

Överföring av dokument i elektronisk form

Detta dokument är en elektronisk kopia. Vid konvertering eller överföring i elektronisk form kan dokumentet bli förvanskat.

Det fastställda pappersoriginalet är det gällande dokumentet.

Transfer of document in electronic form

This document is an electronic copy of the original. When converting or transferring the document into electronic form, it could be distorted.

The original paper document is to be considered the valid document.

Org. nr: 556218-6790

Styrelsens säte: Arboga

Distribution

Malå Geoscience AB
Bernth Johansson

Skolgatan 11 930 70 Malå

FB/archive, FBM/archive

Document

Test Report

Ref. No

Supersedes

E014-TR 040062

Page

1 (23)

Date

May 13, 2004

Prepared

FBM, Per Larsson *EMC Test Engineer*

т:н -

EMC Test, 1.6 GHz Shielded antenna

Equipment under test (EUT):

Description: Ground Penetrating Radar System

Manufacturer: Malå Geoscience AB

Model name: 1.6 GHz Shielded antenna

Summary:

The EUT complied with the requirement of radiated emissions given in FCC Part 15 Subpart F, measured in the frequency range 30 - 10000 MHz.

Approved:

Petter Gärdin

Laboratory Technical Manager

Ref No Page E014-TR 040062 2(23)

Contents

1 Introduction	3
2 Test methods and results	
2.1 Results	4
3 Applicable documents	4
4 Equipment under test (EUT)	5
4.1 Identification of equipment under test	
4.2 General configuration of EUT	
4.3 Test set-up of EUT	
4.4 Operation of EUT during tests	
5 Test site	7
5.1 Description	7
5.2 Ambient signals	
6 Emission	8
6.1 Measurement of radiated emission, ANSI C63.4	
6.2 Measurement of radiated emission	
6.3 Measurement of UWB bandwidth and peak emissions	19

Ref No Page E014-TR 040062 3(23)

1 Introduction

The object of the test is to show compliance with the emission requirements of FCC Part 15 Subpart F.

Date of test: Mars 29 - 31, 2004

Location: AerotechTelub AB, Östersund

Test performed by: Per Larsson, AerotechTelub / FBM

Client: Malå Geoscience

Skolgatan 11 SE-930 70 Malå

Sweden

Client's observer: Lars Mikaelsson, Malå Geoscience AB

Ref No Page E014-TR 040062 4(23)

2 Test methods and results

2.1 Results

The test results in this report apply only for the tested specimen.

EMISSION	EMISSION REQUIREMENTS ACCORDING TO FCC Part 15 Subpart F						
Environmental phenomena	Test method	Requirement	Result	Comments	Test order		
Radiated emission	ANSI C63.4	FCC 15.209	PASS		1		
UWB definition		FCC 15.503 (a) 15.509(a)	PASS	f _L 250 MHz f _C 1125 MHz f _H 2000 MHz	4		
Peak emission at f _M	FCC 02-42	FCC 15.509 (f)	PASS		5		
Radiated emission	FCC 02-42	FCC 15.509 (d)	PASS		2		
Radiated emission	FCC 02-42	FCC 15.509 (e)	PASS		3		

3 Applicable documents

	Measurements						
ANSI C63.4	07/17/1992	Radio noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.					
FCC Part 15	12/8/2003	Radio Frequency Devices					
FCC 02-42	4/22/2002	Revision of Part 15 of the Commission's Rules Regarding Ultra- Wideband Transmission Systems					

Ref No Page E014-TR 040062 5(23)

4 Equipment under test (EUT)

4.1 Identification of equipment under test

Equipment under test (EUT):

Description: Ground Penetrating Radar System

Manufacturer: Malå Geoscience AB

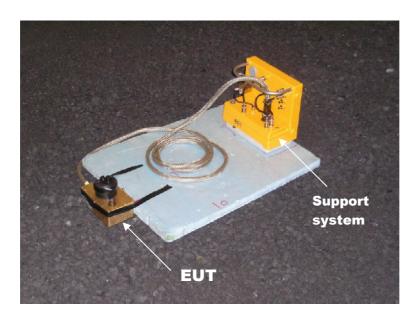
Model name: 1.6 GHz Shielded antenna

Build state: Production sample

Serial no: 12014

4.2 General configuration of EUT

The EUT was connected to a support system for normal operation. The support system was battery powered.


4.3 Test set-up of EUT

The EUT was placed directly on the dry sand with no ground plane under it.

The support system was placed on a non-conductive material to achieve the same arrangement of the EUT when rotated on the sand bed.

