October 9, 2002

International Smc (H.K.) Ltd. Suite 1210, Ocean Centre, 5 Canton Road, T.S.T., Kowloon, Hong Kong.

Dear Dora Lee:

Enclosed you will find your file copy of a Part 15 report (FCC ID: QNISMM-106-R).

For your reference, TCB will normally take another 15-20 days for reviewing the report. Approval will then be granted when no query is sorted.

Please contact me if you have any questions regarding the enclosed material.

Sincerely,

Al fredla

Alfred Lo

Senior Technical Supervisor

Enclosure

FCC ID: QNISMM-106-R

International SMC (H.K.) Ltd.

Application
For
Certification
(FCC ID: QNISMM-106-R)

Superheterodyne Receiver

WO# 0212967 TC/sa October 9, 2002

FCC ID: QNISMM-106-R

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Intertek Testing Services Hong Kong Limited
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

MEASUREMENT/TECHNICAL REPORT

International SMC (H.K.) Limited - MODEL: Singing Machine SMM106 FCC ID: QNISMM-106-R

This report concerns (check one:) Original G	rant <u>X</u>	Class II Change
Equipment Type: <u>Superheterodyne Receiver</u> (example	e: computer, pri	nter, modem, etc.)
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)?		No <u>X</u> fer until:
Company Name agrees to notify the Commission by:		date
of the intended date of announcement of the produc date.	t so that the gr	ant can be issued on that
Transition Rules Request per 15.37?	Yes	No_X
If no, assumed Part 15, Subpart B for unintentiona Edition] provision.	l radiator - the	new 47 CFR [12-18-01
Report prepared by:	Hong Ko 2/F., Gar	Testing Services

Table of Contents

1.0 General Description	2
1.1 Product Description	2
1.2 Related Submittal(s) Grants	2
1.3 Test Methodology	3
1.4 Test Facility	
2.0 System Test Configuration	5
2.1 Justification	5
2.2 EUT Exercising Software	5
2.3 Special Accessories	
2.4 Equipment Modification	6
2.5 Support Equipment List and Description	6
3.0 Emission Results	8
3.1 Field Strength Calculation	9
3.1 Field Strength Calculation (cont'd)	10
3.2 Radiated Emission Configuration Photograph	11
3.3 Radiated Emission Data	12
4.0 Equipment Photographs	15
5.0 Product Labelling	17
6.0 <u>Technical Specifications</u>	19
7.0 Instruction Manual	21
8.0 Miscellaneous Information	
8.1 Discussion of Pulse Desensitization	
8.2 Calculation of Average Factor	
8.3 Emissions Test Procedures	26
8.3 Emissions Test Procedures (cont'd).	27

List of attached file

Exhibit type	File Description filename	
Test Report	Test Report	report.pdf
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated.pdf
External Photo	External Photo	ophoto.pdf
Internal Photo	Internal Photo	iphoto.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf

EXHIBIT 1

GENERAL DESCRIPTION

6.0 General Description

1.1 Product Description

This Equipment Under Test (EUT) is an audio receiver for it corresponding wireless microphone. The main function of the EUT is used to receive the modulated signal that can be transmitting by its corresponding wireless microphone. It is powered by one new "AA" size battery. The power indicator (red LED) on the top of the EUT's body will be lighted while the power switch was on. On the other hand, there have a hole on the plastic case which provided for insertion of screwdriver for the channel tuning, the tuning range from 116 to 120MHz. The 40cm bare wire type antenna was equipped at the top of plastic case and its photo was shown on the following pages.

For electronic filing, the brief circuit description is saved with filename: descri.pdf

1.2 Related Submittal(s) Grants.

The Certification procedure of transmitter for this receiver (with FCC ID QNISMM-106) is being Processed as the same time of this application.

.1 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated measurement was performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992).

The EUT is powered by a new 'AA' size battery.

The unit was operated standalone and placed in the center of the table.

