

TEST REPORT

No. I17D00059-SAR

For

Client: MobiWire SAS

Production: 3G Smart Phone

Model Name: MobiWireKosumi

FCC ID: QPN-KOSUMI

Hardware Version: V01

Software Version: V01

Issued date: 2017-05-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I17D00059-SAR	01	2017-04-17	Initial creation of test report
I17D00059-SAR	02	2017-05-12	Second creation of test report
I17D00059-SAR	03	2017-05-17	Third creation of test report

CONTENTS

1. TEST LABORATORY.....	6
1.1. TESTING LOCATION.....	6
1.2. TESTING ENVIRONMENT	6
1.3. PROJECT DATA	6
1.4. SIGNATURE.....	6
2. STATEMENT OF COMPLIANCE.....	7
3. CLIENT INFORMATION.....	9
3.1. APPLICANT INFORMATION.....	9
3.2. MANUFACTURER INFORMATION.....	9
4. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE).....	10
4.1. ABOUT EUT.....	10
4.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	11
4.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST.....	11
5. TEST METHODOLOGY.....	12
5.1. APPLICABLE LIMIT REGULATIONS.....	12
5.2. APPLICABLE MEASUREMENT STANDARDS.....	12
6. SPECIFIC ABSORPTION RATE (SAR)	13
6.1. INTRODUCTION	13
6.2. SAR DEFINITION.....	13
7. TISSUE SIMULATING LIQUIDS.....	14
7.1. TARGETS FOR TISSUE SIMULATING LIQUID	14
7.2. DIELECTRIC PERFORMANCE.....	14
8. SYSTEM VERIFICATION.....	18
8.1. SYSTEM SETUP	18
8.2. SYSTEM VERIFICATION.....	19

9. MEASUREMENT PROCEDURES.....	21
9.1. TESTS TO BE PERFORMED.....	21
9.2. GENERAL MEASUREMENT PROCEDURE.....	22
9.3. WCDMA MEASUREMENT PROCEDURES FOR SAR	24
9.4. BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	25
9.5. POWER DRIFT.....	25
10. AREA SCAN BASED 1-G SAR	26
10.1. REQUIREMENT OF KDB	26
10.2. FAST SAR ALGORITHMS.....	26
11. CONDUCTED OUTPUT POWER	27
11.1. MANUFACTURING TOLERANCE	27
11.2. GSM MEASUREMENT RESULT	30
11.3. WCDMA MEASUREMENT RESULT	32
11.4. WI-FI AND BT MEASUREMENT RESULT.....	33
12. SIMULTANEOUS TX SAR CONSIDERATIONS	36
12.1. INTRODUCTION	36
12.2. TRANSMIT ANTENNA SEPARATION DISTANCES.....	36
12.3. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	37
12.4. SAR MEASUREMENT POSITIONS	37
13. EVALUATION OF SIMULTANEOUS	38
14. SAR TEST RESULT.....	39
15. SAR MEASUREMENT VARIABILITY	44
16. MEASUREMENT UNCERTAINTY	45
17. MAIN TEST INSTRUMENT.....	46
ANNEX A. GRAPH RESULTS.....	47
ANNEX B. SYSTEM VALIDATION RESULTS	58

ANNEX C.	SAR MEASUREMENT SETUP	64
ANNEX D.	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM.....	73
ANNEX E.	EQUIVALENT MEDIA RECIPES.....	77
ANNEX F.	SYSTEM VALIDATION	78
ANNEX G.	PROBE AND DAE CALIBRATION CERTIFICATE.....	79
ANNEX H.	ACCREDITATION CERTIFICATE	128

1. Test Laboratory

1.1. Testing Location

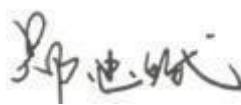
Company Name:	ECIT Shanghai, East China Institute of Telecommunications
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai, P. R. China
Postal Code:	200001
Telephone:	(+86)-021-63843300
Fax:	(+86)-021-63843301

1.2. Testing Environment

Normal Temperature:	18-25°C
Relative Humidity:	30-70%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Project Leader:	Yu Anlu
Testing Start Date:	2017-04-09
Testing End Date:	2017-04-13


1.4. Signature

Yan Hang
(Prepared this test report)

Song Kaihua
(Reviewed this test report)

Zheng Zhongbin
Director of the laboratory
(Approved this test report)

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **MobiWire Kosumi** are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR (1g)

Band	Position/Distance	SAR 1g (W/Kg)
GSM 850	Head	0.3859
	Body	1.1670
GSM 1900	Head	0.2949
	Body	0.7497
WCDMA Band2	Head	0.9975
	Body	1.0788
Wi-Fi	Head	0.2827
	Body	0.1260

Table 2.2: The maximum of SAR values

	Maximum SAR value for Head	Maximum SAR value for Body worn
GSM	0.3859	1.1670
WCDMA	0.9975	1.0788
WIFI	0.2827	0.1260

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report.

The sample has three antennas. One is main antenna for GSM/WCDMA, and the other is for WiFi/BT and GPS. So simultaneous transmission is GSM/WCDMA and WiFi/BT.

Table 2.3: Simultaneous SAR (1g)

Transmission SAR(W/Kg)								
Test Position			2G GSM850	2G GSM1900	3G	WIFI	BT	SUM
Head	Left	Cheek	0.2764	0.1745	0.5247	0.2827	0.263	0.7877
		Tilt 15°	0.1529	0.1114	0.3819	0.1497	0.263	0.6449
	Right	Cheek	0.3859	0.2949	0.9975	0.1742	0.263	1.2605
		Tilt 15°	0.1570	0.1240	0.3930	0.1636	0.263	0.656
Body 10mm	Phantom Side		0.784	0.4760	0.7672	0.0435	0.131	0.915
	Ground Side		1.167	0.7497	1.0788	0.1260	0.131	1.298
	Left Side		0.562	0.1233	0.1306	/	0.131	0.693
	Right Side		0.620	0.2337	0.2834	0.0158	0.131	0.751
	Bottom Side		0.060	0.3656	0.4240	/	0.131	0.555
	Top Side		/	/	/	0.0600	0.131	0.191

According to the above table, the maximum sum of reported SAR values for GSM/WCDMA and WiFi is **1.298 W/kg** (1g). The detail for simultaneous transmission consideration is described in chapter 12.

3. Client Information

3.1. Applicant Information

Company Name: MobiWire SAS
Address: 79 AVENUE FRANCOIS ARAGO 92017 NANTERRE CEDEX France.
Email: alexandre.minazio@mobiwire.com
Contact: Alexandre

3.2. Manufacturer Information

Company Name: MOBIWIRE MOBILES (NINGBO) CO.,LTD
Address: No.999,Dacheng East Road,Fenghua City,Zhejiang
Email: Leander.Xu@mobiwire.com.cn
Contact: Xu linzhong

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	3G Smart Phone
Model name:	MobiWire Kosumi
Operation Model(s):	GSM850/1900,WCDMA BandII,WIFI2450
Tx Frequency:	824.2-848.8MHz(GSM850) 1850.2-1909.8MHz (GSM1900) 1852.4-1907.6 MHz (WCDMA Band II) 2412- 2472 MHz (Wi-Fi) 2400-2483.5 MHz (BT)
Test device Production information:	Production unit
GPRS Class Mode:	B
GPRS Multislot Class:	12
EGPRS Multislot Class	12 (downlink only)
Device type:	Portable device
Antenna type:	Inner antenna
Accessories/Body-worn configurations:	Headset Battery
Dimensions:	14.2cmx7.0cmx0.8cm
Hotspot Mode:	Support simultaneous transmission of hotspot and voice (or data)
FCC ID:	QPN-KOSUMI

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Receive Date
N06	351780080668538	V01	V01	2017-03-14

*EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
B04	Battery	N/A	VK1216008304	MobiWire
A01	Handset	N/A	N/A	N/A

*AE ID: is used to identify the test sample in the lab internally.

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

ANSI C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IEEE 1528-2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB648474 D04 Handset SARv01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB248227 D01 802 11 Wi-Fi SAR v02r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHzv01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance.

KDB941225 D013G SAR Proceduresv03r01: 3G SAR Measurement Procedures.

KDB941225 D06 hotspot SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

NOTE: KDB is not in A2LA Scope List.

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

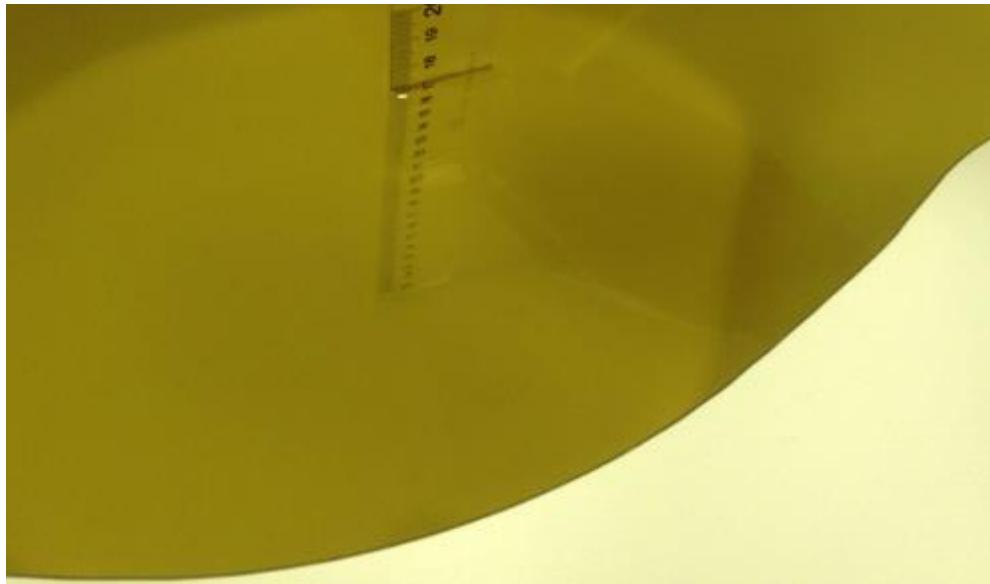
$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid


Table 7.1: Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity(σ)	$\pm 5\%$ Range	Permittivity(ϵ)	$\pm 5\%$ Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

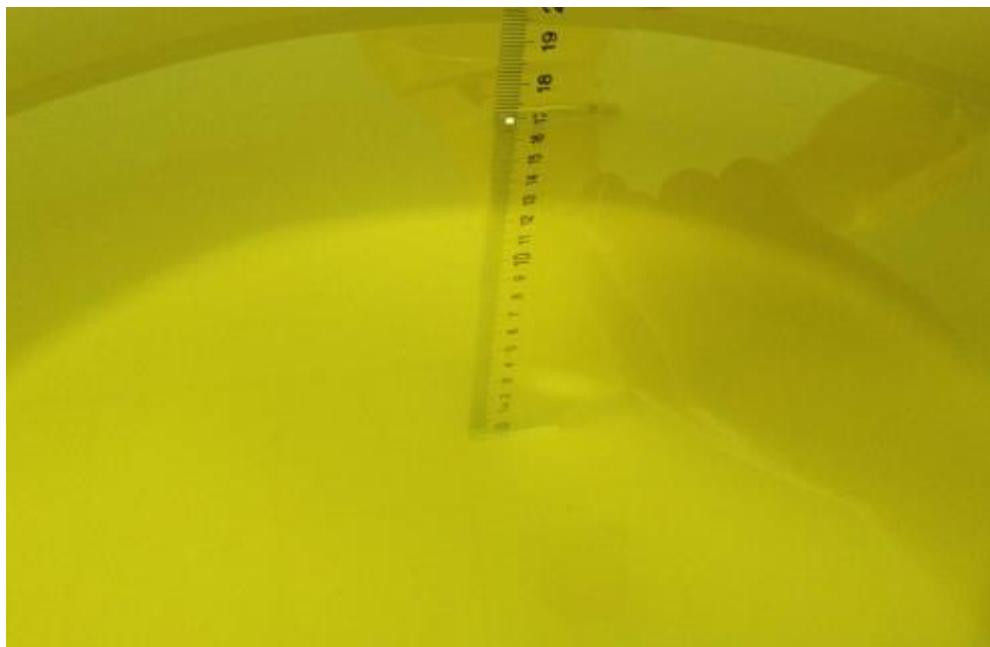
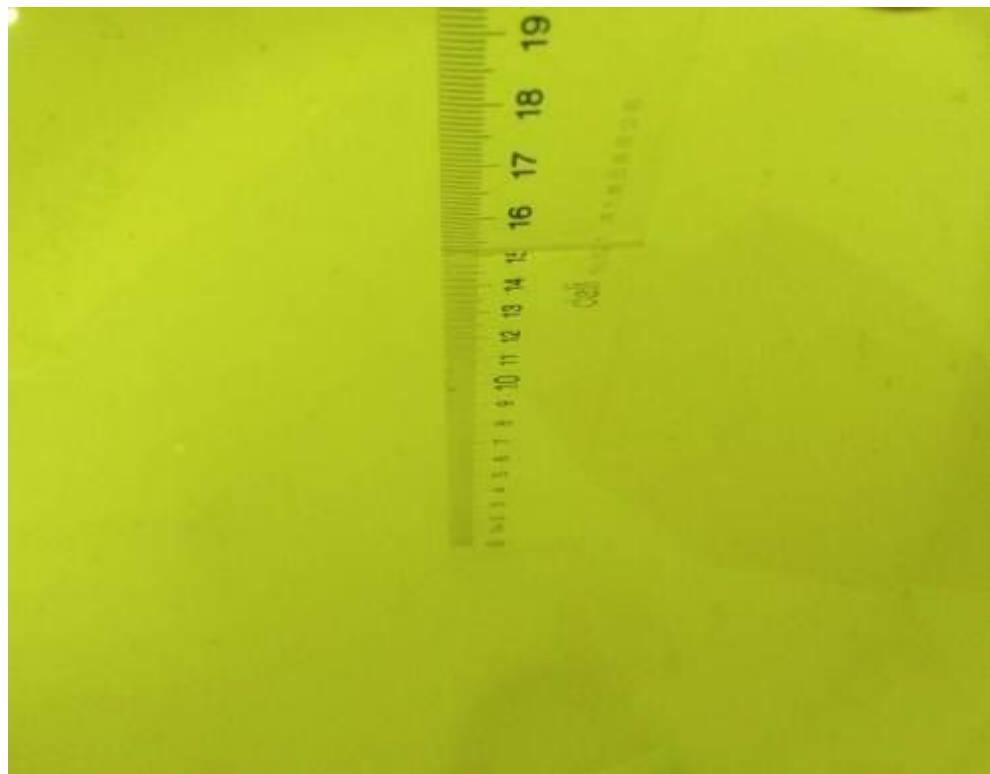

7.2. Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid


Measurement Value						
Liquid Temperature: 22.5°C						
Type	Frequency	Permittivity ϵ	Drift (%)	Conductivity σ	Drift (%)	Test Date
Head	835 MHz	41.70	+0.48%	0.906	+0.67%	2017-04-11
Head	1900 MHz	39.83	-0.43%	1.394	-0.43%	2017-04-10
Head	2450 MHz	39.52	+0.82%	1.839	+2.17%	2017-04-13
Body	835 MHz	53.68	-2.75%	0.970	0.00%	2017-04-12
Body	1900 MHz	51.94	-2.55%	1.502	-1.18%	2017-04-09
Body	2450 MHz	52.37	-0.63%	1.945	-0.26%	2017-04-13

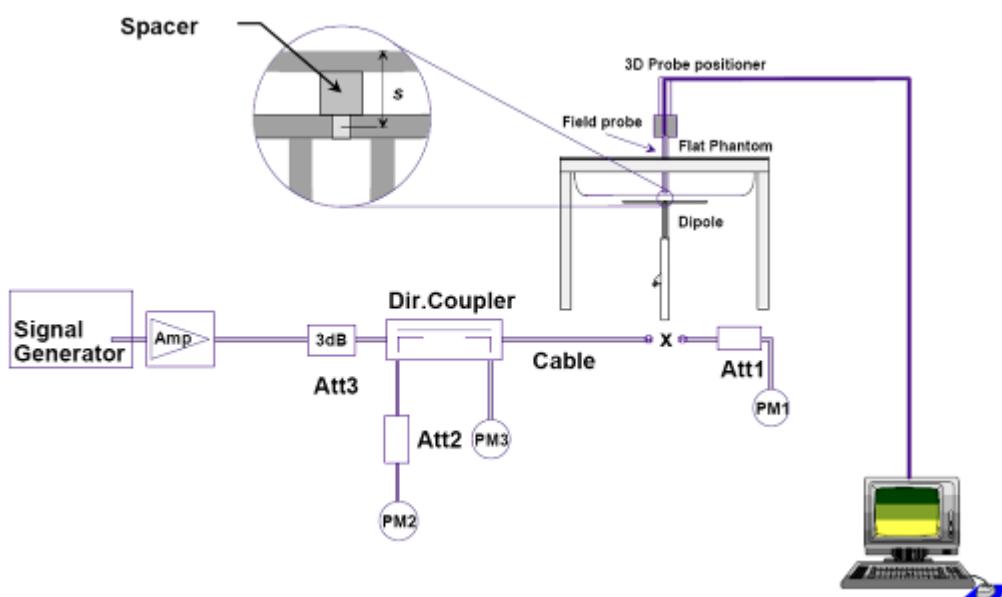
Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)

Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

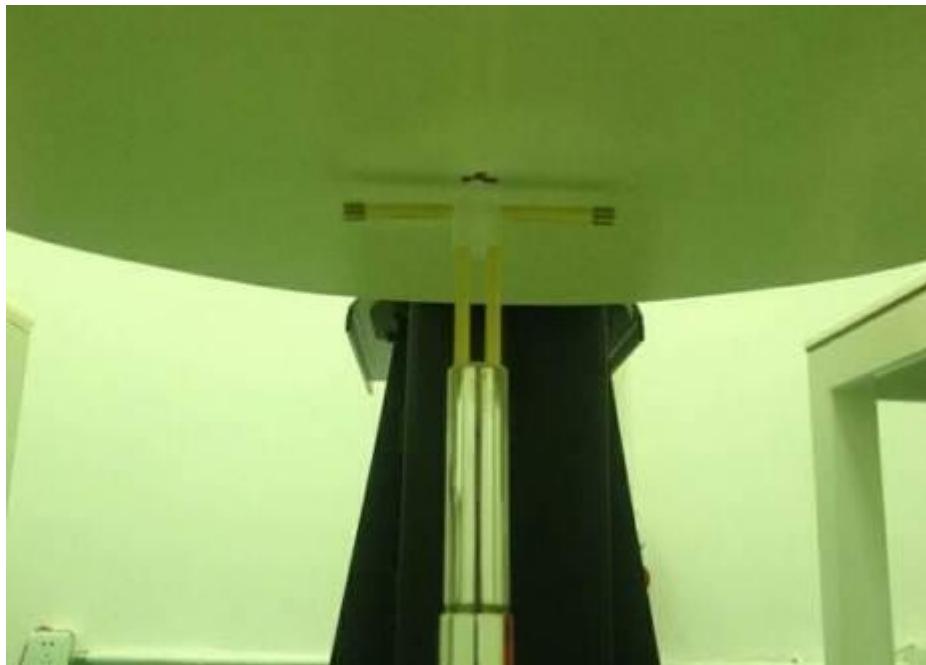
Picture 7-3: Liquid depth in the Flat Phantom (2450 MHz Head)

Picture 7-4: Liquid depth in the Flat Phantom (835 MHz Body)

Picture 7-5: Liquid depth in the Flat Phantom (1900 MHz Body)



Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)


8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Table 8.1: System Verification of Head

Verification Results							
Input power level: 1W							
Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation		Test date
	10 g	1 g	10 g	1 g	10 g	1 g	
835 MHz	6.03	9.22	6.04	9.32	+0.17%	+1.08%	2017-04-11
1900 MHz	21.0	40.8	19.92	37.92	-5.14%	-7.06%	2017-04-10
2450 MHz	24.3	52.9	25.24	55.2	+3.87%	+4.35%	2017-04-13

