

SAR Compliance Test Report

WR917.001.02 Date of report: 2005-10-06 Test report no.: **Template version:** Number of pages: 35 Client: Nokia Mobile Phones, Inc. **Testing laboratory:** TCC San Diego 12278 Scripps Summit Drive 12278 Scripps Summit Drive San Diego, CA 92131, USA San Diego, CA 92131, USA Tel. +1 858 831 5000 Tel. +1 858 831 5000 Fax +1 858 831 6500 Fax +1 858 831 6500 Julian Kim

Responsible test engineer:

FCC ID:

Measurements made by: Julian Kim

Product contact person:

Alfonso Fernandez

Tested device:

RM-121 **QMNRM-121**

IC: 661X-RM121

Supplement reports:

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency **Electromagnetic Fields**

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: **Measurement Techniques**

Documentation:

The documentation of the testing performed on the tested devices is archived for 15 years at TCC San Diego.

Test results:

The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.

Date and signatures:

2005-10-06

For the contents:

Nerina Walton Lab Manager

Julian Kim Senior Certification Engineer

SAR Report WR917.001.02 **Applicant: Nokia Corporation**

Copyright © 2005 TCC San Diego

Type: RM-121

CONTENTS	
1. SUMMARY OF SAR TEST REPORT	3
1.1 Test Details	3
1.2 Maximum Results	
1.2.1 Head Configuration	
1.2.2 Body Worn Configuration	
1.2.3 Maximum Drift	
1.2.4 Measurement Uncertainty	4
2. DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 PICTURE OF THE DEVICE	5
2.2 DESCRIPTION OF THE ANTENNA	5
3. TEST CONDITIONS	6
3.1 Temperature and Humidity	6
3.2 Test Signal, Frequencies, and Output Power	6
4. DESCRIPTION OF THE TEST EQUIPMENT	7
4.1 MEASUREMENT SYSTEM AND COMPONENTS	7
4.1.1 Isotropic E-field Probe SN1739	8
4.2 PHANTOMS	8
4.3 TISSUE SIMULANTS	9
4.3.1 Tissue Simulant Recipes	
4.3.2 System Checking	10
4.3.3 Tissue Simulants used in the Measurements	11
5. DESCRIPTION OF THE TEST PROCEDURE	12
5.1 DEVICE HOLDER	12
5.2 Test Positions	
5.2.1 Against Phantom Head	12
5.2.2 Body Worn Configuration	13
5.3 SCAN PROCEDURES	14
5.4 SAR Averaging Methods	14
6. MEASUREMENT UNCERTAINTY	15
7. RESULTS	16
APPENDIX A: SYSTEM CHECKING SCANS	17
APPENDIX B: MEASUREMENT SCANS	20
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	29
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	32
SAR Report	Type: RM-121

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2005-10-03 to 2005-10-04
SN, HW and SW numbers of	SN: 033/03733247
tested device	HW: 3500
	SW: JN100b02.nep
Batteries used in testing	BL-5C
Headsets used in testing	HS-9
Other accessories used in	-
testing	
State of sample	Prototype Unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
CDMA 800	1013 / 824.70	23.7 dBm	Right Cheek	1.6 W/kg	1.25 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	SAR limit (1g avg)	Measured SAR value (1g avg)	Result
CDMA 800	777 / 848.31	23.7 dBm	1.5 cm	1.6 W/kg	0.92 W/kg	PASSED

1.2.3 Maximum Drift

Maximum drift during measurements	-0.13 dB

1.2.4 Measurement Uncertainty

Extended Uncertainty (k=2) 95%	± 29.8 %

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / Uncontrolled

Modes and Bands of Operation	CDMA 800
Modulation Mode	QPSK
Duty Cycle	1
Transmitter Frequency Range (MHz)	824 – 849

2.1 Picture of the Device

2.2 Description of the Antenna

The device has an external stubby antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.4 to 20.5
Ambient humidity (RH %):	34 to 59

