.3	RB 1 MHz;VB 3 MHz;Peak
1666.660	43.4	V	54.0	-10.6	AVG	228	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.730	45.5	V	74.0	-28.5	PK	228	1.0	RB 1 MHz;VB 3 MHz;Peak
3229.550	48.0	V	68.3	-20.3	PK	140	1.3	RB 1 MHz;VB 3 MHz;Peak
2111.910	49.9	V	68.3	-18.4	PK	301	1.0	RB 1 MHz;VB 3 MHz;Peak

	An 2022 Company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
	W3-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #4b: , EUT on Channel #9 2452MHz - 802.11n40 and Channel #62 5310MHz - 802.11n40, Chain A+B+C

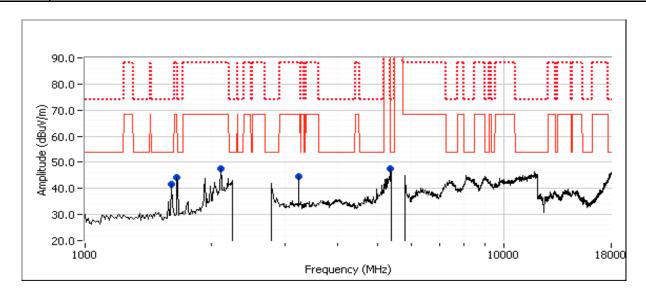

Radio	Freq	Power Settir
1	5310 MHz	13.0
2	2452 MHz	10.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5400.160	49.4	V	54.0	-4.6	AVG	9	1.5	POS; RB 1 MHz; VB: 10 Hz
5400.710	61.5	V	74.0	-12.5	PK	9	1.5	POS; RB 1 MHz; VB: 3 MHz
5439.960	42.0	V	54.0	-12.0	AVG	268	1.2	RB 1 MHz;VB 10 Hz;Peak
5439.840	51.3	V	74.0	-22.7	PK	268	1.2	RB 1 MHz;VB 3 MHz;Peak
1666.680	43.6	V	54.0	-10.4	AVG	230	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.630	45.8	V	74.0	-28.2	PK	230	1.0	RB 1 MHz;VB 3 MHz;Peak
1634.600	45.4	Η	68.3	-22.9	PK	246	1.3	RB 1 MHz;VB 3 MHz;Peak
2111.790	52.2	V	68.3	-16.1	PK	221	1.6	RB 1 MHz;VB 3 MHz;Peak
3269.350	47.2	V	68.3	-21.1	PK	139	1.3	RB 1 MHz;VB 3 MHz;Peak

Note 1: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Alternatively, the 15.209 limits may be used.

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

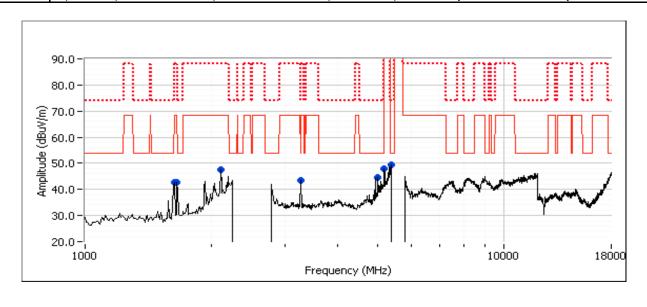

	An ZAZEO company		
Client:	Flextronics	Job Number:	J89632
Madal	WS-AP3710i	T-Log Number:	T89871
Model.	W5-AF3/101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #4c: , EUT on Channel #3 2422MHz - 802.11n40 and Channel #102 5510MHz - 802.11n40, Chain A+B+C

Radio	Freq	Power Settin
1	5510 MHz	15.0
2	2422 MHz	10.0

Spurious Radiated Emissions:

	7 Puniture - Manager								
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1666.650	43.6	V	54.0	-10.4	AVG	229	1.0	RB 1 MHz;VB 10 Hz;Peak	
1666.690	45.6	V	74.0	-28.4	PK	229	1.0	RB 1 MHz;VB 3 MHz;Peak	
5372.720	42.2	V	54.0	-11.8	AVG	190	1.4	RB 1 MHz;VB 10 Hz;Peak	
5373.100	53.9	V	74.0	-20.1	PK	190	1.4	RB 1 MHz;VB 3 MHz;Peak	
1614.670	40.8	Η	54.0	-13.2	AVG	242	1.3	RB 1 MHz;VB 10 Hz;Peak	
1614.720	43.8	Η	74.0	-30.2	PK	242	1.3	RB 1 MHz;VB 3 MHz;Peak	
2111.900	50.1	V	68.3	-18.2	PK	299	1.0	RB 1 MHz;VB 3 MHz;Peak	
3229.250	46.6	V	68.3	-21.7	PK	136	1.2	RB 1 MHz;VB 3 MHz;Peak	

