

■ Report No.: DDT-R18072605-1E3

■ Issued Date: Aug. 31, 2018

FCC CERTIFICATION TEST REPORT

FOR

Applicant	:	Tera Tron GmbH
Address	:	Martin-Siebert-Str. 5
Equipment under Test	:	Schutzfeld-Steuerung / Reader (BSS-R)
Model No.	:	BSS0134R
Trade Mark	:	TeraTron
FCC ID	:	QLXBSS0134R
Manufacturer	:	Tera Tron GmbH
Address	:	Martin-Siebert-Str. 5

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, SongshanLakeSci&Tech, IndustryPark, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-38826678, **E-mail:**ddt@dgddt.com, <http://www.dgddt.com>

REPORT

TABLE OF CONTENTS

Test report declares.....	3
1 Summary of test results	5
2 General test information	6
2.1. Description of EUT.....	6
2.2. Accessories of EUT	6
2.3. Assistant equipment used for test.....	6
2.4. Block diagram of EUT configuration for test	6
2.5. Deviations of test standard	6
2.6. Test environment conditions	7
2.7. Test laboratory.....	7
2.8. Measurement uncertainty	8
3 Equipment used during test	9
4 20dB Bandwidth and 99% Bandwidth	11
4.1. Block diagram of test setup	11
4.2. Limits	11
4.3. Test Procedure	11
4.4. Test Result	11
4.5. Original test data.....	12
5 Radiated emission	13
5.1. Block diagram of test setup	13
5.2. Limit	14
5.3. Test Procedure	14
5.4. Test result.....	15
6 Power Line Conducted Emission	18
6.1. Block diagram of test setup	18
6.2. Power Line Conducted Emission Limits.....	18
6.3. Test Procedure	18
6.4. Test Result	19
7. Antenna Requirements	20

TEST REPORT DECLARE

Applicant	:	Tera Tron GmbH
Address	:	Martin-Siebert-Str. 5
Equipment under Test	:	Schutzfeld-Steuerung / Reader (BSS-R)
Model No.	:	BSS0134R
Trade Mark	:	TeraTron
Manufacturer	:	Tera Tron GmbH
Address	:	Martin-Siebert-Str. 5

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C

Test procedure used:

ANSI C63.10:2013

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	DDT-R18072605-1E3		
Date of Receipt:	Jul. 30, 2018	Date of Test:	Jul. 30, 2018~ Aug. 31, 2018

Prepared By:

Ella Gong

Ella Gong/Engineer

Approved By:

Damon Hu/EMC Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Revision history

Rev.	Revisions	Issue Date	Revised By
---	Initial issue	Aug. 31, 2018	

1 Summary of test results

Description of Test Item	Standard	Results
20dB Bandwidth	FCC Part 15: 15.215	PASS
Radiated Emission	FCC Part 15: 15.209	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207	PASS
Antenna requirement	FCC Part 15: 15.203	PASS

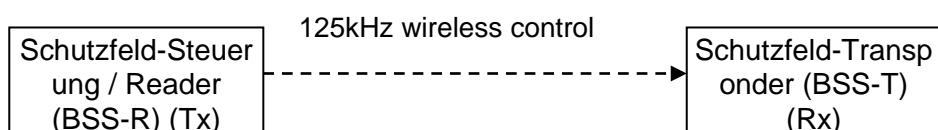
2 General test information

2.1. Description of EUT

EUT* Name	:	Schutzfeld-Steuerung / Reader (BSS-R)
Model Number	:	BSS0134R
EUT function description	:	Please reference user manual of this device
Power supply	:	DC 12V 1.5A max,
Wireless charging Operation frequency	:	125kHz
Antenna Type	:	Inductive loop coil antenna
Sample Type	:	Series production

Note: EUT is the ab. of equipment under test.