Ref No Page E014-TR 040062 6(23)

Picture 1: EUT set-up on sand bed

4.4 Operation of EUT during tests

The EUT was gathering data like in normal operation.

Ref No Page E014-TR 040062 7(23)

5 Test site

5.1 Description

The measurements were all performed on a weather protected open area test site that was modified with a flat sand bed located in the ground plane. The sand bed is about 50 cm deep.

Picture 2: Test Site

The measurement distance antenna – EUT was 1 and 3 m. The measurement system and related equipment were placed next to the test site.

5.2 Ambient signals

A number of ambient signals were detected in the different frequency ranges measurement was made; some of those are listed below.

Mobile telephones: 460 – 470 MHz, 935 – 960 MHz, 1.8 GHz

FM broadcasts: 87 – 108 MHz

Television: 60 - 70 MHz, 650 - 800 MHz

Radar system: 1.3 GHz

In addition many signals of short-term duration were found. Each measurement signal close to or above the limit was examined if ambient or related to the EUT.

Ref No Page E014-TR 040062 8(23)

6 Emission

6.1 Measurement of radiated emission, ANSI C63.4

6.1.1 Requirements according to FCC 15.509 (d) and 15.209

Radiated emission from the EUT in the frequency range 30 to 960 MHz shall not exceed the limit as specified below.

Frequency range	Limit
30 - 88 MHz	40 dBµV/m
88 – 216 MHz	43.5 dBµV/m
216 – 960 MHz	46 dBµV/m

6.1.2 Procedures

The radiated emission was measured on an Open Area Test Site (OATS) with 3 meters measuring distance described in section 5.

The EUT was configured and the test was performed in accordance with ANSI C63.4.

The test was initiated with a pre-scan in the frequency range 30 - 960 MHz, where the emission level was measured in 16 different combinations of 8 EUT angle positions and vertical/horizontal polarisation. For each position the EUT was turned manually.

Measurement software added antenna factors and cable attenuation and a composite trace of the peak field strength measurement were drawn.

Subsequently, frequencies with the highest emission were selected. EUT position, antenna height and polarisation were adjusted in order to find the position with the highest emission level. Quasi peak values were measured in the maximised positions.

The diagrams are shown with the quasi peak limit according to FCC 15.209.

Ref No Page E014-TR 040062 9(23)

6.1.3 Deviations from the standard

The ground plane was arranged according to FCC 02-42.

6.1.4 Climatic conditions

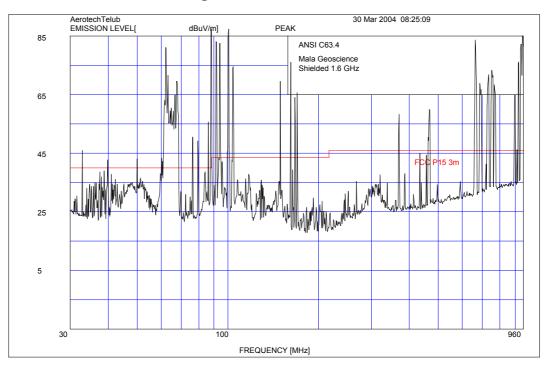
	Requirement according to standard	Climatic conditions during the test
Temperature	-	2 – 10 °C
Relative humidity	-	Not measured

6.1.5 Results

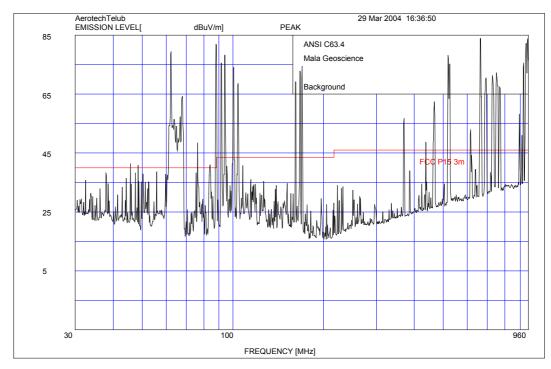
Given measured values are valid for the described arrangement and operation of the EUT.

The EUT complied with the requirement of radiated emission specified in FCC 15.209 in the frequency range 30 - 960 MHz. No narrowband signals above the limit line were related to the EUT.

