

Pulsar Process Measurement

60 GHz Radar

FCC 15.255:2019

Report # ELEM0096 Rev. 1

NVLAP LAB CODE: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: October 10, 2019
Pulsar Process Measurement
EUT: 60 GHz Radar

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2019	
FCC 15.209:2019	ANSI C63.10:2013
FCC 15.255:2019	

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	AC Powerline Conducted Emissions	Yes	Pass	
6.5	Spurious Emissions 30-1000 MHz (FCC 15.209)	Yes	Pass	
6.6	Spurious Emissions 1-40GHz (FCC 15.209)	Yes	Pass	
9.3	6 dB Bandwidth	Yes	Pass	
9.5, 9.11	Equivalent Isotopically Radiated Power (EIRP)	Yes	Pass	
9.11	Conducted Output Power	Yes	Pass	
9.12	Spurious Emissions 40-200GHz (FCC 15.255)	Yes	Pass	
9.14	Frequency Stability	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Headers and Bookmarks were swapped for Conducted Output Power and Equivalent Isotropic Radiated Power	2020-05-06	30-33

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

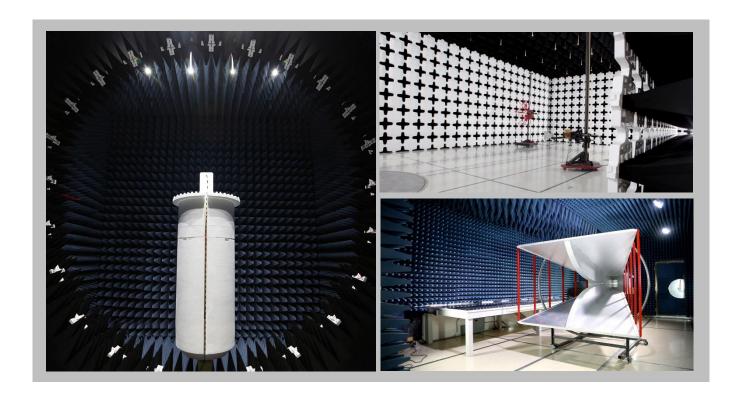
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

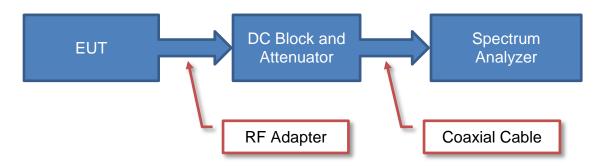
California Labs OC01-17 41 Tesla Irvine, CA 92618	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011	
(949) 861-8918	(612)-638-5136	(503) 844-4066	(469) 304-5255	(425)984-6600	
		NVLAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
	VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110	
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

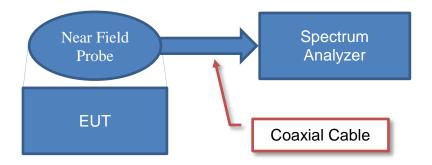
Measurement Uncertainty

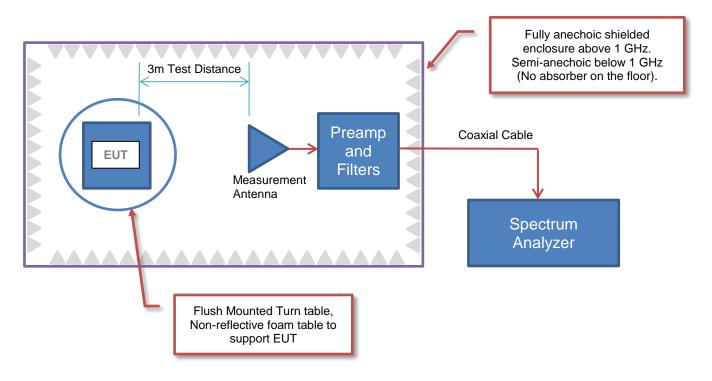
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Pulsar Process Measurement
Address:	Cardinal Building, Enigma Commercial Centre
Address.	Sandy's Road, Malvern
City, State, Zip:	WR14 1JJ, U.K.
Test Requested By:	Alex Toohie of Element Materials Technology
EUT:	60 GHz Radar
First Date of Test:	June 5, 2019
Last Date of Test:	October 10, 2019
Receipt Date of Samples:	June 5, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
60 GHz Radar	

Testing Objective:

Seeking to demonstrate compliance under FCC 15.255:2018 for operation in the 57 - 71 GHz Band.

CONFIGURATIONS

Configuration ELEM0019-1

Software/Firmware Running during test	
Description	Version
Hercules SETUP utility	3.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60 GHz Radar	Pulsar Process Measurement	mmWave/dBR8	FCC001/2019

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote Laptop	Lenovo	IdeaPad	CB17045993	
I/O Break-out Box	Unknown	None	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
I/O Cable	Yes	10.1 m	No	60 GHz Radar	I/O Break-out Box
USB Cable	Yes	1.0 m	No	I/O Break-out Box	Remote Laptop

Configuration ELEM0019-2

Software/Firmware Running during test	
Description	Version
Hercules SETUP utility	3.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60 GHz Radar	Pulsar Process Measurement	mmWave/dBR16	FCC002/2019

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Remote Laptop	Lenovo	IdeaPad	CB17045993	
I/O Break-out Box	Unknown	None	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
I/O Cable	Yes	10.1 m	No	60 GHz Radar	I/O Break-out Box
USB Cable	Yes	1.0 m	No	I/O Break-out Box	Remote Laptop

CONFIGURATIONS

Configuration ELEM0096-1

Software/Firmware Running during test	
Description	Version
Hercules SETUP utility	3.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60 GHz Radar	Pulsar Process Measurement	mmWave/dBR8	FCC001/2019

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Remote Laptop	Lenovo	IdeaPad	CB17045993	
I/O Break-out Box	Unknown	None	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
I/O Cable	Yes	10.1 m	No	60 GHz Radar	I/O Break-out Box
USB Cable	Yes	1.0 m	No	I/O Break-out Box	Remote Laptop

Configuration ELEM0096- 2

Software/Firmware Running during test	
Description	Version
Hercules SETUP utility	3.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60 GHz Radar	Pulsar Process Measurement	mmWave/dBR16	FCC002/2019

Remote Equipment Outside of Test Setup Boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Remote Laptop	Lenovo	IdeaPad	CB17045993	
I/O Break-out Box	Unknown	None	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
I/O Cable	Yes	10.1 m	No	60 GHz Radar	I/O Break-out Box
USB Cable	Yes	1.0 m	No	I/O Break-out Box	Remote Laptop

CONFIGURATIONS

Configuration ELEM0096-3

Software/Firmware Running during test	
Description	Version
Hercules SETUP utility	3.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
60 GHz Radar	Pulsar Process Measurement	mmWave/dBR16	317411/2019

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Remote Laptop	Lenovo	IdeaPad	CB17045993				
I/O Break-out Box Unknown None None							

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
I/O Cable	Yes	10.1 m	No	60 GHz Radar	I/O Break-out Box
USB Cable	Yes	1.0 m	No	I/O Break-out Box	Remote Laptop

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2019-06-05	Spurious Emissions 30-1000 MHz (FCC 15.209)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2019-06-05	Spurious Emissions 1-40GHz (FCC 15.209)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2019-08-19	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2019-08-22	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2019-08-22	Spurious Emissions 40-200GHz (FCC 15.255)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2019-10-10	6 dB Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2019-10-10	Equivalent Isotopically Radiated Power (EIRP)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2019-10-10	Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESCI	ARH	2019-05-02	2020-05-02
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	2018-09-11	2019-09-11
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2019-01-07	2020-01-07
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

ELEM0096-1 ELEM0096-2

MODES INVESTIGATED

Continuous Tx, Mid Ch. = 60.9 GHz, No Modulation

EUT:	60 GHz Radar	Work Order:	ELEM0096
Serial Number:	FCC002/2019	Date:	2019-08-19
Customer:	Pulsar Process Measurement	Temperature:	22.7°C
Attendees:	None	Relative Humidity:	45.5%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Brandon Hobbs, Cole Ghizzone	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	ELEM0096-2

TEST SPECIFICATIONS

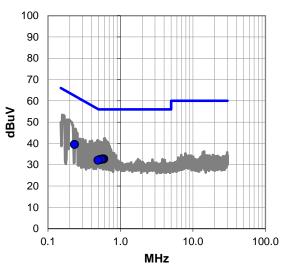
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

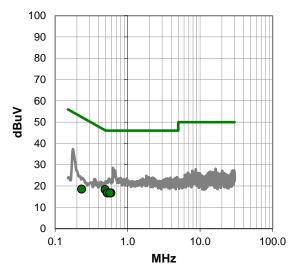
Run #:	13	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuous Tx, Mid Ch. = 60.9 GHz, No Modulation