Channel information					
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	125kHz	/	/	/	/


2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Serial No.	Other
Schutzfeld-Transponder (BSS-T)	TeraTron	BSS0134T	N/A	N/A

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number	Serial No.	Other
Schutzfeld-Transponder (BSS-T)	TeraTron	BSS0134T	N/A	N/A

2.4. Block diagram of EUT configuration for test

Tested mode, channel, information		
Mode	Channel	Frequency (kHz)
Tx mode	CH1	125

2.5. Deviations of test standard

No Deviation.

2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25°C
Humidity range:	40-75%
Pressure range:	86-106kPa

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-38826678, E-mail: ddt@dgddt.com, <http://www.dgddt.com>

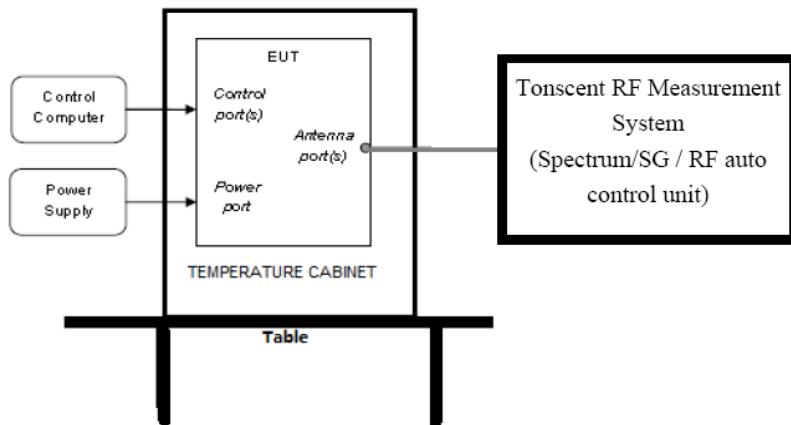
CNAS Accreditation No. L6451; A2LA Accreditation No. 3870.01

Industry Canada site registration number: 10288A-1

2.8. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	3.32dB (150kHz-30MHz)
	3.72dB (9kHz-150kHz)
Uncertainty for Radiation Emission test (30MHz-1GHz)	4.70 dB (Antenna Polarize: V)
	4.84 dB (Antenna Polarize: H)
Uncertainty for Radiation Emission test (1GHz to 18GHz)	4.10dB(1-6GHz)
	4.40dB (6GHz-18GHz)
Bandwidth	1.1%

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3 Equipment used during test