Ref No Page E014-TR 040062 10(23)


Emission measured with quasi-peak detector

Frequency (MHz)	Raw value (dBµV)	Cable loss (dB)	Antenna factor	Limit (dBµV/m)	Result (dBµV/m)	Margin (dB)	Notes
42.41	14.0	0.67	12.9	40	27.6	12.4	PASS
46.73	16.9	0.69	10.4	40	28.0	12.0	PASS
51.84	21.1	0.72	7.8	40	29.6	10.4	PASS
59.54	28.3	0.80	6.4	40	35.5	4.5	PASS
105.6	15.4	1.25	10.4	43.5	27.0	16.5	PASS
108.01	23.5	1.27	10.4	43.5	35.2	8.3	PASS
110.66	15.2	1.29	10.9	43.5	27.4	16.1	PASS
114.96	20.4	1.32	10.9	43.5	32.6	10.9	PASS
117.78	23.2	1.34	11.1	43.5	35.6	7.9	PASS
320.34	18.8	2.29	13.6	46	34.7	11.3	PASS



Ref No Page E014-TR 040062 11(23)

Emission measured with peak detector

Background emission measured with peak detector

Ref No Page E014-TR 040062 12(23)

6.1.6 Instrumentation

Hewlett Packard RF Preselector	85685A	20 Hz - 2 GHz	2724A00609
Hewlett Packard Spectrum analyser	8566B	100 Hz - 22 GHz	2404A08864 / 2504A01320
Hewlett Packard Quasi-Peak Adapter	85650A		3303A01810
Chase Bilog antenna	CBL6111A	30 - 1000 MHz	1831

6.2 Measurement of radiated emission

6.2.1 Requirements according to FCC 15.509 (d) and (e)

Radiated emission from the EUT shall not exceed the limit as specified below.

Frequency range	Limit	Limit*
960 – 1610 MHz	-65.3 dBm EIRP	29.9 dBµV/m
1610 – 1990 MHz	-53.3 dBm EIRP	41.9 dBµV/m
1990 – 3100 MHz	-51.3 dBm EIRP	43.9 dBµV/m
3100 – 10600 MHz	-41.3 dBm EIRP	53.9 dBµV/m
> 10600 MHz	-51.3 dBm EIRP	43.9 dBµV/m

Frequency range	Limit	Limit*
1164 – 1240 MHz	-75.3 dBm EIRP	19.9 dBµV/m
1559 – 1610 MHz	-75.3 dBm EIRP	19.9 dBµV/m

^{*} Converted to field strength level at 3 meters according to FCC 15.521 (g)

6.2.2 Procedures

The radiated emission was measured on an Open Area Test Site (OATS) as described in section 5 with 1 meters measuring distance. The measurement level was recalculated to a 3 m measurement distance (with 9.5 dB).

According to the provisions of FCC 15.509 (d) and (e) the emissions shall be measured with a RMS detector.

The following resolution bandwidths and video bandwidths were used during the measurements.

Frequency range	RBw	VBw
960 – 10 000 MHz	1 MHz	3 MHz
1164 – 1240 MHz	1 kHz	1 kHz
1559 – 1610 MHz	1 kHz	1 kHz

Ref No Page E014-TR 040062 14(23)

The measurements were made with the EUT in 8 different positions on the sand bed and the antenna position was changed as well as its polarization.

A sweep of the frequency range was made at each position. Measurement software added antenna factors and cable attenuation and the resulting maximum field strength level were plotted.

After the sweeps the maximum radiated field strength were controlled manually due to the high number of ambient signals.

The maximum emission was then manually measured with a RMS detector and then calculated to the correct field strength shown in the spreadsheets under section 6.2.3. *Results*.

Picture 3: Test set-up

 $\begin{array}{ccc} & \text{Ref No} & \text{Page} \\ E014\text{-}TR & 040062 & 15(23) \end{array}$

6.2.3 Results

Given measured values are valid for the described arrangement and operation of the EUT.

The EUT complied with the requirement of radiated emission specified in FCC 15.509 (d) and (e) in the frequency range 960 - 10000 MHz.

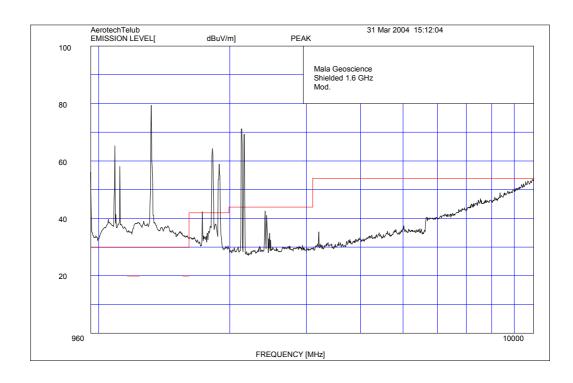
Maximum emissions measured with a RMS detector

