Reference no.:R-001-4820-039 Subject: Hardware Design Document

Technical Description of Purpletooth PT-209G Wireless Modem Version no.: V2.3

Hardware Design Document

Technical Description of Purpletooth PT-209G Wireless Modem

Document Information

Subject: Hardware Design Document

Title: Technical Description of Purpletooth PT-209G Wireless Modem

Filename: \\Server01\common\Engineering\Project\PurpletoothEthernet\Document\HardwareDesignDoc

ument\techDes_hdd_PTUE_V23_041129.doc

Reference no.: R-001-4820-039

Version no.: V2.3 Status: Released

November 29, 2004 Date: Author: L.M.Cheong Revisions: Version history

Modifications from V1.0:

Add IF filter and amplifier specifications (Section 2.3.1 and 2.3.2.)

Add the antenna description section (Section 3.)

Modifications from V2.0:

Revise the HTQ-2.4-10 antenna connector type (Section 3.3.)

Modification from V2.1:

Re-write the transmit path operation description in RF unit section (Section 2.3.)

Modification from V2.2:

Add a paragraph to state explicitly the TDD communication method (Section 2.)

State the maximum user data rate (1 Mbps) (Section 2.)

State the worst case duty cycle (0.132) (Section 2.)

Copyright © 2001 – 2004 REnex Technology Limited. All rights reserved.

No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from REnex Technology Limited.

Introduction

This document describes the basic operation principle of the Purpletooth PT-209G Wireless Modem.

2 **Technical Description**

The Purpletooth PT-209G wireless modem is an advanced communication device employing the direct sequence spread spectrum (DSSS) technology.

The communication between two modems uses the time division duplex (TDD) method that a modem is either in transmit mode (activation of the transmit path) or in receive mode (activation of the receive path) in any instance. The worst case duty cycle is 0.132.

The maximum user channel data rate is 1 Mbps.

The modem hardware system can be divided into four units, namely, the digital and interface unit; the baseband unit; the RF unit and the power supply and battery charging unit.

2.1 **Digital and Interface Unit**

The MCU, ML671000 from OKI, is the central controller of the whole hardware system. It is driven by a 12 MHz digital oscillator. The MCU provides an RS-232 and an USB interfaces directly. On the other hand, an Ethernet interface controller, DM9000, from DaviCom, is connected to ML671000 via the address/data buses connection to provide an RJ45 interface.

Subject: Hardware Design Document Reference no : R-001-4820-039

Title: Technical Description of Purpletooth PT-209G Wireless Modem Version no.: V2.3

2.2 **Baseband Unit**

The baseband unit composes of the DSSS transceiver chip set, SX043 and SX061 from AMI Semiconductor, the de-spreader, EL4450 from Elantec, and the associated filtering and matching circuitry. The baseband signal is spread by SX043 and then sent to the RF unit for up-conversion and modulation at the transmit path. In the reverse direction, the received signal at 4.6 MHz is de-spread by multiplying at the PN sequence supplied from SX043 at EL4450. The de-spread signal is demodulated at SX061 and then read by the digital control unit.

2.3 **RF** Unit

The RF unit employs a transceiver, RF2938 from RFMD, as the core. For the transmit path, the spread data stream at 16 Mcps from SX043 of the baseband unit is modulated by the RF transceiver RF2938. The modulation scheme is either BPSK or QPSK according to the data rate selected (QPSK is only used in 1 Mbps, the maximum data rate case). The data stream is modulated to 374 MHz IF. The modulated signal is filtered and then feed back to RF2938 to further up-convert to 2.4476 GHz. The 2.4476 GHz signal is first filtered and then goes back to RF2938 where one stage power amplification is provided. The amplified signal is then further amplified by the last stage power amplifier, RF2163. Finally, the signal goes through the RF switch AS169 and the antenna port to outside.

At the receiver path, the signal is first amplified by two stage LNAs, HMC287 from Hittite and RF2494 from RFMD. The signal is also down-converted to the IF at 374 MHz by RF2494. It is then filtered by a SAW filter TB374GD from Tai-SAW technology and amplified by an IF amplifier, AD8367 from Analog Devices. The IF signal is further down-converted to 4.6MHz by RF2938. This 4.6MHz signal is supplied to the baseband unit for de-spreading and demodulation.