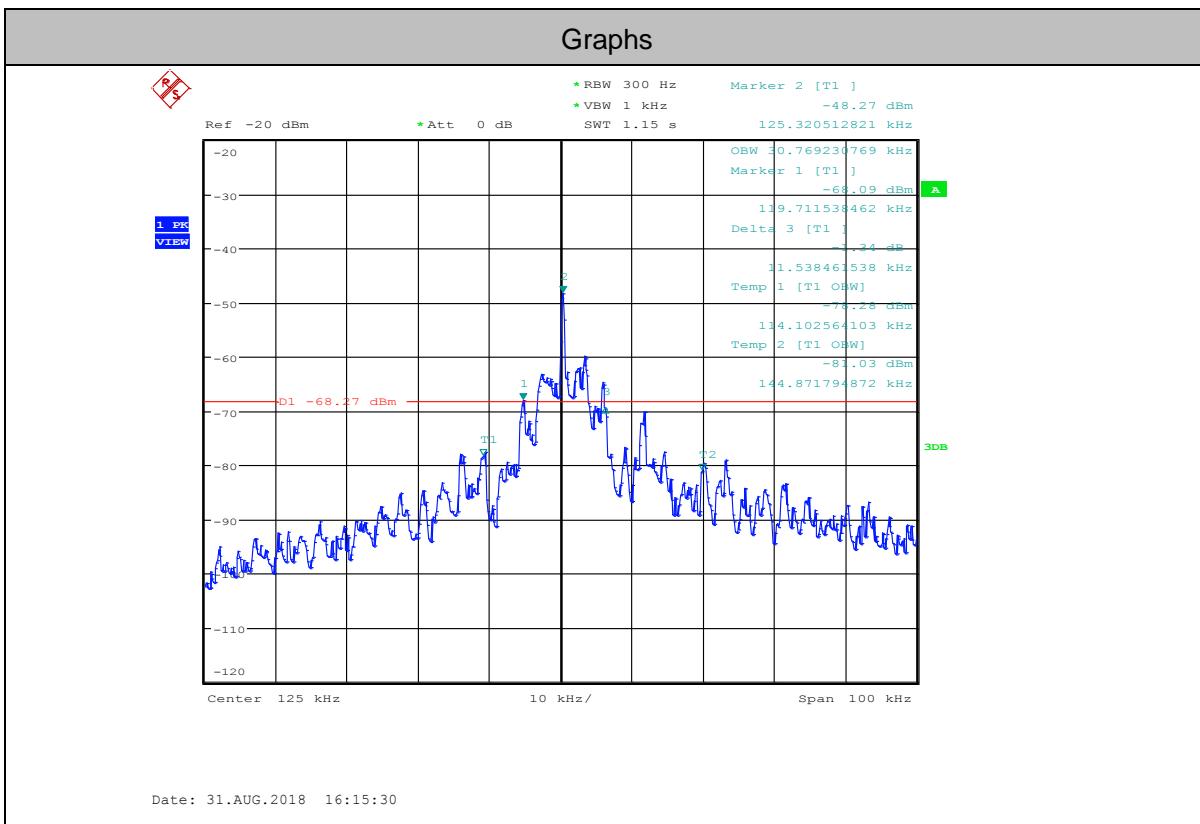
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
RF Connected Test					
Spectrum analyzer	R&S	FSU26	200071	Oct. 23, 2017	1 Year
Wideband Radio Communication tester	R&S	CMW500	117491	Jun. 16, 2018	1 Year
Vector Signal Generator	Agilent	E8267D	US49060192	Oct. 23, 2017	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180737	Jun. 16, 2018	1 Year
Power Sensor	Agilent	U2021XA	MY55150010	Oct. 21, 2017	1 Year
Power Sensor	Agilent	U2021XA	MY55150011	Oct. 23, 2017	1 Year
DC Power Source	MATRIS	MPS-3005L-3	D813058W	Aug. 18, 2018	1 Year
Attenuator	Mini-Circuits	BW-S10W2	101109	Aug. 18, 2018	1 Year
RF Cable	Micable	C10-01-01-1	100309	Oct. 21, 2017	1 Year
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-150L	ZX170110-A	Oct. 21, 2017	1 Year
Test Software	JS Tonscent	JS1120-3	Ver.2.7	N/A	N/A
Radiation 1#chamber (above 30MHz)					
EMI Test Receiver	R&S	ESU8	100316	Oct. 21, 2017	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jun. 16, 2018	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	Nov. 09, 2017	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Oct. 17, 2017	1 Year
Double Ridged Horn Antenna	R&S	HF907	100276	Oct. 17, 2017	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	Nov. 09, 2017	1 Year
Pre-amplifier	TERA-MW	TRLA-0040G35	101303	Oct. 21, 2017	1 Year
Preamplifier	A.H.Systems.lnc	PAM-0118	360	Oct. 21, 2017	1 Year
RF Cable	HUBSER	CP-X2+ CP-X1	W11.03+ W12.02	Oct. 21, 2017	1 Year
RF Cable	N/A	SMAJ-SMAJ-1M+ 11M	17070133+17070131	Nov. 08, 2017	1 Year
MI Cable	HUBSER	C10-01-01-1M	1091629	Oct. 21, 2017	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Radiation 2#chamber (above 30MHz)					
Test Receiver	R&S	ESCI	100551	Oct. 21, 2017	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB 9163	9163-994	Oct. 17, 2017	1 Year
Pre-amplifier	SONOMA	310N	187133	Jun. 29, 2018	1 Year
RF Cable	MI Cable	N/A	DDT-F02-233	Oct. 21, 2017	1 Year
RF Cable	MI Cable	N/A	DDT-F02-234	Oct. 21, 2017	1 Year
RF Cable	MI Cable	N/A	DDT-F02-235	Oct. 21, 2017	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A