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #13

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.232	19.5	20.0	39.5	62.4	-22.9		
0.588	12.7	20.0	32.7	56.0	-23.3		
0.568	12.7	20.0	32.7	56.0	-23.3		
0.525	12.5	20.0	32.5	56.0	-23.5		
0.542	12.5	20.0	32.5	56.0	-23.5		
0.490	12.2	19.9	32.1	56.2	-24.1		

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.490	-1.6	19.9	18.3	46.2	-27.9
0.542	-3.2	20.0	16.8	46.0	-29.2
0.588	-3.3	20.0	16.7	46.0	-29.3
0.525	-3.3	20.0	16.7	46.0	-29.3
0.568	-3.3	20.0	16.7	46.0	-29.3
0.232	-1.5	20.0	18.5	52.4	-33.9

CONCLUSION

Pass

Tested By

EUT:	60 GHz Radar	Work Order:	ELEM0096
Serial Number:	FCC002/2019	Date:	2019-08-19
Customer:	Pulsar Process Measurement	Temperature:	22.7°C
Attendees:	None	Relative Humidity:	45.5%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Brandon Hobbs, Cole Ghizzone	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	ELEM0096-2

TEST SPECIFICATIONS

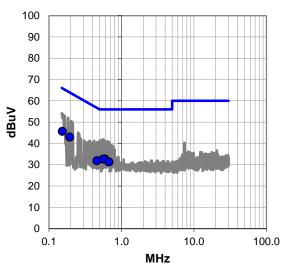
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

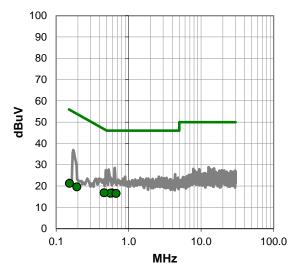
Run #:	14	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuous Tx, Mid Ch. = 60.9 GHz, No Modulation


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #14

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.153	25.6	20.1	45.7	65.8	-20.1		
0.193	23.0	20.0	43.0	63.9	-20.9		
0.592	12.7	20.0	32.7	56.0	-23.3		
0.561	12.6	20.0	32.6	56.0	-23.4		
0.671	11.3	20.0	31.3	56.0	-24.7		
0.459	12.0	19.9	31.9	56.7	-24.8		

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.592	-3.3	20.0	16.7	46.0	-29.3	
0.561	-3.4	20.0	16.6	46.0	-29.4	
0.671	-3.5	20.0	16.5	46.0	-29.5	
0.459	-3.1	19.9	16.8	46.7	-29.9	
0.193	-0.4	20.0	19.6	53.9	-34.3	
0.153	1.1	20.1	21.2	55.8	-34.6	

CONCLUSION

Pass

Tested By

EUT:	60 GHz Radar	Work Order:	ELEM0096
Serial Number:	FCC001/2019	Date:	2019-08-19
Customer:	Pulsar Process Measurement	Temperature:	22.7°C
Attendees:	None	Relative Humidity:	45.5%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Brandon Hobbs, Cole Ghizzone	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	ELEM0096-1

TEST SPECIFICATIONS

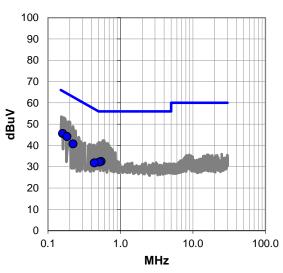
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

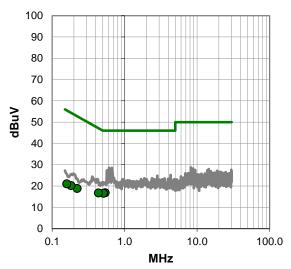
_						
Run #:	18	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuous Tx, Low Ch. = 58.3 GHz, Mid Ch. = 60.9 GHz, High Ch. = 63.6 GHz, No Modulation


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #18

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.159	25.5	20.1	45.6	65.5	-19.9		
0.183	24.2	20.0	44.2	64.4	-20.2		
0.222	20.7	20.0	40.7	62.8	-22.1		
0.540	12.5	20.0	32.5	56.0	-23.5		
0.511	12.3	19.9	32.2	56.0	-23.8		
0.436	11.9	19.9	31.8	57.1	-25.3		

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.540	-3.2	20.0	16.8	46.0	-29.2	
0.511	-3.3	19.9	16.6	46.0	-29.4	
0.436	-3.2	19.9	16.7	47.1	-30.4	
0.222	-1.2	20.0	18.8	52.8	-34.0	
0.183	0.2	20.0	20.2	54.4	-34.2	
0.159	0.9	20.1	21.0	55.5	-34.5	

CONCLUSION

Pass

Tested By

EUT:	60 GHz Radar	Work Order:	ELEM0096
Serial Number:	FCC001/2019	Date:	2019-08-19
Customer:	Pulsar Process Measurement	Temperature:	22.7°C
Attendees:	None	Relative Humidity:	45.5%
Customer Project:	None	Bar. Pressure:	1019 mb
Tested By:	Brandon Hobbs, Cole Ghizzone	Job Site:	EV07
Power:	110VAC/60Hz	Configuration:	ELEM0096-1

TEST SPECIFICATIONS

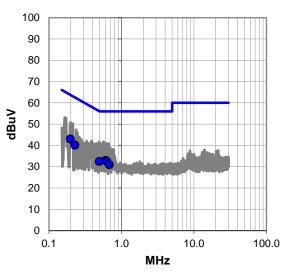
Specification:	Method:
FCC 15.207:2019	ANSI C63.10:2013

TEST PARAMETERS

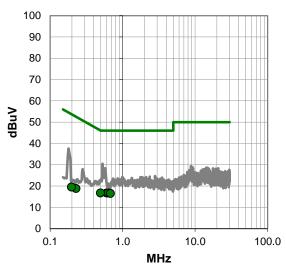
Run #:	19	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuous Tx, Low Ch. = 58.3 GHz, Mid Ch. = 60.9 GHz, High Ch. = 63.6 GHz, No Modulation


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #19

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.197	23.0	20.0	43.0	63.7	-20.7
0.227	20.1	20.0	40.1	62.5	-22.4
0.603	12.9	20.0	32.9	56.0	-23.1
0.628	12.5	20.0	32.5	56.0	-23.5
0.494	12.6	19.9	32.5	56.1	-23.6
0.678	11.0	20.0	31.0	56.0	-25.0

	Average Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)							
0.603	-3.3	20.0	16.7	46.0	-29.3							
0.628	-3.3	20.0	16.7	46.0	-29.3							
0.494	-3.2	19.9	16.7	46.1	-29.4							
0.678	-3.5	20.0	16.5	46.0	-29.5							
0.227	-1.2	20.0	18.8	52.5	-33.7							
0.197	-0.5	20.0	19.5	53.7	-34.2							

CONCLUSION

Pass

Tested By

SPURIOUS EMISSIONS 1-40GHZ (FCC 15.209)

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Tx, Low Ch. = 58.3 GHz, Mid Ch. = 60.9 GHz, High Ch. = 63.6 GHz, No Modulation