3.2 Test Signal, Frequencies, and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY 4 software version 4.5, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements on the device was the 'worst-case extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE V1	604	12 months	2005-10
E-field Probe ET3DV6	1805	12 months	2006-04
Dipole Validation Kit, D835V2	478	24 months	2006-10

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	Agilent E4436B	US 39260114	24 months	2006-05
Amplifier	Milmega AS0825-20L	1009777	-	-
Power Meter	Agilent E4417A	GB41290918	12 months	2005-10
Power Sensor	Agilent E9327A	US 40440897	12 months	2006-03
Power Sensor	Agilent E9323A	US 40411295	12 months	2005-11
Call Tester	Agilent 8960/E5515C	US 40440119	12 months	2006-06
Vector Network Analyzer	Agilent 8753ES	MY40002861	12 months	2006-06
Dielectric Probe Kit	Agilent 85070D	US 01440165	-	-

4.1.1 Isotropic E-field Probe SN1805

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface ± 0.2 mm repeatability in air and clear liquids over diffuse

Detection reflecting surfaces

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checking and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the simulating liquids are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipes were used for Head and Body tissue simulants:

800MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	39.74	55.97
HEC	0.25	1.21
Sugar	58.31	41.76
Preservative	0.15	0.27
Salt	1.55	0.79

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	εr	σ [S/m]	[°C]
	Reference result	2.34	41.8	0.89	
	$\pm10\%$ window	2.11 – 2.57			
835	2005-10-03	2.33	40.6	0.89	20.4

System checking, body tissue simulant

	_	CAD DAVII - I	D'.l. 4 '. F	T	
		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	ε _r σ [S/m]		[°C]
	Reference result	2.44	54.3	1.00	
	$\pm10\%$ window	2.20 - 2.68			
835	2005-10-04	2.35	54.0	0.97	20.5

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

neda dissae simalant medsal emens								
		Dielectric F	Temp					
f [MHz]	Description	εr	[°C]					
	Recommended value	41.5	0.90					
	± 5% window	39.4 – 43.6	0.86 - 0.95					
836.5	2005-10-03	40.5	0.89	20.4				

Body tissue simulant measurements

Dody tibbat billiant incubal ciliciti								
		Dielectric F	Temp					
f [MHz]	Description	8r	[°C]					
	Recommended value	55.2	0.97					
	\pm 5% window	52.4 – 58.0	0.92 - 1.02					
836.5	2005-10-04	53.9	0.97	20.5				

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

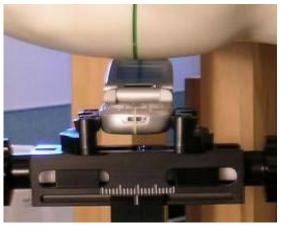


Photo of the device in "tilt" position

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in the photo below using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

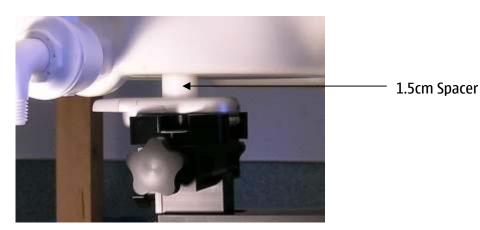


Photo of the device positioned for Body SAR measurement. The spacer was removed for the tests.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measurement uncertainty evaluation							
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.8	N	1	1	±5.8	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±8.3	R	√3	1	±4.8	8
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	8
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	8
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	8
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5.2	±3.9	R	√3	1	±2.3	∞
Test sample Related							
Test Sample Positioning	E4.2.1	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±10.0	R	√3	1	±5.8	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty E3.3 ± 2.9				1	0.6	±1.7	5
Combined Standard Uncertainty	RSS			±14.9	206		
Coverage Factor for 95%	k=2						
Expanded Standard Uncertainty				±29.8			
	1	l			l		

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

CDMA800 Head SAR Results

		SAR, averaged over 1g (W/kg)				
Test Confi	iguration	Ch 1013	Ch 384	Ch 777		
		824.70 MHz	836.52 MHz	848.31 MHz		
Pov	ver	23.7 dBm	23.8 dBm	23.7 dBm		
Left	Cheek	1.09	1.02	1.01		
	Tilt	-	0.26	-		
Right	Cheek	1.25	1.21	1.18		
	Tilt	-	0.29	-		