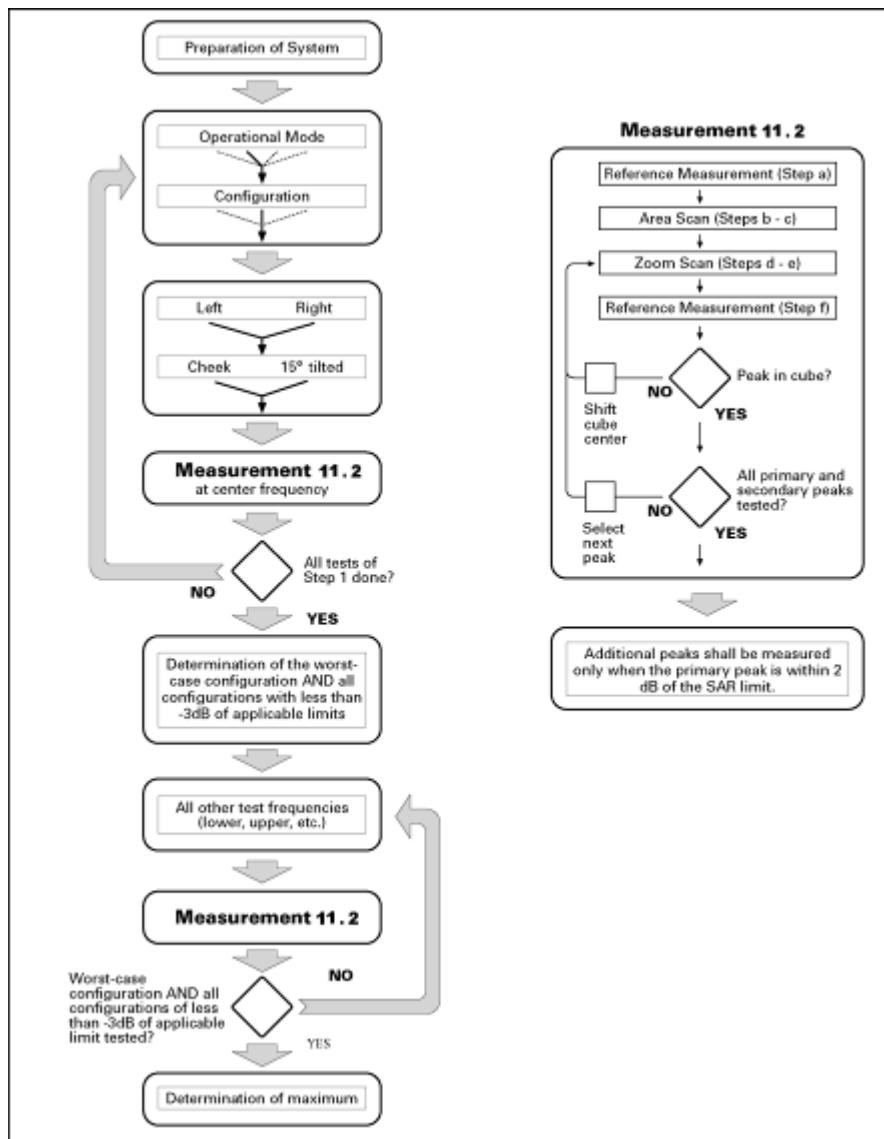
Table 8.2: System Verification of Body

Verification Results							
Input power level: 1W							
Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation		Test date
	10 g	1 g	10 g	1 g	10 g	1 g	
835 MHz	6.29	9.57	6.24	9.44	-0.79%	-1.36%	2017-04-12
1900 MHz	21.3	41.1	20.24	37.92	-4.98%	-7.74%	2017-04-09
2450 MHz	24.7	53.1	24.08	50.8	-2.51%	-4.33%	2017-04-13

9. Measurement Procedures

9.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.


Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2. General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after

interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and $(60/f \text{ [GHz]}) \text{ mm}$ for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2 \text{ mm}$ for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. The maximum variation of the sensor-phantom surface shall be $\pm 1 \text{ mm}$ for frequencies below 3 GHz and $\pm 0.5 \text{ mm}$ for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be $(24/f[\text{GHz}]) \text{ mm}$ or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be $(8-f[\text{GHz}]) \text{ mm}$ or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be $(12 / f[\text{GHz}]) \text{ mm}$ or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2 \text{ mm}$ for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5° . If this cannot be achieved an additional uncertainty evaluation is needed.

e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	β_{hs}	CM/dB	MPR/dB
1	2/15	15/15	64	2/15	4/15	2.0	1.0
2	12/15	15/15	64	12/15	24/25	2.0	1.0
3	15/15	8/15	64	15/8	30/15	2.0	1.0
4	15/15	4/15	64	15/4	30/15	2.0	1.0

For Release 6 HSUPA Data Devices

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	β_{hs}	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	2.0	1.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	2.0	1.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	2.0	1.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	2.0	1.0	21	81

9.4. Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10. Area Scan Based 1-g SAR

10.1. Requirement of KDB

According to the KDB447498D01v06, When the implementation is based on the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is ≤ 1.2 W/kg, for measurements ≤ 3 GHz a zoom scan measurement is not required when the following criteria are satisfied; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system, or manually, to discriminate between distinctive peaks and scattered noisy SAR distributions from the area scan. There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues, etc. The estimated 1-g SAR determined by the area scan for SAR system verification must be within 3% of the 1-g SAR determined by the corresponding zoom scan. When all of the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a regular zoom scan.

10.2. Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1-g and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1-g and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS2007 Proceedings.

Both algorithms are implemented in DASY software.

11. Conducted Output Power

11.1. Manufacturing tolerance

Table 11.1: GSM Speech

GSM 850			
Channel	Channel 128	Channel 190	Channel 251
Maximum Target Value (dBm)	32.0	32.0	32.0
GSM1900			
Channel	Channel 512	Channel 661	Channel 810
Maximum Target Value (dBm)	30.0	30.0	30.0

Table 11.2: GPRS/EGPRS (GMSK Modulation)

GSM 850 GPRS				
Channel		128	190	251
1 Txslots	Maximum Target Value (dBm)	32.0	32.0	32.0
2 Txslots	Maximum Target Value (dBm)	31.0	31.0	31.0
3 Txslots	Maximum Target Value (dBm)	29.5	29.5	29.5
4 Txslots	Maximum Target Value (dBm)	28.5	28.5	28.5
GSM 1900 GPRS				
Channel		512	661	810
1 Txslots	Maximum Target Value (dBm)	30.0	30.0	30.0
2 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0
3 Txslots	Maximum Target Value (dBm)	27.0	27.0	27.0
4 Txslots	Maximum Target Value (dBm)	26.0	26.0	26.0

Table 11.4: WCDMA

WCDMA Band II				
Channel	Channel 9262	Channel 9400	Channel 9538	
Maximum Target Value (dBm)	23.7	23.7	23.7	

Table 11.5: HSDPA

WCDMA Band II					MPR (dB)
Channel	9262	9400	9538		
1	Maximum Target Value (dBm)	22.7	22.7	22.7	1
2	Maximum Target Value (dBm)	22.5	22.5	22.5	1
3	Maximum Target Value (dBm)	21.0	21.0	21.0	1
4	Maximum Target Value (dBm)	21.0	21.0	21.0	1

Table 11.6: HSUPA

WCDMA Band II					MPR (dB)
Channel	9262	9400	9538		
1	Maximum Target Value (dBm)	21.0	21.0	21.0	1
2	Maximum Target Value (dBm)	21.0	21.0	21.0	1
3	Maximum Target Value (dBm)	21.0	21.0	21.0	1
4	Maximum Target Value (dBm)	21.0	21.0	21.0	1
5	Maximum Target Value (dBm)	21.0	21.0	21.0	1

Table 11.7: HSPA+

WCDMA Band II					MPR (dB)
Channel	9262	9400	9538		
1	Maximum Target Value (dBm)	21.0	21.0	21.0	1

Table 11.8: WiFi

WiFi 802.11b					
Channel	Channel 1	Channel 6	Channel 11	Channel 12	Channel 13
Maximum Target Value (dBm)	13.5	13.5	13.5	13.5	13.5
WiFi 802.11g					
Channel	Channel 1	Channel 6	Channel 11	Channel 12	Channel 13
Maximum Target Value (dBm)	10.5	10.5	10.5	10.5	10.5
WiFi 802.11n 20M					
Channel	Channel 1	Channel 6	Channel 11	Channel 12	Channel 13
Maximum Target Value (dBm)	11.0	11.0	11.0	11.0	11.0

Table 11.9: Bluetooth
For GFSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz
Peak Conducted Output Power (dBm)	8.0	8.0	8.0

For $\pi/4$ DQPSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz
Peak Conducted Output Power (dBm)	6.5	6.5	6.5

For 8DPSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz
Peak Conducted Output Power (dBm)	7.0	7.0	7.0

Table 11.10: BLE
For GFSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz
Peak Conducted Output Power (dBm)	-4.0	-4.0	-4.0

11.2. GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.10: The conducted power measurement results for GSM

GSM 850MHz	Conducted Power (dBm)		
	Channel 128(824.2MHz)	Channel 190(836.6MHz)	Channel 251(848.6MHz)
	31.7	31.8	31.7
GSM 1900MHz	Conducted Power (dBm)		
	Channel 512(1850.2MHz)	Channel 661(1880MHz)	Channel 810(1909.8MHz)
	29.6	29.4	29.3

Table 11.11: The conducted power measurement results for GPRS/EGPRS(GMSK)

GSM 850 GPRS	Measured Power (dBm)			calculation	Averaged Power (dBm)		
	128	190	251		128	190	251
1 Txslot	31.8	31.8	31.7	-9.03dB	22.77	22.77	22.67
2 Txslots	30.8	30.8	30.7	-6.02dB	24.78	24.78	24.68
3 Txslots	29.0	29.0	28.9	-4.26dB	24.74	24.74	24.64
4 Txslots	28.1	28.3	28.0	-3.01dB	25.09	25.29	24.99
GSM 850 EGPRS	Measured Power (dBm)			calculation	Averaged Power (dBm)		
	128	190	251		128	190	251
1 Txslot	31.8	31.7	31.7	-9.03dB	22.77	22.67	22.67
2 Txslots	30.8	30.8	30.7	-6.02dB	24.78	24.78	24.68
3 Txslots	29.1	29.0	28.9	-4.26dB	24.84	24.74	24.64
4 Txslots	28.1	28.2	28.0	-3.01dB	25.09	25.19	24.99
GSM 1900 GPRS	Measured Power (dBm)			calculation	Averaged Power (dBm)		
	512	661	810		512	661	810
1 Txslot	29.6	29.4	29.2	-9.03dB	20.57	20.37	20.17
2 Txslots	28.7	28.5	28.3	-6.02dB	22.68	22.48	22.28
3 Txslots	26.8	26.7	26.5	-4.26dB	22.54	22.44	22.24
4 Txslots	25.8	25.7	25.6	-3.01dB	22.79	22.69	22.59
GSM 1900 EGPRS	Measured Power (dBm)			calculation	Averaged Power (dBm)		
	512	661	810		512	661	810
1 Txslot	29.5	29.4	29.2	-9.03dB	20.47	20.37	20.17
2 Txslots	28.7	28.4	28.3	-6.02dB	22.68	22.38	22.28
3 Txslots	26.8	26.7	26.6	-4.26dB	22.54	22.44	22.34
4 Txslots	25.8	25.6	25.6	-3.01dB	22.79	22.59	22.59

NOTES:

1) The device does not support EGRPS with 8PSK.

2) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz;4Txslots for 1900MHz;

11.3. WCDMA Measurement result**Table 11.12: The conducted Power for WCDMA**

Item	band	WCDMA BAND II result(dBm)		
	ARFCN	9612 (1922.4MHz)	9750 (1950.0MHz)	9888 (1977.6MHz)
WCDMA	\	23.67	23.26	22.73
HSDPA	1	22.61	22.26	21.77
	2	22.23	21.84	21.42
	3	20.68	20.36	19.91
	4	20.64	20.38	19.99
HSUPA	1	20.75	20.24	19.87
	2	20.59	20.38	19.98
	3	20.71	20.45	19.91
	4	20.58	20.39	19.90
	5	20.69	20.41	19.95
HSPA+	1	20.75	20.51	20.22

11.4. Wi-Fi and BT Measurement result**Table 11.13: The conducted power for Bluetooth**

GFSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	7.143	7.143	7.533
$\pi/4$ DQPSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	6.296	6.403	6.403
8DPSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	6.403	6.426	6.64
BLE			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Peak Conducted Output Power (dBm)	-4.50	-4.19	-4.37

NOTE: According to KDB447498 D01BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(\text{GHz})/x}$] W/kg for test separation distances ≤ 50 mm;
where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

SAR head value of BT is 0.263W/Kg. SAR body value of BT is 0.131W/Kg.

The default power measurement procedures are:

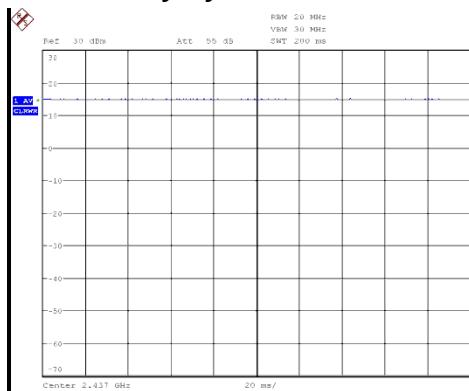
- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
 - 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
 - c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting, the duty cycle is 100%.

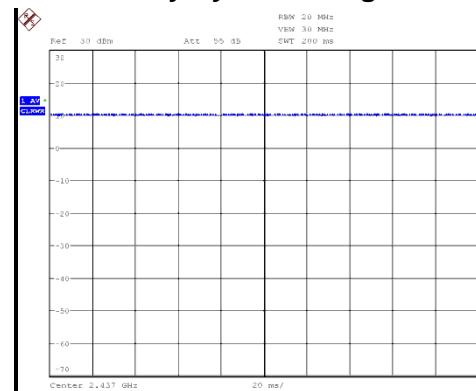
Table 11.14: The average conducted power for WiFi

Mode	Channel	Frequency	Average power(dBm)
802.11 b	1	2412 MHz	13.21
	6	2437 MHz	12.97
	11	2462 MHz	12.39
	12	2467 MHz	13.02
	13	2472 MHz	12.88
802.11 g	1	2412 MHz	10.40
	6	2437 MHz	9.97
	11	2462 MHz	9.23
	12	2467 MHz	9.92
	13	2472 MHz	9.84
802.11 n 20M	1	2412 MHz	9.54
	6	2437 MHz	10.67
	11	2462 MHz	10.43
	12	2467 MHz	9.82
	13	2472 MHz	9.67

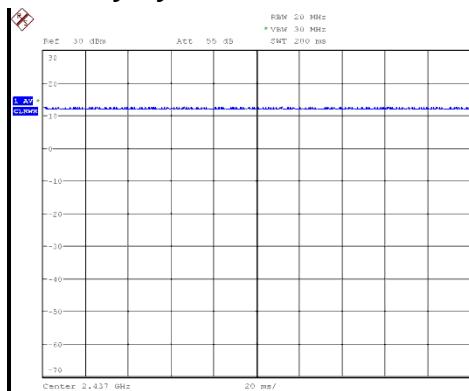
2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements


When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the

following 2.4 GHz OFDM conditions.


- a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Duty Cycle:


During WLAN SAR testing EUT is configured with WLAN continuous TX tool, and the transmission duty factor was monitored on spectrum analyzer with zero-span setting, the duty cycle is 100%.

Duty Cycle 802.11b mode

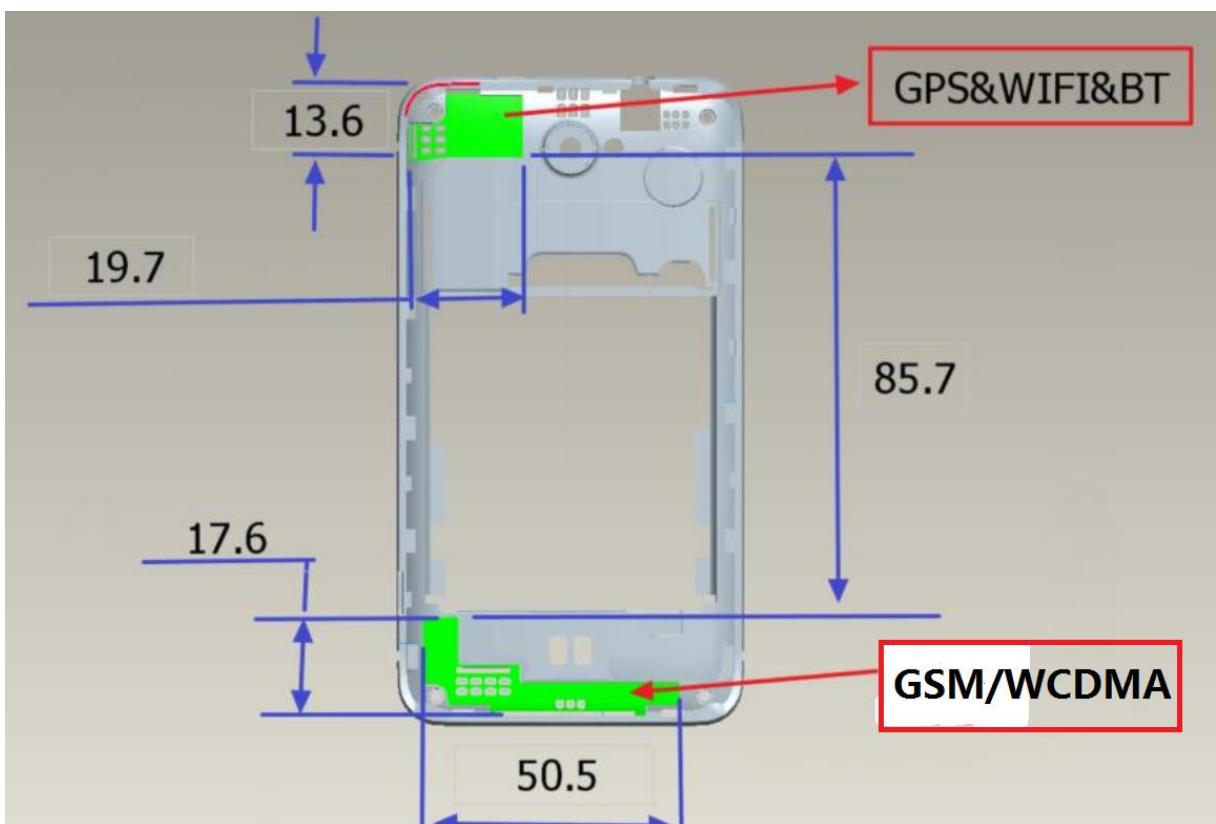
Date: 12.MAY.2017 11:35:06

Duty Cycle 802.11g mode

Date: 12.MAY.2017 11:36:41

Duty Cycle 802.11n-20MHz mode

Date: 12.MAY.2017 11:42:32


12. Simultaneous TX SAR Considerations

12.1. Introduction

The following procedures adopted from “FCC SAR Considerations for Cell Phones with Multiple Transmitters” are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2. Transmit Antenna Separation Distances

12.3. Picture 12.1 Antenna Locations

Note:

WWAN Antenna meaning is 2G/3GTX Antenna

12.4. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

$$\frac{(\text{max. power of channel, including tune-up tolerance, mW})}{(\text{min. test separation distance, mm})} \cdot \sqrt{f(\text{GHz})} \leq 3.0$$

Based on the above equation, Bluetooth SAR was not required:

Evaluation=1.972<3.0

Based on the above equation, WiFi SAR was required:

Evaluation=7.025>3.0

12.5. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR Measurement Positions						
Antenna Mode	Phantom	Ground	Left	Right	Top	Bottom
WWAN	Yes	Yes	Yes	Yes	No	Yes
WLAN	Yes	Yes	No	Yes	Yes	No

13. Evaluation of Simultaneous

Table 13.1: Summary of Transmitters

Band/Mode	Frequency (GHz)	SAR test exclusion threshold(mW)	RF output power (mW)
Bluetooth	2.41	10	0.178
2.4GHz WLAN 802.11 b/g/n	2.41	10	22.387

Table 13.2 Simultaneous transmission SAR

Transmission SAR(W/Kg)							
Test Position			2G GSM850	2G GSM1900	3G	WIFI	BT
Head	Left	Cheek	0.2764	0.1745	0.5247	0.2827	0.263
		Tilt 15°	0.1529	0.1114	0.3819	0.1497	0.263
	Right	Cheek	0.3859	0.2949	0.9975	0.1742	0.263
		Tilt 15°	0.1570	0.1240	0.3930	0.1636	0.263
Body 10mm	Phantom Side		0.784	0.4760	0.7672	0.0435	0.131
	Ground Side		1.167	0.7497	1.0788	0.1260	0.131
	Left Side		0.562	0.1233	0.1306	/	0.131
	Right Side		0.620	0.2337	0.2834	0.0158	0.131
	Bottom Side		0.060	0.3656	0.4240	/	0.131
	Top Side		/	/	/	0.0600	0.131

According to the conducted power measurement result, we can draw the conclusion that: simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA and WiFi/BT <1.6W/kg. So the simultaneous transmission SAR is not required .

