

Dosimetric Assessment Test Report

for the

MeshNetworks, Inc. WMC6300 PCMCIA Card

Tested and Evaluated In Accordance With FCC OET 65 Supplement C: 01-01

Prepared for

MeshNetworks, Inc. 485 N. Keller Rd., Ste. 250 Maitland, FL 32751

Engineering Statement: The measurements shown in this report were made in accordance with the procedures specified in Supplement C to OET Bulletin 65 of the Federal Communications Commission (FCC) Guidelines [FCC 2001] for uncontrolled exposure. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment evaluated is capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992.

SAR Evaluation Certificate of Compliance

FCC ID: QJEWMC63000704 APPLICANT: MeshNetworks

Applicant Name and Address: MeshNetworks, Inc.

485 N. Keller Rd., Ste. 250

Maitland, FL 32751

Test Location: MET Laboratories, Inc.

4855 Patrick Henry Dr. Bldg #6

Santa Clara, CA 95054

USA

EUT:	MeshNetworks					
Date of Receipt:	August 05, 2004					
Device Category:	FCC 15.247					
RF exposure environment:	Uncontrolled Exposur	e/General Population				
RF exposure category:	Portable					
Power supply:	3.7VDC Li-ion					
Antenna:	Dipole					
Production/prototype:	Production					
Modulation:	DTS					
Crest Factor:	1:2					
TX Range:	2410.0 – 2470.0 MHz					
M DE D O	2410.0 MHz	Peak Conducted	23.7dBm			
Maximum RF Power Output 2400MHz DTS Mode:	2450.0 MHz	Peak Conducted	24.5dBm			
2400MHZ D 13 Mode.	2470.0 MHz Peak Conducted 24.1dBi					
Maximum SAR Measurement	1.06mW/g					

Shawn McMillen SAR Compliance Manager

INTRODUCTION	4
SAR DEFINITION	4
DESCRIPTION OF DEVICE UNDER TEST (EUT)	5
SAR MEASUREMENT SYSTEM	6
MEASUREMENT SUMMARY	7
EVALUATION PROCEDURES	9
DATA EVALUATION PROCEDURES	10
SYSTEM PERFORMANCE CHECK	12
SIMULATED EQUIVALENT TISSUES	12
SAR SAFETY LIMITS	13
DEFINITION OF REFERENCE POINTS	14
1.1. EAR Reference Point	14
1.2. Handset Reference Points	14
1.3. Positioning For Cheek/Touch	15
1.4. Positioning for Ear/15 Degree Tilt	15
ROBOT SYSTEM SPECIFICATIONS	16
1.5. Specifications	16
1.6. Data Acquisition Electronic (Dae) System:	
1.7. Phantom(s):	16
PROBE SPECIFICATIONS (ET3DV6)	17
SAR Measurement System	18
1.8. RX90BL Robot	18
1.9. Robot Controller	
1.10. Light Beam Switch	
1.11. Data Acquisition Electronics	
1.12. Electo-Optical Converter (EOC)	
1.13. Measurement Server	
1.14. Dosimetric Probe	
1.15. SAM Phantom	
1.17. Validation Planar Phantom	
1.18. Device Holder	
1.19. System Validation Kits	
TEST EQUIPMENT LIST	
MEASUREMENT UNCERTANTIES	
REFERENCES	
External Photos	
APPENDIX A – SAR MEASUREMENT DATA	
APPENDIX B – SYSTEM PERFORMANCE CHECK	
APPENDIX C – PROBE CALIBRATION	
APPENDIX D – MEASURED FLUID DIELECTRIC PARAMETERS	
APPENDIX E – CERTIFICATE OF CONFORMITY	

INTRODUCTION

This measurement report demonstrates that the MeshNetworks, Inc. WMC6300 PCMCIA Card FCC ID: QJEWMC63000704 described within this report complies with the Specific Absorption Rate (SAR) RF exposure requirements specified in ANSI/IEEE Std. C95.1-1992 and FCC 47 CFR §2.1093 for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 were employed.

A description of the device under test, device operating configuration and test conditions, measurement and site description, methodology and procedures used in the evaluation, equipment used, detailed summary of the test results and the various provisions of the rules are included in this dosimetric assessment test report.

SAR DEFINITION

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) . It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1).

$$SAR = \frac{d}{dt}(\frac{dU}{dm}) = \frac{d}{dt}(\frac{dU}{\rho dv})$$

Figure 1.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / \rho$$

where:

 σ - conductivity of the tissue - simulant material (S/m)

ρ - mass density of the tissue - simulant material (kg/m3)

E - Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

DESCRIPTION OF DEVICE UNDER TEST (EUT)

Applicant:	MeshNetworks Inc.						
Description of Test Item:	PCMCIA Card						
FCC ID:	QJEWMC63000704						
Model Number:	WMC6300 PCMCIA	A					
Serial Number:	865C						
Supply Voltage:	3.7VDC Li-ion (Star	ndard)					
Antenna Type(s) Tested:	Dipole						
Modes and Bands of Operation:	DTS 2450MHz						
Maximum Duty Cycle Tested:	1:2						
Transmitter Frequency Range (MHz)	2410.0 – 2470.0MHz						
Tested Frequency (MHz)	2410.0 MHz	2450.0 MHz	2470.0 MHz				
	2410.0 MHz	Peak Conducted	23.7dBm(0.234)W				
Maximum RF Power Output 1900MHz GSM Mode:	2450.0 MHz	Peak Conducted	24.5dBm(0.257)W				
	2470.0 MHz	Peak Conducted	24.1dBm(0.257)W				
	Host #1	Host #2	Host #3				
Hosts	Compaq iPAQ Model 3870	HP iPAQ Model h555	Compaq iPAQ Model 3630				
Maximum SAR Measured	1.06mW/g with Hos	st #1 High Ch					
Application Type:	Certification						
Exposure Category:	Uncontrolled Enviro	nment / General Pop	ulation				
FCC Rule Part(s):	FCC 47 CFR §2.1093, Part 15.247 Subpart C						
Standards:	IEEE Std. 1528-200 Edition 01-01	3, FCC OET Bulletin	n 65, Supplement C,				

SAR MEASUREMENT SYSTEM

MET Laboratories, Inc SAR measurement facility utilizes the DASY4 Professional Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAGTM) of Zurich, Switzerland for performing SAR compliance tests. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). The Cell controller system contain the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements,

mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

MEASUREMENT SUMMARY

	BODY SAR MEASUREMENT RESULTS (2450MHz) Band									
Freq (MHz)	Chan	Test Mode	Conducted Power Before/After (dBm)	Power Supply	Antenna Type	EUT Test Position	Phantom Section	Antenna Sep. Dist. (cm)	Measured SAR 1g (W/kg)	
2410.0	0	DTS	23.7	Li-Ion	Dipole	Back	Planar	1.5	0.701	
2450.0	2	DTS	24.5	Li-Ion	Dipole	Back	Planar	1.5	0.695	
2470.0	3	DTS	24.1	Li-Ion	Dipole	Back	Planar	1.5	1.06	
2470.0	3	DTS	24.1	Li-Ion	Dipole	Front	Planar	2.0	0.519	
2410.0	0	DTS	23.7	Li-Ion	Dipole	Back	Planar	1.5	0.633	
2450.0	2	DTS	24.5	Li-Ion	Dipole	Back	Planar	1.5	0.882	
2470.0	3	DTS	24.1	Li-Ion	Dipole	Back	Planar	1.5	1.10	
2470.0	3	DTS	24.1	Li-Ion	Dipole	Front	Planar	2.0	0.463	
2410.0	0	DTS	23.7	Li-Ion	Dipole	Back	Planar	1.5	0.933	
2450.0	2	DTS	24.5	Li-Ion	Dipole	Back	Planar	1.5	1.06	
2470.0	3	DTS	24.1	Li-Ion	Dipole	Back	Planar	1.5	1.00	
2450.0	2	DTS	24.5	Li-Ion	Dipole	Front	Planar	2.0	0.821	
	ANSI/IEEE C95.1 1992 – SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak – Uncontrolled Exposure/General Population									

Measured Mixture Type	2450 MHz Body		Date Tested	August 05, 2004
Dielectric Constant	IEEE Target Measured		Crest Factor	2
εr	52.5	51.5	Ambient Temperature (C)	24.2
Conductivity	IEEE Target	Measured	Fluid Temperature (C)	23.8
σ (mho/m)	2.00	2.01	Fluid Depth	≥15cm

DETAILS OF SAR EVALUATION

The MeshNetworks PCMCIA Card was determined to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below.