The measured Body SAR values for the test device are tabulated below:

CDMA800 Body SAR Results

ebi incoo body shin nesales							
	SAR, averaged over 1g (W/kg)						
Test Configuration	Ch 1013	Ch 384	Ch 777 848.31 MHz				
	824.70 MHz	836.52 MHz					
Power	23.7 dBm	23.8 dBm	23.7 dBm				
Without headset	0.84	0.89	0.92				
Headset HS-9	-	0.62	-				

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Dipole 835 MHz; Serial No. 478; Head System Check

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.885$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³; Temperature (liq.) = 20.4 °C

Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

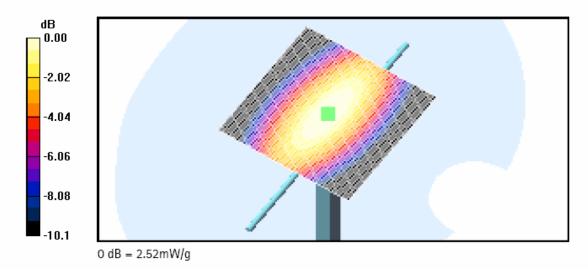
Probe: ET3DV6 - SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 04/22/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

Electronics: DAE4 Sn604; Calibrated: 10/28/2004
 Phantom: SAM1; Type: SAM; Serial: TP-1035

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

835MHz validation/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.52 mW/g

835MHz validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.6 V/m; Power Drift = -0.082 dB Maximum value of SAR (measured) = 2.52 mW/g

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 q) = 2.33 mW/q; SAR(10 q) = 1.55 mW/q

Dipole 835 MHz; Serial No. 478; Body System Check

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³; Temperature (liq.) = 20.5 °C

Phantom section: Flat Section; Advanced Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 - SN1805; ConvF(6.34, 6.34, 6.34); Calibrated: 04/22/2005

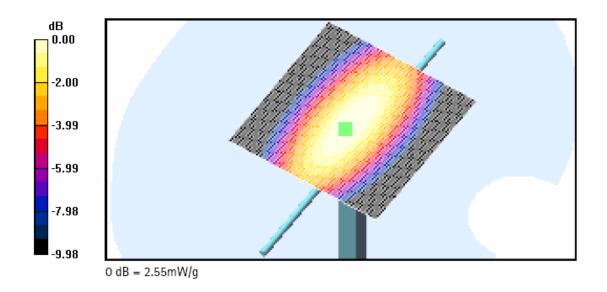
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn604; Calibrated: 10/28/2004

- Phantom: SAM2; Type: SAM; Serial: TP-1279

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

835MHz validation/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.55 mW/g

835MHz validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.2 V/m; Power Drift = -0.051 dB Maximum value of SAR (measured) = 2.55 mW/g

Peak SAR (extrapolated) = 3.32 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.57 mW/g

APPENDIX B: MEASUREMENT SCANS

Type: RM-121; HWID: 3500; Serial No. 033/03733247

Communication System: CDMA800; Channel: 1013; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824.7 MHz; $\sigma = 0.877 \text{ mho/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$;

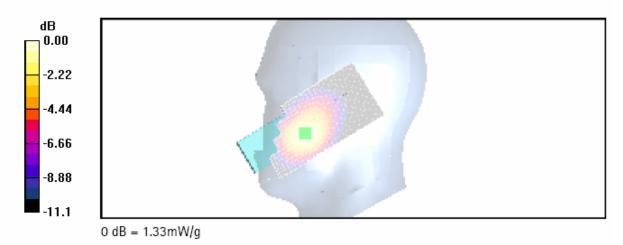
Temperature (liq.) = 20.4°C

Phantom section: Right Section; Worst Case Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM1; Type: SAM; Serial: TP-1035
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Right cheek/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.39 mW/g


Right cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = 0.079 dB Maximum value of SAR (measured) = 1.33 mW/g