POWER SETTINGS INVESTIGATED

30 VDC

CONFIGURATIONS INVESTIGATED

ELEM0019 - 1

ELEM0019 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	40 GHz
	0.00	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
Micro-Tronics	LPM50004	LFD	15-Feb-2019	12 mo
ESM Cable Corp.	KNKN-72 SMA Cable	EVZ	23-Apr-2019	12 mo
ESM Cable Corp.	KMKM-72	EVY	24-Aug-2018	12 mo
None	Standard Gain Horns Cable	EVF	24-Nov-2018	12 mo
N/A	Double Ridge Horn Cables	EVB	24-Nov-2018	12 mo
N/A	Bilog Cables	EVA	24-Nov-2018	12 mo
Miteq	JSW45-26004000-40-5P	PAE	23-Apr-2019	12 mo
Miteq	AMF-6F-18002650-25-10P	AVU	24-Aug-2018	12 mo
Miteq	AMF-6F-12001800-30-10P	AVD	24-Nov-2018	12 mo
L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	24-Nov-2018	12 mo
Miteq	AMF-3D-00100800-32-13P	PAG	24-Nov-2018	12 mo
Miteq	AM-1616-1000	AOL	24-Nov-2018	12 mo
ETS Lindgren	3160-10	AIW	NCR	0 mo
ETS Lindgren	3160-09	AIV	NCR	0 mo
ETS Lindgren	3160-08	AHV	NCR	0 mo
ETS Lindgren	3160-07	AHU	NCR	0 mo
ETS Lindgren	3115	AIZ	7-Feb-2018	24 mo
Teseq	CBL 6141B	AXR	2-Oct-2018	24 mo
Agilent	E4446A	AAQ	24-Mar-2019	12 mo
	Micro-Tronics ESM Cable Corp. ESM Cable Corp. None N/A N/A Miteq Miteq Miteq L-3 Narda-MITEQ Miteq ETS Lindgren	Micro-Tronics LPM50004 ESM Cable Corp. KNKN-72 SMA Cable ESM Cable Corp. KMKM-72 None Standard Gain Horns Cable N/A Double Ridge Horn Cables N/A Bilog Cables Miteq JSW45-26004000-40-5P Miteq AMF-6F-18002650-25-10P Miteq AMF-6F-12001800-30-10P L-3 Narda-MITEQ AMF-6F-08001200-30-10P Miteq AMF-3D-00100800-32-13P Miteq AM-1616-1000 ETS Lindgren 3160-10 ETS Lindgren 3160-09 ETS Lindgren 3160-08 ETS Lindgren 3160-07 ETS Lindgren 3115 Teseq CBL 6141B	Micro-Tronics LPM50004 LFD ESM Cable Corp. KNKN-72 SMA Cable EVZ ESM Cable Corp. KMKM-72 EVY None Standard Gain Horns Cable EVF N/A Double Ridge Horn Cables EVB N/A Bilog Cables EVA Miteq JSW45-26004000-40-5P PAE Miteq AMF-6F-18002650-25-10P AVU Miteq AMF-6F-12001800-30-10P AVD L-3 Narda-MITEQ AMF-6F-08001200-30-10P PAO Miteq AMF-3D-00100800-32-13P PAG Miteq AM-1616-1000 AOL ETS Lindgren 3160-10 AIW ETS Lindgren 3160-09 AIV ETS Lindgren 3160-07 AHU ETS Lindgren 3115 AIZ Teseq CBL 6141B AXR	Micro-Tronics LPM50004 LFD 15-Feb-2019 ESM Cable Corp. KNKN-72 SMA Cable EVZ 23-Apr-2019 ESM Cable Corp. KMKM-72 EVY 24-Aug-2018 None Standard Gain Horns Cable EVF 24-Nov-2018 N/A Double Ridge Horn Cables EVB 24-Nov-2018 N/A Bilog Cables EVA 24-Nov-2018 Miteq JSW45-26004000-40-5P PAE 23-Apr-2019 Miteq AMF-6F-18002650-25-10P AVU 24-Aug-2018 Miteq AMF-6F-12001800-30-10P AVD 24-Nov-2018 L-3 Narda-MITEQ AMF-6F-08001200-30-10P PAO 24-Nov-2018 Miteq AMF-3D-00100800-32-13P PAG 24-Nov-2018 Miteq AM-1616-1000 AOL 24-Nov-2018 ETS Lindgren 3160-10 AIW NCR ETS Lindgren 3160-09 AIV NCR ETS Lindgren 3160-07 AHU NCR ETS Lindgren 3115 AIZ 7-Feb-2018

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

SPURIOUS EMISSIONS 1-40GHZ (FCC 15.209)

										EmiR5 2019.05.20		PSA-ESCI 2019.05.1	0
W	ork Order:		M0019		Date:		-2019	_	,	//	- //	1/2	
	Project:		one	Ten	nperature:		3 °C	(/	1	//			
	Job Site:		V01	_	Humidity:		% RH			141	182		
Seria	I Number:		02/2019	Barome	tric Pres.:	1019	mbar		Tested by:	Jeff Alcoke	9		_
Carri		60 GHz R	agar										_
	figuration:		cess Meas	uromont									_
	Attendees:		iviess iviess	urement									_
	UT Power:												_
			ıs Tx I ow (Ch. = 58.3 G	Hz Mid Ch	= 60.9 G	Hz High Cl	n = 63 6 G	Hz No Moo	dulation			_
Operat	ing Mode:	0011111100	, 2011	00.0 0	» <u>,</u> a o.	00.00	,g o.	00.0 0	,	au.u			
D	eviations:	None											_
		Caa aaman	a a a ta la a la u	· fau Channa	land FUT		The FUT	anamia a FN	الدالة موم الدال			se duty (DC	_
С	omments:			MS Avg data)
		Ĺ <u> </u>							<u> </u>				_
	ifications						Test Meth						- -
CC 15.25	55:2019						ANSI C63.	10:2013					
Run #	33	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results		Pass	_
						g(- <i>)</i>		1 11 1(11)					_
80													
70													
′° T													
60													
										- I			
50												+++	
										•			
40			++++							-			
30													
30										•			
20												+++	
10													
10													
0 ↓ 10			100			1000			10000			100000	
.0			100			MHz			. 5000	_ =			
										■ PK	◆ AV	• QP	
			Antenna		Duty Cycle Correction	External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Height	Azimuth	Factor	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
0473.920	74.4	-12.5	1.8	351.0	-9.9	0.0	Vert	AV	0.0	52.0	54.0	-2.0	Mid Ch, EUT Horz
0473.500	71.3	-12.5	1.7	351.0	-9.9	0.0	Horz	AV	0.0	48.9	54.0	-5.1	Mid Ch, EUT on Side
9148.830	69.6	-12.6	1.8	350.0	-9.9	0.0	Horz	AV	0.0	47.1	54.0	-6.9	Low Ch, EUT on Side
1472.380	79.0	-12.5	1.8	351.0	0.0	0.0	Vert	PK	0.0	66.5	74.0	-7.5 7.0	Mid Ch, EUT Horz
148.790 436.250	68.7 67.6	-12.6 -11.6	1.8 1.8	348.0 352.0	-9.9 -9.9	0.0 0.0	Horz Horz	AV AV	0.0 0.0	46.2 46.1	54.0 54.0	-7.8 -7.9	Low Ch, EUT Horz High Ch, EUT on Side
436.250	67.0	-11.6	1.8	352.0	-9.9 -9.9	0.0	Vert	AV	0.0	45.5	54.0	-7.9 -8.5	High Ch, EUT Horz
435.580	76.6	-11.6	1.8	352.0	0.0	0.0	Horz	PK	0.0	65.0	74.0	-9.0	High Ch, EUT on Side
148.830	67.2	-12.6	1.7	346.0	-9.9	0.0	Vert	AV	0.0	44.7	54.0	-9.3	Low Ch. EUT Horz
436.750	75.8	-11.6	1.8	352.0	0.0	0.0	Vert	PK	0.0	64.2	74.0	-9.8	High Ch, EUT Horz
1473.120 149.290	76.2 76.0	-12.5 -12.6	1.7 1.8	351.0 350.0	0.0 0.0	0.0 0.0	Horz Horz	PK PK	0.0 0.0	63.7 63.4	74.0 74.0	-10.3 -10.6	Mid Ch, EUT on Side Low Ch, EUT on Side
147.960	74.9	-12.6	1.8	348.0	0.0	0.0	Horz	PK	0.0	62.3	74.0	-11.7	Low Ch, EUT Horz
150.120	73.1	-12.5	1.7	346.0	0.0	0.0	Vert	PK	0.0	60.6	74.0	-13.4	Low Ch. EUT Horz
148.500	62.5	-12.6	1.8	353.0	-9.9	0.0	Vert	AV	0.0	40.0	54.0	-14.0	Low Ch, EUT on Side
148.290	69.8 61.4	-12.6 -12.6	1.8 1.6	353.0 345.0	0.0 0.0	0.0 0.0	Vert Horz	PK PK	0.0 0.0	57.2 48.8	74.0 74.0	-16.8 -25.2	Low Ch, EUT on Side Low Ch. EUT Vert
2148 A20	01.4	- 12.0	1.0					1.17	0.0				
	50.9	-12.6	1.6	345.0	-9.9	0.0	Horz	AV	0.0	28.4	54.0	-25.6	Low Ch. EUT Vert
9148.120 9148.710	50.9 50.8	-12.6 -12.6	1.6 1.6	345.0 345.0	-9.9 -9.9	0.0 0.0	Horz Vert	AV AV	0.0	28.4 28.3	54.0 54.0	-25.6 -25.7	Low Ch. EUT Vert
9148.420 9148.120 9148.710 9147.920													

SPURIOUS EMISSIONS 30MHZ-40GHZ (FCC 15.209)