4 20dB Bandwidth and 99% Bandwidth

4.1. Block diagram of test setup

4.2. Limits

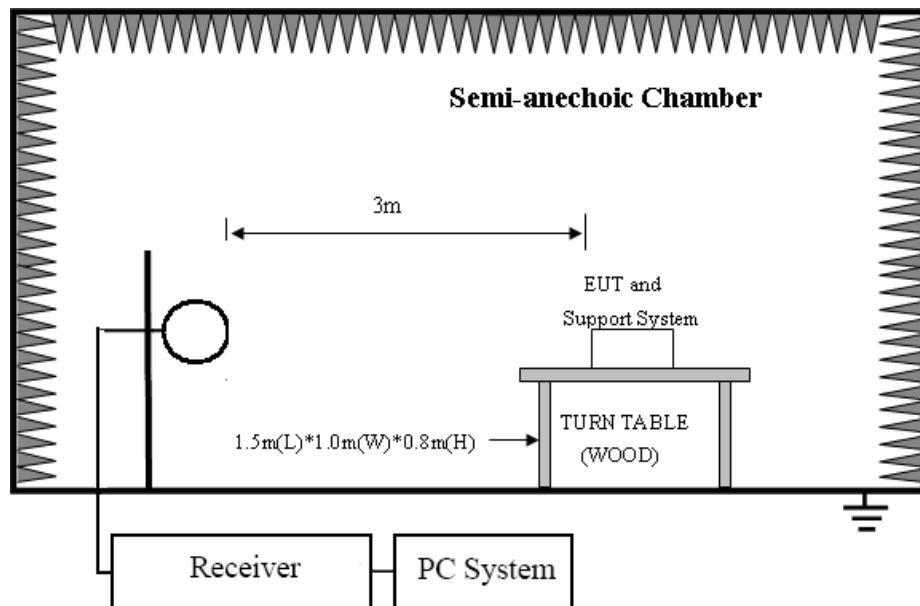
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

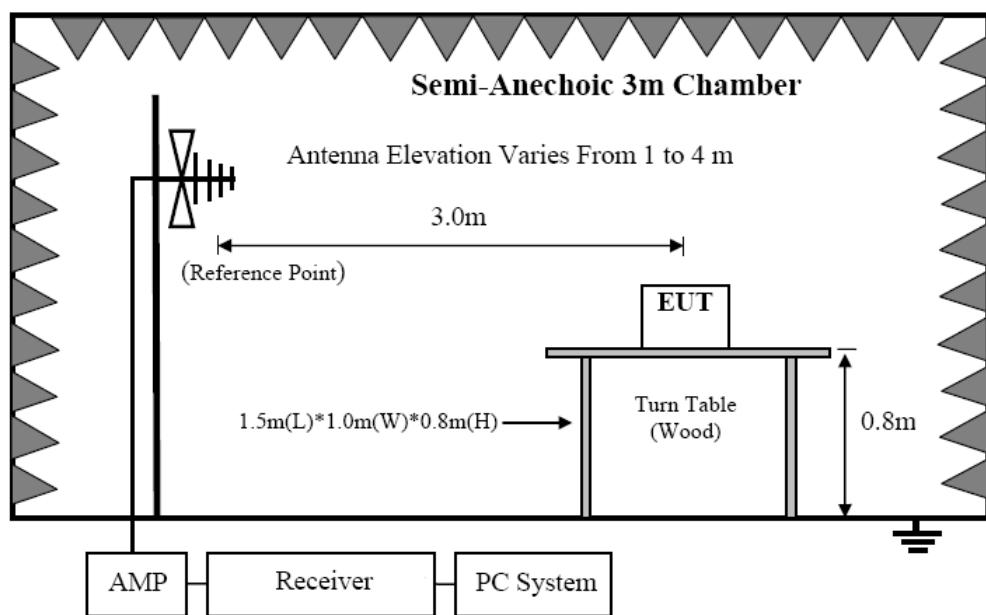

4.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 Hz RBW and 1kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4. Test Result