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 q) = 1.25 mW/q; SAR(10 q) = 0.804 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

DUT: RM-121; HWID: 3500; Serial No: 033/03733247

Communication System: CDMA800; Channel: 1013; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824.7 MHz; $\sigma = 0.877 \text{ mho/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (liq.) = 20.4 °C

Phantom section: Right Section; Worst Case Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 - SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 4/22/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

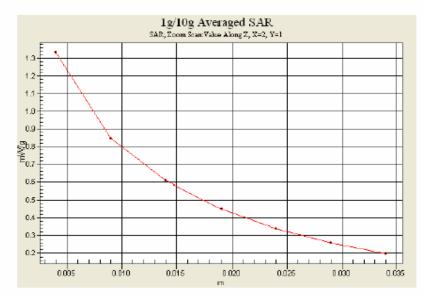
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004

- Phantom: SAM1; Type: SAM; Serial: TP-1035

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Right cheek/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g


Right cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = 0.079 dB Maximum value of SAR (measured) = 1.33 mW/g

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 q) = 1.25 mW/q; SAR(10 q) = 0.804 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

Type: RM-121; HWID: 3500; Serial No. 033/03733247

Communication System: CDMA800; Channel: 384; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.889 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (liq.) = 20.4°C

Phantom section: Right Section; Worst Case Extrapolation

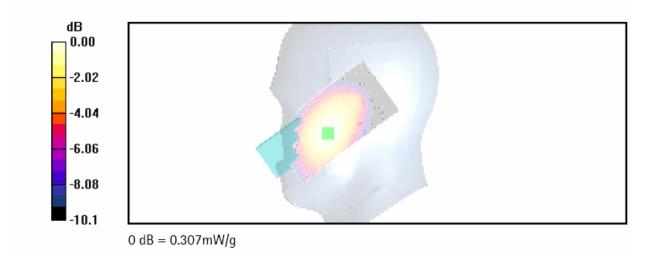
DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM1; Type: SAM; Serial: TP-1035
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Right tilt/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.312 mW/q

Right tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.5 V/m; Power Drift = -0.031 dB

Maximum value of SAR (measured) = 0.307 mW/g

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 q) = 0.292 mW/q; SAR(10 q) = 0.214 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

SAR Report WR917.001.02 Applicant: Nokia Corporation

Date: 2005-10-03; Test Laboratory: TCC San Diego

Type: RM-121; HWID: 3500; Serial No. 033/03733247

Communication System: CDMA800; Channel: 1013; Frequency: 824.7 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 824.7 MHz; $\sigma = 0.877 \text{ mho/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$;

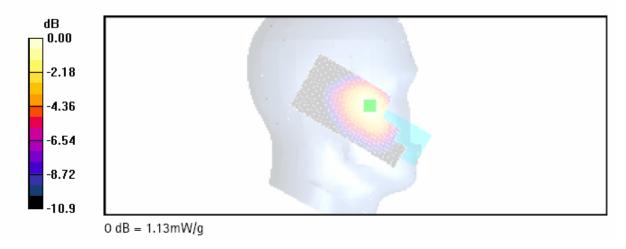
Temperature (liq.) = 20.4°C

Phantom section: Left Section; Worst Case Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM1; Type: SAM; Serial: TP-1035
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Left cheek/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.11 mW/g


Left cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = 0.01 dB Maximum value of SAR (measured) = 1.13 mW/g

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.712 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

Type: RM-121; HWID: 3500; Serial No. 033/03733247

Communication System: CDMA800; Channel: 384; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.889 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (liq.) = 20.4°C

Phantom section: Left Section; Worst Case Extrapolation

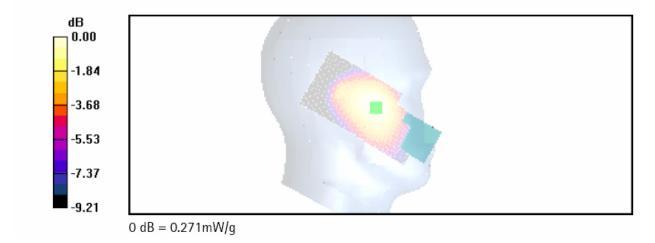
DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.37, 6.37, 6.37); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM1; Type: SAM; Serial: TP-1035
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Left tilt/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.272 mW/q