- 1. The EUT was tested for body SAR in three electrically different hosts. The EUT was placed with the back of the EUT next to the planar section of the phantom in order to facilitate a 1.5cm separation between the antenna and the phantom surface. The EUT was tested in the low, mid, and high channels across the TX band. The front of the EUT was tested for SAR on the channel which produced the maximum SAR with the back of the EUT next to the phantom surface. The closest separation distance between the antenna and the phantom surface with the front of the EUT placed against the phantom surface was 2.0cm.
- 2. The EUT was placed into test mode using software supplied by the host. The duty cycle was set to 50% rate. The conducted power levels were measured before and after each test using an Anritsu Power Meter ML2488A according to the procedures described in FCC 47 CFR 2.1046. The EUT was set to the maximum power level for each SAR evaluation.
- 3. The SAR evaluations were performed with a fully charged battery.
- 4. The ambient and fluid temperatures were measured prior to each the SAR evaluation.
- 5. The dielectric parameters of the simulated body fluid were measured prior to the evaluation using an 85070C Dielectric Probe Kit and an 8722D Network Analyzer.

EVALUATION PROCEDURES

The evaluation was performed in the applicable area of the phantom depending on the type of device being tested.

- (i) For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
- (ii) For body-worn and face-held devices a planar phantom was used.

The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.

A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

Based on the area scan, a 32mm x 34mm (7x7x7 data points) zoom scan was assessed at the position where the greatest V/m was detected. The data at the surface was extrapolated since the distance from the probes sensors to the surface is 3.9cm. A least squares fourth-order polynomial was used to generate points between the probe detector and the inner surface of the phantom.

Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).

Z-Scan was determined as follows:

The Z-scan measures points along a vertical straight line. The line runs along a line normal to the inner surface of the phantom surface.

DATA EVALUATION PROCEDURES

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters:	- Sensitivity	$Norm_i, a_{i0}, a_{i1}, a_{i2}$
	- Conversion Factor	$ConvF_i$
	- Dipole Compression Point	dcp_i

Device parameters: - Frequency f - Crest factor cf

Media parameters: - Conductivity σ
- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC - transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With V_i = Compensated signal of channel i (i = x, y, z)

 U_i = Input signal of channel i (i = x, y, z)

cf = Crest factor of exciting field (DASY parameter)

 dcp_i = Diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$

$$\mbox{H} - \mbox{fieldprobes}: \qquad \ \ \, H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1} f + a_{i2} f^2}{f}$$

with V_i = Compensated signal of channel i (i = x, y, z) $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E-field probes

ConvF = Sensitivity enhancement in solution

 a_{ii} = Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

 E_i = Electric field strength of channel i in V/m

 H_i = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

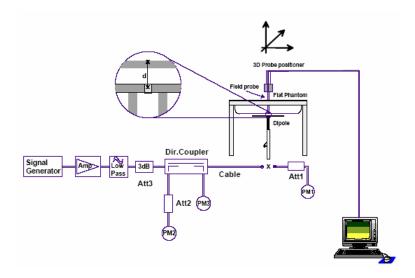
The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \qquad \text{or} \qquad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm2

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m



SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450 MHz dipole. The dielectric parameters of the simulated brain fluid were measured prior to the system performance check using an 85070C Dielectric Probe Kit and an 8722D Network Analyzer. A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of +10%.

Test Date	2450MHz Equivalent		R 1g /kg)	Permittivity Constant &r		Conductivity σ (mho/m)		Ambient Temp.	Fluid Temp.	Fluid Depth
Test Date	Tissue	Calibrated Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(C)	(C)	(cm)
08/05/04	Head	50.4±5%	52.8	38.3 ±5%	38.08	1.89±10%	1.92	24.7	23.4	≥15

Note: The ambient and fluid temperatures were measured prior to the fluid parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

SIMULATED EQUIVALENT TISSUES

	Simulated Tissue Mixture						
Ingredient	Ingredient 2450MHz Head Validation 2450MHz Body EU						
Water	45.0%	69.8%					
DGMBE	55.0%	30.2%					

SAR SAFETY LIMITS

	SAR (W/kg)					
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)				
Spatial Average (averaged over the whole body)	0.08	0.4				
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0				
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0				

Notes:

- 1. Uncontrolled exposure environments are locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled exposure environments are locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

DEFINITION OF REFERENCE POINTS

1.1. EAR REFERENCE POINT

Figure 12.1 shows the front, back and side views of the SAM Twin Phantom. The point M is the reference point for the center of the mouth, LE is the left ear reference point (ERP), and RE is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 12.2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting. Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Figure 12.1 Front, back and side view of SAM Twin Phantom

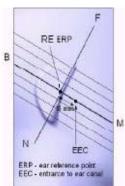


Figure 12.2 Side view of ERPs

1.2. HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the test device reference point located along the vertical centerline on the front of the device aligned to the ear reference point (See Fig. 12.3). The test device reference point was than located at the same level as the center of the ear reference point. The test device was positioned so that the vertical centerline was bisecting the front surface of the handset at it s top and bottom edges, positioning the ear reference point on the outer surface of the both the left and right head phantoms on the ear reference point.

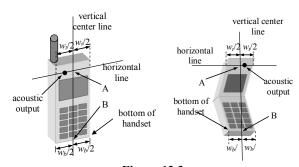


Figure 12.3
Handset Vertical Center & Horizontal Line Reference Points

1.3. POSITIONING FOR CHEEK/TOUCH

- 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 12.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.
- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 12.5)

Figure 12.4 Front, Side and Top View of Cheek/Touch Position

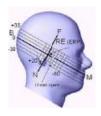


Figure 12.5 Side view with relevant markings

1.4. POSITIONING FOR EAR/15 DEGREE TILT

With the test device aligned in the Cheek/Touch Position:

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 12.6).

Figure 12.6 Front, Side and Top View of Ear/15 Tilt Position

ROBOT SYSTEM SPECIFICATIONS

1.5. **SPECIFICATIONS**

Positioner:

Robot: Staubli Unimation Corp. Robot Model: RX90

Repeatability: 0.02 mm

No. of axis: 6

1.6. DATA ACQUISITION ELECTRONIC (DAE) SYSTEM:

Cell Controller

Processor: Compaq Evo

Clock Speed: 2.4 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

Dasy4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM

Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.: 1793

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: $\pm 0.2 \text{ dB } (30 \text{ MHz to } 3 \text{ GHz})$

EX-Probe

Model: EX3DV3 Serial No. 3511

Construction: Triangular core Frequency: 10 MHz to > 6 GHz

Linearity: $\pm 0.2 \text{ dB} (30 \text{ MHz to } 3 \text{ GHz})$

1.7. $\underline{PHANTOM(S)}$:

Validation & Evaluation Phantom

Type: SAM V4.0C
Shell Material: Fiberglass
Thickness: 2.0 0.1 mm
Volume: Approx. 20 liters

PROBE SPECIFICATIONS (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycolether)

Calibration: Basic Broadband calibration in air from 10 MHz to 3 GHz

Frequency: 10 MHz to 3 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Directivity: $\pm 0.2 \text{ dB in HSL (rotation around probe axis)}$

 \pm 0.4 dB in HSL (rotation normal to probe axis)

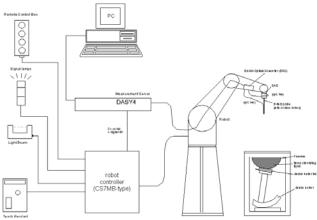
Dynamic Range: $5 \mu \text{ W/g to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Surface Detection: ± 0.2 mm repeatability in air and clear liquid over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm (Tip: 16 mm)

Tip diameter (including protective cover): 6.8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.7 mm


Application: General dosimetric measurements up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

SAR Measurement System

Measurement System Diagram

1.8. RX90BL ROBOT

The Stäubli RX90BL Robot is a standard high precision 6-axis robot with an arm extension for accommodating the data acquisition electronics (DAE).

1.9. ROBOT CONTROLLER

The CS7MB Robot Controller system drives the robot motors. The system consists of a power supply, robot controller, and remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.