Freq. (kHz)	20dB bandwidth Result (kHz)	99% bandwidth Result (kHz)	Limit (MHz)	Conclusion
125	11.538	20.769	/	PASS


4.5. Original test data


5 Radiated emission

5.1. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9kHz~30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz~1GHz

5.2. Limit

FREQUENCY MHz	DISTANCE Meters	FIELD STRENGTHS LIMIT	
		μ V/m	dB(μ V)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

Note: (1)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz.Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

$$\begin{aligned} \text{Limit}_{3m}(\text{dBuV/m}) &= \text{Limit}_{300m}(\text{dBuV/m}) + 40\text{Log}(300m/3m) = \text{Limit}_{300m}(\text{dBuV/m}) + 80 \\ \text{Limit}_{3m}(\text{dBuV/m}) &= \text{Limit}_{30m}(\text{dBuV/m}) + 40\text{Log}(30m/3m) = \text{Limit}_{30m}(\text{dBuV/m}) + 40 \end{aligned}$$

5.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber.
- (2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9kHz-30MHz	Active Loop antenna	3m
30MHz-1GHz	Trilog Broadband Antenna	3m

According ANSI C63.10:2013 clause 6.4.4.2 and 6.5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9kHz to 1GHz:
 - (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's

fixed 1m above ground.)

- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions. Spectrum frequency from 9kHz to 1GHz (tenth harmonic of fundamental frequency) was investigated.

(4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.

(5) The emissions from 9kHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz, for emissions from 9kHz-90kHz, 110kHz-490kHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.

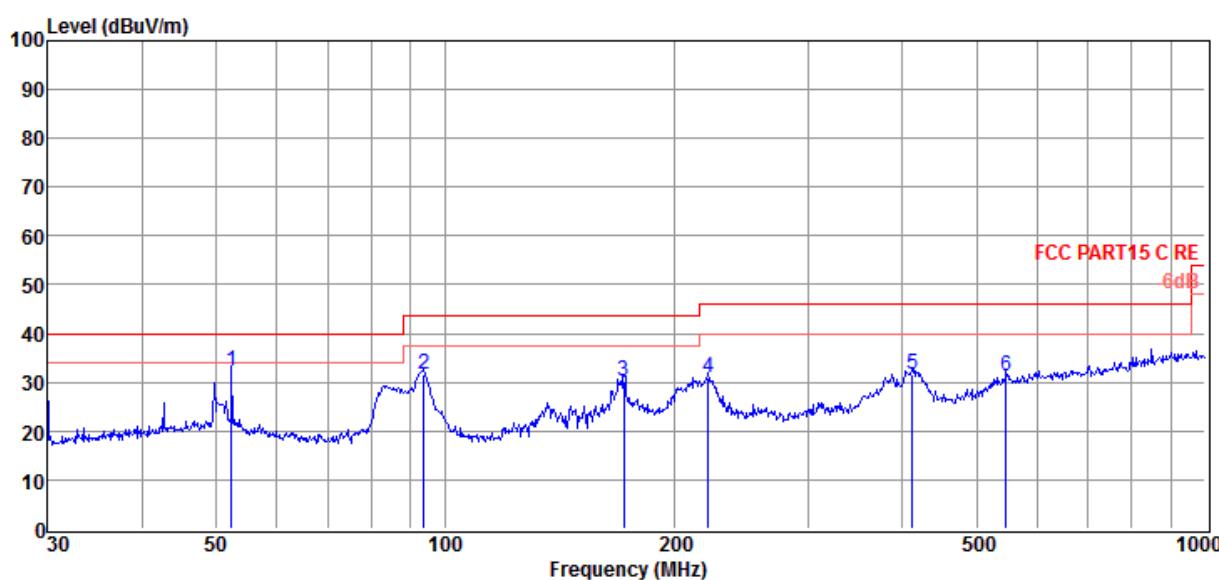
(6) The emissions from 9kHz to 1GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9kHz-150kHz	200Hz
150kHz-30MHz	9kHz
30MHz-1GHz	120kHz