14. SAR Test Result

14.1. SAR results for Fast SAR

Table 14.1: Duty Cycle

Duty Cycle	
Speech for GSM850/1900	1:8.3
GPRS for GSM850/1900	1:2
WCDMA Band II and WiFi	1:1

Table 14.2: SAR Values (GSM 850 MHz Band - Head)

Frequency		Side	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
826.6	190	Left	Touch	/	31.8	32.0	1.047	0.264	0.2764	0.18
826.6	190	Left	Tilt	/	31.8	32.0	1.047	0.146	0.1529	-0.06
826.6	190	Right	Touch	/	31.8	32.0	1.047	0.306	0.3204	-0.09
826.6	190	Right	Tilt	/	31.8	32.0	1.047	0.150	0.1570	-0.05
848.8	251	Right	Touch	Fig.1	31.7	32.0	1.072	0.360	0.3859	-0.13
824.2	128	Right	Touch	/	31.7	32.0	1.072	0.194	0.2080	0.10

Table 14.3: SAR Values (GSM 1900 MHz Band - Head)

Frequency		Side	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
1880	661	Left	Touch	/	29.4	30.0	1.148	0.152	0.1745	-0.11
1880	661	Left	Tilt	/	29.4	30.0	1.148	0.097	0.1114	0.13
1880	661	Right	Touch	/	29.4	30.0	1.148	0.236	0.2709	0.09
1880	661	Right	Tilt	/	29.4	30.0	1.148	0.108	0.1240	-0.02
1909.8	810	Right	Touch	Fig.2	29.3	30.0	1.175	0.251	0.2949	-0.06
1850.2	512	Right	Touch	/	29.6	30.0	1.096	0.248	0.2718	0.08

Table 14.4: SAR Values (WCDMA Band II- Head)

Frequency		Side	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
1880	9400	Left	Touch	/	23.26	23.7	1.107	0.474	0.5247	0.10
1880	9400	Left	Tilt	/	23.26	23.7	1.107	0.345	0.3819	-0.19
1880	9400	Right	Touch	/	23.26	23.7	1.107	0.772	0.8546	0.02
1880	9400	Right	Tilt	/	23.26	23.7	1.107	0.355	0.3930	-0.02
1907.6	9538	Right	Touch	Fig.3	22.73	23.7	1.250	0.782	0.9775	-0.01
1852.4	9262	Right	Touch	/	23.67	23.7	1.007	0.792	0.7975	0.12

Table 14.5:SAR Values (WiFi2450- Head)

Frequency		Side	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
2412	1	Left	Touch	/	13.21	13.5	1.069	0.247	0.2640	0.08
2412	1	Left	Tilt	/	13.21	13.5	1.069	0.140	0.1497	0.16
2412	1	Right	Touch	/	13.21	13.5	1.069	0.163	0.1742	-0.14
2412	1	Right	Tilt	/	13.21	13.5	1.069	0.153	0.1636	0.16
2462	11	Left	Touch	Fig.4	12.39	13.5	1.291	0.219	0.2827	0.08
2437	6	Left	Touch	/	12.97	13.5	1.130	0.143	0.1616	0.07

Table 14.6: SAR Values (GSM 850 MHz Band-Body)

Frequency		Mode (number of timeslots)	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
826.6	190	GPRS (4)	Phantom	/	28.3	28.5	1.047	0.749	0.784	-0.07
826.6	190	GPRS (4)	Ground	/	28.3	28.5	1.047	0.905	0.948	0.07
826.6	190	GPRS (4)	Left	/	28.3	28.5	1.047	0.537	0.562	-0.00
826.6	190	GPRS (4)	Right	/	28.3	28.5	1.047	0.592	0.620	0.01
826.6	190	GPRS (4)	Bottom	/	28.3	28.5	1.047	0.057	0.060	0.03
848.8	251	GPRS (4)	Ground	Fig.5	28.0	28.5	1.122	1.010	1.133	0.04
824.2	128	GPRS (4)	Ground	/	28.1	28.5	1.096	0.917	1.005	0.01
First Retest										
848.8	251	GPRS (4)	Ground	Fig.6	28.0	28.5	1.122	1.040	1.167	-0.15

Note: The distance between the EUT and the phantom bottom is 10mm

Table 14.7: SAR Values (GSM 1900 MHz Band–Body)

Frequency		Mode (number of timeslots)	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
1880	661	GPRS (4)	Phantom	/	25.7	26.0	1.072	0.444	0.4760	-0.01
1880	661	GPRS (4)	Ground	/	25.7	26.0	1.072	0.694	0.7440	-0.00
1880	661	GPRS (4)	Left	/	25.7	26.0	1.072	0.115	0.1233	0.06
1880	661	GPRS (4)	Right	/	25.7	26.0	1.072	0.218	0.2337	0.05
1880	661	GPRS (4)	Bottom	/	25.7	26.0	1.072	0.341	0.3656	-0.00
1909.8	810	GPRS (4)	Ground	/	25.6	26.0	1.096	0.673	0.7376	0.17
1850.2	512	GPRS (4)	Ground	Fig.7	25.8	26.0	1.047	0.716	0.7497	0.12

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.8:SAR Values (WCDMA Band II–Body)

Frequency		Mode (number of timeslots)	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
1880	9400	12.2K RMC	Phantom	/	23.26	23.7	1.107	0.693	0.7672	-0.09
1880	9400	12.2K RMC	Ground	/	23.26	23.7	1.107	0.919	1.0173	0.05
1880	9400	12.2K RMC	Left	/	23.26	23.7	1.107	0.118	0.1306	-0.17
1880	9400	12.2K RMC	Right	/	23.26	23.7	1.107	0.256	0.2834	0.04
1880	9400	12.2K RMC	Bottom	/	23.26	23.7	1.107	0.383	0.4240	0.03
1907.6	9538	12.2K RMC	Ground	Fig.8	22.73	23.7	1.250	0.863	1.0788	0.11
1852.4	9262	12.2K RMC	Ground	Fig.9	23.67	23.7	1.007	1.01	1.0171	0.11
First Retest										
1852.4	9262	12.2K RMC	Ground	Fig.10	23.67	23.7	1.007	1.000	1.007	0.07

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.9:SAR Values (WiFi2450–Body)

Frequency		Mode (number of timeslots)	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
2412	1	802.11 b	Phantom	/	13.21	13.5	1.069	0.0407	0.0435	0.05
2412	1	802.11 b	Ground	/	13.21	13.5	1.069	0.0795	0.0850	0.05
2412	1	802.11 b	Right	/	13.21	13.5	1.069	0.0148	0.0158	-0.15
2412	1	802.11 b	Top	/	13.21	13.5	1.069	0.0561	0.0600	0.08
2462	11	802.11 b	Ground	Fig.11	12.39	13.3	1.291	0.098	0.1260	0.03
2437	6	802.11 b	Ground	/	12.97	13.5	1.130	0.0728	0.0823	0.07

Note: SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Note: The distance between the EUT and the phantom bottom is 10mm.

SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.10: SAR Values for Head

Frequency		Side	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
Band	Fre									
848.8	251	Right	Touch	Fig.1	31.7	32.0	1.072	0.360	0.3859	-0.13
1909.8	810	Right	Touch	Fig.2	29.3	30.0	1.175	0.251	0.2949	-0.06
1907.6	9538	Right	Touch	Fig.3	22.73	23.7	1.250	0.782	0.9775	-0.01
2462	11	Left	Touch	Fig.4	12.39	13.5	1.291	0.219	0.2827	0.08

Table 14.11: SAR Values for Body worn

Frequency		Mode (number of timeslots)	Test Position	Figure No.	Measured average power(dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
MHz	Ch.									
848.8	251	GPRS (4)	Ground	Fig.5	28.0	28.5	1.122	1.010	1.133	0.04
848.8	251	GPRS (4)	Ground	Fig.6	28.0	28.5	1.122	1.040	1.167	-0.15
1850.2	512	GPRS (4)	Ground	Fig.7	25.8	26.0	1.047	0.716	0.7497	0.12
1907.6	9538	12.2K RMC	Ground	Fig.8	22.73	23.7	1.250	0.863	1.0788	0.11
1852.4	9262	12.2K RMC	Ground	Fig.9	23.67	23.7	1.007	1.01	1.0171	0.11
1852.4	9262	12.2K RMC	Ground	Fig.10	23.67	23.7	1.007	1.000	1.007	0.07
2462	11	802.11 b	Ground	Fig.11	12.39	13.3	1.291	0.098	0.1260	0.03

15. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SARprobe calibration point and tissue-equivalent medium used for the device measurements. When both headand body tissue-equivalent media are required for SAR measurements in a frequency band, the variabilitymeasurement procedures should be applied to the tissue medium with the highest measured SAR, usingthe highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeatedmeasurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the originaland first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeatedmeasurements is > 1.20 .

Table 15.1: SAR Measurement Variability for Head Value (1g)

Frequency		Side	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio
MHz	Ch.					
--	--	--	--	--	--	--

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

Table 15.2: SAR Measurement Variability for BodyValue (1g)

Frequency		Mode (number of timeslots)	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio
MHz	Ch.					
848.8	251	GPRS (4)	Ground	1.010	1.040	1.03
1852.4	9262	12.2K RMC	Ground	1.01	1.000	1.01

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

16. Measurement Uncertainty

Error Description	Unc. value, $\pm\%$	Prob. Dist.	Div.	c_i 1g	c_i 10g	Std.Unc . $\pm\%, 1g$	Std.Unc . $\pm\%, 10g$	V_i V_{eff}
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Std Uncertainty								
Expanded Std Uncertainty						$\pm 11.2\%$	$\pm 10.9\%$	387
Expanded Std Uncertainty						$\pm 22.4\%$	$\pm 21.8\%$	

17. Main Test Instrument

Table 17.1: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Jan 6, 2017	1 year
02	Power meter	NRVD	102257		
03	Power sensor	NRV-Z5	100241	May 12, 2016	1 year
			100644		
04	Signal Generator	E4438C	MY49072044	Jan 06, 2017	1 Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requested	
06	Coupler	778D	MY4825551	May 12, 2016	1 year
07	BTS	E5515C	MY50266468	Jan 06, 2017	1 year
08	E-field Probe	EX3DV4	3754	Jan 13, 2017	1 year
09	DAE	SPEAG DAE4	1244	Dec 12,2016	1 year
10	Dipole Validation Kit	SPEAG D835V2	4d112	Oct 22, 2015	2 year
		SPEAG D1900V2	5d134	Nov 4,2015	2 year
		SPEAG D2450V2	858	Oct 30,2015	2 year

ANNEX A. GRAPH RESULTS

GSM 850MHz Head Right Check High

Date/Time: 2017/4/11

Electronics: DAE4 Sn1244

Medium: Head 850MHz

Medium parameters used: $f = 849$ MHz; $\sigma = 0.918$ S/m; $\epsilon_r = 41.364$; $\rho = 1000$ kg/m³

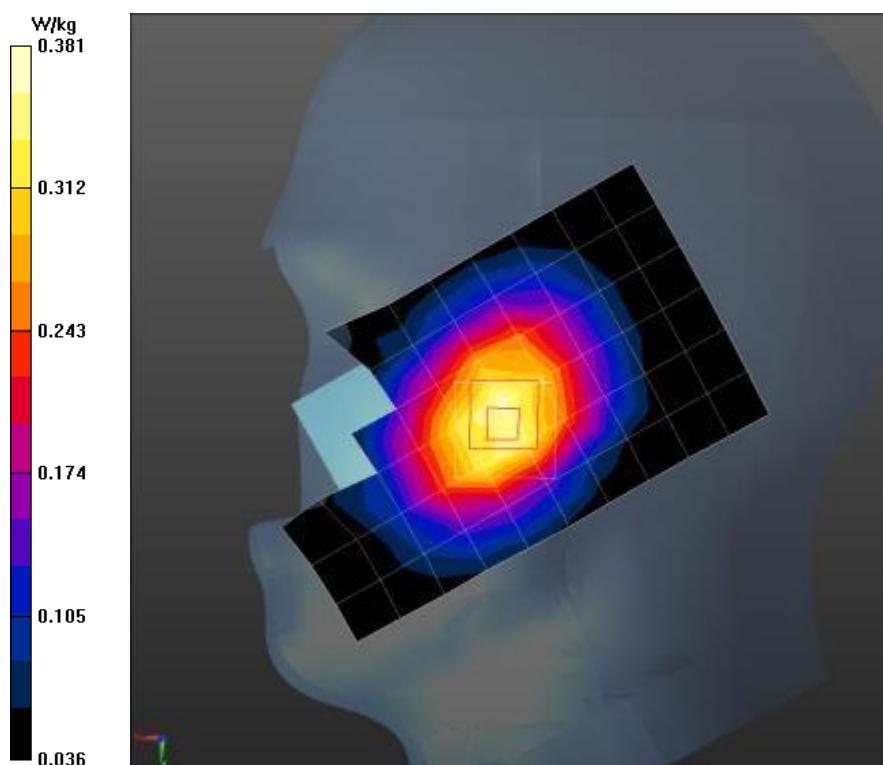
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GSM 850MHz; Frequency: 848.6 MHz; Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3754ConvF(9.41, 9.41, 9.41)

High Cheek Right GSM 850MHz/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.367 W/kg


High Cheek Right GSM 850MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.544 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.360 W/kg; SAR(10 g) = 0.269 W/kg

Maximum value of SAR (measured) = 0.381 W/kg

Fig.1 GSM 850MHz Right Cheek High

GSM 1900MHz Head Right Check High

Date/Time: 2017/4/10

Electronics: DAE4 Sn1244

Medium: Head 1900MHz

Medium parameters used: $f = 1910$ MHz; $\sigma = 1.403$ S/m; $\epsilon_r = 39.81$; $\rho = 1000$ kg/m³

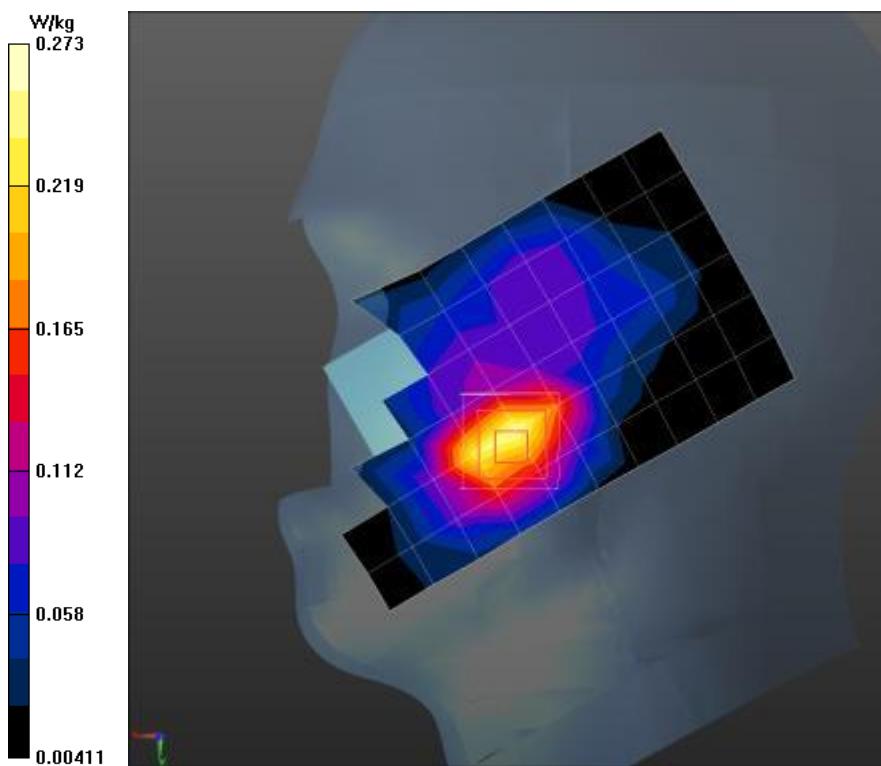
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GSM 1900MHz; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3754ConvF(7.85, 7.85, 7.85)

High Cheek Right GSM 1900MHz/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.261 W/kg


High Cheek Right GSM 1900MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.197 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.251 W/kg; SAR(10 g) = 0.144 W/kg

Maximum value of SAR (measured) = 0.273 W/kg

Fig.2GSM 1900MHz Right Cheek High

WCDMA Band 2 Head Right Check High

Date/Time: 2017/4/10

Electronics: DAE4 Sn1244

Medium: Head 1900MHz

Medium parameters used: $f = 1908$ MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 39.815$; $\rho = 1000$ kg/m³

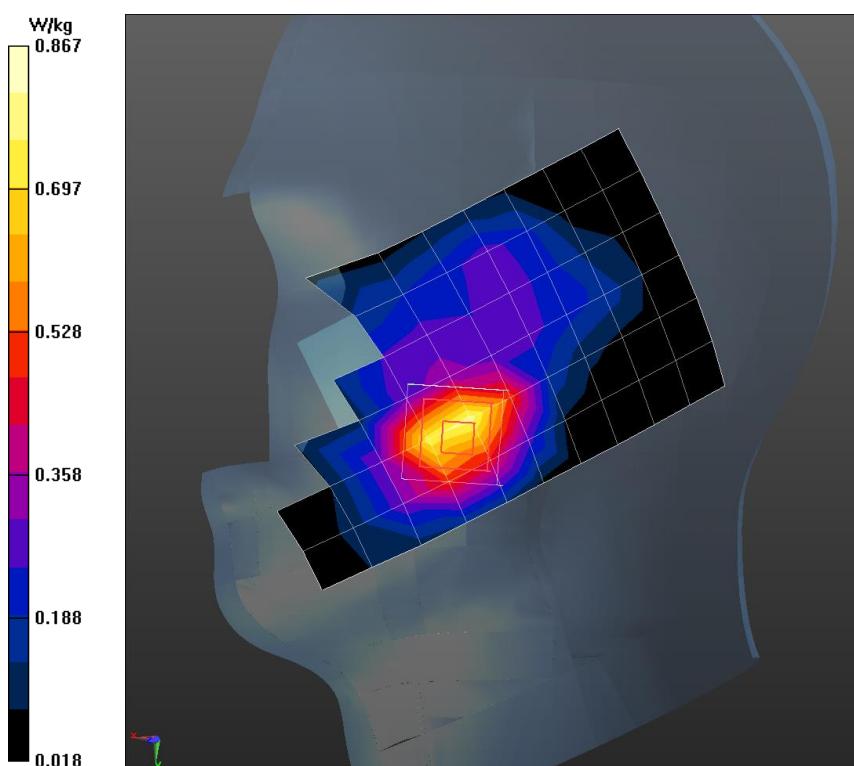
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: WCDMA Band 2; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.85, 7.85, 7.85)

High Cheek Right WCDMA Band II/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.787 W/kg


High Cheek Right WCDMA Band II/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.896 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.451 W/kg

Maximum value of SAR (measured) = 0.867 W/kg

Fig.3WCDMA Band 2Right Cheek High

WiFi 802.11b Head Left Check High

Date/Time: 2017/4/13

Electronics: DAE4 Sn1244

Medium: Head 2450MHz

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.853$ S/m; $\epsilon_r = 39.466$; $\rho = 1000$ kg/m³

