

2. Photograph for the test configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt (dB μ V) was converted into microvolt per meter (μ V/m) as shown in following sample calculation.

For example :

Measured Value at	<u>120.00 MHz</u>	21.3 dB μ V
+ Antenna Factor		13.0 dB/m
+ Cable Loss		2.0 dB
- Preamplifier		0.0 dB
- Distance Correction Factor *		0.0 dB
<hr/>		
= Radiated Emission		36.3 dB μ V/m
		(= 65.3 μ V/m)

* Extrapolated from the measured distance to the specified distance by an inverse linear distance extrapolation.

2. Photograph for the test configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt ($\text{dB}\mu\text{V}$) was converted into microvolt (μV) as shown in following sample calculation.

For example :

Measured Value at	0.37 MHz	35.9 $\text{dB}\mu\text{V}$ @ average mode
+ Cable Losses *		0.0 dB
= Conducted Emission		35.9 $\text{dB}\mu\text{V}$ (= 62.4 μV)

* In case of RG214/ RF cable 15 Ft, the loss is about 0.17 dB at the frequency of 30 MHz which is negligible.