Frequency (MHz)	Raw value (dBµV)	Cable loss (dB)	Antenna factor	Distance factor	Limit (dBµV/m)	Result (dBµV/m)	Margin (dB)	Notes
962	45.10	-34.79	24.27	9.5	29.9	25.1	4.8	PASS
998	43.62	-34.61	24.28	9.5	29.9	23.8	6.1	PASS
1069	46.80	-34.23	24.00	9.5	29.9	27.1	2.8	PASS
1184	44.70	-33.67	24.00	9.5	29.9	25.5	4.4	PASS
1277	44.96	-33.26	24.70	9.5	29.9	26.9	3.0	PASS
1399	40.50	-32.76	24.70	9.5	29.9	22.9	7.0	PASS
1503	38.42	-32.37	25.40	9.5	29.9	22.0	7.9	PASS
1770	34.35	-31.47	26.60	9.5	41.9	20.0	21.9	PASS
1790	36.50	-31.41	26.60	9.5	41.9	22.2	19.7	PASS
1807	39.80	-31.36	26.60	9.5	41.9	25.5	16.4	PASS
1856	39.40	-31.21	26.60	9.5	41.9	25.3	16.6	PASS

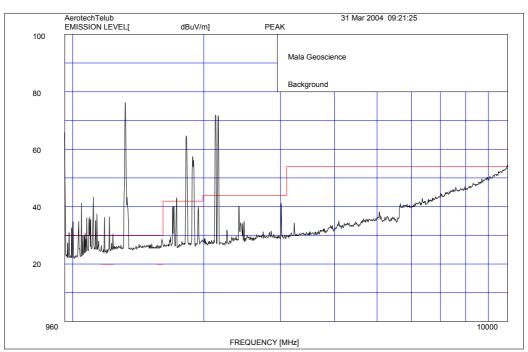
In the spreadsheets "cable/amp" denotes the total correction for cable loss and preamplifier gain. Negative value means amplification.

Ref No Page E014-TR 040062 16(23)

Maximum emission in GPS band $1164-1240\ MHz$ and $1559\text{-}1610\ MHz$, measured with RMS detector


Frequency (MHz)	Raw value (dBµV)	Cable loss (dB)	Antenna factor	Distance factor	Limit (dBµV/m)	Result (dBµV/m)	Margin (dB)	Notes
1164	12.9	-33.77	24	9.5	19.9	-6.4	26.3	PASS
1180	15.68	-33.69	24	9.5	19.9	-3.5	23.4	PASS
1200	12.5	-33.60	24	9.5	19.9	-6.6	26.5	PASS
1240	13.78	-33.42	24	9.5	19.9	-5.1	25.0	PASS
1559	5.7	-32.17	25.4	9.5	19.9	-10.6	30.5	PASS
1580	6.14	-32.09	25.4	9.5	19.9	-10.1	30.0	PASS
1590	4.59	-32.06	25.4	9.5	19.9	-11.6	31.5	PASS
1610	7.34	-31.99	25.4	9.5	19.9	-8.7	28.6	PASS

In the spreadsheets "cable/amp" denotes the total correction for cable loss and preamplifier gain. Negative value means amplification.



Ref No Page E014-TR 040062 17(23)

Composite trace of peak emissions

Composite trace of background peak emissions

Ref No Page E014-TR 040062 18(23)

6.2.4 Instrumentation

Hewlett Packard Spectrum analyser	8566B	100 Hz - 22 GHz	2404A08864 / 2504A01320
Hewlett Packard Pre-amplifier	8449B	1 GHz - 26.5 GHz	3008A00103
Rohde & Schwartz Spectrum analyser	FSP40	9 kHz - 40 GHz	100011
Emco Double Ridge Waveguide	3115	0.96 GHz - 18 GHz	2800

Ref No Page E014-TR 040062 19(23)

6.3 Measurement of UWB bandwidth and peak emissions

6.3.1 Requirements according to FCC 15

6.3.1.1 Definition according to FCC 15.503 (a)

The UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission. as based on the complete transmission system including antenna.

6.3.1.2 Requirements according to FCC 15.509 (a)

The UWB bandwidth of an imaging system operating under the provisions of this section must be below 10.6 GHz.

6.3.1.3 Requirements according to FCC 15.509 (f)

For UWB devices where the frequency at which the highest radiated emission occurs, f_{M_s} is above 960 MHz, there is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on f_{M_s} . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth and a correspondingly different peak emission limit, following the procedures described in Section 15.521.

6.3.2 Procedures

The equipment was placed on the test site described under section 5 and the radiated emission was measured at 3 meters or 1 meter.

The measurements were made with the EUT in 8 different positions on the sand bed and the antenna position was changed as well as its polarization resulting in 16 different sweeps of the frequency range.