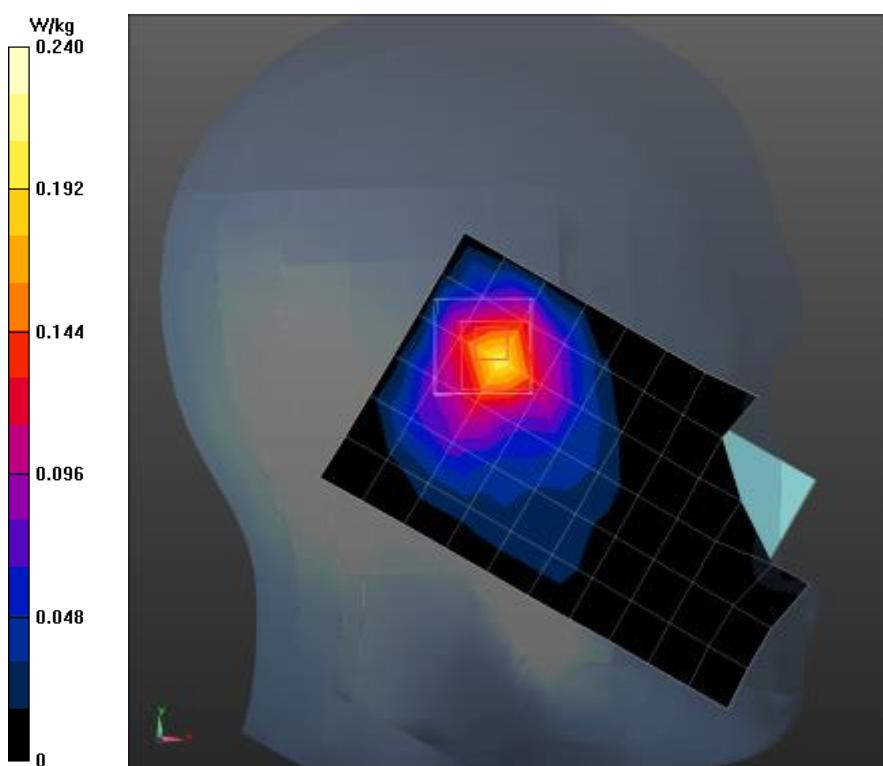
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3754ConvF(7.26, 7.26, 7.26)

CH11 Cheek Left WiFi 802.11b/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.209 W/kg


CH11 Cheek Left WiFi 802.11b/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.490 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.519 W/kg

SAR(1 g) = 0.219 W/kg; SAR(10 g) = 0.104 W/kg

Maximum value of SAR (measured) = 0.240 W/kg

Fig.4 WiFi 802.11b Left Cheek High

GPRS 850MHz4TS Body Toward Ground High

Date/Time: 2017/4/12

Electronics: DAE4 Sn1244

Medium: Body 850MHz

Medium parameters used: $f = 849$ MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 53.711$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GRPS 850MHz 4TS; Frequency: 848.6 MHz; Duty Cycle: 1:2

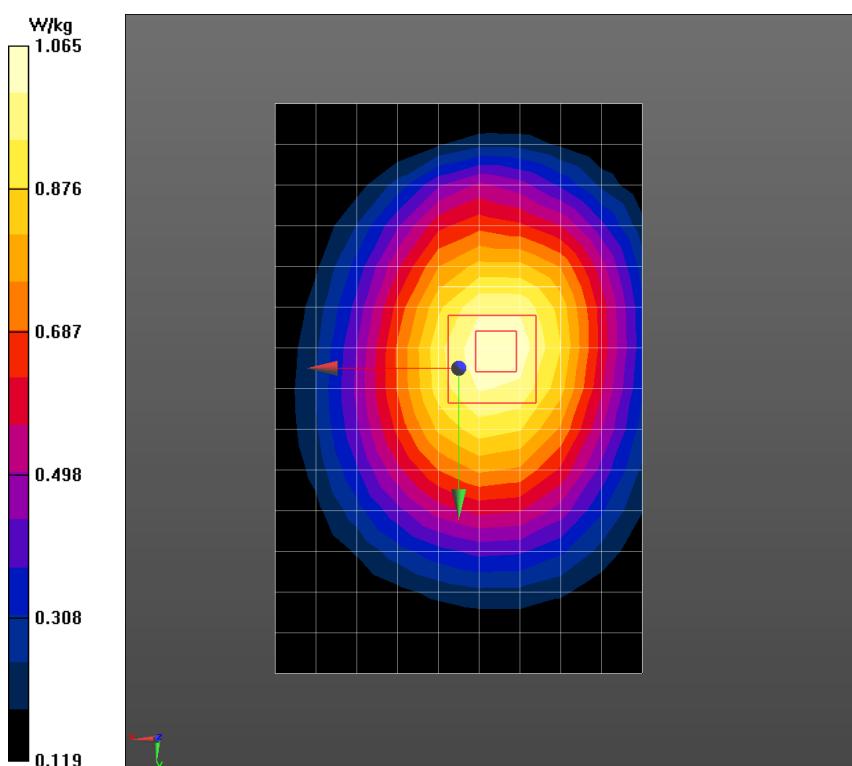
Probe: EX3DV4 - SN3754ConvF(9.66, 9.66, 9.66)

High Toward Ground GPRS 850MHz 4TS/Area Scan (10x15x1): Measurement grid:

$dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 1.05 W/kg

High Toward Ground GPRS 850MHz 4TS/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


$dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 31.91 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.752 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

Fig.5 GPRS 850MHz 4TS Ground Mode High 10mm

GPRS 850MHz4TS Body Toward Ground High

Date/Time: 2017/4/12

Electronics: DAE4 Sn1244

Medium: Body 850MHz

Medium parameters used: $f = 849$ MHz; $\sigma = 0.991$ S/m; $\epsilon_r = 53.711$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

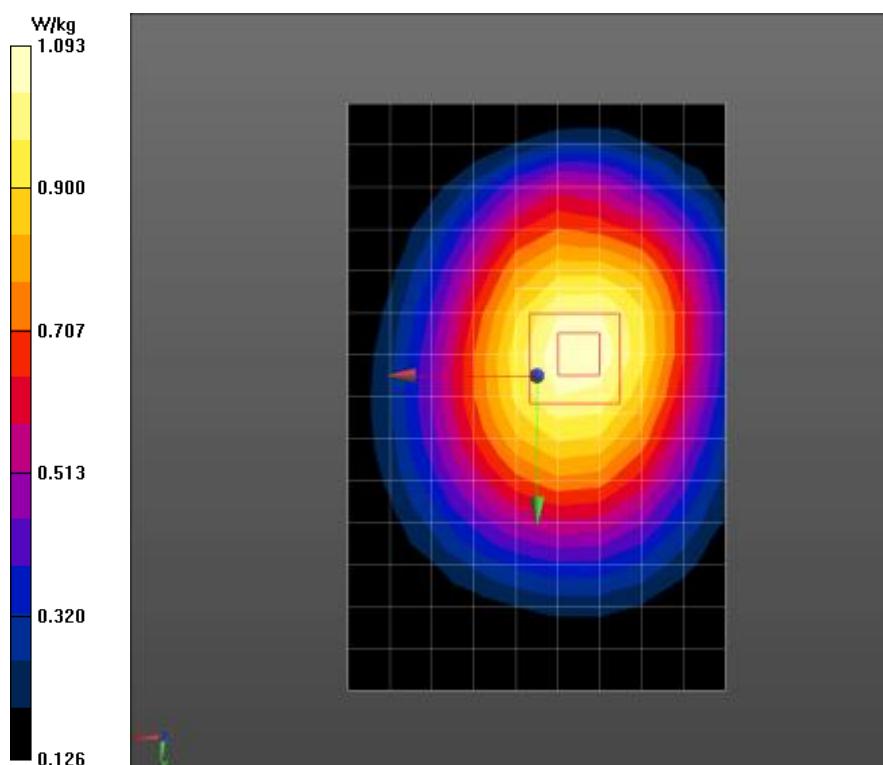
Communication System: GPRS 850MHz 4TS; Frequency: 848.6 MHz; Duty Cycle: 1:2.0

Probe: EX3DV4 - SN3754ConvF(9.66, 9.66, 9.66)

High Toward Ground GPRS 850MHz 4TS Retest/Area Scan (10x15x1): Measurement grid: $dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 1.08 W/kg

High Toward Ground GPRS 850MHz 4TS Retest/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 32.69 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.773 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

Fig.6 GPRS 850MHz 4TS Ground Mode High 10mm

GPRS 1900MHz4TS Body Toward Ground Low

Date/Time: 2017/4/9

Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used (extrapolated): $f = 1850.2$ MHz; $\sigma = 1.447$ S/m; $\epsilon_r = 52.098$; $\rho = 1000$ kg/m³

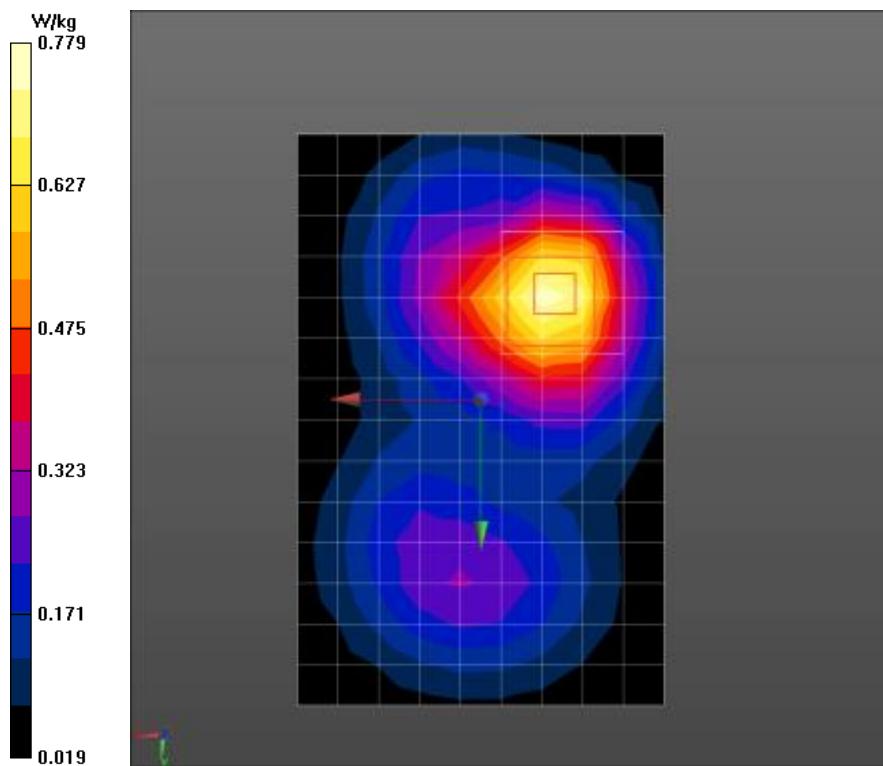
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GPRS 1900MHz 4TS; Frequency: 1850.2 MHz; Duty Cycle: 1:2.0

Probe: EX3DV4 - SN3754ConvF(7.60, 7.60, 7.60)

Low Toward Ground GPRS 1900MHz 4TS/Area Scan (10x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.764 W/kg


Low Toward Ground GPRS 1900MHz 4TS/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.83 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.716 W/kg; SAR(10 g) = 0.425 W/kg

Maximum value of SAR (measured) = 0.779 W/kg

Fig.7 GPRS 1900MHz 4TS Ground Mode Low 10mm

WCDMA Band2 Body Toward Ground High

Date/Time: 2017/4/9

Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used: $f = 1908$ MHz; $\sigma = 1.512$ S/m; $\epsilon_r = 51.926$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: WCDMA Band 2; Frequency: 1907.6 MHz; Duty Cycle: 1:1

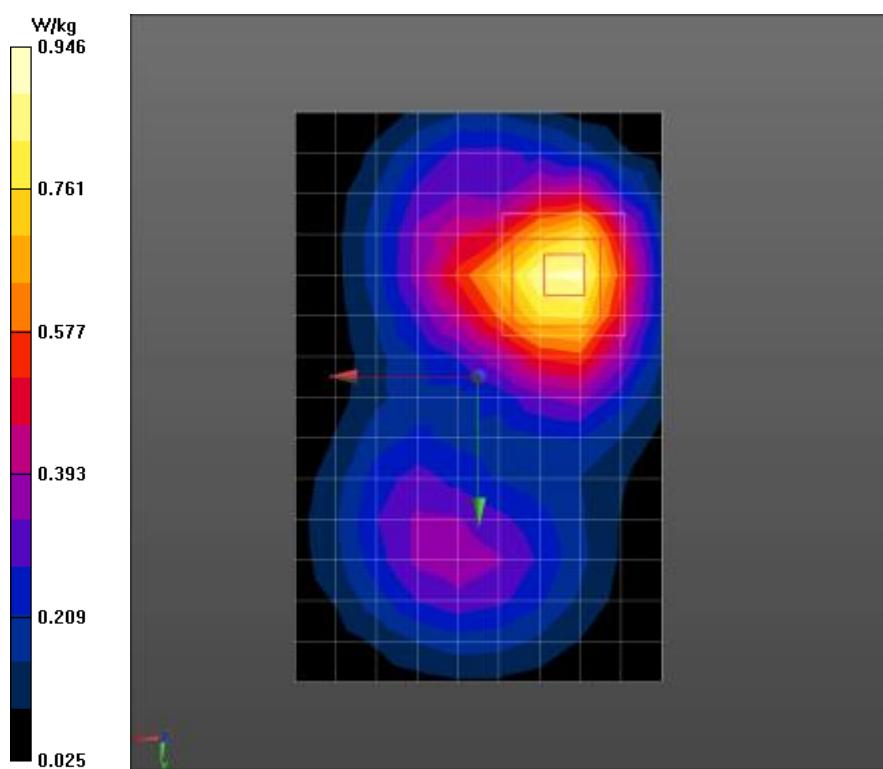
Probe: EX3DV4 - SN3754ConvF(7.60, 7.60, 7.60)

High Toward Ground WCDMA Band II/Area Scan (10x15x1): Measurement grid:

$dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 0.906 W/kg

High Toward Ground WCDMA Band II/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


$dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 12.94 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.863 W/kg; SAR(10 g) = 0.510 W/kg

Maximum value of SAR (measured) = 0.946 W/kg

Fig.8 WCDMA Band 2Ground Mode High 10mm

WCDMA Band2 Body Toward Ground Low

Date/Time: 2017/4/9

Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used (interpolated): $f = 1852.4$ MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 52.091$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

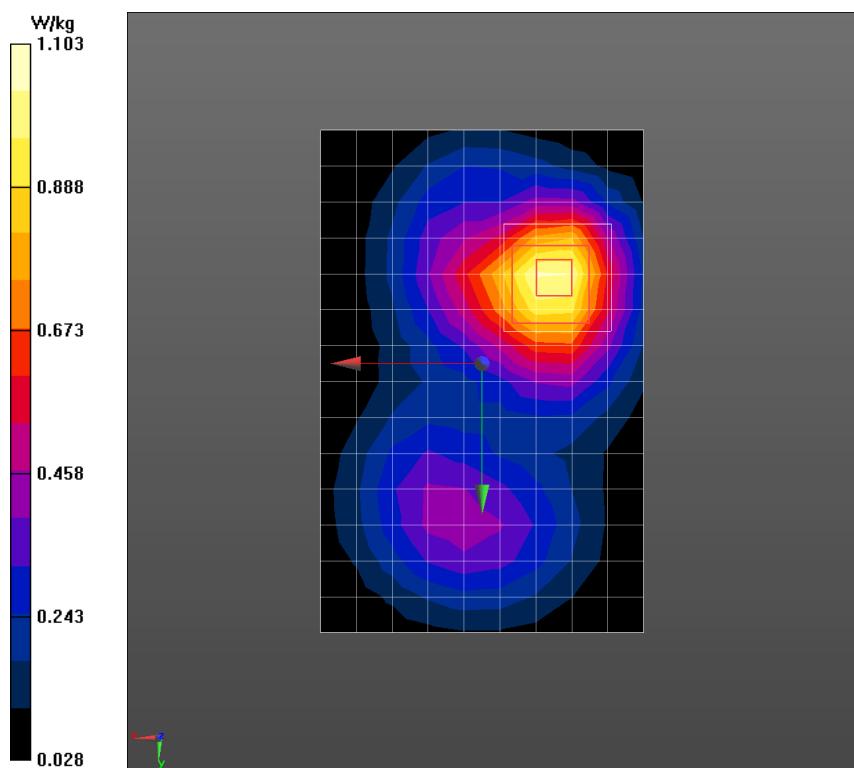
Probe: EX3DV4 - SN3754ConvF(7.60, 7.60, 7.60)

Low Toward Ground WCDMA Band II/Area Scan (10x15x1): Measurement grid:

$dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 1.04 W/kg

Low Toward Ground WCDMA Band II/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


$dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 14.67 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.598 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

Fig.9 WCDMA Band 2Ground Mode High 10mm

WCDMA Band2 Body Toward Ground Low

Date/Time: 2017/4/9

Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used (interpolated): $f = 1852.4$ MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 52.091$; $\rho = 1000$ kg/m³

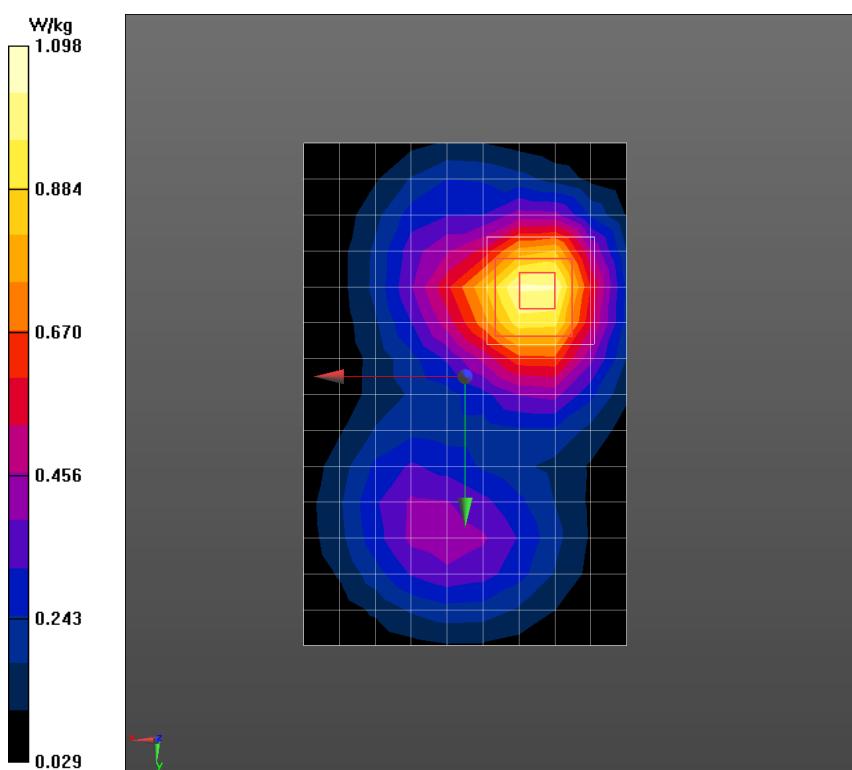
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.60, 7.60, 7.60)

Low Toward Ground WCDMA Band II Retest/Area Scan (10x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.04 W/kg


Low Toward Ground WCDMA Band II Retest/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.73 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.598 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

Fig.10 WCDMA Band 2Ground Mode High 10mm

WiFi 802.11b Body Toward Ground High

Date/Time: 2017/4/13

Electronics: DAE4 Sn1244

Medium: Body 2450MHz

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.963$ S/m; $\epsilon_r = 52.285$; $\rho = 1000$ kg/m³

