

**FCC CFR47 PART 15 SUBPART C
CLASS II PERMISSIVE CHANGE
CERTIFICATION
TEST REPORT**

FOR

VANISHING DOOR/WINDOW SENSOR

MODEL NUMBER: EV-DW4975

FCC ID: QNPEV-DW4975

REPORT NUMBER: 07U10864-1

ISSUE DATE: MARCH 26, 2007

Prepared for

**SECURE WIRELESS, INC.
5817 DRYDEN PLACE, SUITE D
CARLSBAD, CA 92008 U.S.A.**

Prepared by

**COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538 U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888**

NVLAP[®]

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
---	03/26/07	Initial Issue	T. C.

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	5
4.2. <i>MEASUREMENT UNCERTAINTY</i>	5
5. EQUIPMENT UNDER TEST	6
5.1. <i>DESCRIPTION OF EUT</i>	6
5.2. <i>CLASS II PERMISSIVE CHANGE DESCRIPTION</i>	6
5.3. <i>SOFTWARE AND FIRMWARE</i>	6
5.4. <i>WORST-CASE CONFIGURATION AND MODE</i>	6
5.5. <i>DESCRIPTION OF TEST SETUP</i>	7
6. TEST AND MEASUREMENT EQUIPMENT	9
7. LIMITS AND RESULTS	10
7.1. <i>20dB BANDWIDTH</i>	10
7.2. <i>MAXIMUM MODULATION PERCENTAGE (M%)</i>	12
7.3. <i>LESS THAN 5 SECONDS PLOT</i>	17
7.4. <i>RADIATED EMISSIONS</i>	19
7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS	19
8. SETUP PHOTOS.....	24

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SECURE WIRELESS SYSTEMS INC
5817 DRYDEN PLACE, SUITE D
CARLSBAD, CA 92008 U.S.A.

EUT DESCRIPTION: VANISHING DOOR/WINDOW SENSOR

MODEL: EV-DW4975

SERIAL NUMBER: 278987, 278976

DATE TESTED: FEBRUARY 23-26, 2007

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

Tested By:

FRANK IBRAHIM
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EV-DW4975 door sensor is a low power wireless entry detection device, which is intended to operate on a single fixed frequency of 433.920 MHz. This device operates from a single 3 volt, type CR2032 battery.

Equipment Type	433.92MHz Transmitter
Fundamental Frequency	433.92 MHz
Power Source	3V Lithium Battery
Transmitting Time	Periodic \leq 5 seconds
Manufacturer	Secure Wireless, Inc.

5.2. CLASS II PERMISSIVE CHANGE DESCRIPTION

The major change field under this application is:
Change #1 Use RoHS version component
Change#2: Add a back tamper contact

5.3. SOFTWARE AND FIRMWARE

To activate the EUT a magnet was used to make a contact.