1.10. LIGHT BEAM SWITCH

The Light Beam Switch (Probe alignment tool) allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

1.11. DATA ACQUISITION ELECTRONICS

The Data Acquisition Electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16-bit A/D converter and a command decoder and control logic unit. Some of the task the DAE performs is signal amplification, signal multiplexing, A/D conversion, and offset measurements. The DAE also contains the mechanical probe-mounting device, which contains two different sensor systems for frontal and sideways probe contacts used for probe collision detection and mechanical surface detection for controlling the distance between the probe and the inner surface of the phantom shell. Transmission from the DAE to the measurement server, via the EOC, is through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

1.12. ELECTO-OPTICAL CONVERTER (EOC)

The Electro-Optical Converter performs the conversion between the optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC connects to, and transfers data to, the DASY4 measurement server. The EOC also contains the fiber optical surface detection system for controlling the distance between the probe and the inner surface of the phantom shell.

1.13. MEASUREMENT SERVER

The Measurement Server performs time critical tasks such as signal filtering, all real-time data evaluation for field measurements and surface detection, controls robot movements, and handles safety operation. The PC-operating system cannot interfere with these time critical processes. A watchdog supervises all connections, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements.

1.14. **DOSIMETRIC PROBE**

Dosimetric Probe is a symmetrical design with triangular core that incorporates three 3 mm long dipoles arranged so that the overall response is close to isotropic. The probe sensors are covered by an outer protective shell, which is resistant to organic solvents i.e. glycol. The probe is equipped with an optical multi-fiber line, ending at the front of the probe tip, for optical surface detection. This line connects to the EOC box on the robot arm and provides automatic detection of the phantom surface. The optical surface detection works in transparent liquids and on diffuse reflecting surfaces with a repeatability of better than ± 0.1 mm.

1.15. <u>SAM PHANTOM</u>

The SAM (Specific Anthropomorphic Mannequin) twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm) integrated into a wooden table. The shape

of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left hand, right hand phone usage as well as body mounted usage at the flat phantom region. The flat section is also used for system validation and the length and width of the flat section are at least $0.75~\lambda O$ and $0.6~\lambda O$ respectively at frequencies of 824 MHz and above (λO = wavelength in air).

Reference markings on the phantom top allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. A white cover is provided to cover the phantom during off-periods preventing water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. The phantom is filled with a tissue simulating liquid to a depth of at least 15 cm at each ear reference point. The bottom plate of the wooden table contains three pair of bolts for locking the device holder.

1.16. PLANAR PHANTOM

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld radio transceivers. The planar phantom is mounted on the wooden table of the DASY4 system.

1.17. VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted on the wooden table of the DASY4 system.

1.18. DEVICE HOLDER

The device holder is designed to cope with the different measurement positions in the three sections of the SAM phantom given in the standard. It has two scales, one for device rotation (with respect to the body axis) and one for device inclination (with respect to the line between the ear openings). The rotation center for both scales is the ear opening, thus the device needs no repositioning when changing the angles. The plane between the ear openings and the mouth tip has a rotation angle of 65° .

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The dielectric properties of the liquid conform to all the tabulated values [2-5]. Liquids are prepared according to Annex A and dielectric properties are measured according to Annex B.

1.19. SYSTEM VALIDATION KITS

Power Capability: > 100 W (f < 1 GHz); > 40 W (f > 1 GHz)

Construction: Symmetrical dipole with I/4 balun Enables measurement of feed point impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 300, 450, 835, 1900, 2450 MHz

Return loss: >20 dB at specified validation position

Dimensions: 300 MHz Dipole: Length: 396mm; Overall Height: 430 mm; Diameter: 6 mm

450 MHz Dipole: Length: 270 mm; Overall Height: 347 mm; Diameter: 6 mm 835 MHz Dipole: Length: 161 mm; Overall Height: 270 mm; Diameter: 3.6 mm 1900 MHz Dipole: Length: 68 mm; Overall Height: 219 mm; Diameter: 3.6 mm 2450 MHz Dipole: Length: 51.5 mm; Overall Height: 300 mm; Diameter: 3.6 mm

TEST EQUIPMENT LIST

Test Equipment	Serial Number	Calibration Date
DASY4 System Robot ETVDV6 EX3DV3 DAE3 300MHz Dipole 450MHz Dipole 835MHz Dipole 1900MHz Dipole 2450MHz Dipole 2450MHz Dipole SAM Phantom V4.0C EUT Planar Phantom Validation Phantom	FO3/SX19A1/A/01 1793 3511 584 003 004 493 001 002 N/A N/A	N/A Sept 2003 Jan 2004 Sept 2003 June 2004 June 2004 Sept 2003 Feb 2004 Feb 2004 N/A N/A N/A
85070D Dielectric Probe Kt	N/A	N/A
83650B Signal Generator	3844A00910	June 2004
HP E4418B Power Meter	GB40205140	June 2004
HP 8482A Power Sensor	2607A11286	June 2004
HP 8722D Vector Network Analyzer	3S36140188	March 2004
Anritsu Power Meter ML2488A	6K00001832	June 2004
Anritsu Power Sensor	030864	Jan 2004
Mini-Circuits Power Amplifier	D111903#8	N/A

MEASUREMENT UNCERTANTIES

UNCERTAINTY ASSESSMENT FOR EUT

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v_i or $v_{\it eff}$
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	8
Axial isotropy of the probe	± 4.6	Rectangular	$\sqrt{3}$	(1-cp)1/2	± 1.9	∞
Spherical isotropy of the probe	± 9.7	Rectangular	$\sqrt{3}$	(cp)1/2	± 3.9	8
Boundary effects	± 8.5	Rectangular	$\sqrt{3}$	1	± 4.8	8
Probe linearity	± 4.5	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 0.9	Rectangular	$\sqrt{3}$	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.9	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.2	Rectangular	$\sqrt{3}$	1	± 0.8	8
RF ambient conditions	± 0.54	Rectangular	$\sqrt{3}$	1	± 0.43	8
Mech. constraints of robot	± 0.5	Rectangular	$\sqrt{3}$	1	± 0.2	8
Probe positioning	± 2.7	Rectangular	$\sqrt{3}$	1	± 1.7	8
Extrapolation & integration	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	8
Test Sample Related						
Device positioning	± 2.2	Normal	1	1	± 2.23	11
Device holder uncertainty	± 5.0	Normal	1	1	± 5.0	7
Power drift	± 5.0	Rectangular	$\sqrt{3}$		± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 3.5./1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Unce	ertainty				± 12.14/11.76	
Coverage Factor for 9	5%	Kp=2			_	
Expanded Uncertainty ((k=2)				± 24.29/23.51	

Table: Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budget is valid for the frequency range 300MHz to 6GHz and represents a worst-case analysis.

UNCERTAINTY ASSESSMENT FOR SYSTEM VALIDATION

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	<i>c_i</i> 1g	Standard Uncertain ty ±% (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	8
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	(1-cp)1/2	± 2.7	8
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(cp)1/2	± 3.8	8
Boundary effects	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 3.2	8
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	8
Integration time	± 1.3	Rectangular	$\sqrt{3}$	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	8
Probe positioning	± 1.4	Rectangular	$\sqrt{3}$	1	± 1.7	8
Extrapolation & integration	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	8
Dipole			1			
Dipole Axis to liquid distance	± 2.0	Normal	1	1	± 1.2	11
Input Power	± 5.0	Normal	1	1	± 2.7	7
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Combined Standard Unce	ertainty				± 9.8	
Coverage Factor for 9	05%	Kp=2				
Expanded Uncertainty	(k=2)				± 19.7	

REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992.
- [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34, IEEE 1528 (August 2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb.1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric Evaluation Of Mobile Communications Equipment With Known Precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz 300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgen ssische Technische Hoschschule Z rich, Dosimetric Evaluation of the Cellular Phone.
- [20] Federal Communications Commission, Radiofrequency radiation exposure evaluation: portable devices, Rule Part 47 CFR 2.1093: 1999.
- [21] Health Canada, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Safety Code 6.
- [22] Industry Canada, Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields, Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

