

Response to TCB Findings

Q: Please provide us a confirmation from your client stating compliance to 15.247(a) (1) on the following issues

- *. Each frequency is being used equally on the average by each transmitter.
- *. System receivers have input bandwidths that match the hopping channel bandwidth of their corresponding transmitter.
- *. System receivers have the ability to shift frequencies in synchronization with the transmitted signals.

Please refer to filed test report number 302383 - TX, pages 24 and 25 and the filings operational description to demonstrate compliance with each frequency being used equally on the average. Also refer to the operational description supplied with this filing.

Q: Please provide us a confirmation from your client stating the compliance to 15.247(g) and 15.257(h) .

For 15.247(g): Our Frequency hopping spread spectrum tracking beacon system uses a master slave concept. The transmitter is the master in the system and it is the job of the receiver to synchronize with the transmitter. The receiver will scan individual channels until it sees the proper data, then it will hop frequency at the same rate as the transmitter. Communication goes only one way and there is no handshake back and forth. For our product to work the tracking beacon sends it's own ID and it is the job of the receiver to lock and to feed information to a sub-system that will provide a heading. The tracking beacon sends information on each channel for no longer than 0.4 seconds per channel and uses 50 different channels following a pseudo-random table. A second transmission on the same channel will not occur before 20 seconds.

For 15.247(h): As defined above transmitter is a master and does not take advantage of occupied band by skipping over, the transmitter follows it's own pseudo-random table and transmit on every channels it that table, it stays 0.4 seconds and hop to the next frequency. Our application does not require data integrity on every channel. Our application requires data heading for the Doppler radar to work.

Q: Please supply the details of the gain of the 915MHz integral antenna.

The effective gain of our antenna is 0 db. Our product is a stolen vehicle tracking device and the antenna is made with a coaxial cable (RG-174/U) that the end has been exposed making that an 1/4 wave omni-directional antenna.