For simplifying of test, the unit was operated receiving continuously.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. The step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

.1 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it received the RF Signal continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

.2 Equipment Modification

Any modifications installed previous to testing by International SMC (H.K.) Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

All the items listed under section 2.0 of this report are:

1. Resistive load 47k ohm (Provided by ITS)

Confirmed by:

Alfred Lo Senior Technical Supervisor - Home Entertainment Electronics Intertek Testing Services Hong Kong Ltd. Agent for International SMC (H.K.) Limited

_____Signature
October 9, 2002 Date

Al fredla

EXHIBIT 3

EMISSION RESULTS

3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of $62.0~dB\mu V$ is obtained. The antenna factor of 7.4~dB and cable factor of 1.6~dB is added. The amplifier gain of 29~dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0~dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is $32~dB\mu V/m$. This value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

$$RA = 62.0 dB\mu V$$

$$AF = 7.4 dB$$

$$CF = 1.6 dB$$

$$AG = 29.0 dB$$

$$AG = 29.0 \text{ dB}$$

 $PD = 0 \text{ dB}$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$$

Level in mV/m = Common Antilogarithm [$(32 \text{ dB}\mu\text{V/m})/20$] = 39.8 $\mu\text{V/m}$

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 120.368 MHz

For electronic filing, the front view and back view of the test configuration photographs are saved with filename: radiated.pdf respectively.

.1 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 9.2 dB margin

The radiated emissions test was observed up to 1000MHz.

TEST	PF	RS	O^{N}	IN	FI	

/ZRRT	
Signature	
Terry C. H. Chan, Compliance Engineer Typed/Printed Name	_
October 9, 2002 Date	_

Company: International SMC (H.K.) Ltd. Date of Test: September 16, 2002

Model: Singing Machine SMM106 Worst case operating mode: Receiving

Table 1
Radiated Emissions

	Frequency	Reading	Antenna	Pre-Amp	Net	Limit	Margin
Polarization			Factor	Gain	at 3m	at 3m	
	(MHz)	$(dB\mu V)$	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
Н	116.729	36.8	12.8	16	33.6	43.5	-9.9
Н	120.368	37.5	12.8	16	34.3	43.5	-9.2
Н	233.460	34.1	11.4	16	29.5	46.0	-16.5
Н	240.717	34.2	11.4	16	29.6	46.0	-16.4
Н	350.197	34.2	14.9	16	33.1	46.0	-12.9
Н	361.107	33.9	14.9	16	32.8	46.0	-13.2
Н	466.927	32.9	16.8	16	33.7	46.0	-12.3
Н	481.476	31.6	17.3	16	32.9	46.0	-13.1
Н	583.655	32.3	18.6	16	34.9	46.0	-11.1
Н	604.830	31.8	18.9	16	34.7	46.0	-11.3
Н	700.384	29.5	21.3	16	34.8	46.0	-11.2
Н	722.197	29.8	21.3	16	35.1	46.0	-10.9

NOTES: 1. Peak Detector is used below 1000MHz unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna and average detector are used for the emission over 1000MHz.

The corresponding limit as per 15.109 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Terry C. H. Chan

EXHIBIT 4 EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, photographs of the tested EUT are saved with filename: ophoto.pdf for external photo, and iphoto.pdf for internal photo.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

7.0 <u>Miscellaneous Information</u>

The miscellaneous information includes details of the measured bandwidth, the test procedure and calculation of factor such as pulse desensitization and averaging factor (calculation and timing diagram).

8.1 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis* ... *Pulsed RF*.

This device is a superheterodyne receiver. The emission are continuous, and no desensitization of the measurement equipment occurs.

8.2 Calculation of Average Factor

This device is a superheterodyne receiver. No desensitization of the measurement equipment is required as the transmitted signals are continuously.

It is not necessary to apply average factor to the measurement results.

8.3 Emissions Test Procedures

This device is a superheterodyne receiver. It is not necessary to apply average factor to the measurement result.

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of Superheterodyne Receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.2.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to 2GHz.

8.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.1). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.