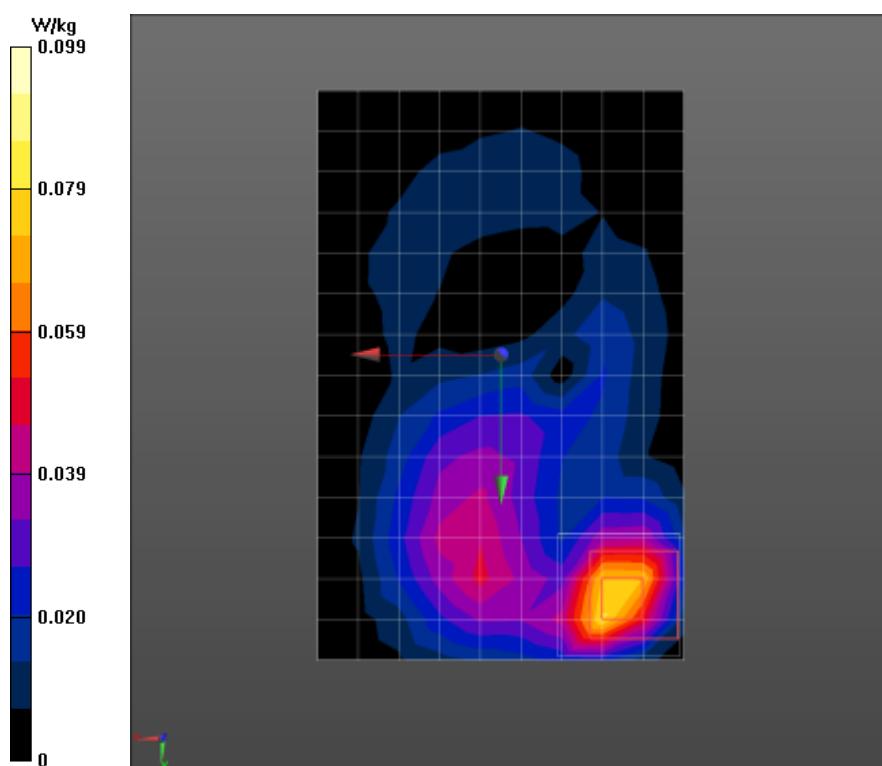
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3754ConvF(7.22, 7.22, 7.22);

CH11 Toward Ground WiFi 802.11b/Area Scan (10x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0801 W/kg


CH11 Toward Ground WiFi 802.11b/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.134 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.0987 W/kg

Fig.11 WiFi 802.11bGround Mode High 10mm

ANNEX B. SYSTEM VALIDATION RESULTS

Head 835MHz

Date/Time: 2017/4/11

Electronics: DAE4 Sn1244

Medium: Head 850MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.702$; $\rho = 1000$ kg/m³

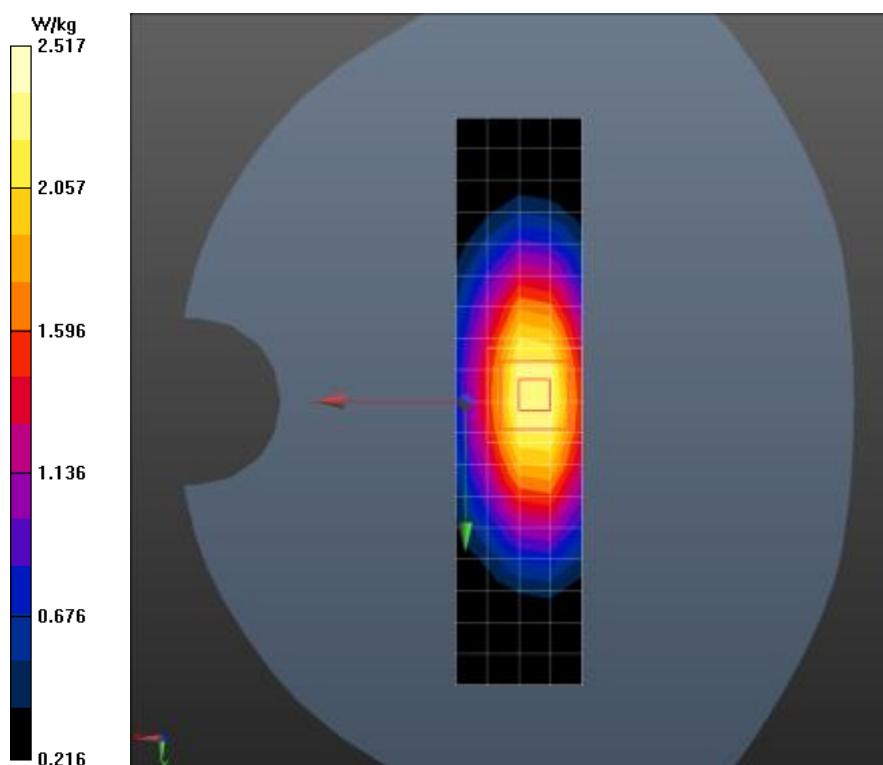
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3754ConvF(9.41, 9.41, 9.41)

System Check Dipole 835 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.36 W/kg


System Check Dipole 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.22 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.52 W/kg

Body 835MHz

Date/Time: 2017/4/12

Electronics: DAE4 Sn1244

Medium: Body 850MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 53.68$; $\rho = 1000$ kg/m³

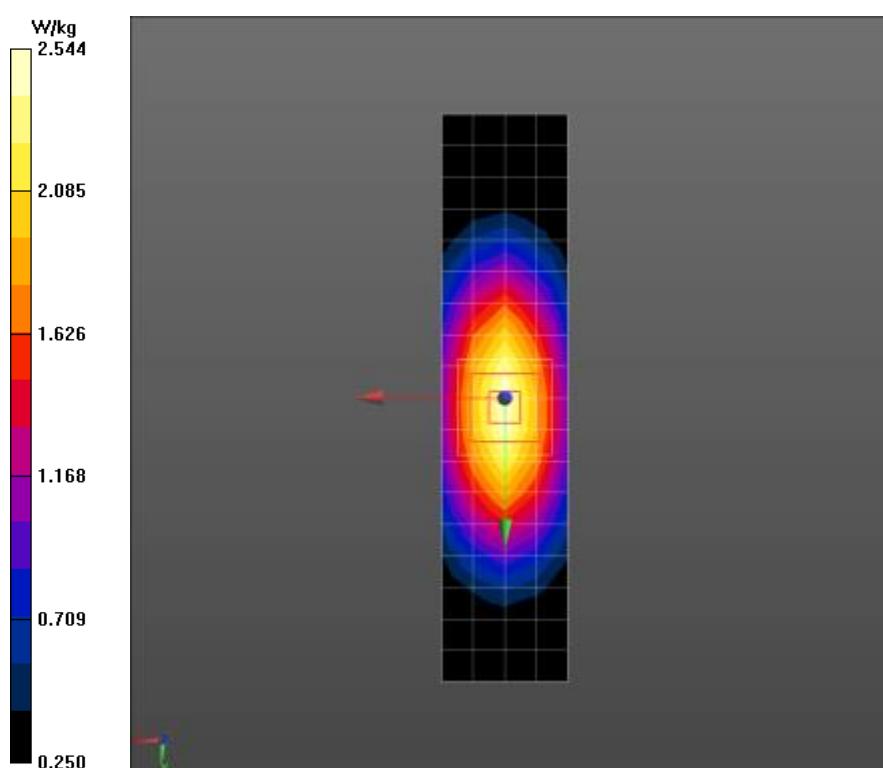
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(9.66, 9.66, 9.66)

System Check Dipole 835 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.55 W/kg


System Check Dipole 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.42 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

Head1900MHz

Date/Time: 2017/4/10

Electronics: DAE4 Sn1244

Medium: Head 1900MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.394$ S/m; $\epsilon_r = 39.834$; $\rho = 1000$ kg/m³

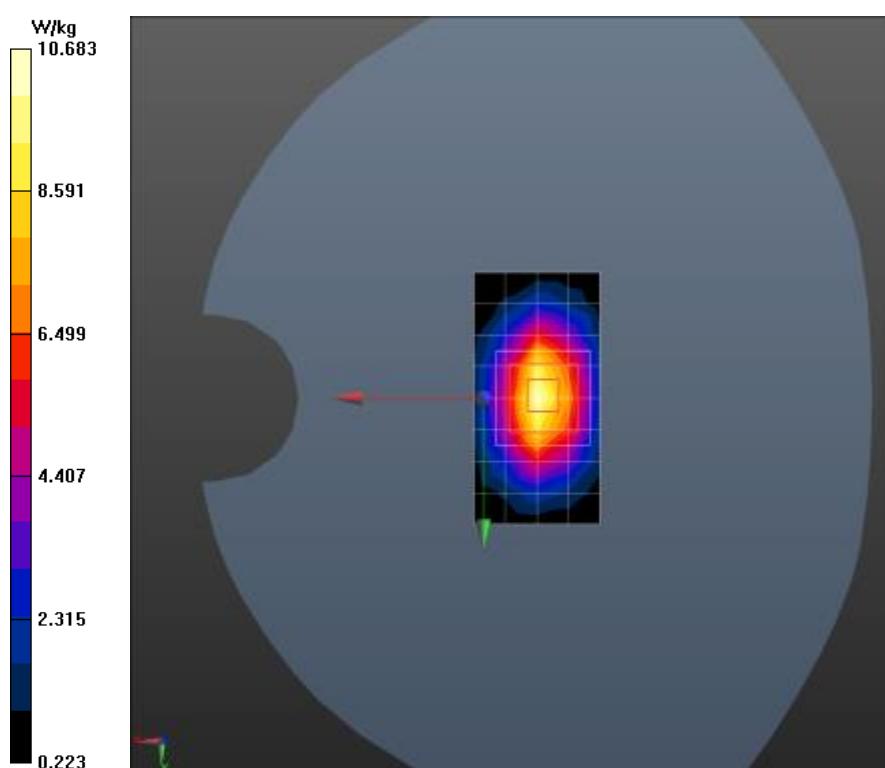
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.85, 7.85, 7.85)

System Check Dipole 1900 MHz/Area Scan (5x9x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.5 W/kg


System Check Dipole 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.77 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.48 W/kg; SAR(10 g) = 4.98 W/kg

Maximum value of SAR (measured) = 10.7 W/kg

Body1900MHz

Date/Time: 2017/4/9

Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.502$ S/m; $\epsilon_r = 51.944$; $\rho = 1000$ kg/m³

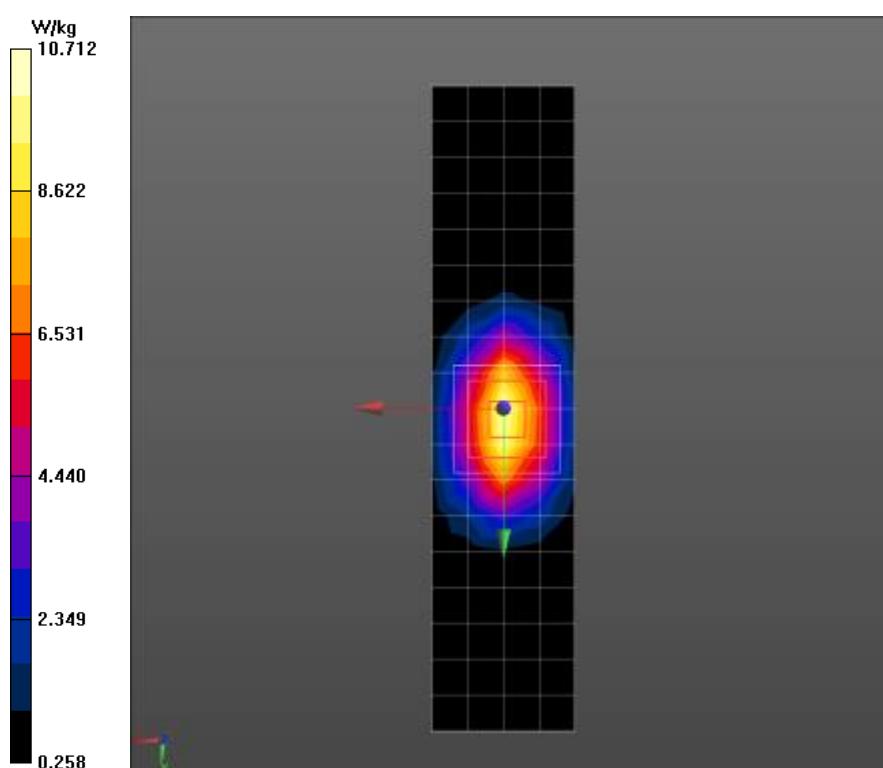
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.60, 7.60, 7.60)

System Check Dipole 1900 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.4 W/kg


System Check Dipole 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.61 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.48 W/kg; SAR(10 g) = 5.06 W/kg

Maximum value of SAR (measured) = 10.7 W/kg

Head 2450MHz

Date/Time: 2017/4/13

Electronics: DAE4 Sn1244

Medium: Head 2450MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.839$ S/m; $\epsilon_r = 39.515$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3754ConvF(7.26, 7.26, 7.26)

System Check Dipole 24500 MHz/Area Scan (5x19x1): Measurement grid: $dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 13.1 W/kg

System Check Dipole 24500 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 84.74 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.31 W/kg

Maximum value of SAR (measured) = 15.8 W/kg

Body 2450MHz

Date/Time: 2017/4/13

Electronics: DAE4 Sn1244

Medium: Body 2450MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.945$ S/m; $\epsilon_r = 52.374$; $\rho = 1000$ kg/m³

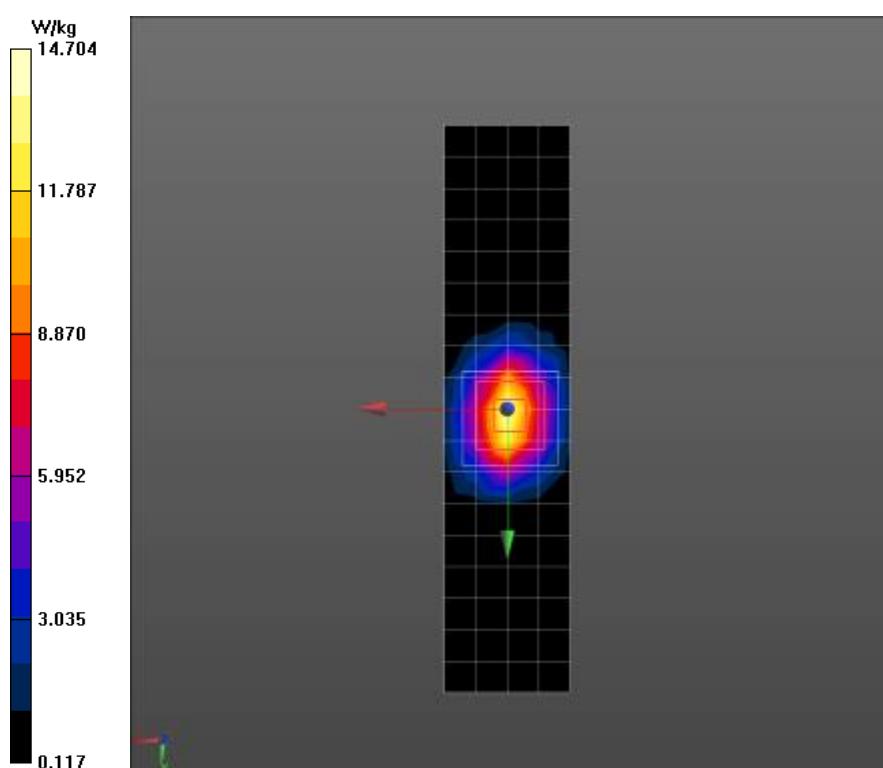
Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3754ConvF(7.22, 7.22, 7.22);

System Check Dipole 24500 MHz/Area Scan (5x19x1): Measurement grid: $dx=10$ mm, $dy=10$ mm

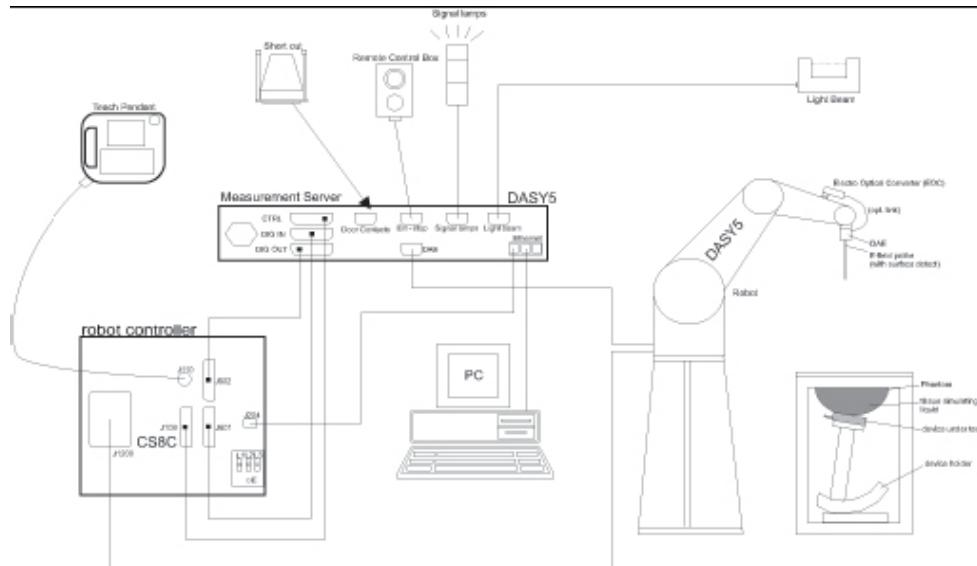
Maximum value of SAR (measured) = 14.5 W/kg


System Check Dipole 24500 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 90.31 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.02 W/kg


Maximum value of SAR (measured) = 14.7 W/kg

ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as

- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd order curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency

Range: 700MHz — 2.6GHz(ES3DV3)

Calibration: In head and body simulating tissue at
Frequencies from 835 up to 2450MHz

Linearity: Picture C.2 Near-field Probe

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)

Tip-Center: 1 mm (2.0mm for ES3DV3)

Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for

commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

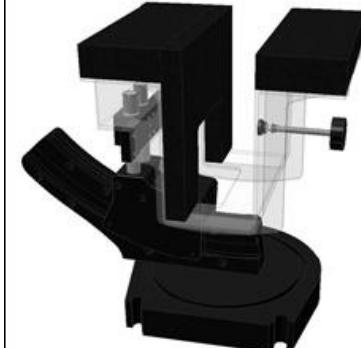
Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with

the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

C.4.5. Phantom

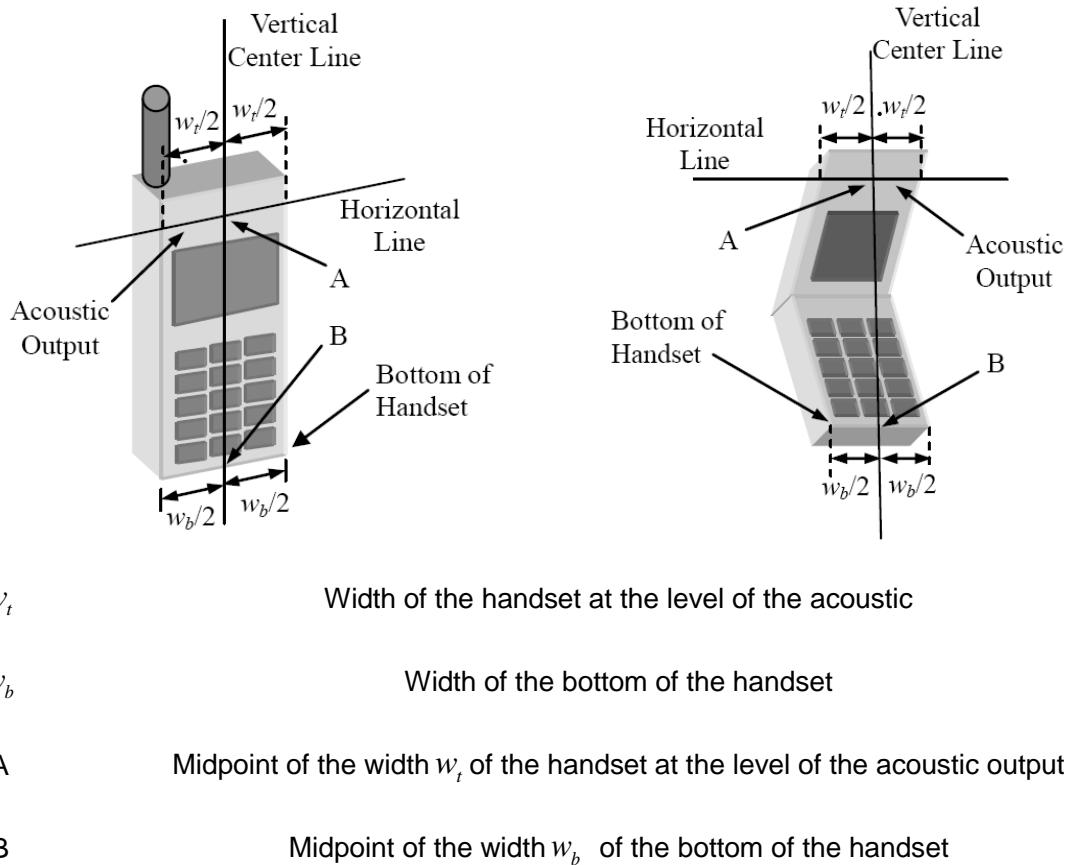
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0.2 mm