The specifications of the IF filter and amplifier are provided as follows:

IF SAW Filter TB374GD 2.3.1

Item	Unit	Min.	Type.	Max.
Center frequency, Fc	MHz	-	374	-
Insertion loss, IL	dB	=	8.5	10
Pass bandwidth, BW3	MHz	17	24	-
Amplitude ripple in Fc ± 7 MHz	dB	-	0.6	1
Group delay ripple in Fc ± 7 MHz	ns	-	40	100
Triple transit suppression	dB	30	37	-
Attenuation: (reference level from Min IL)				
Fc –100 to –33 MHz	dB	45	52	-
Fc –33 to –22 MHz	dB	40	51	-
Fc –22 to –16.5 MHz	dB	30	42	-
Fc +16.5 to +22 MHz	dB	30	41	-
Fc +22 to +43 MHz	dB	35	44	-
Fc +43 to +100 MHz	dB	40	47	-

Subject: Hardware Design Document Reference no.:R-001-4820-039
Title: Technical Description of Purpletooth PT-209G Wireless Modem Version no.:V2.3

2.3.2 IF Amplifier AD8367

$\label{eq:AD8367-SPECIFICATIONS} \textbf{AD8367-SPECIFICATIONS} \quad \text{$(V_s = 5 \text{ V, } T_A = 25^{\circ}\text{C, System Impedance } Z_0 = 200 \ \Omega, \ V_{\text{MODE}} = 5 \ \text{V, } f = 10 \ \text{MHz, unless otherwise noted.})}$

Parameter	Conditions	Min	Тур	Max	Unit
OVERALL FUNCTION Frequency Range GAIN Range		LF	45	500	MHz dB
INPUT STAGE Maximum Input Input Resistance	Pins INPT and ICOM To Avoid Input Overload From INPT to ICOM	175	700 200	225	mV p-p Ω
GAIN CONTROL INTERFACE Scaling Factor Gain Law Conformance Maximum Gain Minimum Gain VGAIN Step Response Small Signal Bandwidth	$\begin{array}{l} Pin \ GAIN \\ V_{MODE} = 5 \ V, 50 \ mV \leq V_{GAIN} \leq 950 \ mV \\ V_{MODE} = 0 \ V, 50 \ mV \leq V_{GAIN} \leq 950 \ mV \\ 100 \ mV \leq V_{GAIN} \leq 900 \ mV \\ V_{GAIN} = 0.95 \ V \\ V_{GAIN} = 0.05 \ V \\ From \ 0 \ dB \ to \ 30 \ dB \\ From \ 30 \ dB \ to \ 0 \ dB \\ V_{GAIN} = 0.5 \ V \end{array}$		+20 -20 ±0.2 +42.5 -2.5 300 300 5		mV/dB mV/dB dB dB dB ns ns
OUTPUT STAGE Max Output Voltage Swing Output Source Resistance Output Centering Voltage ¹	Pin VOUT $R_L = 1 \text{ k}\Omega$ $R_L = 200 \Omega$ Series Resistance of Output Buffer		4.3 3.5 50 V _s /2		V p-p V p-p Ω V
SQUARE LAW DETECTOR Output Set Point AGC Small Signal Response Time	Pin DETO C _{AGC} = 100 pF, 6 dB Gain Step		354 1		mV rms μs
POWER INTERFACE Supply Voltage Total Supply Current Disable Current vs. Temperature	Pins VPSI, VPSO, ICOM, and OCOM $ \begin{aligned} &\text{ENBL High, Maximum Gain, } R_L = 200 \ \Omega \\ &\text{(Includes Load Current)} \\ &\text{ENBL Low} \\ &-40^{\circ}\text{C} \leq T_A \leq +85^{\circ}\text{C} \end{aligned} $	2.7	26 1.3	5.5 30 1.6 1.8	V mA mA mA
MODE CONTROL INTERFACE Mode LO Threshold Mode HI Threshold	Pin MODE Device in Negative Slope Mode of Operation Device in Positive Slope Mode of Operation		1.2 1.4		v v
ENABLE INTERFACE Enable Threshold Enable Response Time Enable Input Bias Current	Pin ENBL Time Delay Following LO to HI Transition until Device Meets Full Specifications. ENBL at 5 V ENBL at 0 V		2.5 1.5 27 32		V μs μA nA

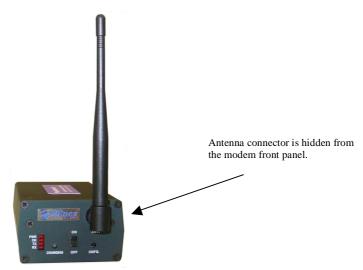
Subject: Hardware Design Document Reference no.:R-001-4820-039
Title: Technical Description of Purpletooth PT-209G Wireless Modem Version no.:V2.3

