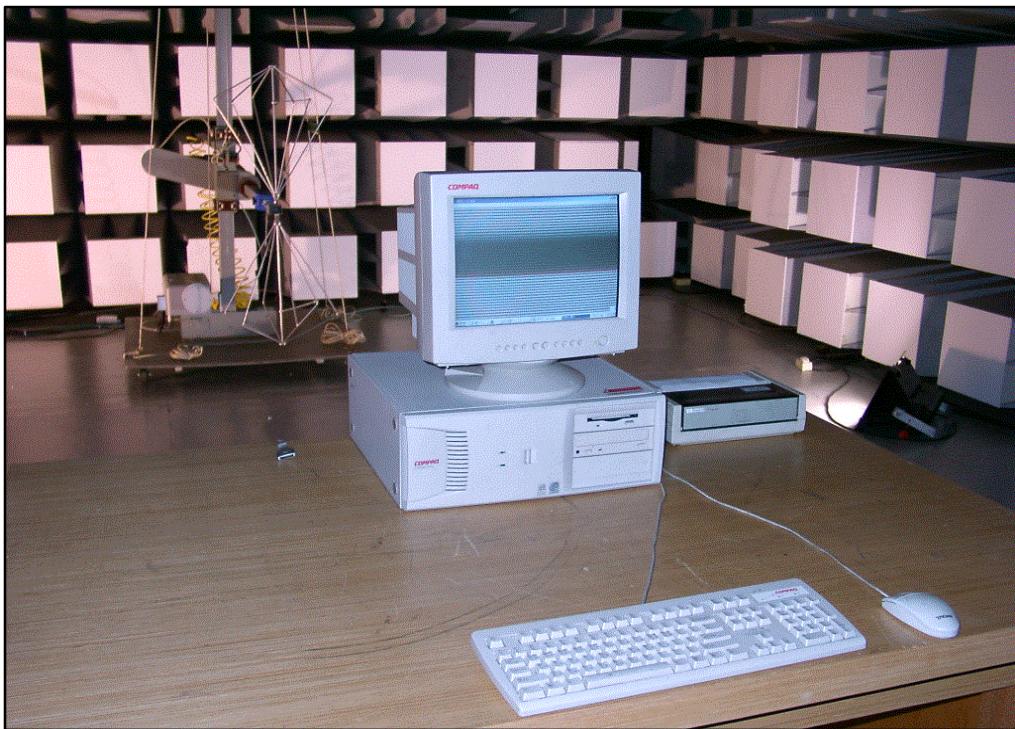


## 2. Photograph for the test configuration



## 3. Sample Calculation


The emission level measured in decibels above one microvolt (dB  $\mu$ ) was converted into microvolt ( ) as shown in following sample calculation.

For example :

|                      |             |         |
|----------------------|-------------|---------|
| Measured Value at    | 8.86 MHz    | 42.3 dB |
| + Cable Losses *     |             | 0.0 dB  |
| <hr/>                |             |         |
| = Conducted Emission |             | 42.3 dB |
|                      | ( = 130.3 ) |         |

\* In case of RG214/ RF cable 15 Ft, the loss is about 0.17 dB at the frequency of 30 MHz which is negligible.

## 2. Photograph for the test configuration



## 3. Sample Calculation

The emission level measured in decibels above one microvolt (dB  $\mu$ V) was converted into microvolt per meter ( $\mu$ V/m) as shown in following sample calculation.

For example :

|                                |                   |                       |
|--------------------------------|-------------------|-----------------------|
| Measured Value at              | <u>298.71 MHz</u> | 18.0 dB               |
| + Antenna Factor               |                   | 19.8 dB/m             |
| + Cable Loss                   |                   | 3.3 dB                |
| - Preamplifier                 |                   | 0.0 dB                |
| - Distance Correction Factor * |                   | 0.0 dB                |
| <hr/>                          |                   |                       |
| = Radiated Emission            |                   | 41.1 dB $\mu$ V/m     |
|                                |                   | ( = 113.5 $\mu$ V/m ) |

\* Extrapolated from the measured distance to the specified distance by an inverse linear distance extrapolation.