5.4. Test result

PASS. (See below detailed test result)

Below 30MHz:


Frequency (MHz)	Result@3m (dBuV/m)	Limit @3m (dBuV/m)	Detector	Conclusion
0.040	52.50	135.56	Peak	PASS
0.040	49.24	115.56	Average	PASS
0.125	87.43	125.66	Peak	PASS
0.125	88.25	105.66	Average	PASS
0.300	73.40	118.36	Peak	PASS
0.300	69.40	98.36	Average	PASS
0.880	60.85	68.71	QP	PASS
1.300	55.39	65.19	QP	PASS
5.700	55.50	69.54	QP	PASS

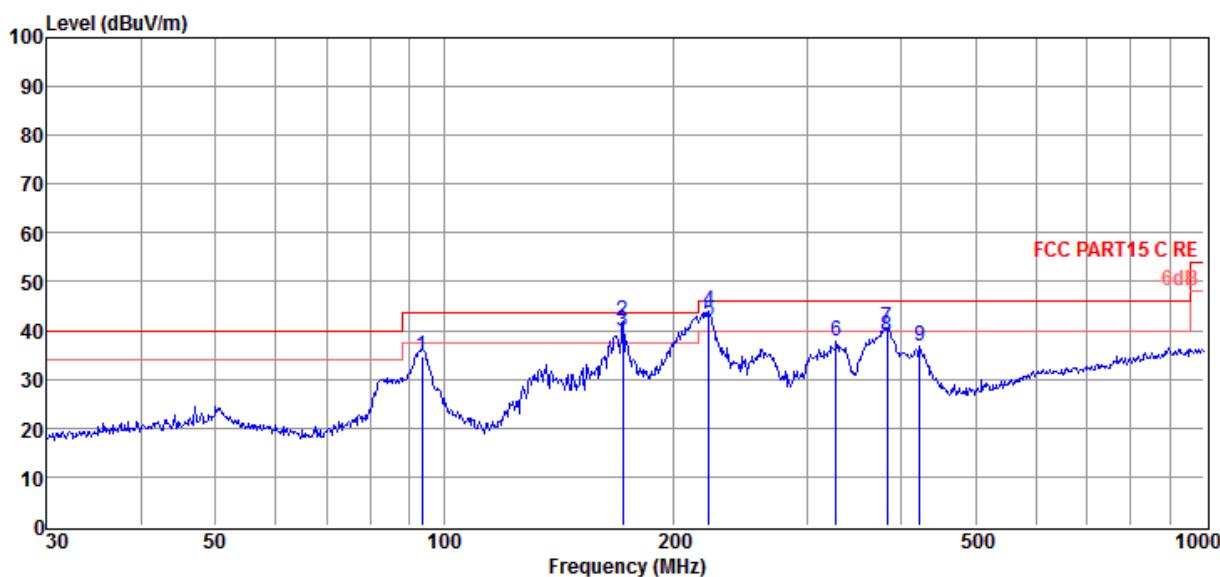
Above 30MHz:

TR-4-E-009 Radiated Emission Test Result

Test Site : DDT 3m Chamber 1# D:\2018 RE1# Report Data\Q18072605-1E BSS-T\FCC
BELOW1G.EM6
Test Date : 2018-08-30 **Tested By** : Talent
EUT : Schutzfeld-Steuerung / Reader (BSS-R) **Model Number** : BSS0134R
Power Supply : DC 12V **Test Mode** : Tx mode
Condition : Temp:24.5'C, Humi:55.5%, Press:100.1kPa **Antenna/Distance** : 2017 VULB 9163 1#/3m/VERTICAL
Memo :

Data: 9

Item (Mark)	Freq. (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	Cable Loss dB	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	52.39	15.00	13.19	4.02	32.21	40.00	-7.79	QP	VERTICAL
2	93.77	17.11	10.22	4.36	31.69	43.50	-11.81	QP	VERTICAL
3	172.00	16.13	9.28	4.89	30.30	43.50	-13.20	QP	VERTICAL
4	222.17	13.74	11.97	5.15	30.86	46.00	-15.14	QP	VERTICAL
5	411.82	10.37	15.50	5.87	31.74	46.00	-14.26	QP	VERTICAL
6	547.10	6.76	18.44	5.99	31.19	46.00	-14.81	QP	VERTICAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

