

FCC SAR Compliance Test Report

HSPA+/UMTS/GPRS/GSM/EDGE

Mobile Phone with Bluetooth;

Project Name: HUAWEI Ascend Y530

Model : HUAWEI Y530-U051,Y530-U051

FCC ID : QISY530-U051

SYBH(Z-SAR)008112013-2

Report No. :

	APPROVED	PREPARED
	(Lab Manager)	(Test Engineer)
BY	Alvinway	gongzhony
DATE	2013-12-23	2013-12-23

The test results of this test report relate exclusively to the item(s) tested, The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Tel: +86 755 28780808 Fax: +86 755 89652518

Table of Contents

1	Gene	eral Informationeral Information	4
	1.1	Statement of Compliance	4
	1.2	RF exposure limits	5
	1.3	EUT Description	6
	1.3.1	·	
	1.4	Test specification(s)	
		Testing laboratory	
		Applicant and Manufacturer	
		Application details	
		Ambient Condition	
2		Measurement System	
		SAR Measurement Set-up	
		Test environment	
		Data Acquisition Electronics description	
		Probe description	
		Phantom description	
		Device holder description	
		Test Equipment List	
3		Measurement Procedure	
		Scanning procedure	
		Spatial Peak SAR Evaluation	
4		Data Storage and Evaluation	
		em Verification Procedure	
		System Check	
_		System check Procedure	
5		surement Uncertainty Evaluation	
_		Measurement uncertainty evaluation for SAR test	
6		Test Configuration	
		GSM Test Configuration	
		UMTS Test Configuration	
		WiFi Test Configuration	
/		Measurement Results	
		Conducted power measurements	
	7.1.1	· ·	
	7.1.2		
	7.1.3	· ·	
	7.1.4	· ·	
	7.1.5		
		SAR measurement Result	
	7.2.1		
	7.2.2		
	7.2.3		
	7.2.4		
	7.2.5	SAR measurement Result of WiFi	44
	7.3	Multiple Transmitter Evaluation	46
	7.3.1		
	7.3.2	Simultaneous Transmission Possibilities	49
	7.3.3		
	7.3.4	Simultaneous Transmission Conlcusion	52
	Appe	endix A. System Check Plots	
		endix B. SAR Measurement Plots	
		endix C. Calibration Certificate	
		endix D. Photo documentation	

Report No.: SYBH(Z-SAR)008112013-2 FCC ID:QISY530-U051

Modified History × × *** ***

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	2013-12-23	Gong Zhong

2013-12-23 Page 3 of 53

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for HUAWEI Y530-U051, Y530-U051 are as below Table 1.

Band	Position*	MAX Reported SAR _{1g} (W/kg)
	Head	0.507
GSM850	Body Worn(15mm)	0.921
	Hotspot(10mm)	1.296
	Head	0.239
GSM1900	Body Worn(15mm)	0.222
	Hotspot(10mm)	0.418
	Head	0.679
UMTS Band V	Body Worn(15mm)	0.924
	Hotspot(10mm)	1.204
	Head	0.707
UMTS Band II	Body Worn(15mm)	0.501
	Hotspot(10mm)	1.208
	Head	0.191
WiFi	Body Worn(15mm)	0.058
	Hotspot(10mm)	0.126
The highest simultaneous SAR is 1.389W/kg per KDB690783 D01		

Table 1:Summary of test result

Note: *For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule §2.1093, the ANSI/IEEE C95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005.

2013-12-23 Page 4 of 53

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Report No.: SYBH(Z-SAR)008112013-2