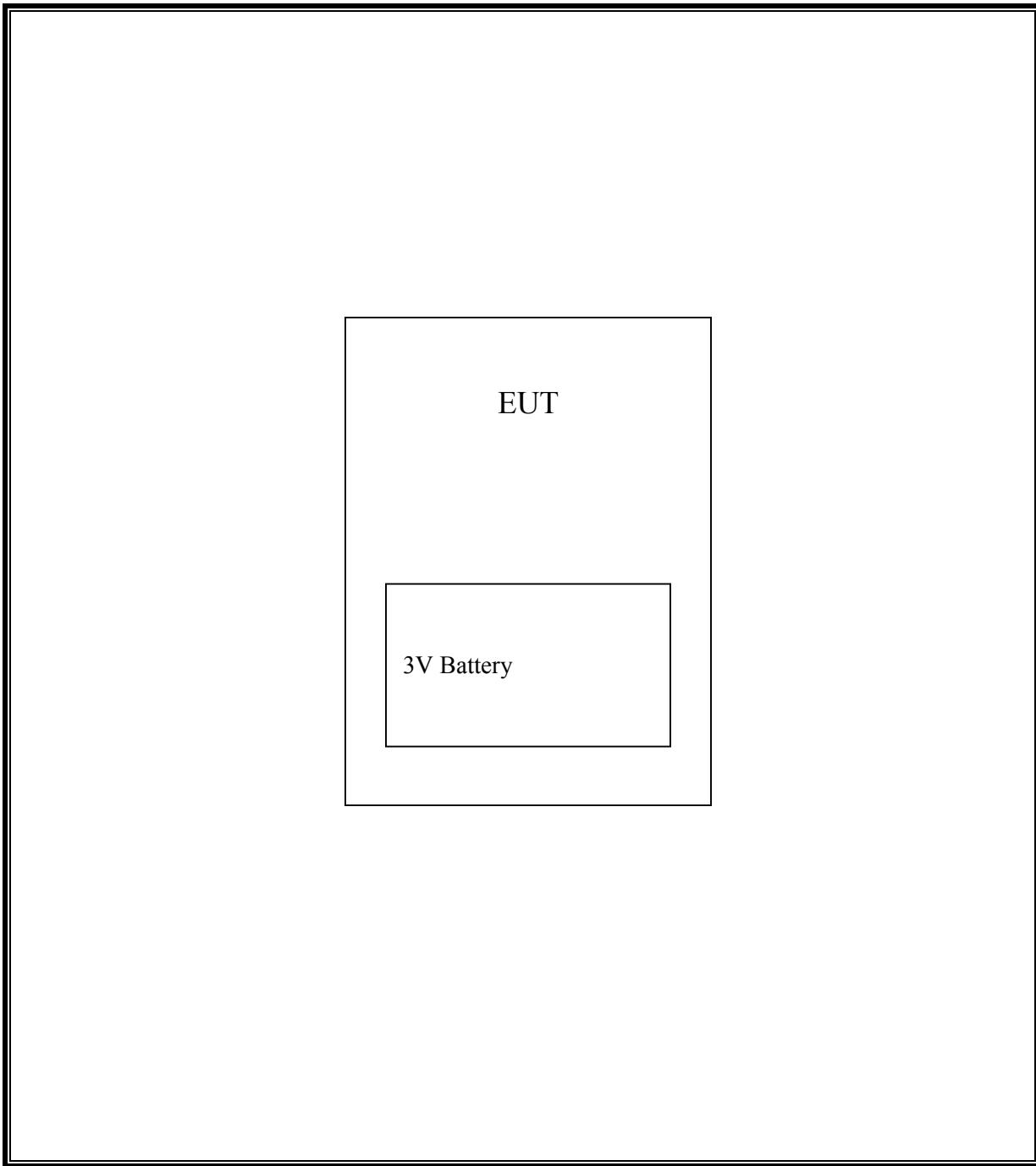
5.4. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined by X, Y, and Z-axis. The highest measured output power was at Y-Axis.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

N/A


I/O CABLES

N/A

TEST SETUP

The EUT is stand-alone unit and is battery operated.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
SA Display Section 1	Agilent / HP	85662A	3026A19146	12/17/07
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	01/23/08
Antenna, Bilog 30 MHz ~ 2 GHz	Sunol Sciences	JB1	A0022704	08/13/07
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	04/22/07
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	08/01/07
Quasi-Peak Adaptor	Agilent / HP	85650A	3145A01654	01/21/08
SA Display Section 2	Agilent / HP	85662A	2816A16696	04/07/08
SA RF Section, 1.5 GHz	Agilent / HP	85680B	2814A04227	01/07/08
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	11/26/07