					_			r		EmiR5 2019.05.20		PSA-ESCI 2019.05.10	
We	ork Order:		M0019	Ton	Date:		1-2019	_	1				
	Project: Job Site:		one /01		nperature: Humidity:		<u>6 °C</u> % RH		A	-			
Seria	al Number:		01/2019		tric Pres.:		mbar		Tested by:	Jeff Alcoke			<u>.</u>
	EUT:	60 GHz Ra	adar										_
	figuration:	1											=
			cess Measu	rement									-
	Attendees: UT Power:												-
			s Tx. Low C	h. = 58.3 G	Hz. Mid Ch	. = 60.9 GI	Hz. Hiah Ch	ı. = 63.6 GI	Hz, No Mod	ulation			-
Operat	ting Mode:		- ,		,		, 3		,				
D	Deviations:	None											_
С	comments:								ICW modula)*log (DC) =				
Test Spec	ifications						Test Meth	od					
FCC 15.25							ANSI C63.						=
Dog #	I 20	Toot Di	otonos (m)	2	Antonna	Hoimht(s)		1 to 1(m)		Deculto	D		-
Run #	39	l est Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pi	ass	-
80												\Box	
											+		
70													
										I			
60										•			
50										1	1		
50													
40													
40													
30													
20													
10													
0 +			100			1000			40000			100000	
10			100			1000 MHz			10000			100000	
							•			■ PK	◆ AV	• QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
30473.470 30473.570	75.8 74.5	-12.5 -12.5	1.5 1.5	350.0 344.0	-9.9 -9.9	0.0 0.0	Horz Vert	AV AV	0.0 0.0	53.4 52.1	54.0 54.0	-0.6 -1.9	Mid Ch, EUT Horz Mid Ch, EUT on Side
31586.660	71.9	-11.5	1.5	354.0	-9.9	0.0	Horz	AV	0.0	50.5	54.0	-3.5	High Ch, EUT Horz
31586.660	81.7	-11.5 -11.4	1.5	354.0 350.0	0.0	0.0	Horz Vert	PK AV	0.0	70.2	74.0 54.0	-3.8	High Ch, EUT Horz High Ch, EUT on Side
31587.500 31587.830	70.4 80.0	-11.4 -11.4	1.4 1.4	350.0 350.0	-9.9 0.0	0.0 0.0	Vert	AV PK	0.0 0.0	49.1 68.6	74.0	-4.9 -5.4	High Ch, EUT on Side
30474.770	80.0	-12.5	1.5	350.0	0.0	0.0	Horz	PK	0.0	67.5	74.0	-6.5	Mid Ch, EUT Horz
30474.730	78.8 66.8	-12.5 -12.5	1.5	344.0	0.0	0.0	Vert	PK AV	0.0	66.3	74.0 54.0	-7.7 -0.6	Mid Ch, EUT on Side
30473.660 29148.660	66.8 66.6	-12.5 -12.6	1.5 1.5	346.0 346.0	-9.9 -9.9	0.0 0.0	Vert Vert	AV AV	0.0 0.0	44.4 44.1	54.0 54.0	-9.6 -9.9	Mid Ch, EUT Horz Low Ch, EUT on Side
30473.580	65.9	-12.5	1.5	344.0	-9.9	0.0	Horz	AV	0.0	43.5	54.0	-10.5	Mid Ch, EUT on Side
29148.450	65.8	-12.6	1.5	347.0	-9.9	0.0	Horz	AV	0.0	43.3	54.0	-10.7	Low Ch, EUT Horz
29148.210 30474.330	72.6 72.2	-12.6 -12.5	1.5 1.5	346.0 346.0	0.0 0.0	0.0 0.0	Vert Vert	PK PK	0.0 0.0	60.0 59.7	74.0 74.0	-14.0 -14.3	Low Ch, EUT on Side Mid Ch, EUT Horz
29149.980	72.2 72.1	-12.5	1.5	347.0	0.0	0.0	Horz	PK	0.0	59.5	74.0	-14.5	Low Ch, EUT Horz
30473.280	71.3	-12.5	1.5	344.0	0.0	0.0	Horz	PK	0.0	58.8	74.0	-15.2	Mid Ch, EUT on Side
30473.670 30472.900	52.7 62.6	-12.5 -12.5	1.5 1.5	263.0 263.0	-9.9 0.0	0.0 0.0	Horz Horz	AV PK	0.0 0.0	30.3 50.1	54.0 74.0	-23.7 -23.9	Mid Ch, EUT Vert Mid Ch, EUT Vert
00-12.000	02.0	12.0	1.5	200.0	0.0	0.0	11012		0.0	00.1	. 4.0	20.0	5, 25. 75.1

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
30473.530	51.6	-12.5	1.5	0.0	-9.9	0.0	Vert	AV	0.0	29.2	54.0	-24.8	Mid Ch, EUT Vert
30477 220	61.3	-12 5	1.5	0.0	0.0	0.0	Vert	PK	0.0	48.8	74 0	-25.2	Mid Ch FUT Vert

6 dB BANDWIDTH

XMit 2019.09.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M12HWAX	AIK	17-Sep-19	17-Sep-22
Antenna - Standard Gain	OML, Inc.	M19HWAX	AIJ	20-Sep-19	20-Sep-22
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was set to the mode listed in the datasheet.

The 6dB occupied bandwidth was measured using 8 MHz Resulotion Bandwidth, and 50 MHz Video Bandwidth. Because the radio turns across two different external mixers, measurements were taken at the low and high side of the envelope.

The 6 dB bandwidth was calculated using the following equation:

F_High - F_Low = 6 dB Bandwidth, where:

F_High is the frequency 6 dB down from the peak on the high side of the envelope F_Low is the frequency 6 dB down from the peak on the low side of the envelope

6 dB BANDWIDTH

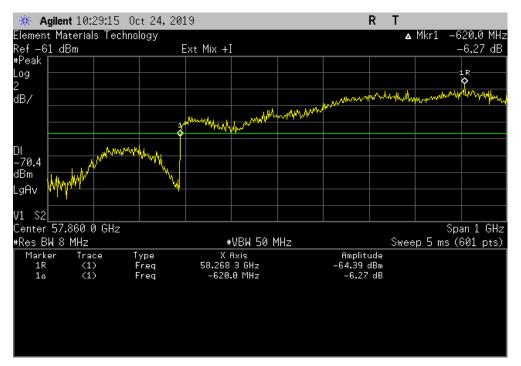
EUT: 60 GHz Radar

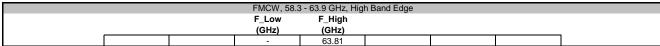
Serial Number: 317411/2019

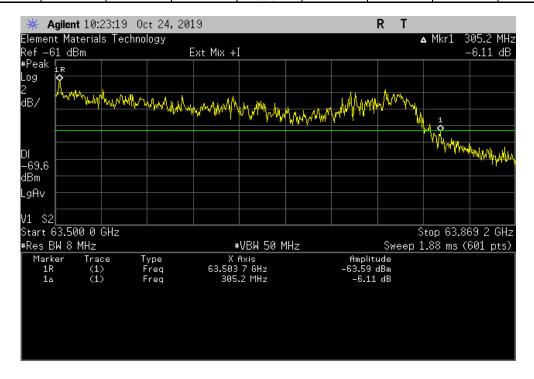
Customer: Pulsar Process Measurement

Attendees: None

Project: None


Tested by: Jeff Alcoke


TEST SPECIFICATIONS Work Order: ELEM0096
Date: 10-Oct-19
Temperature: 19.8 °C
Humidity: 35.7% RH
Barometric Press: 1032 mbar Power: 30 VDC Test Method Job Site: EV01 FCC 15.255:2019 COMMENTS DEVIATIONS FROM TEST STANDARD JAH Configuration # 3 Signature F_Low (GHz) F_High (GHz) FMCW, 58.3 - 63.9 GHz Low Band Edge High Band Edge 57.65 63.81 6 dB BW (GHz) Limit Result 6 dB Bandwidth 57.65 63.81


6 dB BANDWIDTH

FMCW, 58.3 - 63.9 GHz, Low Band Edge
F_Low F_High
(GHz) (GHz)
57.65 -

EQUIVALENT ISOTROPIC RADIATED POWER

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Oscilloscope	Tektronix	TDS 3052	TOF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	28-Mar-19	28-Mar-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EV3	28-Mar-19	28-Mar-20
RF Detector, 50 GHz - 75 GHz	Millitech	DET-15-RPFW0	ZZD	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M15RH	AYJ	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M15RH	AYK	NCR	NCR
Signal Generator	Agilent	N5181A	TGZ	31-Aug-18	31-Aug-21
Power Meter	Agilent	N1913A	SQR	8-Oct-19	8-Oct-20
Power Sensor	Keysight	V8486A	STV	29-Mar-19	29-Mar-22
Signal Generator	OML, Inc.	S15MS	TFW	NCR	NCR

TEST DESCRIPTION

The measurement was made in a radiated configuration, using an RF Detector with a detection bandwidth that encompasses the 57 - 71 GHz band, with a video bandwidth of at least 10 MHz.

The radio was configurd to operate in the mode/s listed in the subsequent data sheets.