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2013-12-23 Page 5 of 53

1.3 EUT Description

Device Information:			
DUT Name:	HSPA+/UMTS/GPRS/GSM/EDGE Mobile Phone with		
20 Marie	Bluetooth; HUAWEI Ascend Y530		
Type Identification:	HUAWEI Y530-U051	I,Y530-U051	
FCC ID:	QISY530-U051		
SN No.:	J3P01A93A2600108		
Device Type :	portable device		
Device Phase:	Identical Prototype		
Exposure Category:	uncontrolled environ	ment / general popu	lation
Hardware Version:	HD1Y530M		
Software Version :	Y530-U051V100R00	1C00B162	
Antenna Type :	internal antenna		
Others Accessories	Headset		
Device Operating Configurations:			
Supporting Mode(s)	GSM850/1900, UMT	S Band V/II, WiFi (to	ested),BT
Test Modulation	GSM(GMSK/8PSK),	UMTS(QPSK)	
Device Class	В		
	Band	Tx (MHz)	Rx (MHz)
	GSM850	824-849	869-894
	GSM1900	1850-1910	1930-1990
Operating Frequency Range(s)	UMTS Band V	824-849	869-894
	UMTS Band II	1850-1910	1930-1990
	BT	2402	-2480
	WiFi	2412	-2462
	Max Number of Time	eslots in Uplink:	2
GPRS Multislot Class(10)	Max Number of Time	eslots in Downlink:	4
	Max Total Timeslot:		5
	Max Number of Time	eslots in Uplink:	2
EGPRS Multislot Class(10)	Max Number of Time	eslots in Downlink:	4
	Max Total Timeslot:	5	
HSDPA UE Category	14		
HSUPA UE Category	6		
	4,tested with power level 5(GSM850)		
Power Class:	1,tested with power level 0(GSM1900)		
FOWEI Class.	3, tested with power control "all 1"(UMTS Band V)		
	3, tested with power control "all 1"(UMTS Band II)		
	128-190-251 (GSM850)		
	512-661-810 (GSM1900)		
Test Channels (low-mid-high):	4132-4182-4233 (UMTS Band V)		
	9262-9400-9538 (UMTS Band II)		
	1-6-11 (WiFi 2450)		

Table 3:Device information and operating configuration

2013-12-23 Page 6 of 53

1.3.1 General Description

Report No.: SYBH(Z-SAR)008112013-2

HUAWEI Y530-U051, Y530-U051 is subscriber equipment in the WCDMA/GSM system. The HSPA+/UMTS frequency band is Band I and Band II and Band V. The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only GSM850 and PCS1900 bands and Band II and Band V test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSDPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port(to provide voice service) and USIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

Battery:

Name	Manufacture	Serials number	Description
Rechargeable Li-ion	Huawei Technologies Co., Ltd.	1#:SN-MPCD408919151578 4#:SN-MAICA30X19101615	Battery Model: HB4W1H Rated capacity: 1750mAh Nominal Voltage: +3.7V Charging Voltage: +4.2V

Name	Manufacture	Serials number	Description
Rechargeable Li-ion	Huawei Technologies Co., Ltd.	2#:SN-CABD921E18002954 3#:SN-BAAD918K18011701 5#:SN-GAGC922Z18002933	Battery Model: HB4W1 Rated capacity: 1700mAh Nominal Voltage: +3.7V Charging Voltage: +4.2V

2013-12-23 Page 7 of 53

1.4 Test specification(s)

ANSI Std C95.1-1992	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)
IEEE Std 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEEE Std 1528a-2005	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom)
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010)
KDB941225 D01	SAR test for 3G devices v02
KDB941225 D02	HSPA and 1x Advanced v02r02
KDB941225 D03	SAR Test Reduction GSM GPRS EDGE v01
KDB941225 D03 KDB941225 D06	SAR Test Reduction GSM GPRS EDGE v01 Hot Spot SAR v01r01
KDB941225 D06	Hot Spot SAR v01r01
KDB941225 D06 KDB447498 D01	Hot Spot SAR v01r01 General RF Exposure Guidance v05r01
KDB941225 D06 KDB447498 D01 KDB648474 D04	Hot Spot SAR v01r01 General RF Exposure Guidance v05r01 SAR Handsets Multi Xmiter and Ant v01r02

1.5 Testing laboratory

Test Site	The Reliability Laboratory of Huawei Technologies Co., Ltd.	
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China	
Telephone	+86 755 28780808	
Fax	+86 755 89652518	
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310 A2LA TESTING CERT #2174.01	