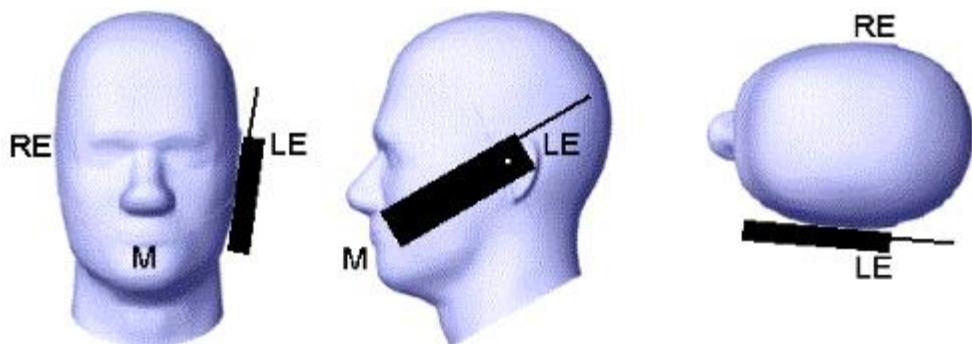
Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

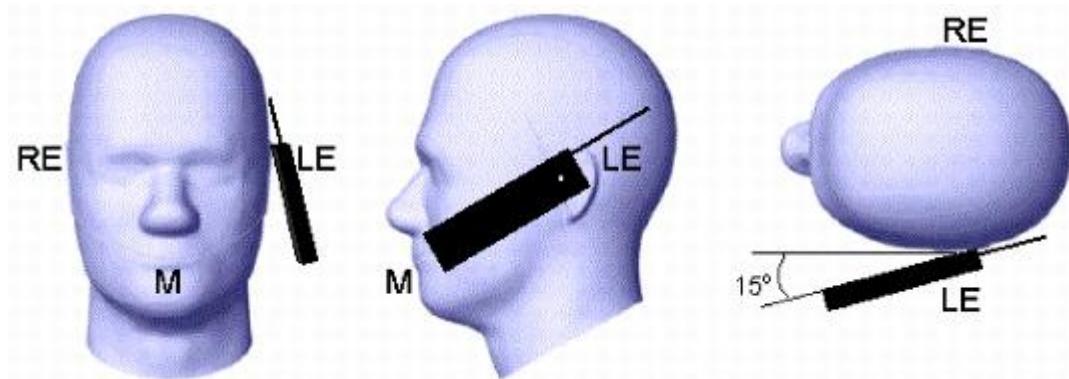
Available: Special



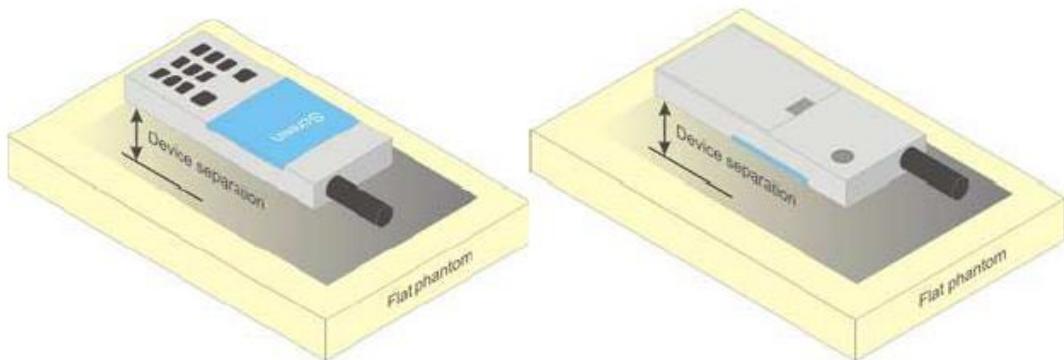
Picture C.9: SAM Twin Phantom


ANNEX D. Position of the wireless device in relation to the phantom

D.1. General considerations


This standard specifies two handset test positions against the head phantom – the “cheek” position and the “tilt” position.

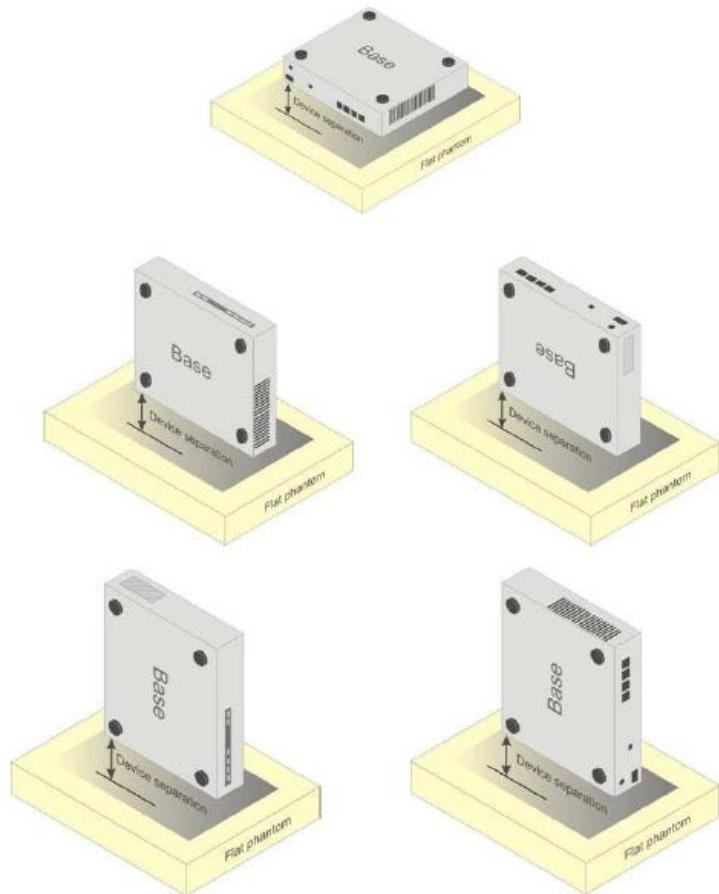
Picture D.1-a Typical “fixed” case handset Picture D.1-b Typical “clam-shell” case handset


Picture D.2 Cheek position of the wireless device on the left side of SAM

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.



Picture D.4 Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos**Picture D.6 DSY5 system Set-up****Note:**

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Frequency (MHz)	835 Head	835 Body	1900 Head	1900 Body	2450 Head	2450 Body
Ingredients (% by weight)						
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	\	\	\	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	\	\	\	\
Cellulose	1.0	1.0	\	\	\	\
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22
Dielectric Parameters Target Value	$\epsilon=41.5$ $\sigma=0.90$	$\epsilon=55.2$ $\sigma=0.97$	$\epsilon=40.0$ $\sigma=1.40$	$\epsilon=53.3$ $\sigma=1.52$	$\epsilon=39.2$ $\sigma=1.80$	$\epsilon=52.7$ $\sigma=1.95$

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed.

When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation Part 1

System No.	Probe SN.	Liquid name	Validation date	Frequency point	Permittivity ϵ	Conductivity σ (S/m)
1	3754	Head 835MHz	2017-04-11	835MHz	41.70	0.906
2	3754	Head 1900MHz	2017-04-10	1900MHz	29.83	1.394
3	3754	Head 2450MHz	2017-04-13	2450MHz	39.52	1.839
6	3754	Body 835MHz	2017-04-12	835MHz	53.68	0.970
7	3754	Body 1900MHz	2017-04-09	1900MHz	51.94	1.502
8	3754	Body 2450MHz	2017-04-13	2450MHz	52.37	1.945

Table F.2: System Validation Part 2

CW Validation	Sensitivity	PASS	PASS
	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
Mod Validation	MOD.type	GMSK	GMSK
	MOD.type	OFDM	OFDM
	Duty factor	PASS	PASS
	PAR	PASS	PASS

ANNEX G. Probe and DAE Calibration Certificate

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779
info@speag.com, http://www.speag.com

s p e a g

1244

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MΩ is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client TMC - SH (Auden)

Certificate No.: DAE4-1244_Dec16

CALIBRATION CERTIFICATE

Object: DAE4 - SD 000 D04 BM - SN: 1244

Calibration procedure(s): QA CAL-06.v29
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: December 12, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	09-Sep-16 (No:19065)	Sep-17
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 063 AA 1001	06-Jan-16 (in house check)	In house check: Jan-17
Calibrator Box V2.1	SE UMS 006 AA 1002	06-Jan-16 (in house check)	In house check: Jan-17

Calibrated by:	Name: Dominique Staffen	Function: Technician	Signature:
Approved by:	Fin Barnhart	Deputy Technical Manager	

Issued: December 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
- *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
- *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
- *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
- *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
- *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
- *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$403.872 \pm 0.02\% (k=2)$	$403.613 \pm 0.02\% (k=2)$	$404.527 \pm 0.02\% (k=2)$
Low Range	$3.95409 \pm 1.50\% (k=2)$	$3.97148 \pm 1.50\% (k=2)$	$3.98215 \pm 1.50\% (k=2)$

Connector Angle

Connector Angle to be used in DASY system	$22.0^{\circ} \pm 1^{\circ}$
---	------------------------------

Appendix (Additional assessments outside the scope of SCS0108)**1. DC Voltage Linearity**

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.09	-0.83	-0.00
Channel X + Input	20004.47	2.58	0.01
Channel X - Input	-19997.82	2.60	-0.01
Channel Y + Input	199993.65	-2.29	-0.00
Channel Y + Input	20001.27	-0.51	-0.00
Channel Y - Input	-19997.58	2.97	-0.01
Channel Z + Input	199992.15	-3.40	-0.00
Channel Z + Input	19999.95	-1.78	-0.01
Channel Z - Input	-20002.51	-1.92	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2002.00	0.39	0.02
Channel X + Input	202.04	0.13	0.07
Channel X - Input	-197.82	0.13	-0.06
Channel Y + Input	2000.90	-0.59	-0.03
Channel Y + Input	202.65	0.73	0.36
Channel Y - Input	-197.74	0.13	-0.06
Channel Z + Input	2001.79	0.42	0.02
Channel Z + Input	200.75	-1.05	-0.52
Channel Z - Input	-199.15	-1.06	0.53

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-3.59	-5.16
	-200	6.94	5.14
Channel Y	200	-3.41	-3.57
	-200	2.60	2.96
Channel Z	200	-8.21	-8.18
	-200	5.71	5.56

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.06	-4.10
Channel Y	200	7.19	-	1.88
Channel Z	200	9.77	4.29	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16885	16322
Channel Y	16457	16417
Channel Z	15874	17196

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.50	-1.93	1.16	0.62
Channel Y	0.32	-1.78	2.06	0.72
Channel Z	-2.19	-4.30	-0.47	0.66

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

In Collaboration with:

s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctcl@chinatcl.com [Http://www.chinatcl.co](http://www.chinatcl.co)

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

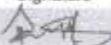
ECTT

Certificate No: Z17-97010

CALIBRATION CERTIFICATE

Object EX3DV4 - SN.3754

Calibration Procedure(s) FD-Z11-004-01
Calibration Procedures for Dosimetric E-field Probes


Calibration date: January 13, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL, No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG, No.EX3-7433_Sep16)	Sep-17
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17

Calibrated by:	Name	Function	Signature
	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: January 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97010

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cmj@chinattl.com Http://www.chinattl.com

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\theta=0$ (f<900MHz in TEM-cell; f>1800MHz: waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORM_{x,y,z}*frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}**: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A,B,C** are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z}*ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle**: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctt@chinattl.com <http://www.chinattl.cn>

Probe EX3DV4

SN: 3754

Calibrated: January 13, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ettl@chinattl.com <http://www.chinattl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.48	0.41	0.59	±10.8%
DCP(mV) ^B	102.4	100.9	102.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.9	±2.0%
		Y	0.0	0.0	1.0		175.6	
		Z	0.0	0.0	1.0		221.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.co](http://www.chinattl.co)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754**Calibration Parameter Determined in Head Tissue Simulating Media**

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^D (mm)	Unct. (k=2)
750	41.9	0.89	9.41	9.41	9.41	0.30	0.70	±12%
900	41.5	0.97	9.10	9.10	9.10	0.13	1.52	±12%
1750	40.1	1.37	8.08	8.08	8.08	0.17	1.23	±12%
1900	40.0	1.40	7.85	7.85	7.85	0.24	1.05	±12%
2100	39.8	1.49	7.73	7.73	7.73	0.23	1.12	±12%
2300	39.5	1.67	7.58	7.58	7.58	0.56	0.72	±12%
2450	39.2	1.80	7.26	7.26	7.26	0.55	0.73	±12%
2600	39.0	1.96	7.05	7.05	7.05	0.60	0.70	±12%
5250	35.9	4.71	5.20	5.20	5.20	0.45	1.30	±13%
5600	35.5	5.07	4.62	4.62	4.62	0.45	1.35	±13%
5750	35.4	5.22	4.73	4.73	4.73	0.45	1.55	±13%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz;

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

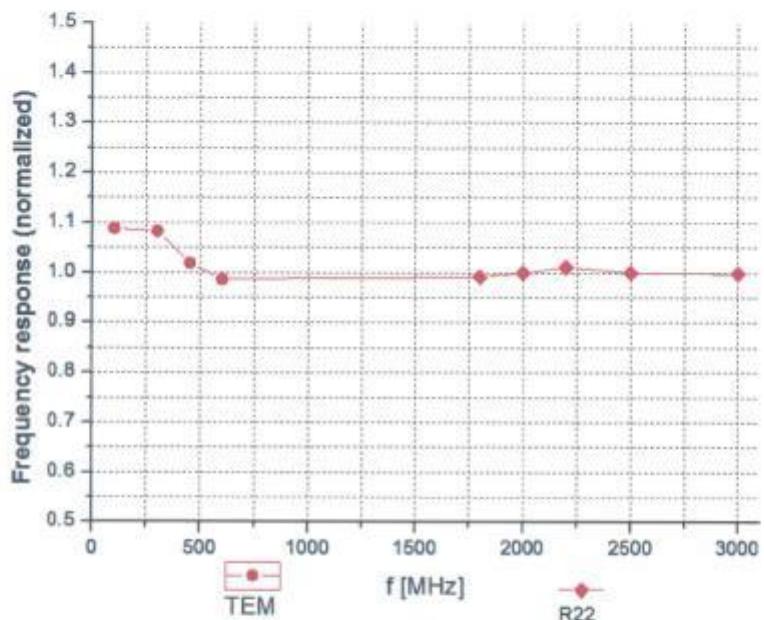
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctli@chinattl.com [Http://www.chinattl.co](http://www.chinattl.co)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754**Calibration Parameter Determined in Body Tissue Simulating Media**

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.66	9.66	9.66	0.40	0.85	±12%
900	55.0	1.05	9.31	9.31	9.31	0.23	1.17	±12%
1750	53.4	1.49	7.80	7.80	7.80	0.22	1.14	±12%
1900	53.3	1.52	7.60	7.60	7.60	0.20	1.22	±12%
2100	53.2	1.62	7.96	7.96	7.96	0.23	1.24	±12%
2300	52.9	1.81	7.43	7.43	7.43	0.41	1.01	±12%
2450	52.7	1.95	7.22	7.22	7.22	0.40	1.04	±12%
2600	52.5	2.16	7.15	7.15	7.15	0.45	0.92	±12%
5250	48.9	5.36	4.79	4.79	4.79	0.50	1.55	±13%
5600	48.5	5.77	4.09	4.09	4.09	0.55	1.50	±13%
5750	48.3	5.94	4.55	4.55	4.55	0.58	1.70	±13%

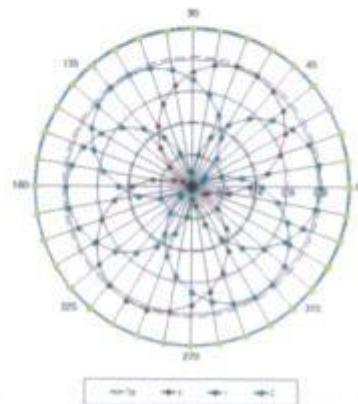
^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

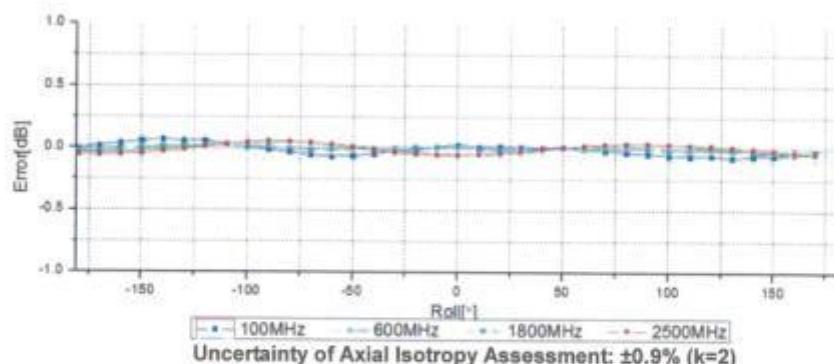
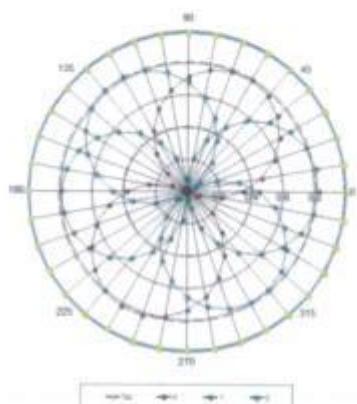

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM



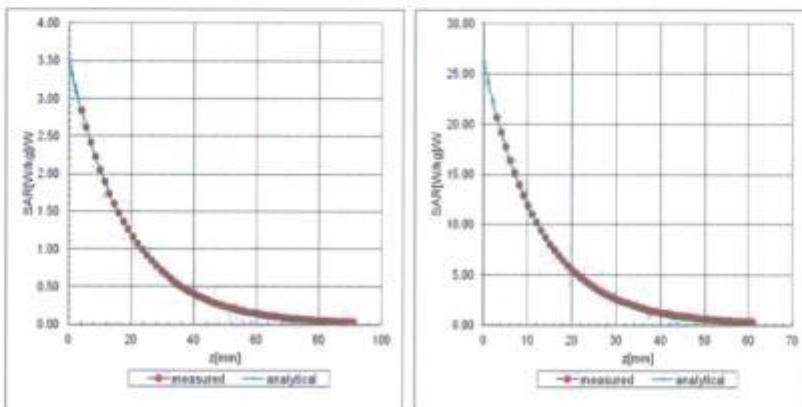
f=1800 MHz, R22

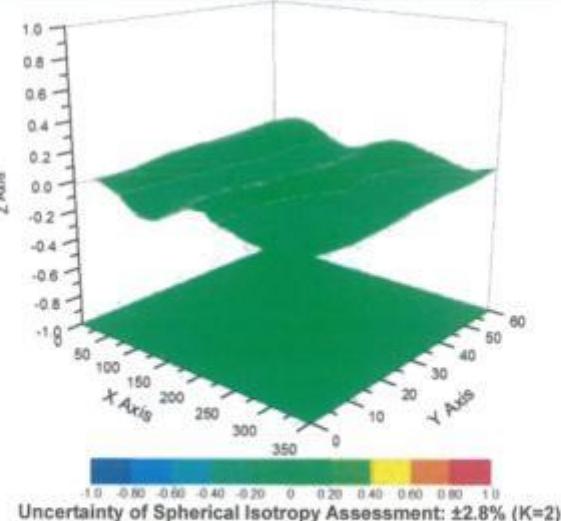
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.9\%$ ($k=2$)