The average values were determined by sutracting the Average Factor from the Peak Values. The Average Factor was determined using the following steps:

1. Calculate the dwell time, (T_D) , of the sweep frequency signal per MHz of the sweep frequency span:

$$T_D = Ts / \Delta F$$
 where:

Ts is the signal sweep frequency time in seconds ΔF is the signal sweep frequency span in MHz

2. Calculate the average factor:

Average Factor (dB) = $10 * log(T_D / Cycle Time)$ where:

Cycle Time is the total time for a complete cycle of the signal including retrace and any other latency

times

Calculations:

Ts = 0.03 s Cycle Time = 1 s

 $\Delta \dot{F}$ = 13300 MHz

 $T_D = Ts / \Delta F = 0.03 / 13300 = 2.25*10^-6 s/MHz$

EQUIVALENT ISOTROPIC RADIATED POWER

EUT: 60 GHz Radar

Serial Number: See configurations

Customer: Pulsar Process Measurement

Attendees: None

Project None Work Order: ELEM0096
Date: 10-Oct-19
Temperature: 19.6 °C Humidity: 35.9% RH
Barometric Pres.: 1031 mbar Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 30 VDC Test Method Job Site: EV01 FCC 15.255:2019 COMMENTS Measurements were made at a distance of 5 cm from the radome. The AVG values were determined by subtracting the Average Factor of -56.47 dB from the PK values. DEVIATIONS FROM TEST STANDARD Configuration # 1, 2 Signature Value (dBm) Limit (dBm) Result dBR8, CW Low Channel, 58.3 GHz -14.35 -70.82 ≤ 43 ≤ 40 Pass AVG Pass Mid Channel, 60.9 GHz PK ≤ 43 ≤ 40 -14.76 Pass AVG High Channel, 63.6 GHz -71.23 Pass Pass AVG -71.23 < 40 Pass dBR16, CW Low Channel, 58.3 GHz -14.35 -70.82 Pass PK AVG ≤ 43 ≤ 40 Pass Mid Channel, 60.9 GHz -14.76 -71.23 ≤ 43 ≤ 40 Pass Pass High Channel, 63.6 GHz -14.76 -71.23 Pass AVG ≤ 40 Pass

CONDUCTED OUTPUT POWER

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Oscilloscope	Tektronix	TDS 3052	TOF	NCR	NCR
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	28-Mar-19	28-Mar-20
Cable	ESM Cable Corp.	TTBJ141-KMKM-72	EV3	28-Mar-19	28-Mar-20
RF Detector, 50 GHz - 75 GHz	Millitech	DET-15-RPFW0	ZZD	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M15RH	AYJ	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M15RH	AYK	NCR	NCR
Signal Generator	Agilent	N5181A	TGZ	31-Aug-18	31-Aug-21
Power Meter	Agilent	N1913A	SQR	8-Oct-19	8-Oct-20
Power Sensor	Keysight	V8486A	STV	29-Mar-19	29-Mar-22
Signal Generator	OML, Inc.	S15MS	TFW	NCR	NCR

TEST DESCRIPTION

The measurement was made in a radiated configuration, using an RF Detector with a detection bandwidth that encompasses the 57 - 71 GHz band, with a video bandwidth of at least 10 MHz.

The radio was configurd to operate in the mode/s listed in the subsequent data sheets.

To determine the conducted output power, the antenna gain was subracted from the EIRP.

The average values were determined by sutracting the Average Factor from the Peak Values. The Average Factor was determined using the following steps:

1. Calculate the dwell time, (T_D) , of the sweep frequency signal per MHz of the sweep frequency span:

$$T_D = Ts / \Delta F$$
 where:

Ts is the signal sweep frequency time in seconds ΔF is the signal sweep frequency span in MHz

2. Calculate the average factor:

Average Factor (dB) = $10 * log(T_D / Cycle Time)$ where:

Cycle Time is the total time for a complete cycle of the signal including retrace and any other latency

times

Calculations:

Ts = 0.03 sCycle Time = 1 s ΔF = 13300 MHz

 $T_D = Ts / \Delta F = 0.03 / 13300 = 2.25*10^-6 s/MHz$

CONDUCTED OUTPUT POWER

EUT: 60 GHz Radar

Serial Number: See configurations

Customer: Pulsar Process Measurement

Attendees: None

Project None Work Order: ELEM0096
Date: 10-Oct-19
Temperature: 19.6 °C Humidity: 35.9% RH
Barometric Pres.: 1031 mbar Project: None
Tested by: Jeff Alcoke
TEST SPECIFICATIONS Power: 30 VDC Test Method Job Site: EV01 FCC 15.255:2019 COMMENTS Measurements were made at a distance of 5 cm from the radome. The AVG values were determined by subtracting the Average Factor of -56.47 dB from the PK values. DEVIATIONS FROM TEST STANDARD Configuration # 1, 2 Signature EIRF Antenna Gain (dBi) Conducted Power (dBm) Limit (dBm) (dBm) Result dBR8, CW Low Channel, 58.3 GHz -14.35 -70.82 18 18 -32.35 ≤ 27 ≤ 27 Pass AVG -88 82 Pass Mid Channel, 60.9 GHz PK -14.76 -71.23 ≤ 27 ≤ 27 18 18 -32.76 Pass AVG High Channel, 63.6 GHz PK -89.23 Pass -14.76 18 -32.76 ≤ 27 Pass AVG -71.23 18 -89.23 ≤ 27 Pass dBR16, CW Low Channel, 58.3 GHz -14.35 -70.82 20.5 20.5 -34.85 -91.32 Pass PK AVG ≤ 27 ≤ 27 Pass Mid Channel, 60.9 GHz -14.76 -71.23 20.5 20.5 ≤ 27 ≤ 27 Pass Pass -35.26 High Channel, 63.6 GHz PK -14.76 20.5 -35.26 ≤ 27 Pass AVG -71.23 20.5 -91.73 ≤ 27 Pass

SPURIOUS EMISSIONS 40-200GHz dbr 8

XMit 2019.06.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Generator - Signal	OML, Inc.	S15MS	TFW	NCR	NCR
Attenuator	S.M. Electronics	SA18N-06/SM4032	REE	30-Jul-19	30-Jul-20
Meter - Power	Spanawave	8651A	SOT	9-May-19	9-May-20
Power Sensor	Spanawave	80701A	SPL	9-May-19	9-May-20
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M05HWAX	AIM	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M08HWAX	AIL	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M12HWAX	AIK	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M19HWAX	AIJ	25-Aug-16	25-Aug-19
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The EUT was transmitting with an unmodulated carrier. The testing was done at distances closer than 3m as called out in the data sheets. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna orientat ion and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes (per ANSI C63.10:2013). The specifiation li mit was converted from pW/cm 2 to dB μ V/m and then adjusted at 20 dB per decade for measurements made at a closer distance then the specified distance. The corrected limit with respect to distance is shown in the table below.

	Harmonics	Harmonics above 40 GHz								
	Spec limit	Spec limit	Spec limit	Spec limit	Spec limit					
	3m	20 cm	10 cm	5 cm	2 cm					
Average (dBuV/m)	85.31	108.8	114.9	120.9	128.8					
Peak (dBuV/m)	105.31	128.8	134.9	140.9	148.8					

The analyzer display was offset with the value of the test equipment losses (mixers, duplexers, and cables) specific to each band and the antenna factor per the following table:

Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
116600.00	24.00	47.55	43.60	91.15
174900.00	24.00	51.08	42.68	93.76

Fundamental 60.9 GHz

Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
121800.00	24.00	47.93	42.68	90.61
182700.00	24.00	51.45	46.00	97.45

Fundamental 63.6 GHz

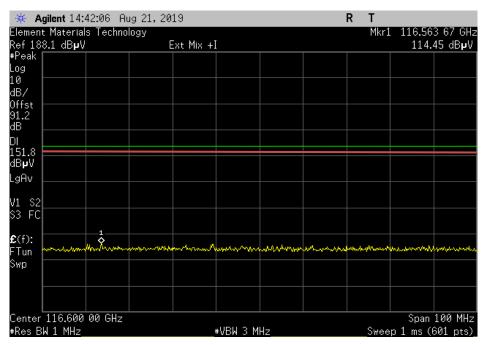
Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
127200.00	24.00	48.31	43.40	91.71
190800.00	24 00	51.83	49.26	101.09