Left tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.7 V/m; Power Drift = -0.064 dB

Maximum value of SAR (measured) = 0.271 mW/g

Peak SAR (extrapolated) = 0.372 W/kg

SAR(1 q) = 0.260 mW/q; SAR(10 q) = 0.188 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

Type: RM-121; HWID: 3500; Serial No: 033/03733247; No headset

Communication System: CDMA800; Channel: 777; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.983 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (liq.) = 20.5°C

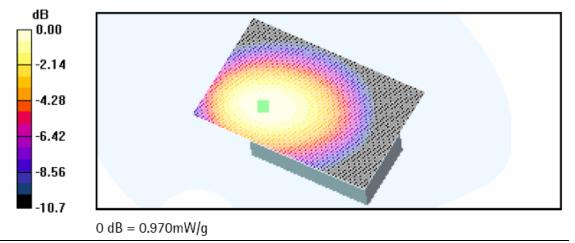
Phantom section: Flat Section; Worst Case Extrapolation

DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.34, 6.34, 6.34); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.980 mW/g


Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.3 V/m; Power Drift = -0.079 dB Maximum value of SAR (measured) = 0.970 mW/g

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.626 mW/g

Info: Interpolated medium parameters used for SAR evaluation!

SAR Report WR917.001.02 Applicant: Nokia Corporation Type: RM-121

Type: RM-121; HWID: 3500; Serial No: 033/03733247; No headset

Communication System: CDMA800; Channel 777; Frequency: 848.31 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 0.983 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (liq.) = 20.5°C

Phantom section: Flat Section; Worst Case Extrapolation

DASY4 Configuration:

Probe: ET3DV6 - SN1805; ConvF(6.34, 6.34, 6.34); Calibrated: 04/22/2005

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn604; Calibrated: 10/28/2004

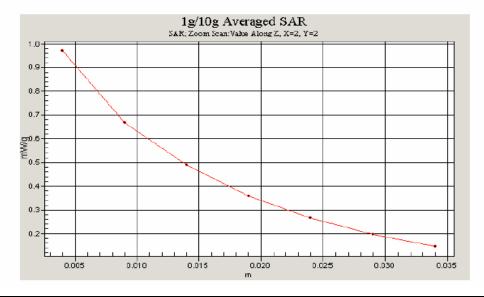
- Phantom: SAM2; Type: SAM; Serial: TP-1279

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.980 mW/g

Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 28.3 V/m; Power Drift = -0.079 dB

Maximum value of SAR (measured) = 0.970 mW/g

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 q) = 0.918 mW/q; SAR(10 q) = 0.626 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

Type: RM-121; HWID: 3500; Serial No: 033/03733247; HS-9 headset

Communication System: CDMA800; Channel: 384; Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.968 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$;

Temperature (lig.) = 20.5 °C

Phantom section: Flat Section; Worst Case Extrapolation

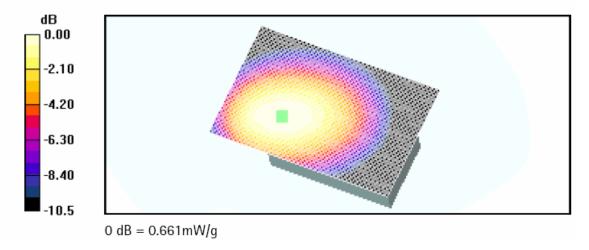
DASY4 Configuration:

- Probe: ET3DV6 SN1805; ConvF(6.34, 6.34, 6.34); Calibrated: 04/22/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn604; Calibrated: 10/28/2004
- Phantom: SAM2; Type: SAM; Serial: TP-1279
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Body/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.669 mW/g

Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 24.0 V/m; Power Drift = -0.129 dB

Maximum value of SAR (measured) = 0.661 mW/q

Peak SAR (extrapolated) = 0.954 W/kg

SAR(1 q) = 0.623 mW/q; SAR(10 q) = 0.424 mW/q

Info: Interpolated medium parameters used for SAR evaluation!