External Photos

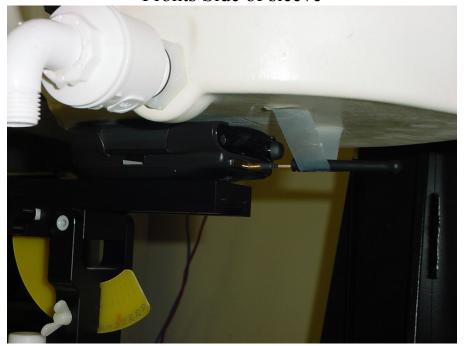
PCMCIA Card

Sleeve

Host 1

Host 2

Host 3



TEST SET-UP

Back side of Sleeve

Fronts Side of sleeve

<u>APPENDIX A – SAR MEASUREMENT DAT</u>

File Name: Host 1 low channel

08/05/04

Host Compaq iPAQ Pocket PC Model 3870 Cond Pwr 23.7dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2410 MHz; Duty Cycle: 1:2

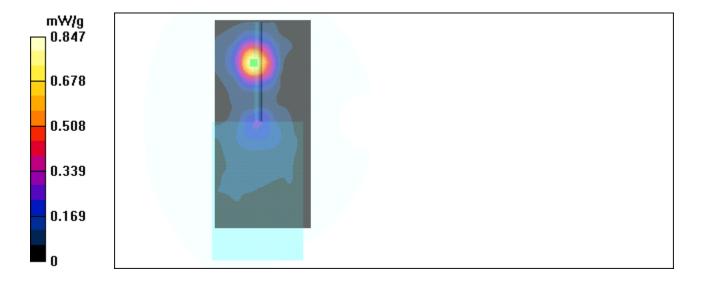
Medium: M2450 Medium parameters used f = 2450 MHz; σ = 2.01 mho/m; ε_r = 51.5; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.793 mW/g

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.701 mW/g; SAR(10 g) = 0.381 mW/g

File Name: Host 1 mid ch

08/05/04

Host Compaq iPAQ Pocket PC model 3870 Cond Pwr Cond Pwr 24.5dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2450 MHz; Duty Cycle: 1:2

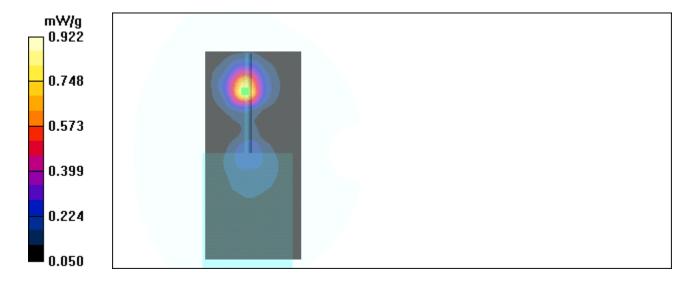
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 0.767 mW/g

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.696 mW/g; SAR(10 g) = 0.391 mW/g

File Name: Host 1 high ch

08/05/04

Host Compaq iPAQ Pocket PC Model 3870 Cond Pwr Cond Pwr 24.1dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2470 MHz; Duty Cycle: 1:2

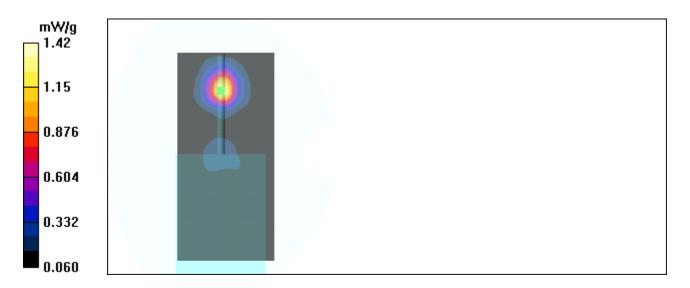
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

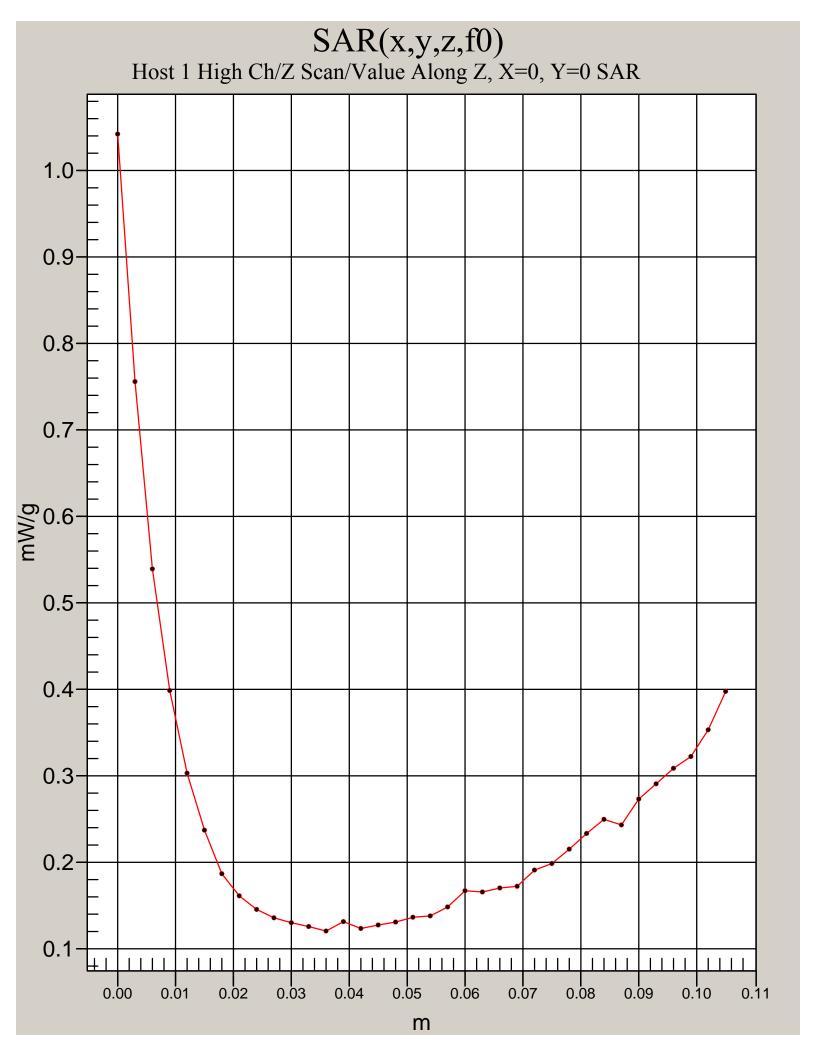
Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 10.8 V/m; Power Drift = -0.2 dB

Maximum value of SAR (measured) = 1.2 mW/g

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.557 mW/g

File Name: Host 1 High ch

08/05/04

Host Compaq iPAQ Pocket PC Model 3870 Cond Pwr 24.1dBm Front of EUT

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2470 MHz; Duty Cycle: 1:2

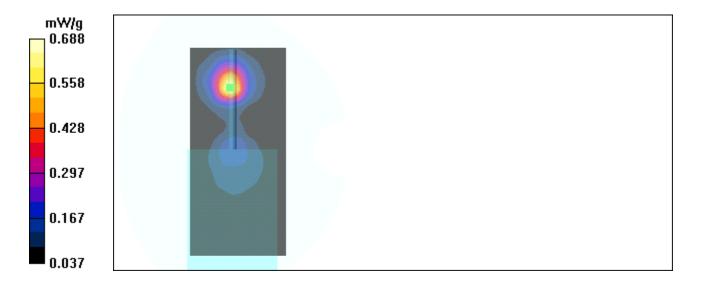
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.573 mW/g

Peak SAR (extrapolated) = 0.998 W/kg

SAR(1 g) = 0.519 mW/g; SAR(10 g) = 0.292 mW/g

File Name: Host 2 Low ch

08/05/04

Host HP iPAQ Pocket PC Model h555 Cond Pwr Cond Pwr 23.7dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2410 MHz; Duty Cycle: 1:2

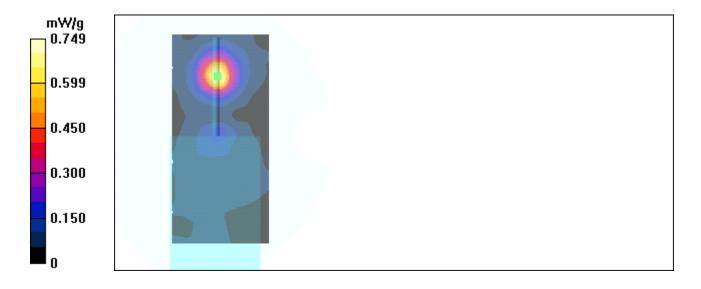
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.41 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.701 mW/g