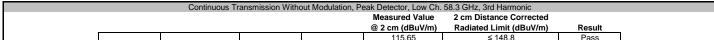
SPURIOUS EMISSIONS 40-200GHz dbr 8

EUT: 60 GHz Radar
Serial Number: FCC001/2019
Customer: Pulsar Process Measurement
Attendees: None
Project: None Work Order: ELEM0096
Date: 22-Aug-19
Temperature: 22.9 °C
Humidity: 45.4% RH
Barometric Press.: 1022 mbar Tested by: Brandon Hobbs, Jeff Alcoke
TEST SPECIFICATIONS Power: 30 VDC Test Method Job Site: EV01 COMMENTS The maximum oscillator bias voltage was applied during testing. The peak and average final limits were first converted to field strength using a 2 cm distance correction from the originally specified 3 meter distance. The imit is expressed as the red line in the subsequent screen catpures. DEVIATIONS FROM TEST STANDARD Configuration # Measured Value 2 cm Distance Corrected @ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Continuous Transmission Without Modulation
Peak Detector
Low Ch. 58.3 GHz Low Ch. 58.3 GHz
2nd Harmonic
3rd Harmonic
Mid Ch. 60.9 GHz
2nd Harmonic
3rd Harmonic
3rd Harmonic
High Ch. 63.9 GHz 114.45 115.65 ≤ 148.8 ≤ 148.8 2 Top 2 Bottom 114.19 120.14 ≤ 148.8 ≤ 148.8 Pass Pass 113.17 122.34 ≤ 148.8 ≤ 148.8 Average Detector

Low Ch. 58.3 GHz 2nd Harmonic
3rd Harmonic
Mid Ch. 60.9 GHz
2nd Harmonic
3rd Harmonic
3rd Harmonic
High Ch. 63.9 GHz 4 Top 4 Bottom 102.84 104.02 ≤ 128.8 ≤ 128.8 Pass Pass 5 Top 5 Bottom 101.6 108.18 ≤ 128.8 ≤ 128.8 Pass Pass 6 Top 6 Bottom 2nd Harmonic 3rd Harmonic 101.24 110.85 ≤ 128.8 ≤ 128.8 Pass Pass

SPURIOUS EMISSIONS 40-200GHz dbr 8

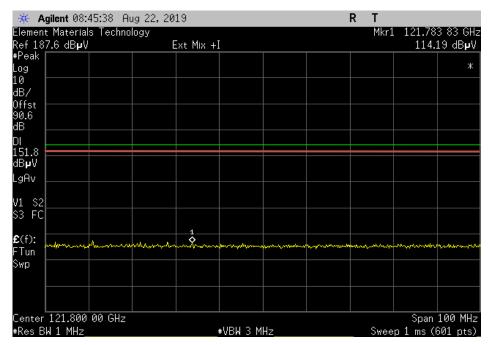


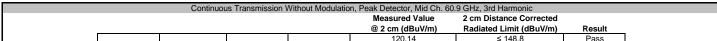

Continuous Transmission Without Modulation, Peak Detector, Low Ch. 58.3 GHz, 2nd Harmonic

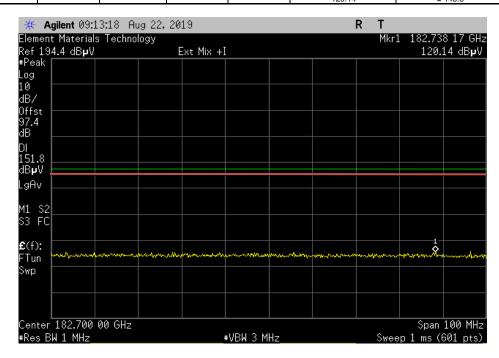
Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

114.45 ≤ 148.8 Pass

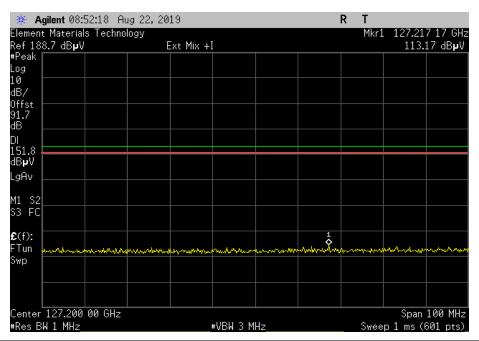


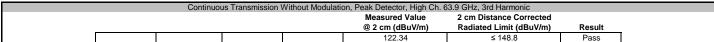

Continuous Transmission Without Modulation, Peak Detector, Mid Ch. 60.9 GHz, 2nd Harmonic

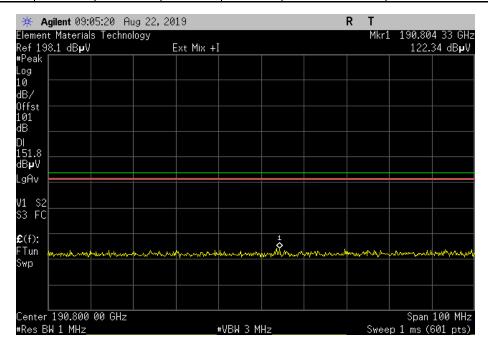

Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

114.19 ≤ 148.8 Pass

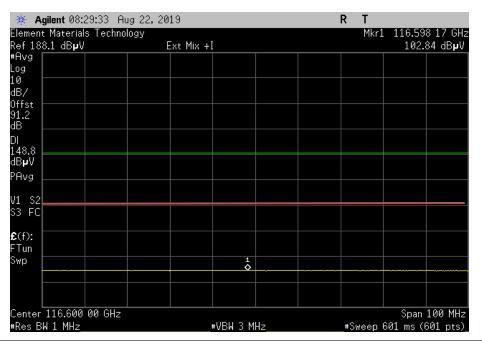


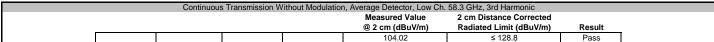


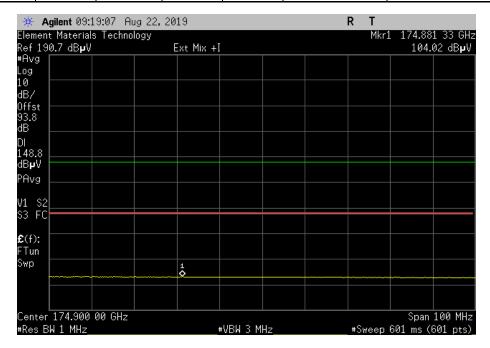

Continuous Transmission Without Modulation, Peak Detector, High Ch. 63.9 GHz, 2nd Harmonic

Measured Value
② 2 cm (dBuV/m)
Radiated Limit (dBuV/m)
Result

113.17
≤ 148.8
Pass

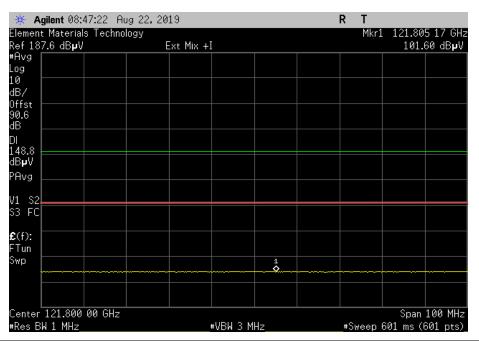


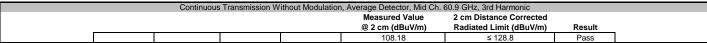

Continuous Transmission Without Modulation, Average Detector, Low Ch. 58.3 GHz, 2nd Harmonic

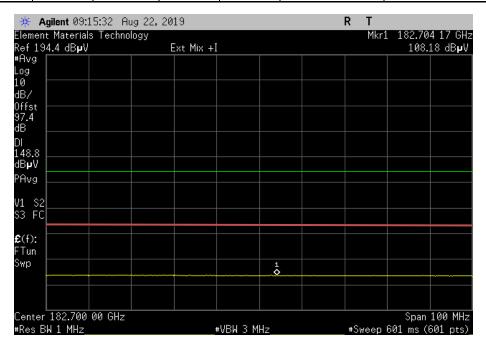

Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

102.84 ≤ 128.8 Pass

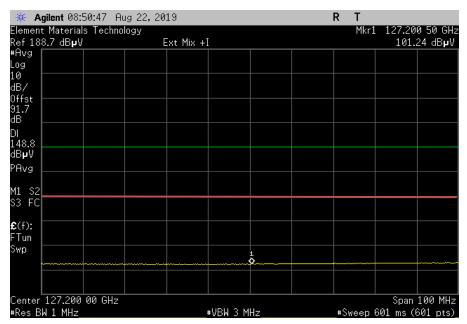



Continuous Transmission Without Modulation, Average Detector, Mid Ch. 60.9 GHz, 2nd Harmonic

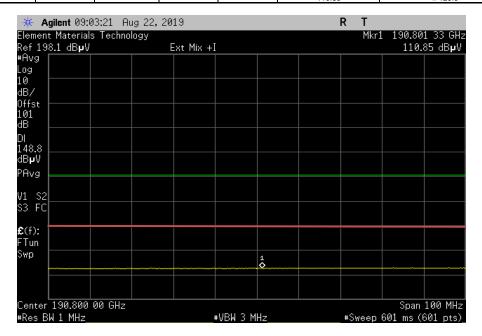

Measured Value
2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

101.6 ≤ 128.8 Pass



Continuous Transmission Without Modulation, Average Detector, High Ch. 63.9 GHz, 2nd Harmonic