Certificate No: Z17-97010


Page 9 of 11


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3754**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	47.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctfl@chinatfl.com Http://www.chinatfl.cn

CALIBRATION
No. L0570

Client

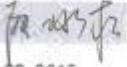
ECIT

Certificate No: Z15-97165

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d112

Calibration Procedure(s) FD-Z11-2-003-01
Calibration Procedures for dipole validation kits


Calibration date: October 22, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG, No.EX3-3617_Aug15)	Aug -16
DAE4	SN 777	26-Aug-15(SPEAG, No.DAE4-777_Aug15)	Aug -16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	02-Feb-15 (CTTL, No.J15X00729)	Feb-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	QI Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: October 26, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97165

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttli@chinatti.com <http://www.chinatti.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinatll.com Http://www.chinatll.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	42.2 \pm 6 %	0.91 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.22 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.03 mW /g \pm 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	55.1 \pm 6 %	0.96 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.57 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.56 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.29 mW /g \pm 20.4 % (k=2)

Certificate No: Z15-97165

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1Ω- 4.20jΩ
Return Loss	- 27.3dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2Ω- 4.79jΩ
Return Loss	- 23.9dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.502 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Address: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 10.22.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

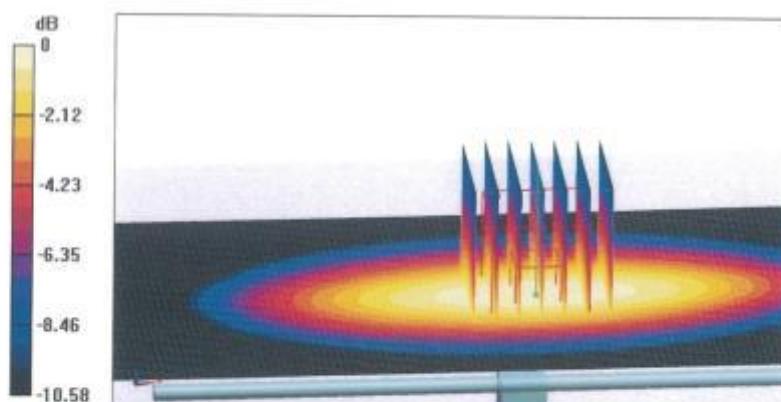
Medium parameters used: $f = 835$ MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 42.15$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

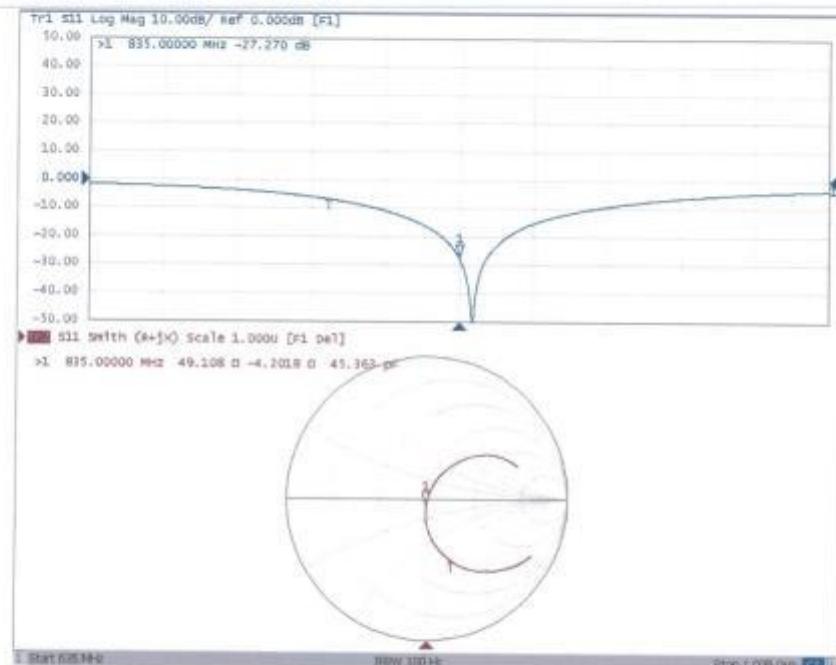
DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(9.56, 9.56, 9.56); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.15 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.46 W/kg


SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.93 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

Certificate No: Z15-97165

Page 6 of 8

Address: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.22.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

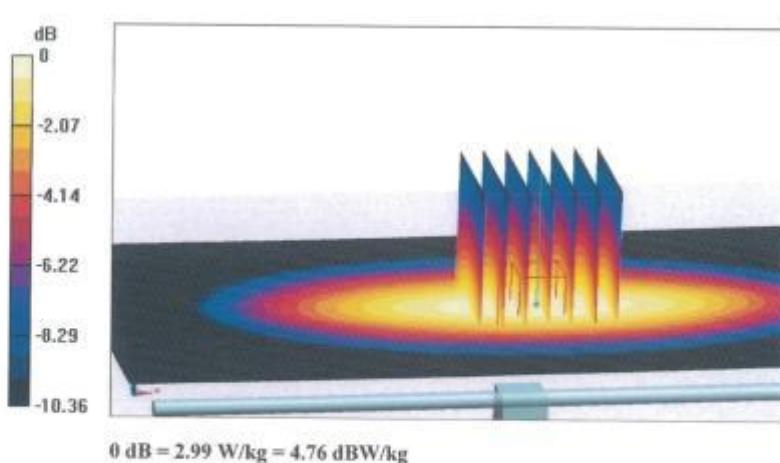
Medium parameters used: $\epsilon = 835 \text{ MHz}$; $\sigma = 0.958 \text{ S/m}$; $\epsilon_r = 55.11$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(9.71,9.71, 9.71); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

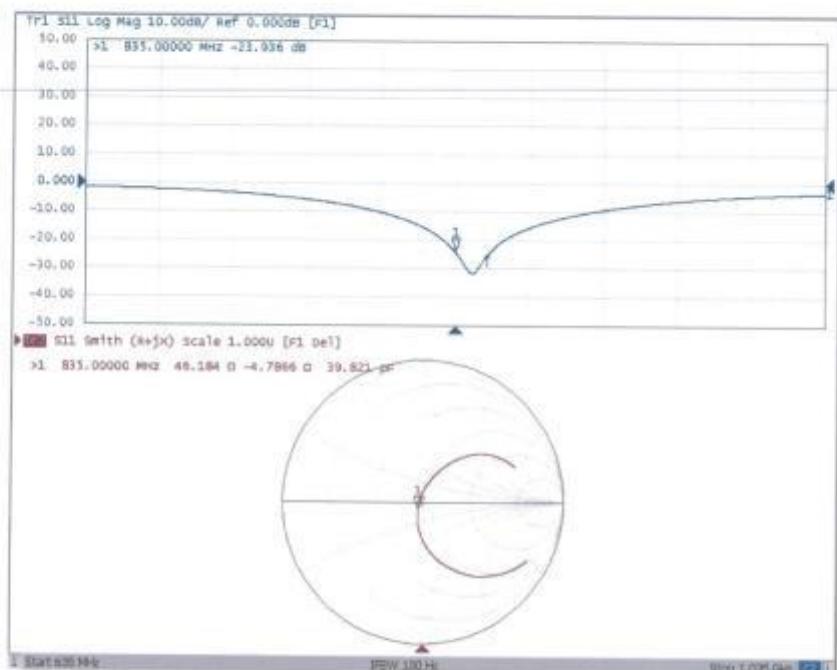

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.68 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 2.99 W/kg



Certificate No: Z15-97165

Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

Impedance Measurement Plot for Body TSL

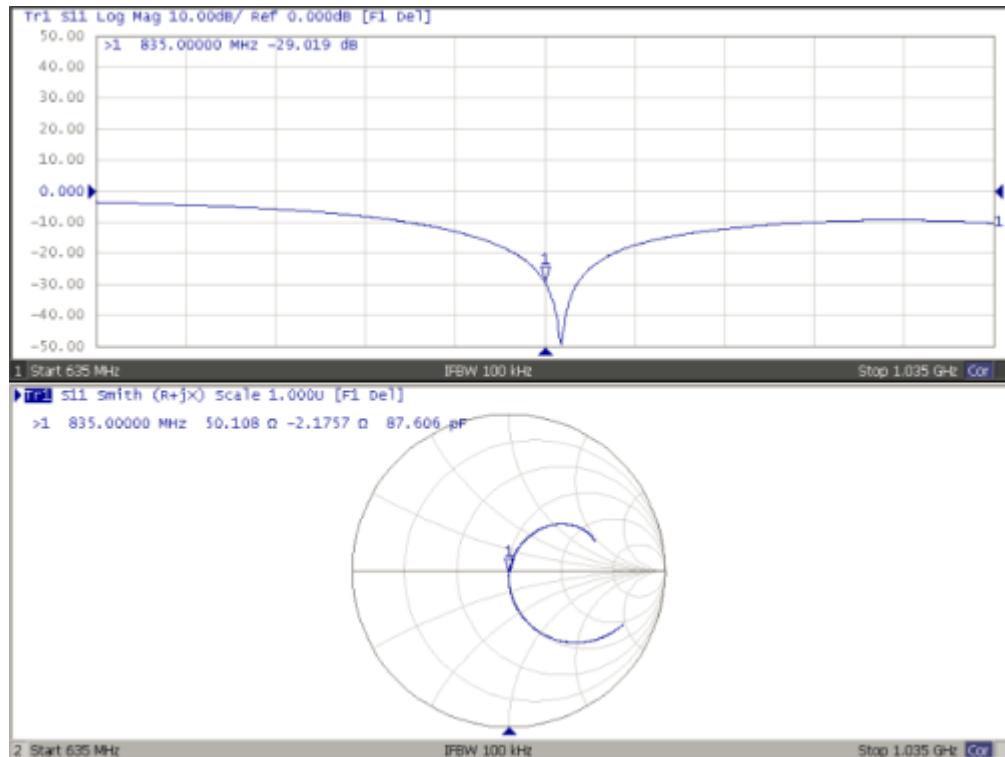
Certificate No: Z15-97165

Page 8 of 8

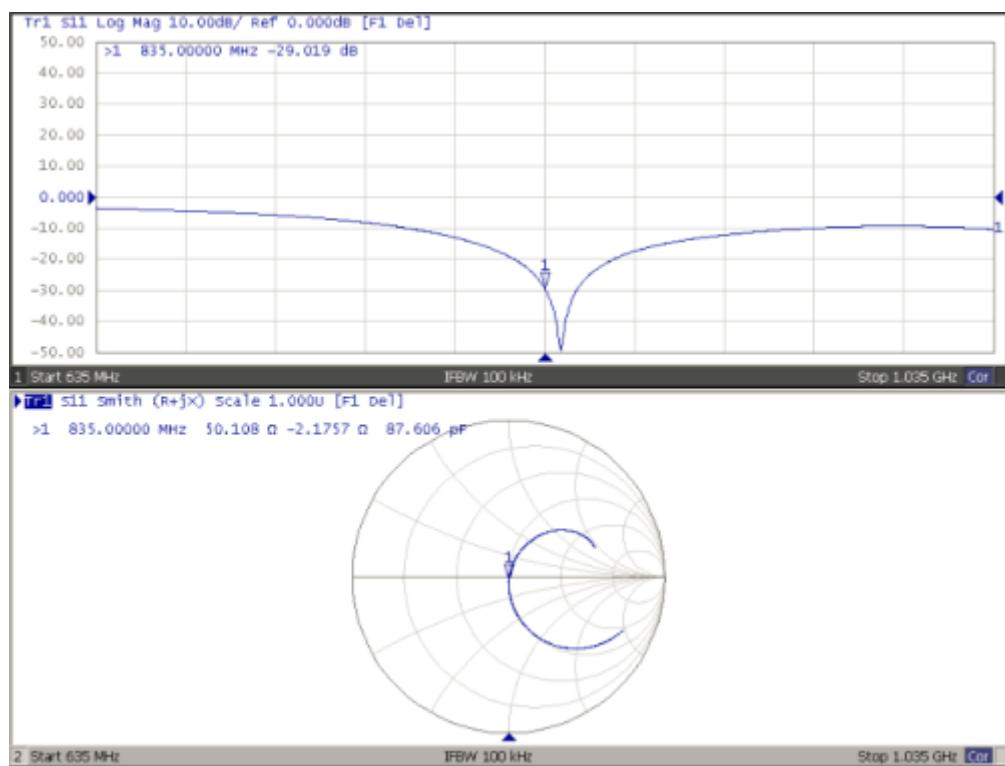
D835V2,Serial No.4d112 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

D835V2 Serial No.4d112						
835 Head						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
10.22.2015	-27.27	--	49.108	--	-4.2018	--
10.21.2016	-29.019	6.41	50.108	1	-2.1757	2.0261


D835V2 Serial No.4d112						
835Body						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
10.22.2015	-23.036	--	46.184	--	-4.7866	--
10.21.2016	-23.131	0.56	47.003	0.819	-2.9072	1.8794

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D835V2 Serial No.4d112
835MHz-Head

835MHz - Body

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinatll.com <http://www.chinatll.com>

Client

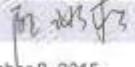
ECIT

Certificate No: Z15-97168

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d134

Calibration Procedure(s) FD-Z11-2-003-01
Calibration Procedures for dipole validation kits


Calibration date: November 4, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG, No.EX3-3617_Aug15)	Aug-16
DAE4	SN 777	26-Aug-15(SPEAG, No.DAE4-777_Aug15)	Aug-16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	02-Feb-15 (CTTL, No.J15X00729)	Feb-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16

Calibrated by:	Name Zhao Jing	Function SAR Test Engineer	Signature
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: November 8, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97168

Page 1 of 8

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.6 \pm 6 %	1.39 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.8 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g \pm 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.1 \pm 6 %	1.54 mho/m \pm 6 %
Body TSL temperature change during test	<1.0 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.1 mW /g \pm 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.33 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g \pm 20.4 % (k=2)

Certificate No: Z15-97168

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω+ 6.01jΩ
Return Loss	- 24.2dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1Ω+ 5.41jΩ
Return Loss	- 24.0dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.305 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 11.04.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1,385$ S/m; $\epsilon_r = 40.56$; $\rho = 1000$ kg/m³

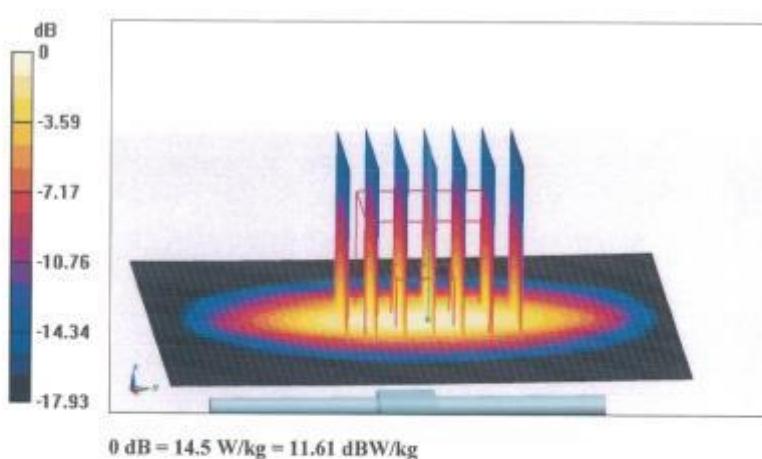
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(8.07, 8.07, 8.07); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

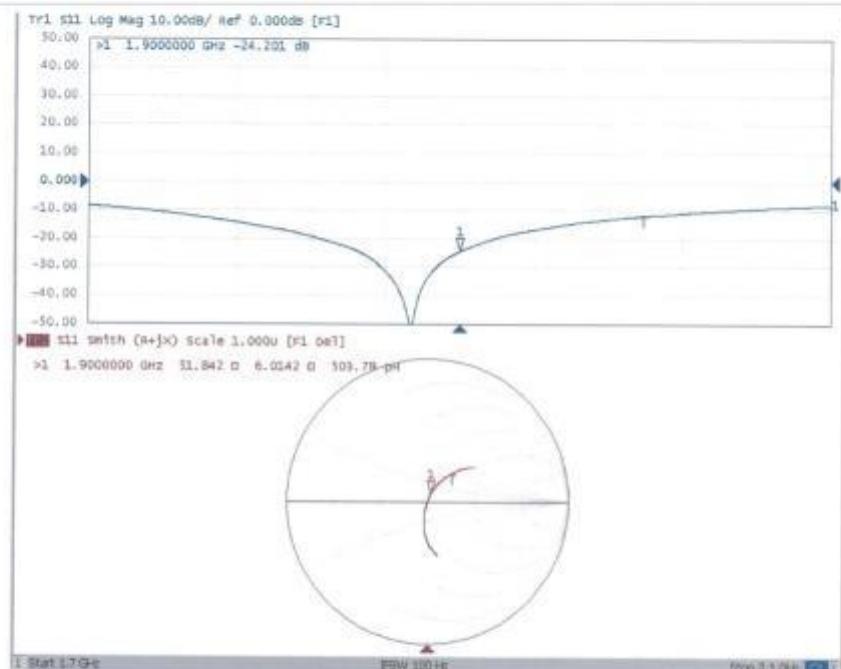

dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 18.7W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.22 W/kg

Maximum value of SAR (measured) = 14.5 W/kg



Certificate No: Z15-97168

Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Head TSL

Certificate No: Z15-97168

Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttil@chinattl.com Http://www.chinattl.com

DASY5 Validation Report for Body TSL

Date: 11.04.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.536$ S/m; $\epsilon_r = 54.05$; $\rho = 1000$ kg/m³

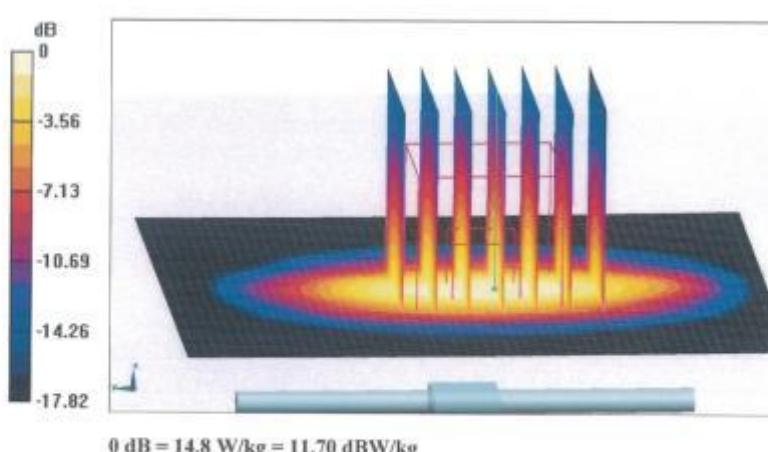
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

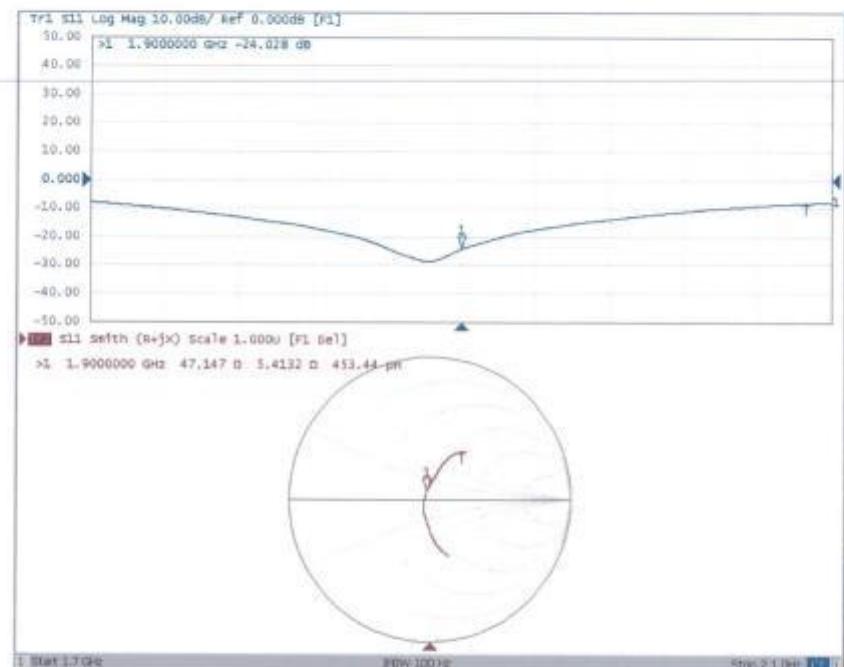

dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.40 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 14.8 W/kg