SAR Report WR917.001.02 **Applicant: Nokia Corporation** Type: RM-121

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

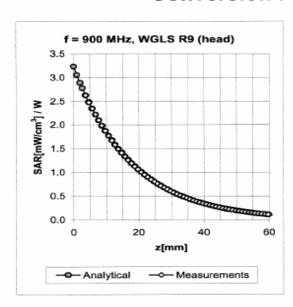
Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

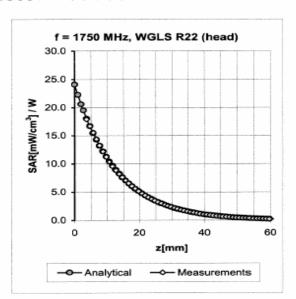
lient Nokia SD

Certificate No: ET3-1805_Apr05

Calibration procedure for dosimetric E-field probes alibration date: April 22, 2005 In Tolerance In Tolerance In Tolerance In Ealibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Il calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. allibration Equipment used (M&TE critical for calibration) fromary Standards D# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration fromary Standards Dewer meter E4419B GB41293874 S-May-04 (METAS, No. 251-00388) May-05 Geference 34 BA Attenuator SN: S5054 (3c) 10 -Aug-04 (METAS, No. 251-00388) May-05 Geference 20 dB Attenuator SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20b) 3-May-04 (METAS, No. 251-00389) May-05 Geference 20 dB Attenuator SN: S5058 (20b) 3-May-04 (METAS, No. 251-00389) May-05 SN: S5038 (20b) SN: S503	ent Nokia SD		Certific	Certificate No: ET3-1805_Apr05		
April 22, 2005 Calibration procedure for dosimetric E-field probes alibration date: April 22, 2005 In Tolerance In Tolerance In Tolerance In Ealibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Il calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Alibrations Equipment used (M&TE critical for calibration) Firmary Standards ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration ower meter E4419B Ower sensor E4412A My 41495277 5-May-04 (METAS, No. 251-00388) May-05 Geference 20 dB Attenuator SN: S5054 (3c) 10-Aug-04 (METAS, No. 251-00389) May-05 eference 20 dB Attenuator SN: S5054 (3c) 3-May-04 (METAS, No. 251-00389) May-05 eference 30 dB Attenuator SN: S5058 (20b) 3-May-04 (METAS, No. 251-00389) May-05 eference 30 dB Attenuator SN: S5129 (30b) 10-Aug-04 (METAS, No. 251-00349) Aug-05 eference 30 dB Attenuator SN: S5129 (30b) 10-Jug-04 (METAS, No. 251-00349) Aug-05 AE4 SN: 617 19-Jan-05 (SPEAG, No. 253-0013) Jan-06 econdary Standards ID # Check Date (in house) Scheduled Check Nower sensor HP 8481A My 41092180 18-Sep-02 (SPEAG, in house check De-03) In house check: De-04 Pagenerator HP 8481A My 41092180 18-Sep-02 (SPEAG, in house check De-03) In house check: De-04 Pagenerator HP 8481A Nove Shade Us3642U01700 4-Aug-99 (SPEAG, in house check De-03) In house check: De-04 Pagenerator HP 8481A Nove Shade Us3642U01700 4-Aug-99 (SPEAG, in house check De-03) In house check: De-04 Name Punction Signature Alibrated by: Laboratory Technician	ALIBRATION C	ERTIFICAT				
Calibration procedure for dosimetric E-field probes Calibration date: April 22, 2005 In Tolerance In Tolerance In Tolerance In I	Dbject	ET3DV6 - SN:18	805			
In Tolerance In the certificate Mo. In the certificate In the certificate In Tolerance In Stignature In Tolerance In Tolerance In Tolerance In Signature In Tolerance In Tole	allibration procedure(s)		edure for dosimetric E-field p	robes		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards D #	Calibration date:	April 22, 2005				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Dower meter E4419B GB41293874 S-May-04 (METAS, No. 251-00388) May-05 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-04 (METAS, No. 251-00388) May-05 Reference 20 dB Attenuator SN: S5086 (20b) 3-May-04 (METAS, No. 251-00389) May-05 Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-04 (METAS, No. 251-00389) May-05 Reference Probe ES3DV2 SN: 3013 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) Jan-06 Secondary Standards ID # Check Date (in house) Scheduled Check Network Analyzer HP 8753E Name Function Signature Approved by: Katja Pokovic Technical Manager	Condition of the calibrated item	In Tolerance				
D# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration	The measurements and the unce	rtainties with confidence	probability are given on the following pa	ges and are part of the certificate.		
Common			Cal Date (Calibrated by, Certificate	No.) Scheduled Calibration		
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2		GB41293874				
Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 Reference	ower sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05		
Reference 30 dB Attenuator Reference Probe ES3DV2 Reference Probe ES	teference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-04 (METAS, No. 251-00403) Aug-05		
Reference Probe ES3DV2 SN: 3013 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) Jan-06 SN: 617 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Jan-06 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Oct 0 In house check: Dec-0 Retwork Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-04) In house check: Nov 0 In house	deference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05		
SN: 617 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Jan-06 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092180 US3642U01700 4-Aug-99 (SPEAG, in house check Oct-03) In house check: Oct 0 In house check: Dec-0 In house check: Nov-04 In house check: Nov-04 In house check: Nov-04 In house check: Nov-04 Name Function Signature Calibrated by: Katja Pokovic Technical Manager	teference 30 dB Attenuator	SN: S5129 (30b)		,		
Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A RF generator HP 8648C US3642U01700 VS37390585 Name Function Signature Approved by: Katja Pokovic ID # Check Date (in house) Scheduled Check In house check Oct-03) In house check Check Oct-03 In house check Dec-03 In house check: Dec-0 In house check: Nov-04 In house check: Dec-06 In house check: Nov-04 In house check: Dec-06 In house check: Nov-04 In house check: Dec-06 In house check: Dec-06 In house check: Dec-06 In house check: Nov-04 In house check: Dec-06 In h		1				
MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check: Oct 0 In house check	AE4	SN: 617	19-Jan-05 (SPEAG, No. DAE4-617	_Jan05) Jan-06		
F generator HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Dec-03) In house check: Dec-02 In house check: Nov 02 In house check: Nov 03 In house check: N	econdary Standards	ID#	Check Date (in house)	Scheduled Check		
Name Function Signature Calibrated by: Katja Pokovic Technical Manager	ower sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check	(Oct-03) In house check: Oct 05		
Name Function Signature Calibrated by: Nico Vetterfi Laboratory Technician Approved by: Katja Pokovic Technical Manager	RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check	Dec-03) In house check: Dec-05		
Approved by: Nico Vetterli Laboratory Technician Outlier Approved by: Katja Pokovic Technical Manager	etwork Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check	Nov-04) In house check: Nov 05		
Approved by: Katja Pokovic Technical Manager		Name	Function	Signature		
i i i je	Calibrated by:	Nico Vetterli	Laboratory Technician	10 Vette		
	approved by:	Katja Pokovic	Technical Manager	The 16		
Issued: April 27, 2005				Issued: April 27, 2005		