Measured Value
2 cm Distance Corrected

@ 2 cm (dBuV/m)
Radiated Limit (dBuV/m)
Result

101.24
≤ 128.8
Pass

Continuous Transmission Without Modulation, Average Detector, High Ch. 63.9 GHz, 3rd Harmonic								
Measured Value 2 cm Distance Corrected								
					@ 2 cm (dBuV/m)	Radiated Limit (dBuV/m)	Result	
					110.85	≤ 128.8	Pass	

XMit 2019 06 11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5182B	TFU	5-Nov-18	5-Nov-21
Generator - Signal	OML, Inc.	S15MS	TFW	NCR	NCR
Attenuator	S.M. Electronics	SA18N-06/SM4032	REE	30-Jul-19	30-Jul-20
Meter - Power	Spanawave	8651A	SOT	9-May-19	9-May-20
Power Sensor	Spanawave	80701A	SPL	9-May-19	9-May-20
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M05HWAX	AIM	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M08HWAX	AIL	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M12HWAX	AIK	25-Aug-16	25-Aug-19
Antenna - Standard Gain	OML, Inc.	M19HWAX	AIJ	25-Aug-16	25-Aug-19
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The EUT was transmitting with an unmodulated carrier. The testing was done at distances closer than 3m as called out in the data sheets. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna orientation and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes (per ANSI C63.10:2013). The specifiation limit was converted from pW/cm^2 to dBµV/m and then adjusted at 20 dB per decade for measurements made at a closer distance then the specified distance. The corrected limit with respect to distance is shown in the table below.

	Harmonics above 40 GHz					
	Spec limit Spec limit Spec limit Spec limit Spec limit					
	3m	20 cm	10 cm	5 cm	2 cm	
Average (dBuV/m)	85.31	108.8	114.9	120.9	128.8	
Peak (dBuV/m)	105.31	128.8	134.9	140.9	148.8	

The analyzer display was offset with the value of the test equipment losses (mixers, duplexers, and cables) specific to each band and the antenna factor per the following table:

Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
116600.00	24.00	47.55	43.60	91.15
174900.00	24.00	51.08	42.68	93.76

Fundamental 60.9 GHz

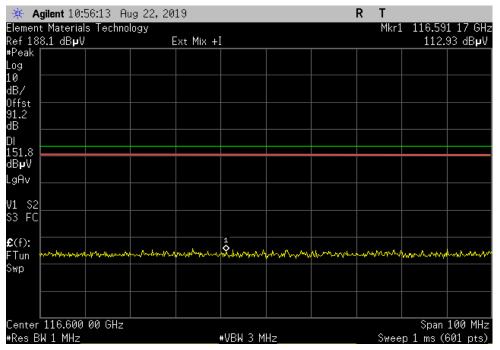
Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
121800.00	24.00	47.93	42.68	90.61
182700.00	24.00	51.45	46.00	97.45

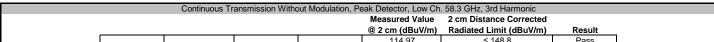
Fundamental 63.6 GHz

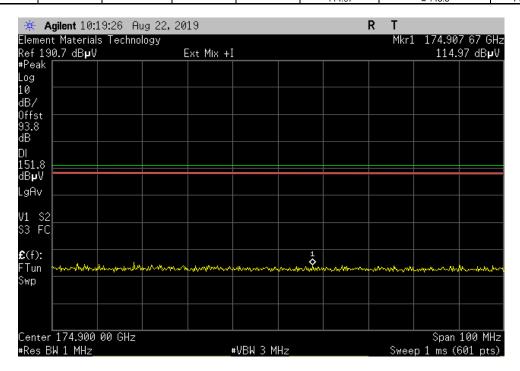
Freq	Antenna Gain	Antenna Factor	Mixer / Diplexer loss	Analyzer Offset
(MHz)	(dBi)	(dB/m)	(dB)	(dB)
127200.00	24.00	48.31	43.40	91.71
190800.00	24.00	51.83	49.26	101.09

EUT: 60 GHz Radar
Serial Number: FCC002/2019
Serial Number: FCC002/2019
Attendees: None
Project: None
Tested by: Brandon Hobbs, Jeff Alcoke
TEST SPECIFICATIONS Date: 22-Aug-19
Temperature: 22.9 °C
Humidity: 45.4% RH
Barometric Pres.: 1022 mbar
Job Site: EV01 Power: 30 VDC Test Method The maximum oscillator bias voltage was applied during testing. The peak and average final limits were first converted to field strength using a 2 cm distance correction from the originally specified 3 meter distance. The limit is expressed as the red line in the subsequent screen catpures. DEVIATIONS FROM TEST STANDARD Measured Value @ 2 cm (dBuV/m) 2 cm Distance Corrected Radiated Limit (dBuV/m) Result Continuous Transmission Without Modulation Peak Detector at Modulation
ctor
Low Ch. 58.3 GHz
2nd Harmonic
3rd Harmonic
Mid Ch. 60.9 GHz
2nd Harmonic
3rd Harmonic
High Ch. 63.9 GHz
2nd Harmonic
2nd Harmonic
2nd Harmonic 112.93 114.97 ≤ 148.8 ≤ 148.8 Pass Pass 113.24 123.11 ≤ 148.8 ≤ 148.8 2nd Harmonic Pass 3rd Harmonic Average Detector

Low Ch. 58.3 GHz 2nd Harmonic 102.94 ≤ 128.8 ≤ 128.8 Pass 2nd Harmonic
3rd Harmonic
Mid Ch. 60.9 GHz
2nd Harmonic
3rd Harmonic
High Ch. 63.9 GHz 103.83 Pass Pass ≤ 128.8 2nd Harmonic 3rd Harmonic 101.36 110.84 ≤ 128.8 ≤ 128.8 Pass Pass

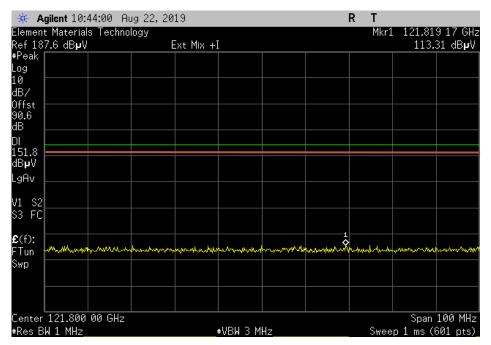


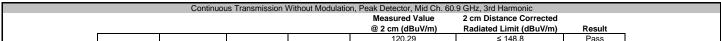

Continuous Transmission Without Modulation, Peak Detector, Low Ch. 58.3 GHz, 2nd Harmonic

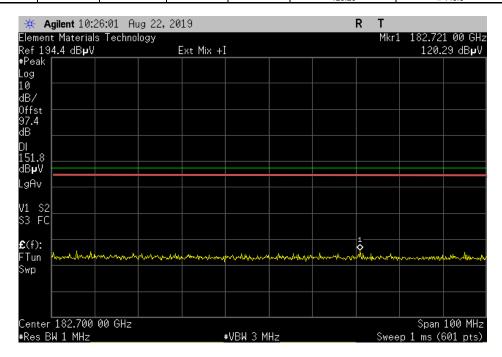

Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

112.93 ≤ 148.8 Pass

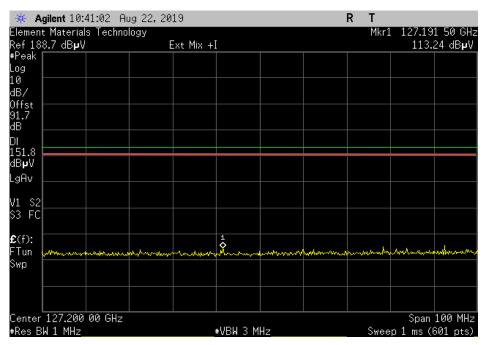


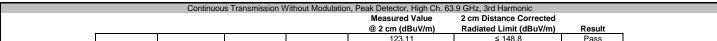

Continuous Transmission Without Modulation, Peak Detector, Mid Ch. 60.9 GHz, 2nd Harmonic