7. LIMITS AND RESULTS

7.1. 20dB BANDWIDTH

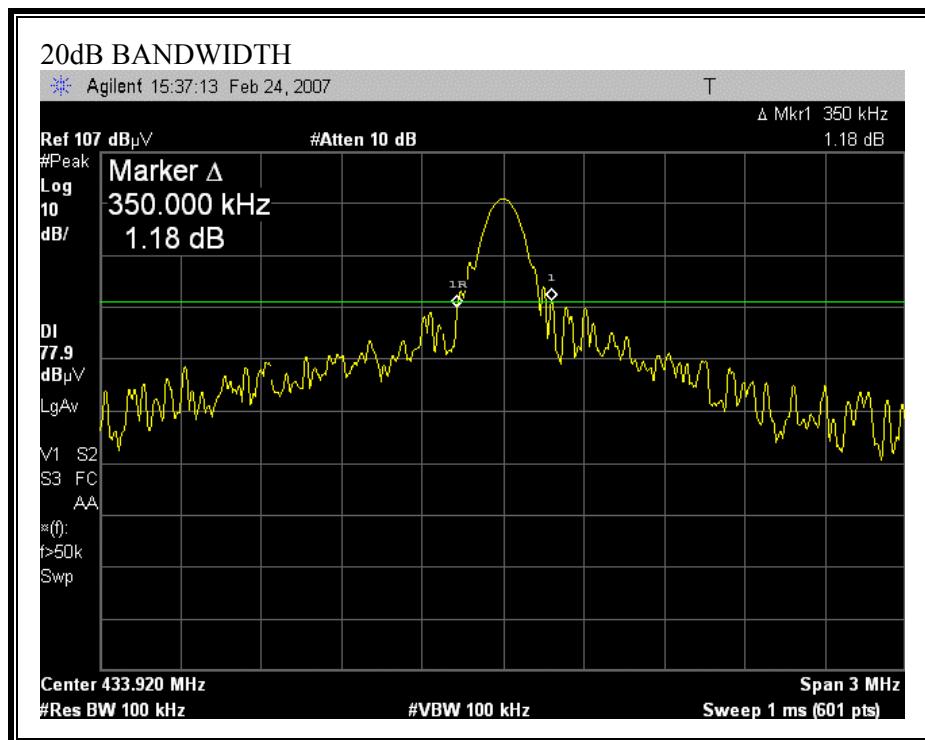
LIMIT

§15.231 (c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 100 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.


RESULTS

No non-compliance noted:

20dB Bandwidth

Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Margin (KHz)
433.92	350	1084.8	-734.8