Certificate No: ET3-1805_Apr05


Page 1 of 9



ET3DV6 SN:1805 April 22, 2005

Conversion Factor Assessment

ty [MHz] ^c TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
± 100 Head	41.5 ± 5%	0.90 ± 5%	0.68	1.70	6.37 ± 11.0% (k=2)
± 100 Head	41.5 ± 5%	$0.97 \pm 5\%$	0.61	1.81	6.27 ± 11.0% (k=2)
± 100 Head	40.1 ± 5%	1.37 ± 5%	0.60	2.28	5.24 ± 11.0% (k=2)
± 100 Head	40.0 ± 5%	1.40 ± 5%	0.59	2.38	4.97 ± 11.0% (k=2)
± 100 Head	39.2 ± 5%	1.80 ± 5%	0.68	2.19	4.50 ± 11.8% (k=2)
± 100 Body	55.2 ± 5%	0.97 ± 5%	0.58	1.90	6.34 ± 11.0% (k=2)
± 100 Body	55.0 ± 5%	1.05 ± 5%	0.54	2.06	6.23 ± 11.0% (k=2)
± 100 Body	53.4 ± 5%	1.49 ± 5%	0.57	2.75	4.64 ± 11.0% (k=2)
± 100 Body	53.3 ± 5%	1.52 ± 5%	0.57	2.77	4.54 ± 11.0% (k=2)
± 100 Body	52.7 ± 5%	1.95 ± 5%	0.71	2.08	4.21 ± 11.8% (k=2)
	/ ± 100 Head / ± 100 Body / ± 100 Body / ± 100 Body / ± 100 Body	/ ± 100	/ ± 100	/ ± 100	$/ \pm 100$ Head $41.5 \pm 5\%$ $0.90 \pm 5\%$ 0.68 1.70 $/ \pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.61 1.81 $/ \pm 100$ Head $40.1 \pm 5\%$ $1.37 \pm 5\%$ 0.60 2.28 $/ \pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.59 2.38 $/ \pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.68 2.19 $/ \pm 100$ Body $55.2 \pm 5\%$ $0.97 \pm 5\%$ 0.58 1.90 $/ \pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.54 2.06 $/ \pm 100$ Body $53.4 \pm 5\%$ $1.49 \pm 5\%$ 0.57 2.75 $/ \pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.57 2.77

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1805_Apr05

Page 8 of 9

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Nokia SD Certificate No: D835V2-478_Oct04/2

CALIBRATION CERTIFICATE (Replacement of No: D835V2-478_Oct04)

D835V2 - SN: 478 Object QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits October 22, 2004 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM E442 GB37480704 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power sensor HP 8481A US37292783 12-Oct-04 (METAS, No. 251-00412) Oct-05 Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-04 (METAS, No 251-00402) Aug-05 SN 1680 23-Feb-04 (SPEAG, No. ET3-1680_Feb04) Feb-05 Reference Probe ET3DV6 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) DAE4 Jul-05 SN 601 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 RF generator R&S SML-03 100698 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-03) In house check: Nov 04 Function Name Katja Pokovic Technical Manager Calibrated by: Niels Kuster Quality Manager Approved by:

Certificate No: D835V2-478_Oct04/2 Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Issued: November 15, 2004

DASY4 Validation Report for Head TSL

Date/Time: 10/22/04 19:01:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN478

Communication System: CW-835; Frequency: 835 MHz;Duty Cycle: 1:1

Medium: HSL 835 MHz;

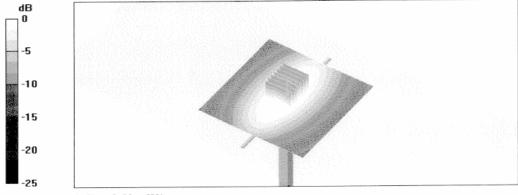
Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1680; ConvF(6.4, 6.4, 6.4); Calibrated: 23.02.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130


Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.49 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.1 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 3.41 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.54 mW/gMaximum value of SAR (measured) = 2.53 mW/g

0 dB = 2.53 mW/g

Certificate No: D835V2-478_Oct04/2

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 10/22/04 18:58:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN478

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Muscle 835 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

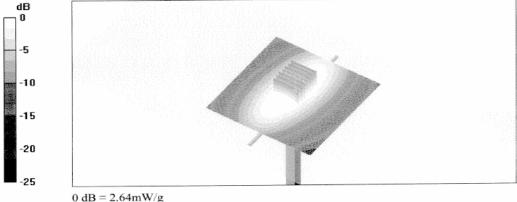
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1680; ConvF(6.31, 6.31, 6.31); Calibrated: 23.02.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.61 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 51.6 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.61 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

Certificate No: D835V2-478_Oct04/2 Page 8 of 9