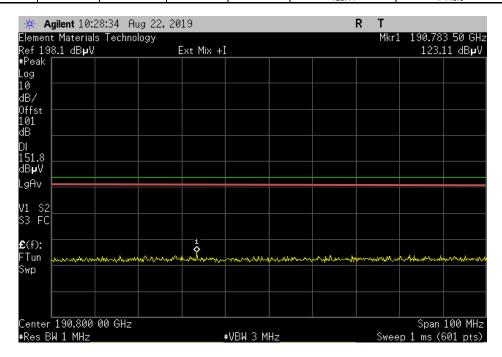

Measured Value
2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

113.31 ≤ 148.8 Pass

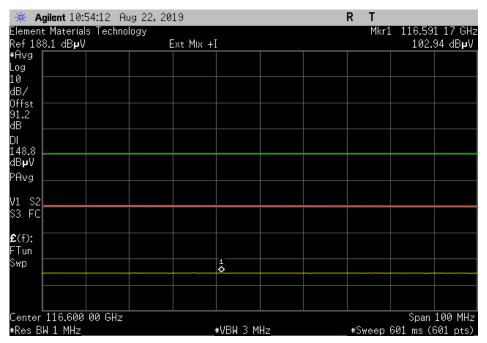


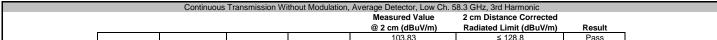

Continuous Transmission Without Modulation, Peak Detector, High Ch. 63.9 GHz, 2nd Harmonic

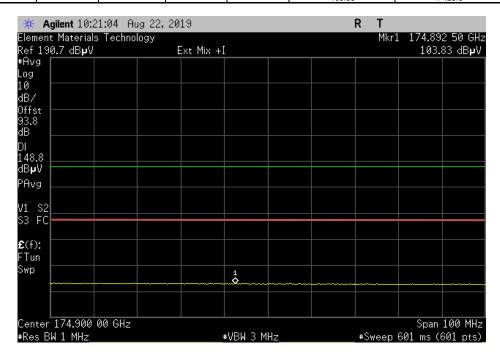

Measured Value
2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

113.24 ≤ 148.8 Pass

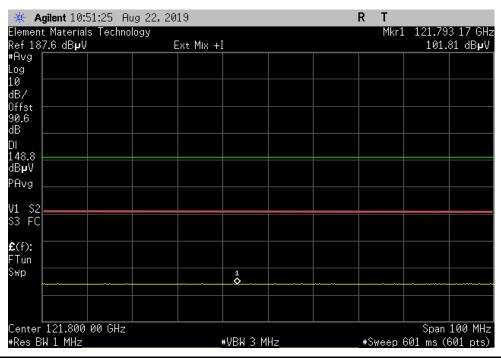



Continuous Transmission Without Modulation, Average Detector, Low Ch. 58.3 GHz, 2nd Harmonic


Measured Value
2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

102.94 ≤ 128.8 Pass



Continuous Transmission Without Modulation, Average Detector, Mid Ch. 60.9 GHz, 2nd Harmonic

Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

101.81 ≤ 128.8 Pass

Continuous Transmission Without Modulation, Average Detector, Mid Ch. 60.9 GHz, 3rd Harmonic

Measured Value

② 2 cm (dBuV/m)

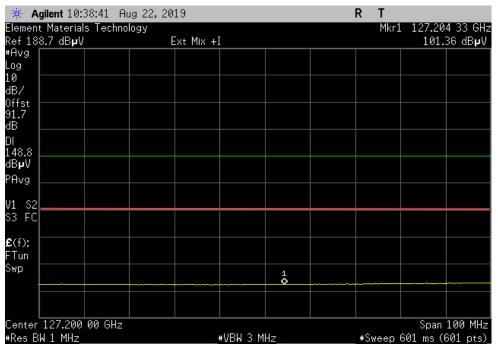

Radiated Limit (dBuV/m)

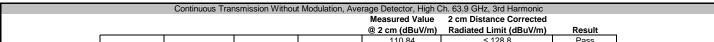
Result

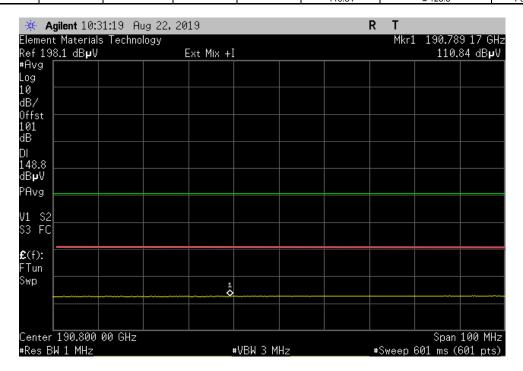
108.12

≤ 128.8

Pass




Continuous Transmission Without Modulation, Average Detector, High Ch. 63.9 GHz, 2nd Harmonic


Measured Value 2 cm Distance Corrected

@ 2 cm (dBuV/m) Radiated Limit (dBuV/m) Result

101.36 ≤ 128.8 Pass

XMit 2019 06 11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Tektronix	DMM912	MMH	15-Feb-19	15-Feb-22
Thermometer	Omegaette	HH311	DTY	5-Jan-18	5-Jan-21
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M12HWAX	AIK	25-Aug-16	25-Aug-19
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The measurements were made using a high frequency horn at a distance of 2 cm. The EUT antenna was then maximized by investigating all 3 orthogonal sides.

Measurements were made in the middle of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 $^{\circ}$ to +50 $^{\circ}$ C) and at 10 $^{\circ}$ C intervals.

Where a ppm limit applies: ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

Per the requirements of FCC 15.255:

Manufacturers of mm wave devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

No specific limits are provided in either FCC 15.255, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 100ppm will still allow the radio to be operating within the band.

			XMit 2019.06.11
EUT: 60 GHz Radar		Work Order:	ELEM0096
Serial Number: FCC001/2019		Date:	22-Aug-19
Customer: Pulsar Process Measurement		Temperature:	23.2 °C
Attendees: None			46.5% RH
Project: None		Barometric Pres.:	
Tested by: Brandon Hobbs, Jeff Alcoke	Power: 24 VDC Nominal	Job Site:	EV01
TEST SPECIFICATIONS	Test Method		
FCC 15.255:2019	ANSI C63.10:2013		
COMMENTS			
None			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 1 Signature			
Mid Channel, CW, 57 GHz - 71 GHz Band			

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20° C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
30 ≥ (115%)	60947.500000	60947.282000	3.58	100
24 (100%)	60947.500000	60947.383000	1.92	100
18 ≤ (85%)	60947.500000	60947.742000	3.97	100

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	60947.500000	60947.022000	7.84	100
40	60947.500000	60947.102000	6.53	100
30	60947.500000	60947.122000	6.20	100
20	60947.500000	60947.142000	5.87	100
10	60947.500000	60947.202000	4.89	100
0	60947.500000	60947.282000	3.58	100
-10	60947.500000	60947.962000	7.58	100
-20	60947.500000	60947.042000	7.51	100
-30	60947.500000	60947.943000	7.27	100

XMit 2019 06 11

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Tektronix	DMM912	MMH	15-Feb-19	15-Feb-22
Thermometer	Omegaette	HH311	DTY	5-Jan-18	5-Jan-21
Diplexer	OML, Inc.	DPL26	DAA	NCR	NCR
Cable	OML, Inc.	S119BFSS100390443	SUN	NCR	NCR
Antenna - Standard Gain	OML, Inc.	M12HWAX	AIK	25-Aug-16	25-Aug-19
Power Supply - DC	Topward	TPS-2000	TPD	NCR	NCR
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	24-Mar-19	24-Mar-20

TEST DESCRIPTION

The measurements were made using a high frequency horn at a distance of 2 cm. The EUT antenna was then maximized by investigating all 3 orthogonal sides.

Measurements were made in the middle of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 $^{\circ}$ to +50 $^{\circ}$ C) and at 10 $^{\circ}$ C intervals.

Where a ppm limit applies: ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

Per the requirements of FCC 15.255:

Manufacturers of mm wave devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

No specific limits are provided in either FCC 15.255, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 100ppm will still allow the radio to be operating within the band.

					XMit 2019.06.1	
	60 GHz Radar			Work Order:		
Serial Number:	FCC002/2019				22-Aug-19	
Customer:	Pulsar Process Measure	ment		Temperature:	23.2 °C	
Attendees:	None			Humidity:	46.5% RH	
Project:	None			Barometric Pres.:		
Tested by:	Brandon Hobbs, Jeff Ald	coke	Power: 24 VDC Nominal	Job Site:	EV01	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.255:2019			ANSI C63.10:2013			
COMMENTS						
None						
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	Configuration # 2 Signature					
Mid Channel, 57 GH	Iz - 71 GHz Band					

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20° C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
30 ≥ (115%)	60947.500000	60947.723000	3.66	100
24 (100%)	60947.500000	60947.322000	2.92	100
18 ≤ (85%)	60947.500000	60947.142000	5.87	100

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 18 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	60947.500000	60947.202000	4.89	100
40	60947.500000	60947.222000	4.56	100
30	60947.500000	60947.302000	3.25	100
20	60947.500000	60947.443000	0.94	100
10	60947.500000	60947.423000	1.26	100
0	60947.500000	60947.643000	2.35	100
-10	60947.500000	60947.755000	4.18	100
-20	60947.500000	60947.848000	5.71	100
-30	60947.500000	60947.943000	7.27	100