20dB BANDWIDTH

7.2. MAXIMUM MODULATION PERCENTAGE (M%)

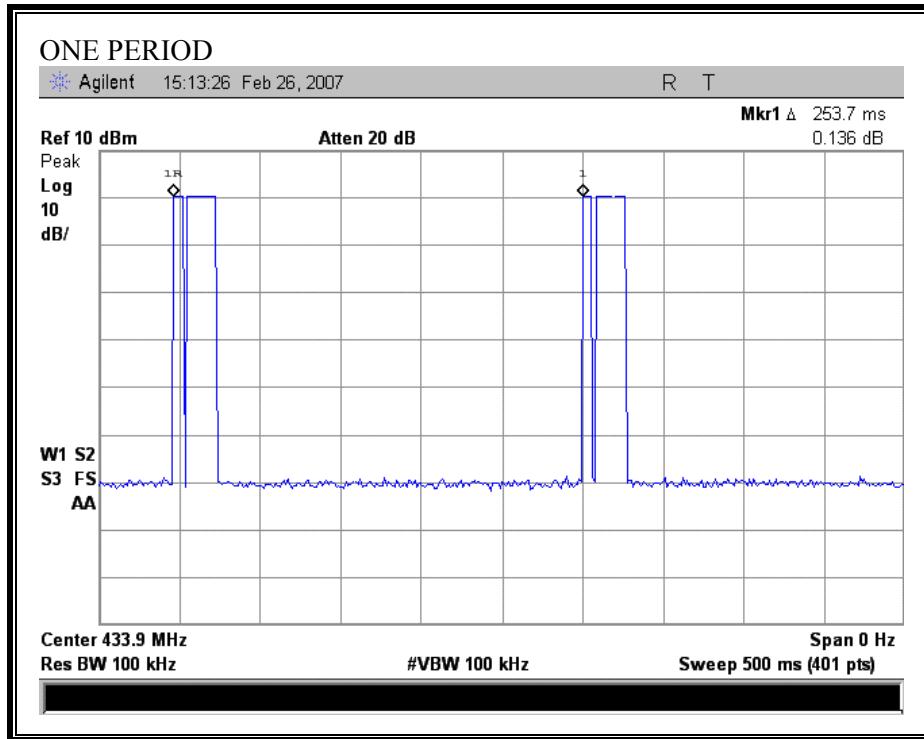
LIMIT

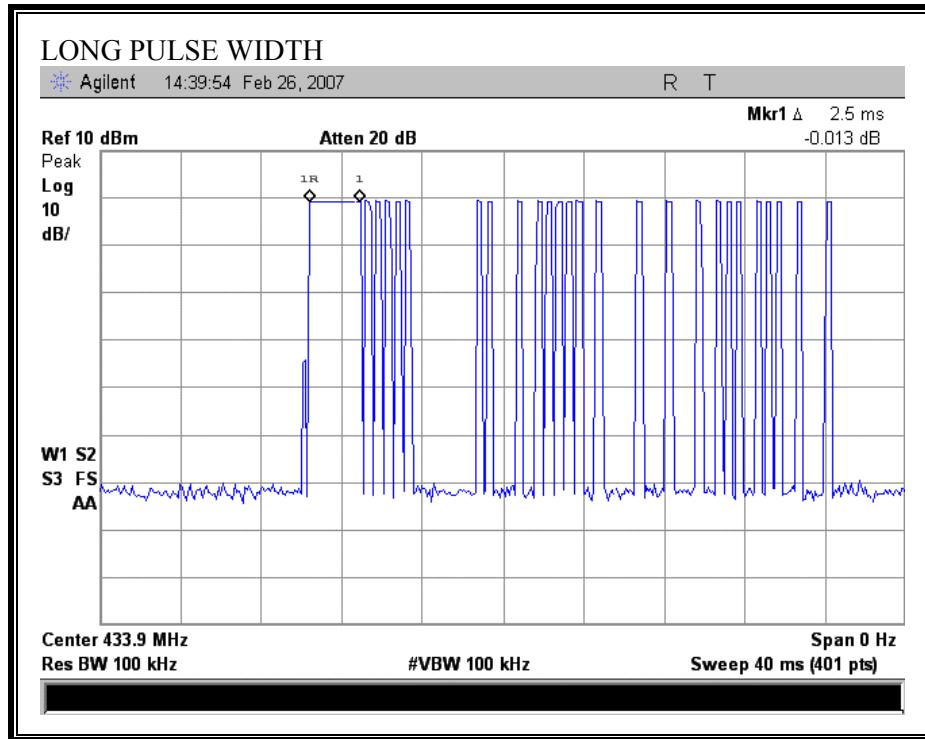
§15.35 (c) the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

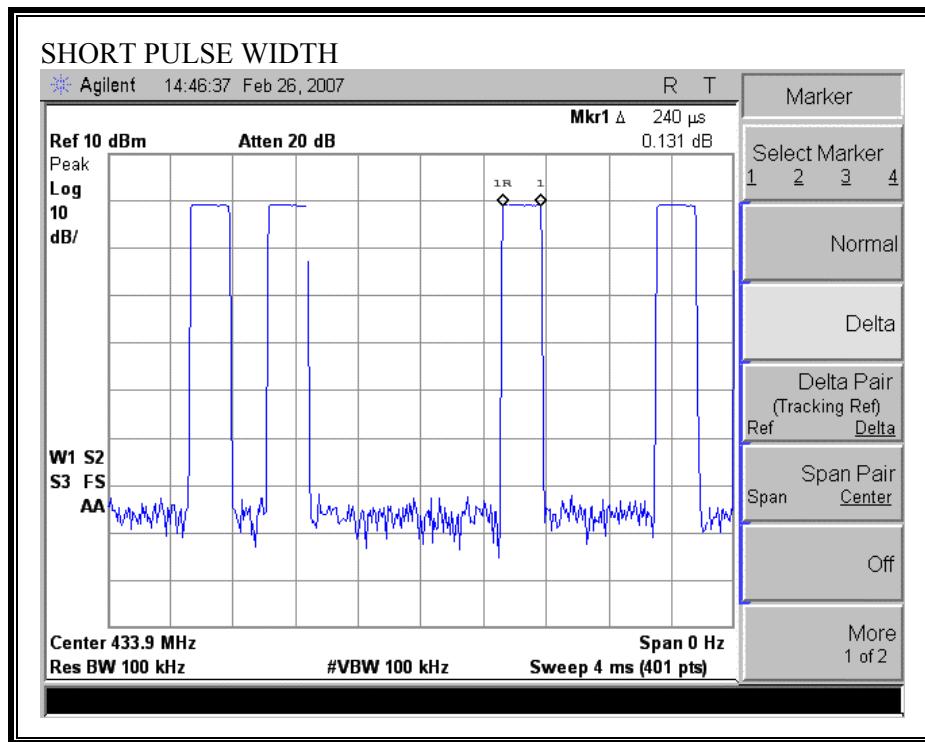
The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION:


Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is
(# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T


RESULTS

No non-compliance noted:


MAXIMUM MODULATION PERCENTAGE

One Period (ms)	Long Pulse Width (ms)	# of Long Pulses	Short Width (ms)	# of Short Pulses	Duty Cycle	20*Log Duty Cycle (dB)
253.7	2.5	1	0.24	25	0.085	-21.41

ONE PERIOD

LONG PULSE WIDTH

SHORT PULSE WIDTH

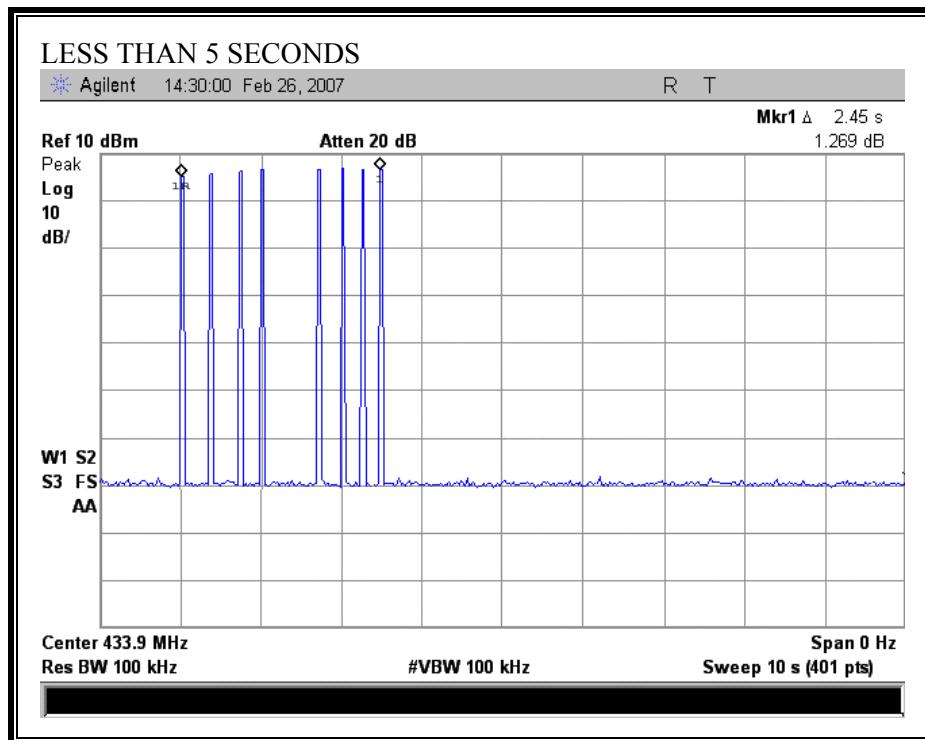
7.3. LESS THAN 5 SECONDS PLOT

LIMIT

§15.231 (a) (1) a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(a) (2) a transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

Transmission begins approximately 1.00 seconds after activation and transmission ceases approximately 3.45 seconds after activation.

LESS THAN 5 SECONDS

7.4. RADIATED EMISSIONS

7.4.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.231 (b) In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental Frequency Spurious Emissions (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 ¹	125 to 375 ¹
174 - 260	3,750	375
260 - 470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