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.345 mW/g

File Name: Host 2 mid ch

Host HP iPAQ Pocket PC Model h555 Cond Pwr Cond Pwr 24.5dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2450 MHz; Duty Cycle: 1:2

Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

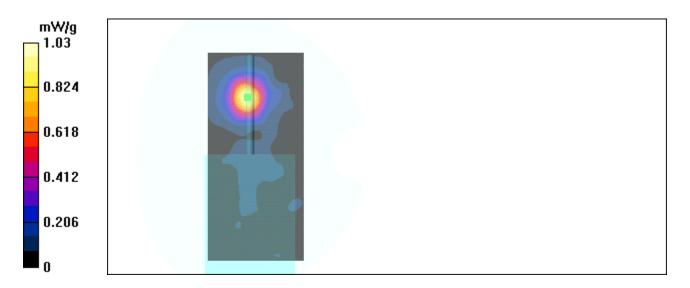
Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 - SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.71 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 0.986 mW/g

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.882 mW/g; SAR(10 g) = 0.472 mW/g

File Name: Host 2 High ch

08/05/04

Host HP iPAQ Pocket PC Model h555 Cond Pwr 24.1dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2470 MHz; Duty Cycle: 1:2

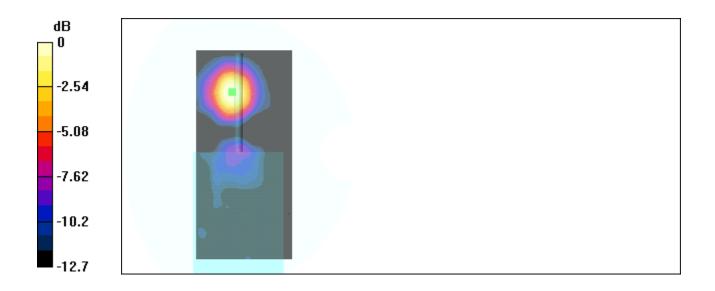
Medium: M2450 Medium parameters used f = 2410 MHz; σ = 2.01 mho/m; ε_r = 50.8; ρ = 1000 kg/m³

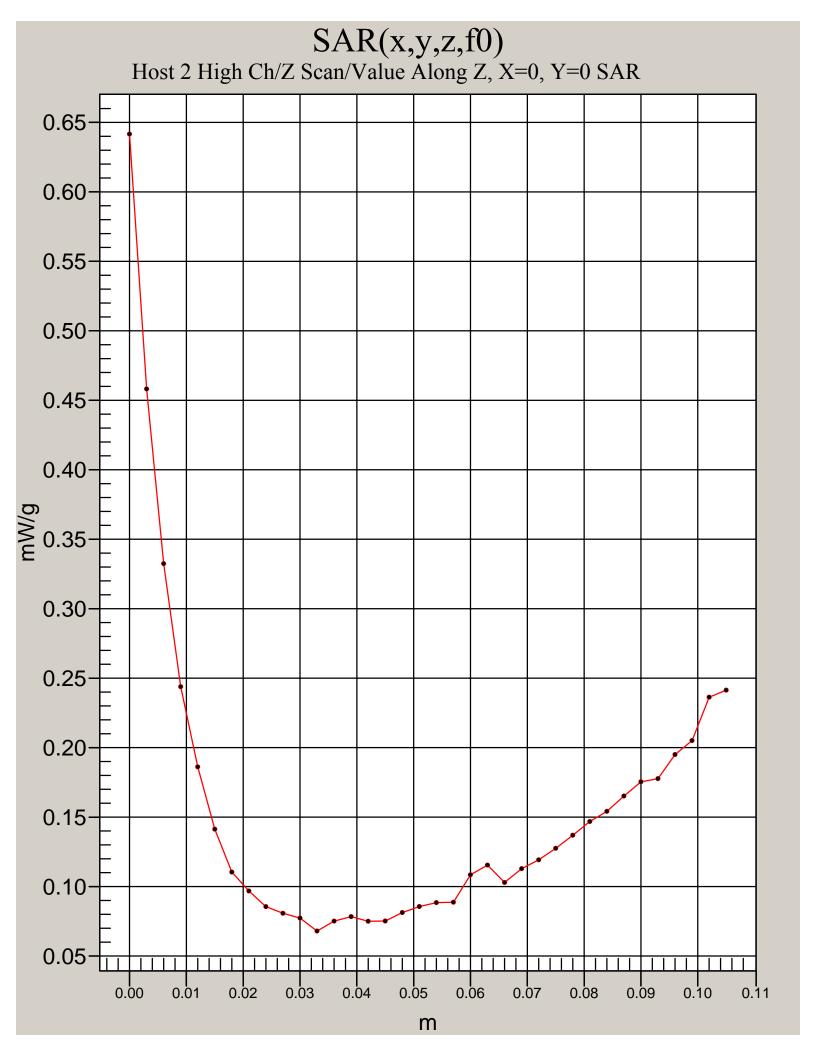
Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 9.78 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 1.23 mW/g

Peak SAR (extrapolated) = 2.08 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.567 mW/g

File Name: Host 2 high ch

08/05/04

Host HP iPAQ Pocket PC Model h555 Cond Pwr 24.1dBm Front of EUT

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2470 MHz; Duty Cycle: 1:2

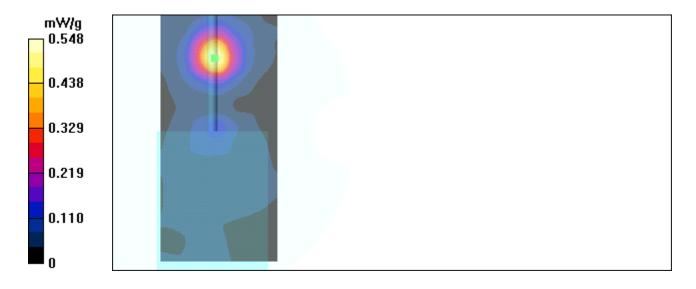
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.41 V/m; Power Drift = -0.1 dB

Maximum value of SAR (measured) = 0.513 mW/g

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.252 mW/g

File Name: Host 3 low ch

Host Compaq iPAQ Pocket PC Model 3630 Cond Pwr 23.7dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2410 MHz; Duty Cycle: 1:2

Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

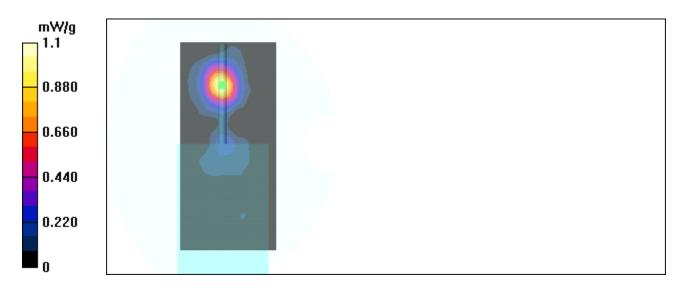
Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 - SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.6 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 1.06 mW/g

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.933 mW/g; SAR(10 g) = 0.478 mW/g

File Name: Host 3 mid ch

Host Compaq iPAQ Pocket PC Model 3630 Cond Pwr 24.5dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2450 MHz; Duty Cycle: 1:2

Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

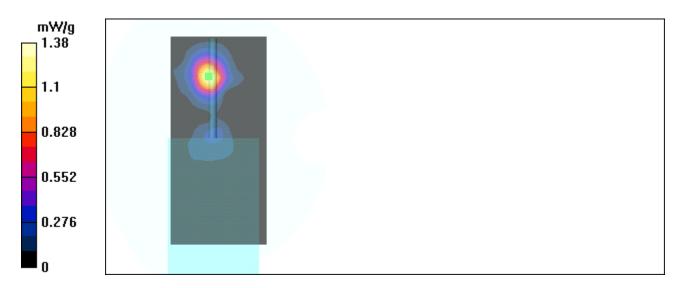
Phantom section: Flat Section

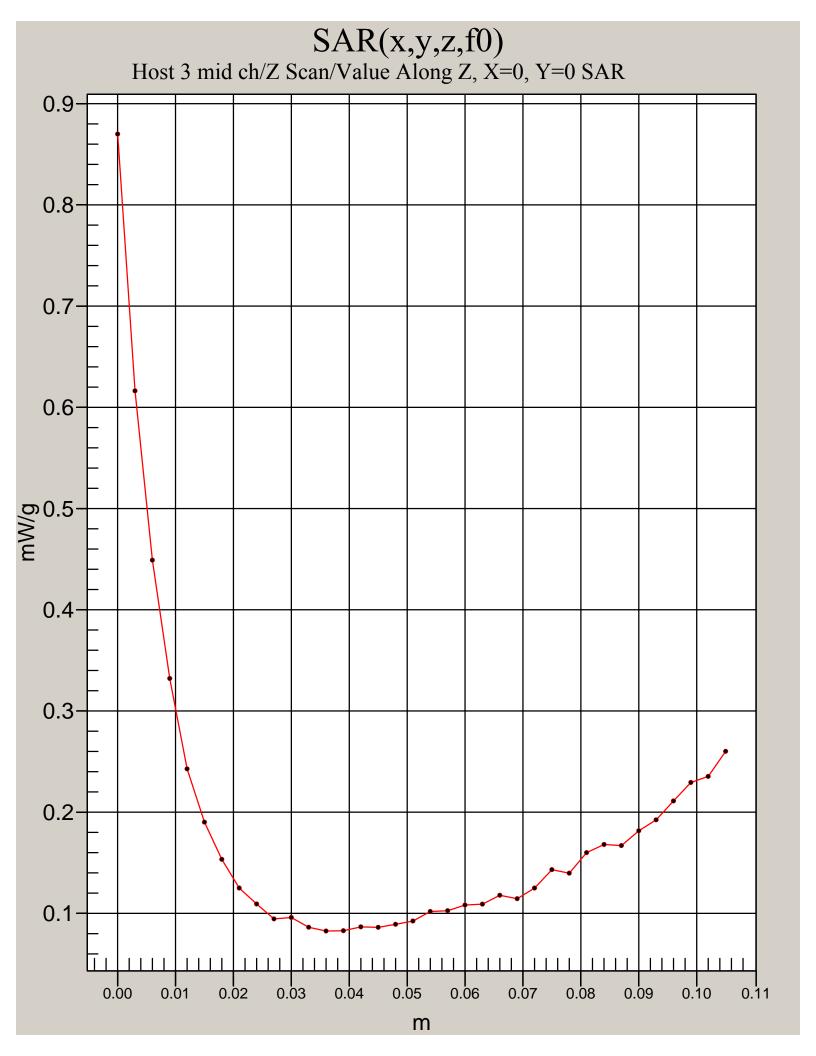
Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 - SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 11.2 V/m; Power Drift = -0.2 dB

Maximum value of SAR (measured) = 1.21 mW/g

Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.541 mW/g

File Name: Host 3 high ch

08/05/04

Host Compaq iPAQ Pocket PC Model 3630 Cond Pwr 24.1dBm

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2470 MHz; Duty Cycle: 1:2

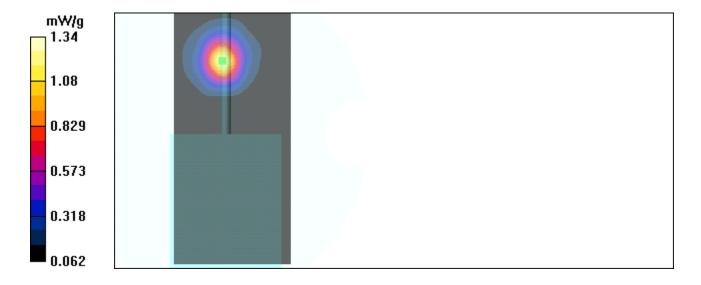
Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.18 V/m; Power Drift = 0.1 dB

Maximum value of SAR (measured) = 1.13 mW/g

Peak SAR (extrapolated) = 1.8 W/kg

SAR(1 g) = 1 mW/g; SAR(10 g) = 0.548 mW/g

File Name: Host 3 Mid ch

Host Compaq iPAQ Pocket PC Model 3630 Cond Pwr 24.1dBm Front of EUT

DUT: WMC 6300; Type: Wireless Modem; Serial: 865C

Communication System: DTS; ; Frequency: 2450 MHz; Duty Cycle: 1:2

Medium: M2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

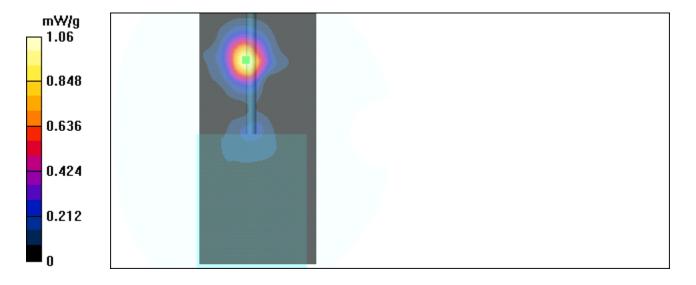
Phantom section: Flat Section

Ambient Temp: 24.2 deg C; Liquid Temp 23.8 deg C

- Probe: EX3DV3 - SN3511; ConvF(7.66, 7.66, 7.66); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.0 dB

Maximum value of SAR (measured) = 0.933 mW/g

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.821 mW/g; SAR(10 g) = 0.418 mW/g

<u>APPENDIX B – SYSTEM PERFORMANCE CHECK</u>

File Name: 2450MHz 08/16/04

2450MHz Dipole

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:001

Communication System: CW; ; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\varepsilon_r = 38.08$; $\rho = 1000$ kg/m³

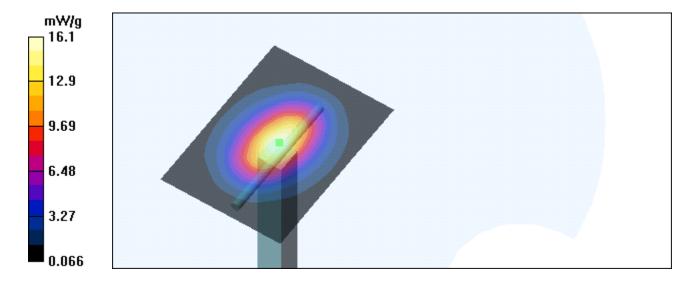
Phantom section: Body Phantom

Ambient Temp: 24.7 deg C; Fluid Temp: 23.4 deg C

- Probe: EX3DV3 - SN3511; ConvF(7.5, 7.5, 7.5); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 15.1 mW/g

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 5.9 mW/g

 $SAR(x,y,z,f0) \\ \text{Unnamed Program/Z Scan/Value Along Z, X=0, Y=0 SAR}$ 14-12-10-8-6-4-2-0.10 0.01 0.02 0.08 0.09 0.00 0.03 0.04 0.05 0.06 0.07 m

2400 MHz System Validation Dipole

Type:	2450Mhz
Serial Number:	002
Place of Calibration:	MET Laboratories, Inc. 4855 Patrick Henry Dr. Bldg #6 Santa Clara, CA 95054USA
Date of Calibration:	09 February 2004

MET Laboratories, Inc certifies that this device has been calibrated on the date indicated above.

.

Approved By:

Shawn McMillen

SAR Compliance Manager

1. Measurement Conditions

The DASY4 System with a dosimetric E-Field probe EX3DV3 (3511), Conversion factor 7.5 at 2450 MHz was used for the measurements.

The measurements were performed in the flat section of the SAM twin phantom filled with head tissue simulating solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity	38	±5%
Conductivity	1.88	±5%

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to solution surface. A loss-less dielectric spacer was used during measurements for accurate distance positioning.