Certificate No: Z15-97168

Page 7 of 8

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China.
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

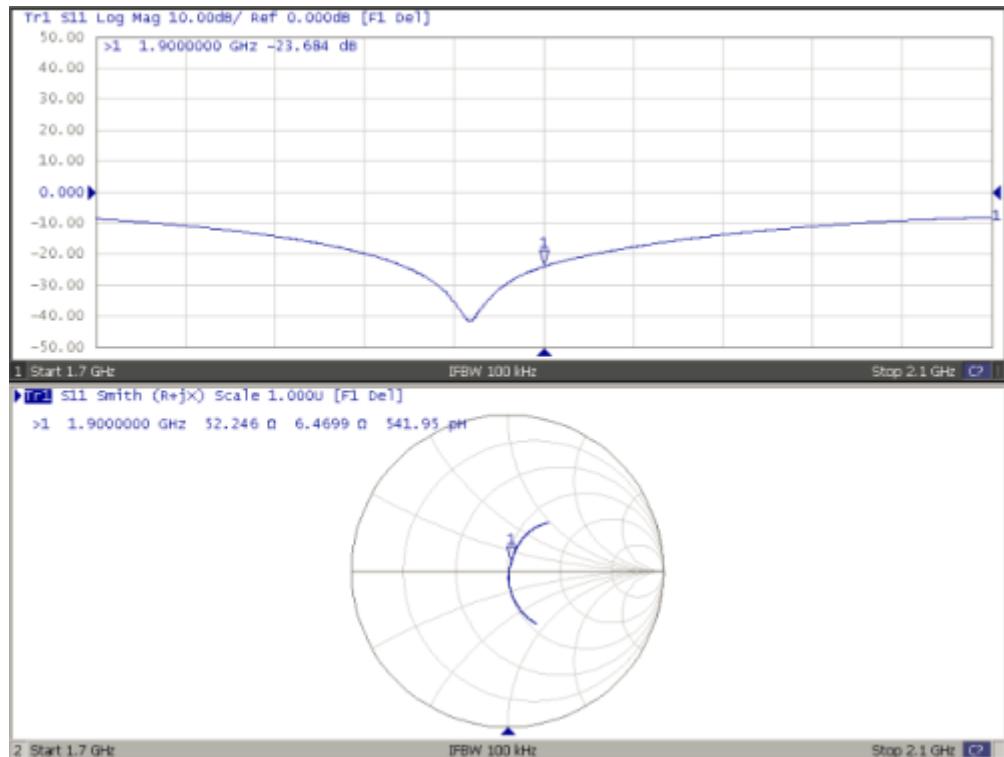
Certificate No: Z15-97168

Page 8 of 8

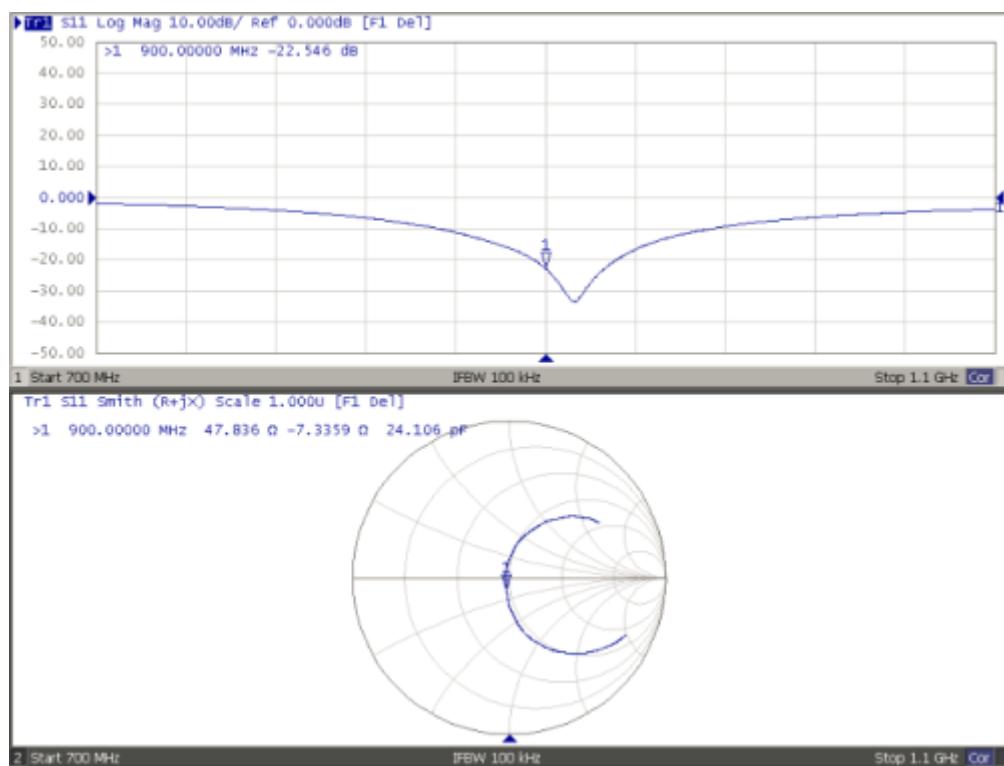
D1900V2,Serial No.5d134 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

D1900V2 Serial No.5d134						
1900 Head						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
11.04.2015	-24.201	--	51.842	--	6.0142	--
11.03.2016	-23.684	2.13	52.246	0.404	6.4699	0.456


D1900V2 Serial No.5d134						
1900Body						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
11.04.2015	-24.028	--	47.147	--	5.4132	--
11.03.2016	-23.250	3.24	48.572	1.425	6.1951	0.782

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D1900V2 Serial No.5d134
1900MHz-Head

1900MHz - Body

In Collaboration with
S P E A G
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

CALIBRATION
No. L0570

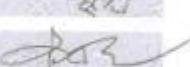
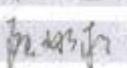
Client ECIT

Certificate No: Z15-97171

CALIBRATION CERTIFICATE

Object: D2450V2 - SN: 858

Calibration Procedure(s): FD-Z11-2-003-01
Calibration Procedures for dipole validation kits



Calibration date: October 30, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG, No.EX3-3617_Aug15)	Aug-16
DAE4	SN 777	26-Aug-15(SPEAG, No.DAE4-777_Aug15)	Aug-16
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	02-Feb-15 (CTTL, No.J15X00729)	Feb-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	QI Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: November 6, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97171

Page 1 of 8

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctti@chinatti.com <http://www.chinatti.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW / g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	53.1 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.7 mW / g ± 20.4 % (k=2)

Certificate No: Z15-97171

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2Ω+ 6.03jΩ
Return Loss	- 23.6dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9Ω+ 7.39jΩ
Return Loss	- 22.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.281 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

DASY5 Validation Report for Head TSL

Date: 10.30.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

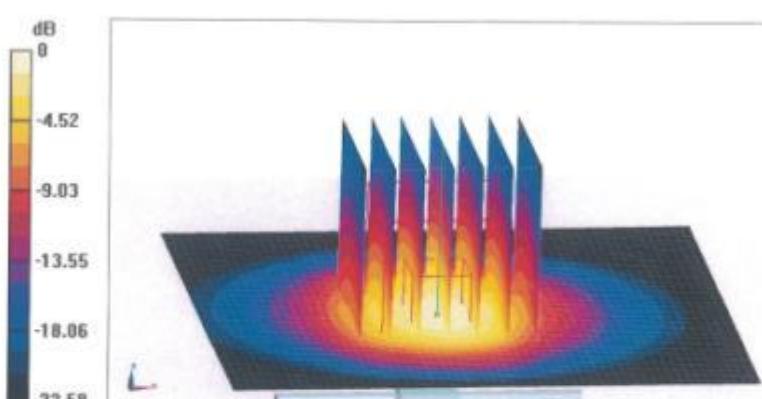
Medium parameters used: $\epsilon = 2450$ MHz; $\sigma = 1.816$ S/m; $\epsilon_r = 40.14$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(7.24, 7.24, 7.24); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

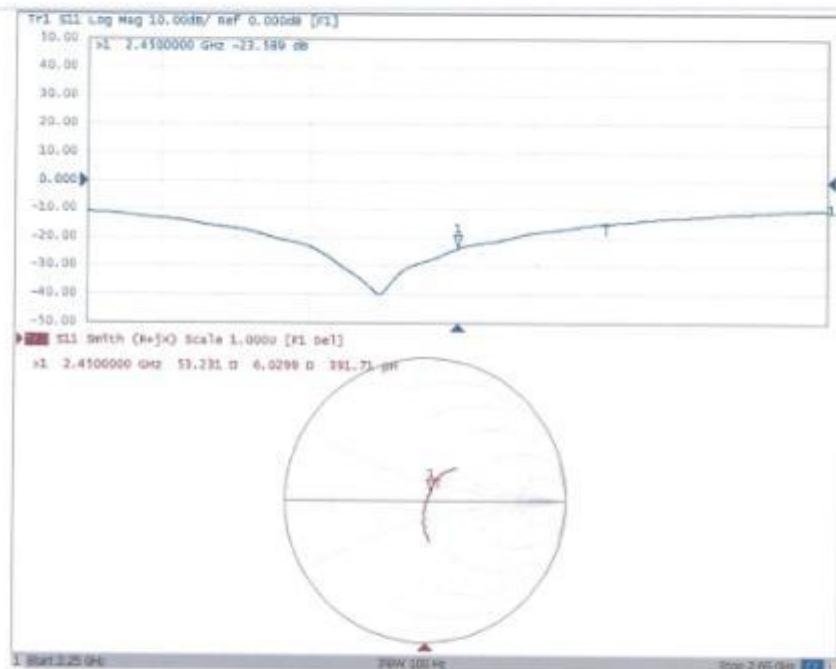

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 20.3 W/kg


0 dB = 20.3 W/kg = 13.07 dBW/kg

Certificate No: Z15-97171

Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z15-97171

Page 6 of 8

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Address: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.com

DASY5 Validation Report for Body TSL

Date: 10.30.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

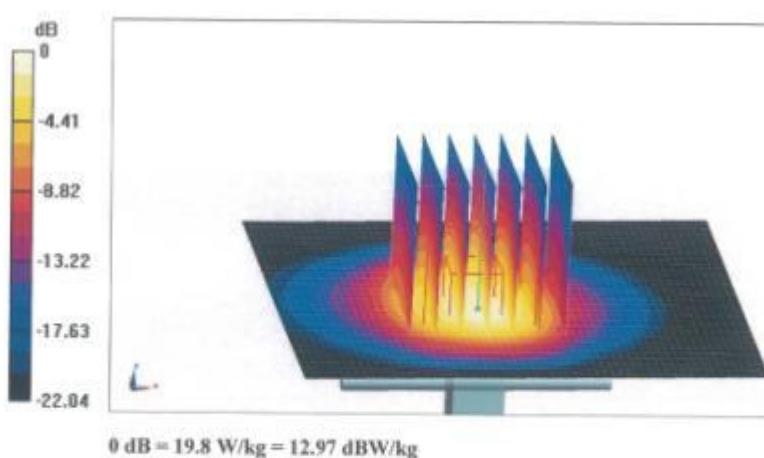
Medium parameters used: $\epsilon = 2450$ MHz; $\sigma = 1.936$ S/m; $\epsilon_r = 53.11$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(7.35, 7.35, 7.35); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

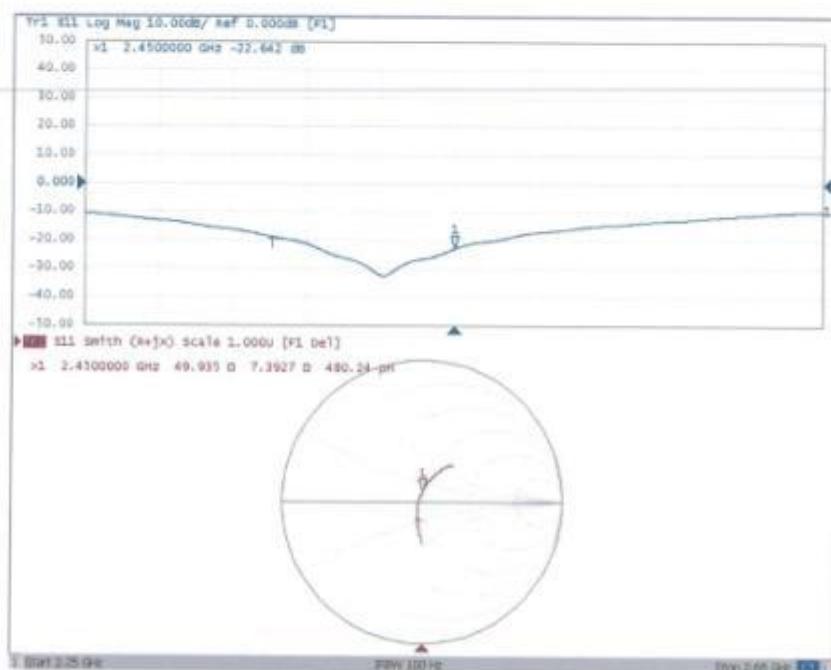

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.98 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.16 W/kg

Maximum value of SAR (measured) = 19.8 W/kg


Certificate No: Z15-97171

Page 7 of 8

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctti@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Body TSL

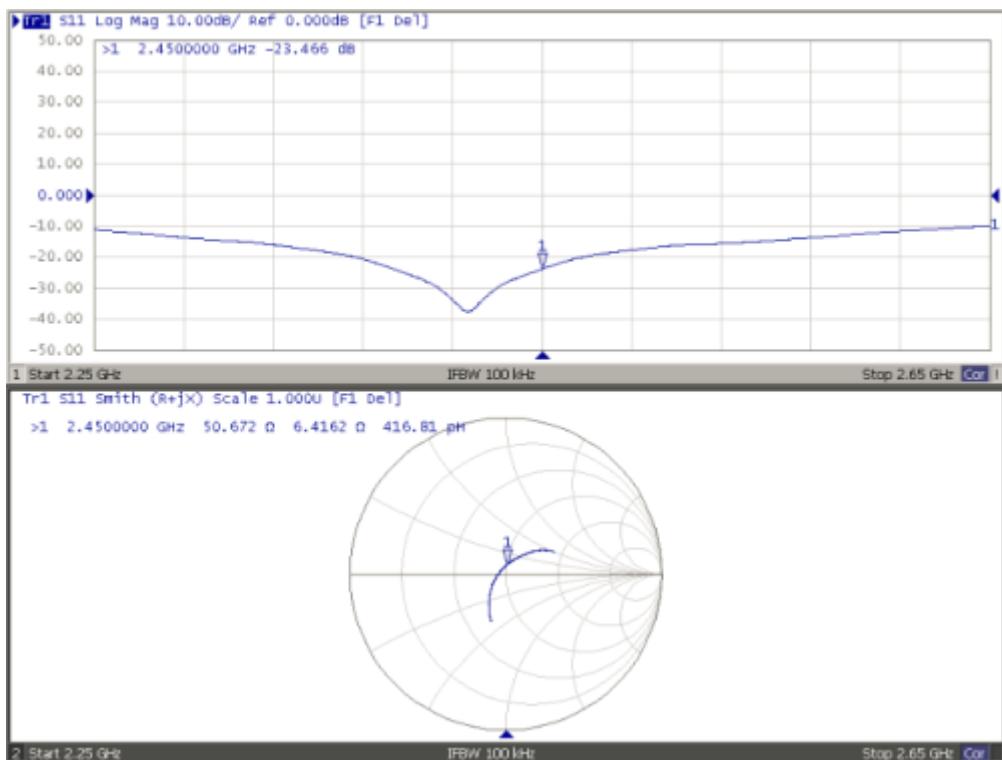
Certificate No: Z15-97171

Page 8 of 8

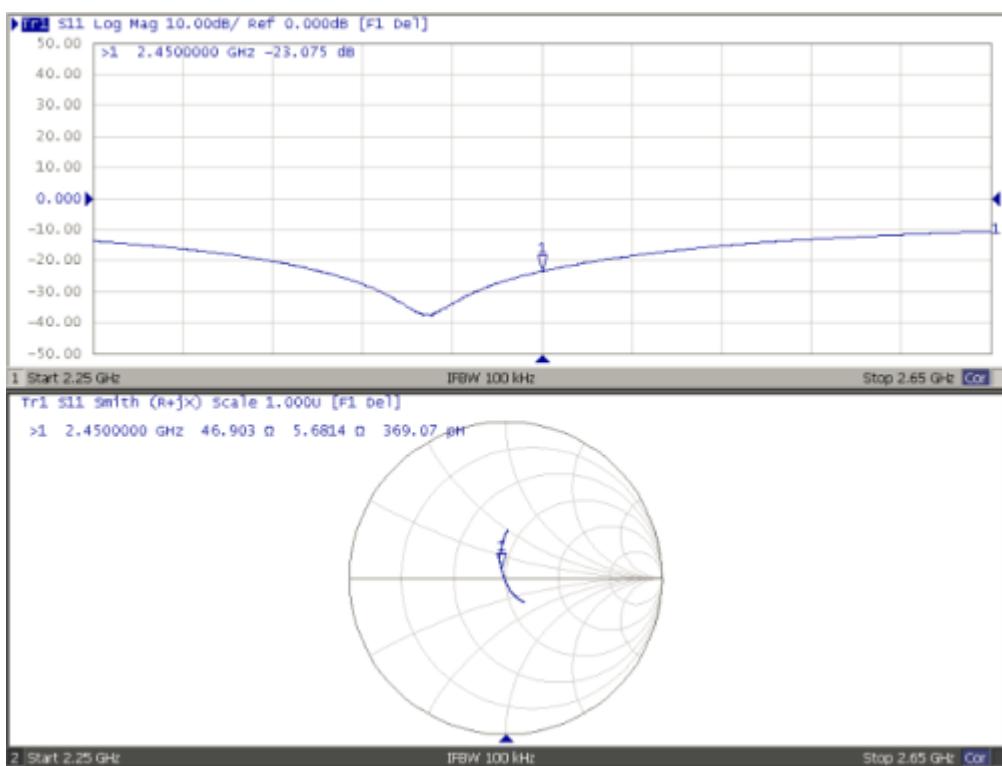
D2450V2,Serial No.858 Extended Dipole Calibrations

Per IEEE Std 1528-2013, the dipole should have a return loss better than -20dB at the test frequency to reduce uncertainty in the power measurement.

Per KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


Justification of the extended calibration

D2450V2 Serial No.858						
2450 Head						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
10.30.2015	-23.589	--	53.231	--	6.0299	--
10.29.2016	-23.466	0.52	50.672	2.559	6.4162	0.386


D2450V2 Serial No.858						
2450Body						
Date of Measurement	Return-Loss(dB)	Delta(%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)
10.30.2015	-22.642	--	49.935	--	7.3927	--
10.29.2016	-23.075	1.91	46.903	3.032	5.6814	1.711

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data D2450V2 Serial No.858
2450MHz-Head

2450MHz - Body

**Acceptable Conditions for SAR Measurements Using Probes and Dipoles
Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to
Support FCC Equipment Certification**

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (*Telecommunication Metrology Center of MITT in Beijing, China*), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (*Schmid & Partner Engineering AG, Switzerland*) and TMC, to support FCC (*U.S. Federal Communications Commission*) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

June 26, 2013

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- 5) TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

ANNEX H. Accreditation Certificate**Accredited Laboratory**

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 15th day of March 2017.
President and CEO
For the Accreditation Council
Certificate Number 3682.01
Valid to February 28, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*******End The Report*******