Parameter	Conditions	Min Typ Max	Unit
f = 70 MHz Gain Gain Scaling Factor Gain Intercept Noise Figure Output IP3 Output 1 dB Compression Point	Maximum Gain Minimum Gain Maximum Gain $f1=70~\text{MHz},f2=71~\text{MHz},V_{GAIN}=0.5~\text{V}$ $V_{GAIN}=0.5~\text{V}$	+42.5 -3.7 19.9 -5.6 6.2 27.5 20.5 8.5 1.5	dB dB mV/dB dB dB dBm dBV rms dBm dBW rms
f = 140 MHz Gain Gain Scaling Factor Gain Intercept Noise Figure Output IP3 Output 1 dB Compression Point	Maximum Gain Minimum Gain Maximum Gain $f1=140~MHz, f2=141~MHz, V_{GAIN}=0.5~V$ $V_{GAIN}=0.5~V$	+43.5 -3.6 19.7 -5.3 7.4 24.5 17.5 8.4 1.4	dB dB mV/dB dB dB dBm dBV rms dBm dBV rms
f = 190 MHz Gain Gain Scaling Factor Gain Intercept Noise Figure Output IP3 Output 1 dB Compression Point	Maximum Gain Minimum Gain Maximum Gain $f1=190 \ MHz, f2=191 \ MHz, V_{GAIN}=0.5 \ V$ $V_{GAIN}=0.5 \ V$	+43.5 -3.8 19.6 -5.3 7.5 23.9 16.9 8.4 1.4	dB dB mV/dB dB dB dBm dBV rms dBm dBV rms
f = 240 MHz Gain Gain Scaling Factor Gain Intercept Noise Figure Output IP3 Output 1 dB Compression Point	Maximum Gain Minimum Gain Maximum Gain $f1=240~\text{MHz}, f2=241~\text{MHz}, V_{\text{GAIN}}=0.5~\text{V}$ $V_{\text{GAIN}}=0.5~\text{V}$	+43 -4.1 19.7 -5.2 7.6 24.6 17.6 8.1 1.1	dB dB mV/dB dB dB dBm dBV rms dBm dBV rms

NOTES

2.4 Power Supply and Battery Charging Unit

This unit provides all the necessary supply voltages to the modem system from a single 7.4V supply from a DC adaptor or a rechargeable battery. The voltage sources provided include: 3.3V for digital, baseband and RF units; +5V and -5V for the baseband unit. On the other hand, a battery charging circuit employing charger IC, LT1510 from Linear, is installed to provide a battery supply and recharge option for users.


¹The output dc centering voltage is normally set at V_S/2 and can be adjusted by applying a voltage to DECL.

Specifications subject to change without notice.

Subject: Hardware Design Document Reference no.:R-001-4820-039
Title: Technical Description of Purpletooth PT-209G Wireless Modem Version no.:V2.3

3 Antenna Descriptions

Three antenna options are provided in PT-209G package. These antennae are connected to the modem PCB via a standard SMA connector. However, the connection part is hidden by the front panel of the modem (indicated in the photo below) so that the connected antenna can only be detached from the modem by disassembling the modem casing and internal mechanical structure. Hence, the PT-209G modem is an integral antenna design.

The antenna specifications are tabulated as follows:

3.1 Model: RO-IK-0504

Electrical Item	Specifications	Remarks
Type of antenna	Dipole antenna	
Frequency range	2.40 ~ 2.48 GHz	
Electrical length	1 / 2 λ	
Nominal impedance	50 Ohm	
Polarization	Vertical	
V.S.W.R	Less than 2.0	
Peak gain	1.5 dBi	
Mechanical Item	Specifications	Remarks
Element	RG-316 cable	
Sleeve	Urethane	Black
Base	Nylon 66	Black
Connector	SMA male	Ni plate
Antenna total length	168 ± 3 mm	

3.2 Model: TQC-2400AIP

Electrical Item	Specifications
Type of antenna	Magnet mount antenna
Frequency range	2.400 ~ 2.483 GHz
Nominal impedance	50 Ohm
Polarization	Vertical
V.S.W.R.	Less than 1.5
Gain	7 dBi
Mechanical Item	Specifications

Subject: Hardware Design Document
Title: Technical Description CT Reference no.:R-001-4820-039 Technical Description of Purpletooth PT-209G Wireless Modem Version no.: V2.3

Length	300 mm
Mount	90 mm diameter magnet
Cable	300 mm
Connector	SMA male

^{*} Manufacturer: Kenbotong Communication Ltd.

3.3 **Model: HTQ-2.4-10**

Electrical Item	Specifications
Type of antenna	Omni-directional antenna
Frequency range	2.400 ~ 2.500 GHz
Nominal impedance	50 Ohm
Polarization	Vertical
V.S.W.R	Less than 1.4
Gain	10 dBi
Mechanical Item	Specifications
Length	824 mm
Diameter	ф20 mm
Cable	500 mm
Connector	SMA male