A 1 MHz resolution bandwidth was used during the measurement.

Measurement software added antenna factors and cable attenuation and a composite trace of the peak field strength were drawn.

At the peak of emission (f_M) , the emission was measured with a resolution bandwidth of 1 MHz.

Ref No Page E014-TR 040062 20(23)

6.3.3 Results

Given measured values are valid for the described arrangement and operation of the EUT.

The EUT complies with the requirement in FCC 15.509 (a) and (f).

According to 15.509 (a)

Data regarding UWB transmissions was gathered and calculated from the diagrams below:

Frequency of highest emission f_M : ~ 1100 MHz

Upper boundary f_H : $\sim 2000 \text{ MHz}$

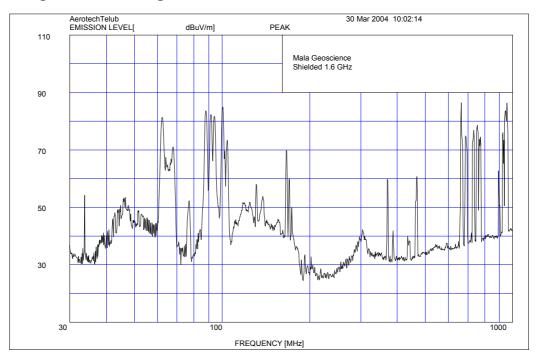
Lower boundary f_L : $\sim 250 \text{ MHz}$

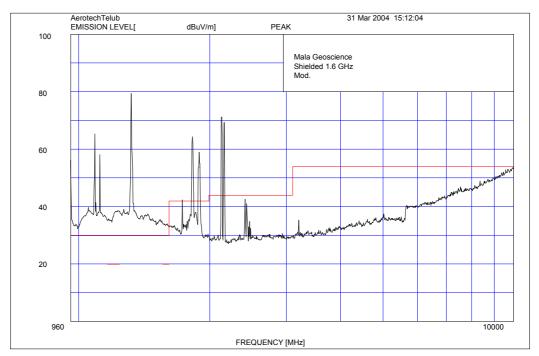
Centre frequency f_C : 1125 MHz

Fractional bandwidth: 1.56

According to 15.509 (f)

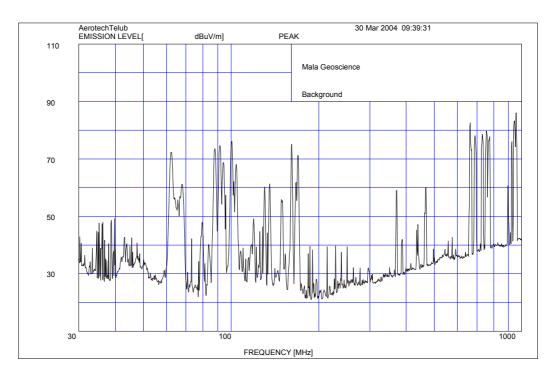
Emission at f_M : Radiated emission 39 dB μ V/m at a 1 MHz RBw.

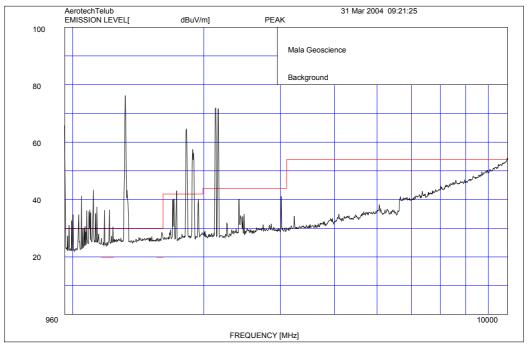

Limit 0 dBm EIRP at 50 MHz RBw Limit -34 dBm EIRP at 1 MHz RBw Limit -34 dBm EIRP = $61.2 \text{ dB}\mu\text{V/m}$


Margin to limit 61.2 - 39 = 22.2 dB

Ref No Page E014-TR 040062 21(23)

Composite trace of peak emission





Ref No Page E014-TR 040062 22(23)

Composite trace of background emission

Ref No Page E014-TR 040062 23(23)

6.3.4 Instrumentation

Hewlett Packard Spectrum analyser	8566B	100 Hz - 22 GHz	2404A08864 / 2504A01320
Hewlett Packard Pre-amplifier	8449B	1 GHz - 26.5 GHz	3008A00103
Rohde & Schwartz Spectrum analyser	FSIQ26	9 kHz - 26 GHz	100012
Emco Double Ridge Waveguide	3115	0.96 GHz - 18 GHz	2800
Chase Bilog antenna	CBL6111A	30 - 1000 MHz	1831