The course grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250\text{mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR measurement were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting average SAR values measured with the dosimetric probe EX3DV3 (3511), and applying advanced extrapolation are:

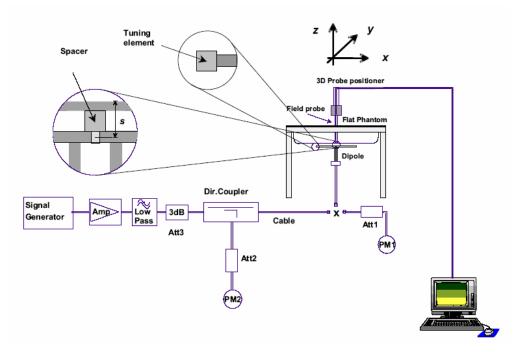
Averaged over 1cm³ (1g) of tissue: 50.4 mW/g

Averaged over 10cm³ (10g) of tissue: 22.8 mW/g

3. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 1 with the 10mm spacer. The impedance and return loss measurements are

Complex impedance at 1900 MHz Re $\{Z\}$ = 47.568 Ω

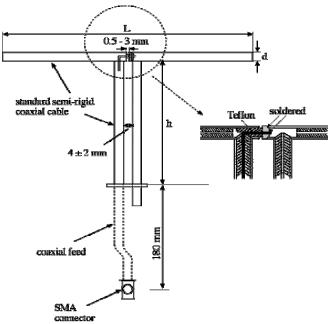

Im $\{Z\}=1.4141\Omega$

Return Loss at 1900 MHz -30.849 dB

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the RF cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. The matching of the dipole should be checked using a network analyzer to ensure that the reflected power is at least 20 dB below the forward power.



4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feed point leading to a damage of the dipole.

5. Design

The validation dipole is made of standard semi ridged coaxial cable and is constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	396.0	250.0	6.35
450	270.0	166.7	6.35
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.4	3.6
3000	41.5	25.0	3.6

Validation Dipole Dimensions

File Name: 2450MHz 02/09/04

2450MHz Dipole

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:002

Communication System: CW; ; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\epsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

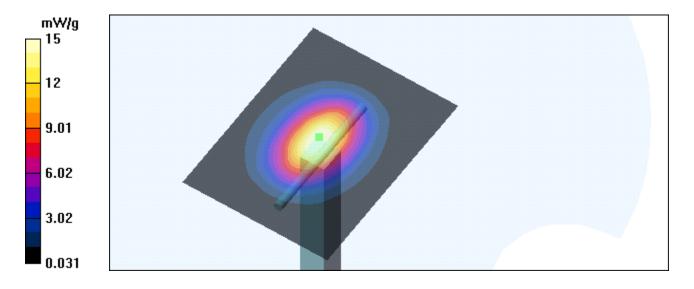
Phantom section: Flat Section

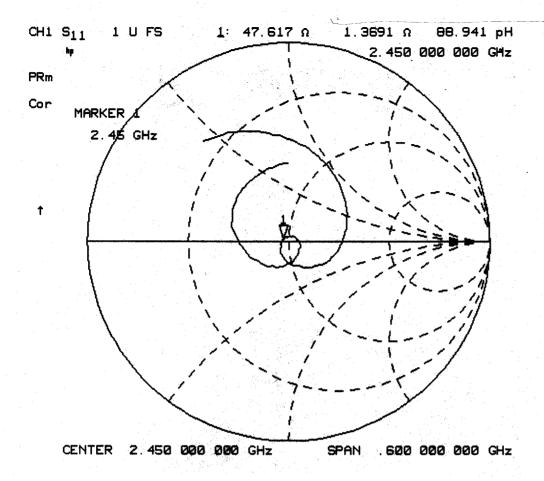
Ambient Temp 24.2 deg C; Fluid Temp 23.9deg C

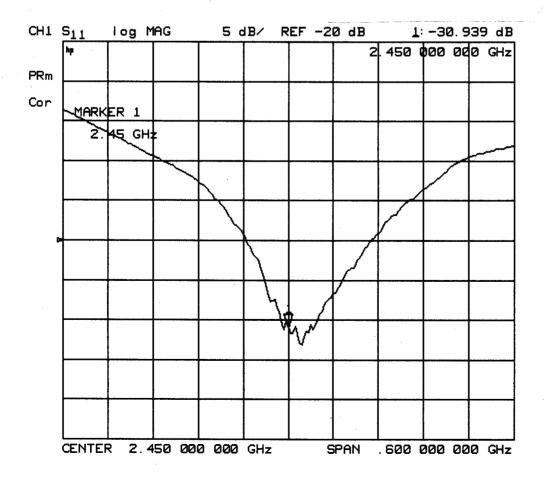
- Probe: EX3DV3 - SN3511; ConvF(7.5, 7.5, 7.5); Calibrated: 1/23/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn584; Calibrated: 9/16/2003
- Phantom: SAM with CRP; Type: SAM; Serial: TP 1310
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 89.3 V/m; Power Drift = -0.1 dB


Maximum value of SAR (measured) = 14.5 mW/g

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.69 mW/g

<u>APPENDIX C – PROBE CALIBRATION</u>

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

MET Laboratories EMC

CALIBRATION CERTIFICATE

Object(s)

EX3DV3 - SN:3511

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

January 23, 2004

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator R&S SMT06	100058	23-May-01 (SPEAG, in house check May-03)	In house check: May-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Technician	Distale
Approved by:	Katja Pokovic	Laboratory Director	20 :- W.

Date issued: January 26, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe EX3DV3

SN:3511

Manufactured: Last calibrated: December 15, 2003 January 23, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV3 SN:3511

Sensitivity in Free Space

Diode Compression^A

97

NormX

0.77 μ V/(V/m)²

DCP X

97 mV

NormY

0.64 μV/(V/m)²

DCP Y

97 mV

NormZ

0.65 $\mu V/(V/m)^2$

DCP Z

mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head

5500 MHz

Typical SAR gradient: 28 % per mm

Sensor Cener to Phantom Surface Distance

2.0 mm 3.0 mm

SAR_{be} [%]

Without Correction Algorithm

16.0 8.6

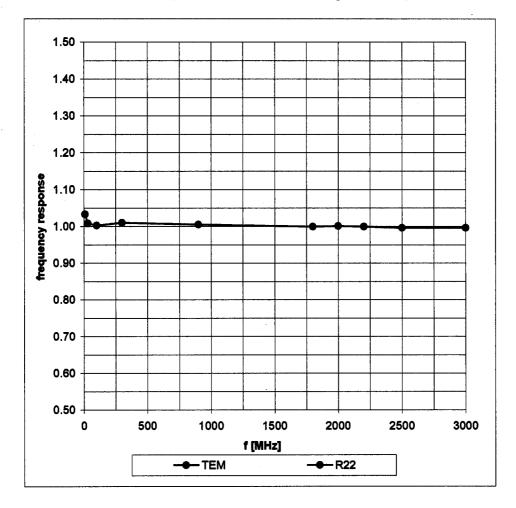
SAR_{be} [%]

With Correction Algorithm

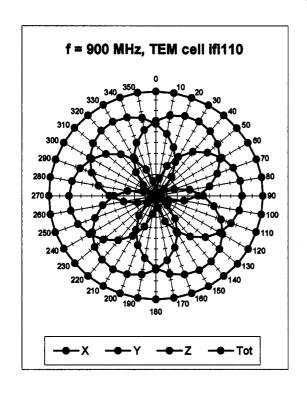
0.0

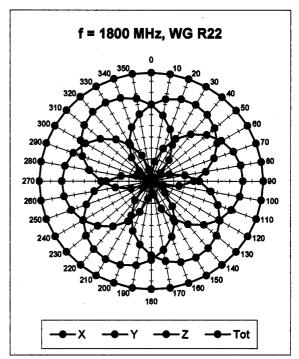
Sensor Offset

Probe Tip to Sensor Center


1.0 mm

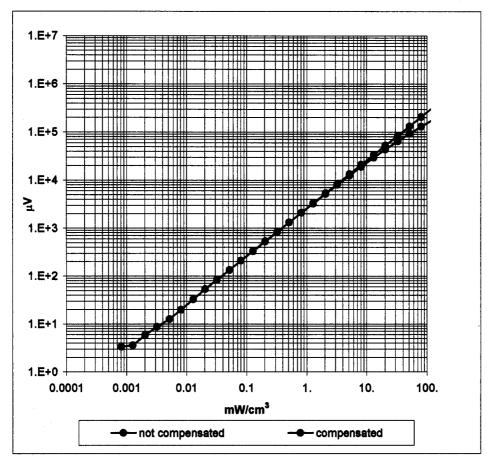
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