¹ Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

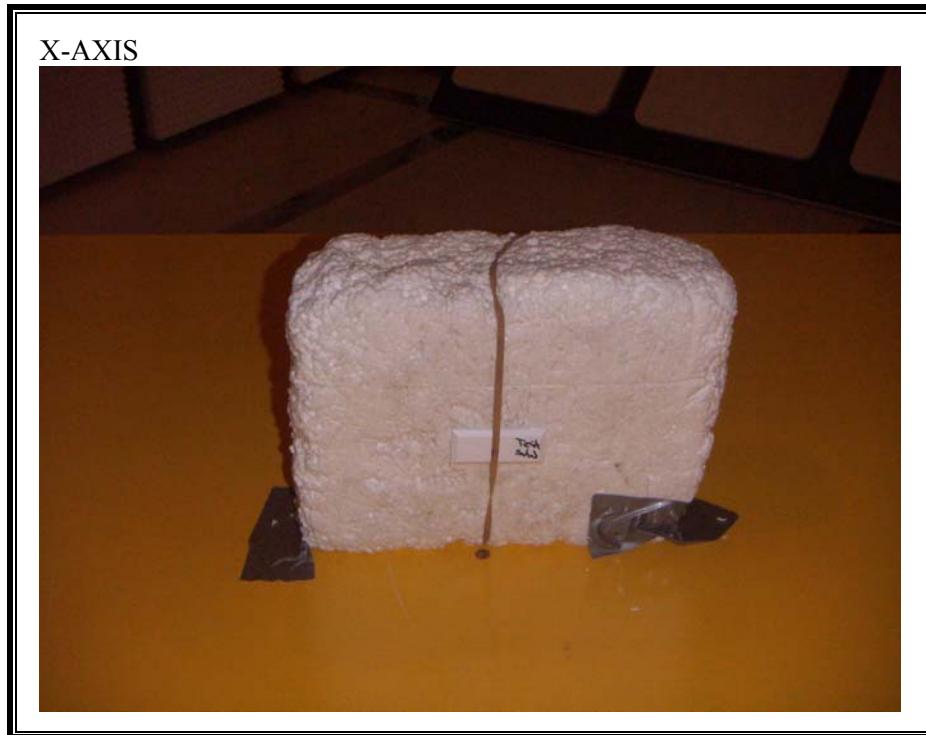
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSIONS 30 – 1000 MHz


<p>FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP</p> <p>561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888</p>		<p><i>Project #:</i> 07U10864 <i>Report #:</i> 070223ChB <i>Date & Time:</i> 02/23/07 <i>Test Engr:</i> Frank Ibrahim</p> <p><i>Company:</i> Secure Wireless <i>EUT Description:</i> Vanishing Door/Window Sensor, Model: EV-DW4975, S/N: 278987 <i>Test Configuration:</i> Stand Alone EUT <i>Type of Test:</i> FCC 15.231 <i>Mode of Operation:</i> TX ON</p>																															
<p>M% = $((t_1+t_2+t_3+\dots)/T) = 0.085$</p> <table border="1"> <tr> <td colspan="11">Av Reading = Pk Reading + 20*log(M%)</td> </tr> <tr> <td colspan="11">20 * log (M%) = -21.41 (Max=-20dB)</td> </tr> </table>												Av Reading = Pk Reading + 20*log(M%)											20 * log (M%) = -21.41 (Max=-20dB)										
Av Reading = Pk Reading + 20*log(M%)																																	
20 * log (M%) = -21.41 (Max=-20dB)																																	
Freq. (MHz)	Pk Rdg (dBuV)	Av Rdg (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Pk Level (dBuV/m)	Av Level (dBuV/m)	Pk Limit FCC_B	Av Limit FCC_B	Pk Margin (dB)	Avg Margin (dB)	Pol (H/V)																					
433.92MHz Fundamental frequency																																	
X-Position																																	
433.92	71.30	51.30	16.71	2.27	0.00	90.28	70.28	100.830	80.830	-10.55	-10.55	3mV																					
433.92	70.10	50.10	16.71	2.27	0.00	89.08	69.08	100.830	80.830	-11.75	-11.75	3mH																					
Y-Position																																	
433.92	72.70	52.70	16.71	2.27	0.00	91.68	71.68	100.830	80.830	-9.15	-9.15	3mV																					
433.92	65.80	45.80	16.71	2.27	0.00	84.78	64.78	100.830	80.830	-16.05	-16.05	3mH																					
Z-Position																																	
433.92	58.50	38.50	16.71	2.27	0.00	77.48	57.48	100.830	80.830	-23.35	-23.35	3mV																					
433.92	71.30	51.30	16.71	2.27	0.00	90.28	70.28	100.830	80.830	-10.55	-10.55	3mH																					
The Data shows that Y-Position is the worst case																																	
867.84	50.10	30.10	22.39	3.37	27.20	48.66	28.66	80.830	60.830	-32.17	-32.17	3mV																					
867.84	44.20	24.20	22.39	3.37	27.20	42.76	22.76	80.830	60.830	-38.07	-38.07	3mH																					
Note: No other emissions were detected above system noise floor from 30 MHz to 1000 MHz.																																	

HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber Site															
Company:	Secure Wireless														
Project #:	07U10864														
Date:	2/26/2007														
Test Engineer:	Frank Ibrahim														
Configuration:	Stand Alone EUT														
Mode:	TX ON														
EUT:	Vanishing Door/Window Sensor, Model: EV-DW4975, S/N: 278987														
Test Equipment:															
Horn 1-18GHz			Pre-amplifier 1-26GHz			Pre-amplifier 26-40GHz			Horn > 18GHz			Limit			
T119; S/N: 29301 @3m			T34 HP 8449B									FCC 15.205			
Hi Frequency Cables															
2 foot cable			3 foot cable			12 foot cable			HPF			Reject Filter			
Thanh 177079008						Gordon 203134001									
Peak Measurements RBW=VBW=1MHz															
Average Measurements RBW=1MHz, VBW=10Hz															
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuVm	Avg dBuVm	Pk Lim dBuVm	Avg Lim dBuVm	Pk Mar dB	Avg Mar dB	Notes (V/H)
1.3018	3.0	58.18	38.2	28.8	3.7	-37.8	0.0	0.0	52.9	32.9	74	54	-21.1	-21.1	H
1.7357	3.0	57.80	37.8	30.5	4.4	-37.2	0.0	0.0	55.5	35.5	80.83	60.83	-25.4	-25.4	H
2.1696	3.0	64.34	44.3	31.7	5.0	-36.6	0.0	0.0	64.3	44.3	80.83	60.83	-16.5	-16.5	H
2.6035	3.0	65.32	45.3	32.0	5.5	-36.2	0.0	0.0	66.7	46.7	80.83	60.83	-14.2	-14.2	H
3.0374	3.0	68.23	48.2	32.5	5.9	-35.9	0.0	0.0	70.8	50.8	80.83	60.83	-10.1	-10.1	H
3.4714	3.0	61.40	41.4	32.8	6.3	-35.5	0.0	0.0	65.0	45.0	80.83	60.83	-15.8	-15.8	H
3.9053	3.0	53.47	33.5	33.2	6.6	-35.1	0.0	0.0	58.2	38.2	74	54	-15.8	-15.8	H
4.3392	3.0	63.41	43.4	33.4	7.0	-34.9	0.0	0.0	68.9	48.9	74	54	-5.1	-5.1	H
1.3018	3.0	66.21	46.2	28.8	3.7	-37.8	0.0	0.0	60.9	40.9	74	54	-13.1	-13.1	V
1.7357	3.0	63.74	43.7	30.5	4.4	-37.2	0.0	0.0	61.4	41.4	80.83	60.83	-19.4	-19.4	V
2.1696	3.0	69.02	49.0	31.7	5.0	-36.6	0.0	0.0	69.0	49.0	80.83	60.83	-11.8	-11.8	V
2.6035	3.0	75.86	55.9	32.0	5.5	-36.2	0.0	0.0	77.2	57.2	80.83	60.83	-3.6	-3.6	V
3.0374	3.0	72.49	52.5	32.5	5.9	-35.9	0.0	0.0	75.0	55.0	80.83	60.83	-5.8	-5.8	V
3.4714	3.0	62.25	42.3	32.8	6.3	-35.5	0.0	0.0	65.9	45.9	80.83	60.83	-14.9	-14.9	V
3.9053	3.0	58.62	38.6	33.2	6.6	-35.1	0.0	0.0	63.4	43.4	74	54	-10.6	-10.6	V
4.3392	3.0	60.52	40.5	33.4	7.0	-34.9	0.0	0.0	66.1	46.1	74	54	-7.9	-7.9	V
f Measurement Frequency					Amp Preamp Gain					Avg Lim Average Field Strength Limit					
Dist Distance to Antenna					D Corr Distance Correct to 3 meters					Pk Lim Peak Field Strength Limit					
Read Analyzer Reading					Avg Average Field Strength @ 3 m					Avg Mar Margin vs. Average Limit					
AF Antenna Factor					Peak Calculated Peak Field Strength					Pk Mar Margin vs. Peak Limit					
CL Cable Loss					HPF High Pass Filter										
Note: No other emissions from EUT were detected above system noise floor.															

8. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Y-AXIS

END OF REPORT