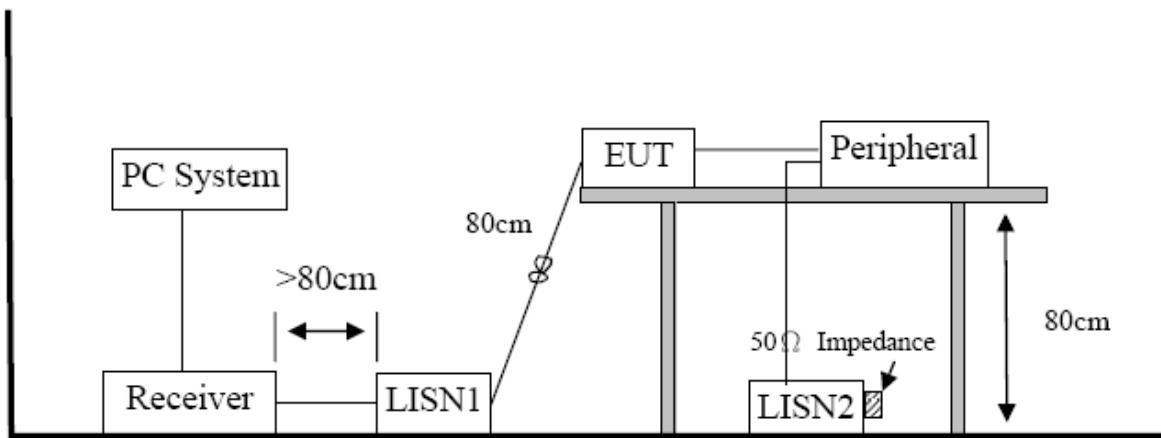
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

TR-4-E-009 Radiated Emission Test Result

Test Site : DDT 3m Chamber 1# D:\2018 RE1# Report Data\Q18072605-1E BSS-T\FCC
Test Date : 2018-08-30 **Tested By** : Talent
EUT : Schutzfeld-Steuerung / Reader (BSS-R) **Model Number** : BSS0134R
Power Supply : DC 12V **Test Mode** : Tx mode
Condition : Temp:24.5'C, Humi:55.5%, Press:100.1kPa **Antenna/Distance** : 2017 VULB 9163 1#/3m/HORIZONTAL
Memo :

Item (Mark)	Freq. (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	Cable Loss dB	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
1	93.44	20.28	10.15	4.36	34.79	43.50	-8.71	QP	HORIZONTAL
2	172.00	27.59	9.28	4.89	41.76	43.50	-1.74	Peak	HORIZONTAL
3	172.00	25.59	9.28	4.89	39.76	43.50	-3.74	QP	HORIZONTAL
4	222.95	26.86	11.98	5.15	43.99	46.00	-2.01	Peak	HORIZONTAL
5	222.95	24.81	11.98	5.15	41.94	46.00	-4.06	QP	HORIZONTAL
6	327.89	18.26	13.89	5.65	37.80	46.00	-8.20	QP	HORIZONTAL
7	382.59	19.87	14.91	5.88	40.66	46.00	-5.34	Peak	HORIZONTAL
8	382.59	17.87	14.91	5.88	38.66	46.00	-7.34	QP	HORIZONTAL
9	422.06	15.09	15.75	5.80	36.64	46.00	-9.36	QP	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

6 Power Line Conducted Emission

6.1. Block diagram of test setup

6.2. Power Line Conducted Emission Limits

Frequency	Quasi-Peak Level dB(μ V)	Average Level dB(μ V)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

6.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

6.4. Test Result

PASS. (See below detailed test result)

Not Applicable

According to 15.207(C): Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

7. Antenna Requirements

For intentional device, according to FCC 47 CFR Section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

END OF REPORT