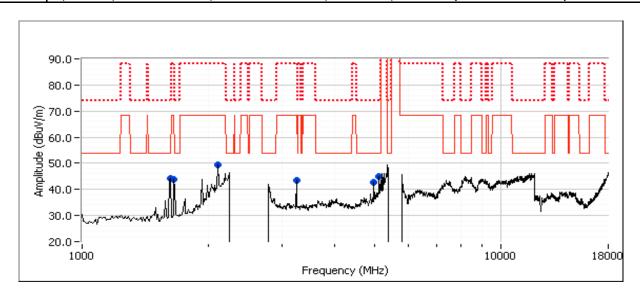

Client	Flextronics	Job Number:	180632
Ciletti.	1 lextrorines		
Model:	WS-AP3710i	T-Log Number:	T89871
	WO-AF 37 101	Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #4d: , EUT on Channel #9 2452MHz - 802.11n40 and Channel #134 5670MHz - 802.11n40, Chain A+B+C

Radio	Freq	Power Settir
1	5670 MHz	17.0
2	2452 MHz	10.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5371.780	43.7	V	54.0	-10.3	AVG	334	1.3	RB 1 MHz;VB 10 Hz;Peak
5371.420	54.3	V	74.0	-19.7	PK	334	1.3	RB 1 MHz;VB 3 MHz;Peak
1666.670	42.5	V	54.0	-11.5	AVG	254	1.0	RB 1 MHz;VB 10 Hz;Peak
1666.680	45.2	V	74.0	-28.8	PK	254	1.0	RB 1 MHz;VB 3 MHz;Peak
4999.840	39.8	V	54.0	-14.2	AVG	246	1.2	RB 1 MHz;VB 10 Hz;Peak
4999.130	49.0	V	74.0	-25.0	PK	246	1.2	RB 1 MHz;VB 3 MHz;Peak
5159.830	51.1	V	68.3	-17.2	PK	341	1.7	RB 1 MHz;VB 3 MHz;Peak
1634.730	46.5	Η	68.3	-21.8	PK	244	1.4	RB 1 MHz;VB 3 MHz;Peak
2112.090	50.6	V	68.3	-17.7	PK	220	1.6	RB 1 MHz;VB 3 MHz;Peak
3269.300	46.4	V	68.3	-21.9	PK	139	1.5	RB 1 MHz;VB 3 MHz;Peak


	An ZCZES company		
Client:	Flextronics	Job Number:	J89632
Model:	WS-AP3710i	T-Log Number:	T89871
		Account Manager:	Christine Krebill
Contact:	Georges Fares		
Standard:	15.407, RSS-210	Class:	N/A

Run #4e: , EUT on Channel #6 2437MHz - 802.11n40 and Channel #110 5550MHz - 802.11n40, Chain A+B+C

Radio	Freq	Power Setting		
1	5550 MHz	17.0		
2	2437 MHz	13.0		

Spurious Radiated Emissions:

opurious Radiated Emissions.										
Frequency	Level	Pol	15.209	/15.407	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1624.700	44.7	Н	54.0	-9.3	AVG	252	1.3	RB 1 MHz;VB 10 Hz;Peak		
1624.750	46.9	Η	74.0	-27.1	PK	252	1.3	RB 1 MHz;VB 3 MHz;Peak		
5040.030	37.6	V	54.0	-16.4	AVG	197	1.2	RB 1 MHz;VB 10 Hz;Peak		
5042.100	47.6	V	74.0	-26.4	PK	197	1.2	RB 1 MHz;VB 3 MHz;Peak		
4959.980	36.7	V	54.0	-17.3	AVG	196	1.6	RB 1 MHz;VB 10 Hz;Peak		
4959.900	44.8	V	74.0	-29.2	PK	196	1.6	RB 1 MHz;VB 3 MHz;Peak		
1666.650	43.5	V	54.0	-10.5	AVG	236	1.0	RB 1 MHz;VB 10 Hz;Peak		
1666.780	45.5	V	74.0	-28.5	PK	236	1.0	RB 1 MHz;VB 3 MHz;Peak		
3249.400	46.5	V	68.3	-21.8	PK	148	1.3	RB 1 MHz;VB 3 MHz;Peak		
2112.050	52.5	Н	68.3	-15.8	PK	150	1.0	RB 1 MHz;VB 3 MHz;Peak		

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R91134 Page 81