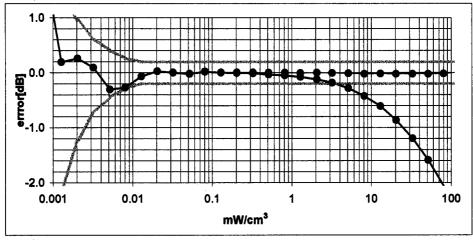

A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

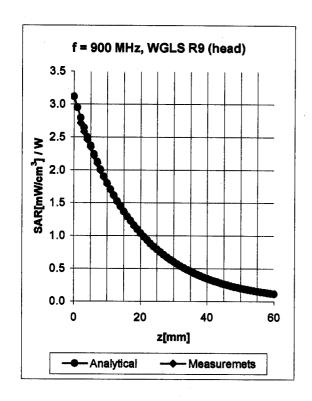
Receiving Pattern (ϕ) , θ = 0°

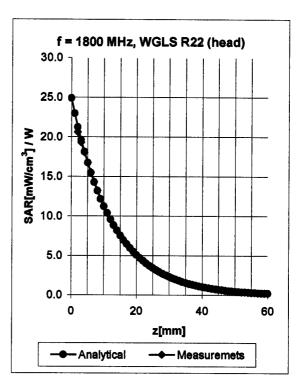




Axial Isotropy Error < ± 0.2 dB

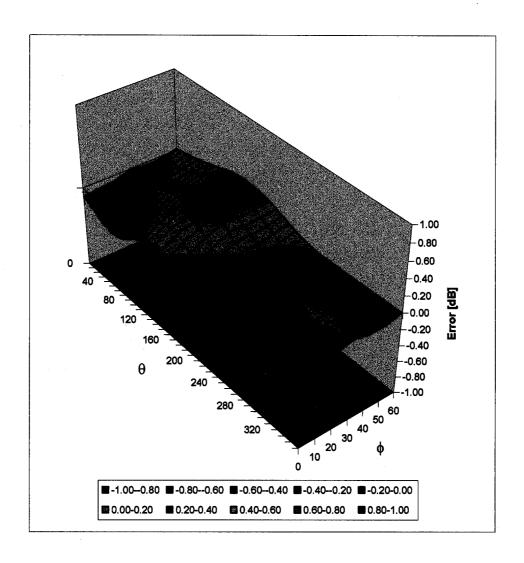
Dynamic Range f(SAR_{head})


(Waveguide R22)



Probe Linearity < ± 0.2 dB

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.18	1.60	9.43 ± 11.3% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.20	2.00	8.11 ± 11.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.15	2.00	7.50 ± 9.7% (k=2)
5500	5225-5775	Head	35.6 ± 5%	4.96 ± 5%	0.42	1.80	4.46 ± 22.6% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.15	2.00	7.66 ± 9.7% (k=2)
5500	5225-5775	Body	48.6 ± 5%	5.65 ± 5%	0.45	1.90	3.84 ± 22.6% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

EX3DV3 SN:3511

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

<u>APPENDIX D – MEASURED FLUID DIELECTRIC PARAMETERS</u>

2450MHz Head

Z45UMHZ HEAQ August 16, 2004 09:03.	λM		
_	nri	e¹	ell
Frequency	ATT-		•
2.349999872	GHZ	38.5707	13.8839
2.353854460	GHz	38.5618	13.9002
2.357709048	GHz	38.5613	13.8986
2.361563635	GHz	38.5613	13.8940
2.365418223	GHz	38.5592	13.9077
2.369272811	GHz	38.5728	13.9199
2.373159011	GHz	38.5597	13.8951
2.377045211	GHz	38.5314	13.9103
2.380931412	GHz	38.4974	13.9078
2.384817612	GHz	38.4562	13.9169
2.388703812	GHz	38.4195	13.9141
2.392621884	GHz	38.3978	13.9298
2.396539956	GHz	38.3760	13.9624
2.400458028	GHz	38.3615	14.0141
2.404376100	GHz	38.3564	14.0360
2.408294172	GHz	38.3448	14.0633
2.412244377	GHZ	38.3557	14.0668
2.416194582	GHZ	38.3480	14.0882
2.420144787	GHZ	38.3377	14.0755
2.424094992	-	38.3061	14.0637
	GHZ		
2.428045197	GHZ	38.2824	14.0649
2.432027798	GHz	38.2814	14.0837
2.436010400	GHz	38.2481	14.1067
2.439993002	GHz	38.2133	14.1310
2.443975603	GHz	38.1698	14.1514
2.447958205	GHz	38.1398	14.1609
2.451973469	GHz	38.0877	14.1499
2.455988733	GHz	38.0623	14.1613
2.460003997	GHz	38.0673	14.1893
2.464019261	GHz	38.0810	14.2211
2.468034525	GHz	38.0886	14.2552
2.472082719	GHz	38.1122	14.2650
2.476130913	GHz	38.1027	14.2580
2.480179107	GHz	38.0851	14.2743
2.484227301	GHz	38.0627	14.2449
2.488275495	GHz	38.0250	14.2201
2.492356890	GHz	38.0058	14.2407
2.496438284	GHz	37.9639	14.2471
2.500519679	GHz	37.9184	14.2457
2.504601073	GHz	37.8773	14.2626
2.508682467	GHz	37.8510	14.2838
2.512797334	GHZ	37.8289	14.2934
2.516912201	GHZ	37.8123	14.3094
2.521027068	GHZ	37.7969	14.3465
2.525141935	GHZ	37.7940	14.3785
4.343141333	GIIZ	31.1340	T4.3/03

2450MHz Body

ZIJUMUZ DOU	Y	
August 16, 2004 10:03 AM		
Frequency	e'	e''
2.349999872 GHz	52.0189	14.3650
2.353854460 GHz	52.0103	14.3820
2.357709048 GHz	51.9959	14.4062
2.361563635 GHz	51.9707	14.4213
2.365418223 GHz	51.9530	14.4422
2.369272811 GHz	51.9482	14.4552
2.373159011 GHz	51.9368	14.4687
2.377045211 GHz	51.9080	14.4738
2.380931412 GHz	51.8764	14.4824
2.384817612 GHz	51.8516	14.4904
	51.8344	
	•	14.5226
2.392621884 GHz	51.8165	14.5298
2.396539956 GHz	51.7967	14.5656
2.400458028 GHz	51.7739	14.5865
2.404376100 GHz	51.7585	14.6133
2.408294172 GHz	51.7509	14.6158
2.412244377 GHz	51.7278	14.6450
2.416194582 GHz	51.7024	14.6660
2.420144787 GHz	51.6908	14.6737
2.424094992 GHz	51.6642	14.6964
2.428045197 GHz	51.6632	14.7062
2.432027798 GHz	51.6326	14.7342
2.436010400 GHz	51.6241	14.7497
2.439993002 GHz	51.6096	14.7692
2.443975603 GHz	51.5879	14.7827
2.447958205 GHz	51.5460	14.7919
2.451973469 GHz	51.5337	14.7826
2.455988733 GHz	51.5061	14.8117
2.460003997 GHz	51.4909	14.8475
2.464019261 GHz	51.4832	14.8592
		14.8720
2.468034525 GHz	51.4657	
2.472082719 GHz	51.4444	14.8786
2.476130913 GHz	51.4241	14.8916
2.480179107 GHz	51.4096	14.8972
2.484227301 GHz	51.3785	14.9015
2.488275495 GHz	51.3586	14.9144
2.492356890 GHz	51.3537	14.9270
2.496438284 GHz	51.3365	14.9328
2.500519679 GHz	51.3128	14.9510
2.504601073 GHz	51.3097	14.9615
2.508682467 GHz	51.2859	14.9763
2.512797334 GHz	51.2581	14.9850
2.516912201 GHz	51.2190	14.9934
2.521027068 GHz	51.2121	15.0207
2.525141935 GHz	51.1971	15.0358

<u>APPENDIX E – CERTIFICATE OF CONFORMITY</u>

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland	

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas; 6mm +/- 0.2mm at ERP	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions	DEGMBE based simulating liquids	Pre-series, First article, Samples

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-200x Draft CD 1.1 (Dec 02)
- [3] IEC 62209/CD (Nov 02)
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

7.8.2003

Signature / Stamp

Schmid & Pertner Engineering AG Zeughausstresse 43, 8904 Zurich, Switzerland Phone 4411, 245 9760, Fex 441 1 245 9779 Info@speag.com, http://www.speag.com