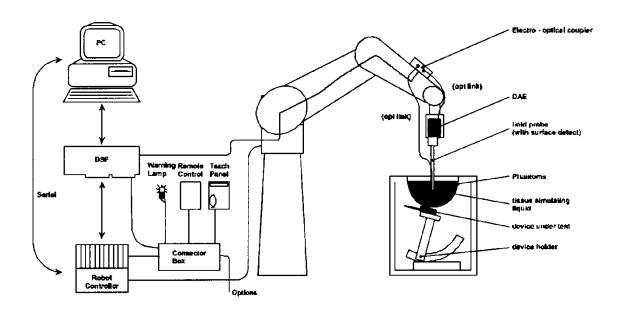
1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,
	Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.7 Application details

Start Date of test	2013-12-09
End Date of test	2013-12-18

1.8 Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2013-12-23 Page 8 of 53

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

2013-12-23 Page 9 of 53

2.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

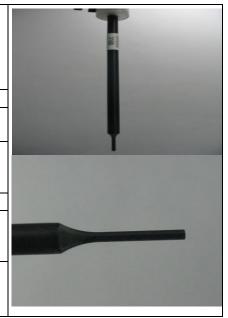
The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	Extend & Fundament and
The Inputs	symmetrical and floating	DAE 4 PART Nr.: SD 000 DOS BJ SERIAL Nr.: 851
Common mode rejection	above 80 dB	DATE: 03/08

2013-12-23 Page 10 of 53



2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

Symmetrical design with triangular core					
	, ,				
	Interleaved sensors				
Construction	Built-in shielding against static charges				
	PEEK enclosure material (resistant to organic				
	solvents, e.g., DGBE)				
Calibration	ISO/IEC 17025 calibration service available.				
Fraguenay	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4				
Frequency	GHz)				
	± 0.2 dB in HSL (rotation around probe axis)				
Directivity	± 0.3 dB in tissue material (rotation normal to				
	probe axis)				
Dynamic range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB				
	Overall length: 337 mm (Tip: 20 mm)				
Dimensions	Tip diameter: 3.9 mm (Body: 12 mm)				
	Distance from probe tip to dipole centers: 2.0 mm				
	General dosimetry up to 4 GHz				
Application	Dosimetry in strong gradient fields				
	Compliance tests of mobile phones				

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB(noise:typically<1μW/g)
Dimensions	Overall length: 337 mm (Tip:20 mm) Tip diameter:2.5 mm (Body:12 mm) Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure scenario(e.g.,very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%

2013-12-23 Page 11 of 53

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	İ
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm
Filling Volume	Approximately 30 liters
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet
Measurement Areas	Flat phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2013-12-23 Page 12 of 53

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment Devices used during the test described are marked ⊠

Report No.: SYBH(Z-SAR)008112013-2

	Manufacturer	Device	Туре	Serial number	Date of last calibration)*	Valid period
\boxtimes	SPEAG	Dosimetric E-Field Probe	EX3DV4	3744	2013-07-26	One year
\boxtimes	SPEAG	835 MHz Dipole	D835V2	4d059	2013-05-02	Three years
	SPEAG	1800 MHz Dipole	D1800V2	2d184	2011-03-08	Three years
\boxtimes	SPEAG	1900 MHz Dipole	D1900V2	5d143	2011-09-26	Three years
	SPEAG	2000 MHz Dipole	D2000V2	1052	2011-03-10	Three years
	SPEAG	2300 MHz Dipole	D2300V2	1016	2011-11-22	Three years
\boxtimes	SPEAG	2450 MHz Dipole	D2450V2	761	2013-09-12	Three years
	SPEAG	2600 MHz Dipole	D2600V2	1021	2011-11-22	Three years
	SPEAG	Data acquisition electronics	DAE4	851	2013-07-31	One year
	SPEAG	Software	DASY 5	N/A	N/A	N/A
	SPEAG	Twin Phantom	SAM1	TP-1475	N/A	N/A
	SPEAG	Twin Phantom	SAM2	TP-1474	N/A	N/A
	SPEAG	Twin Phantom	SAM3	TP-1597	N/A	N/A
	SPEAG	Twin Phantom	SAM4	TP-1620	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A	N/A
	R&S	Universal Radio Communication Tester	CMU 200	113989	2013-06-08	One year
\boxtimes	Agilent)*	Network Analyser	E5071B	MY42404956	2013-02-27	One year
\boxtimes	Agilent	Dielectric Probe Kit	85070E	2484	N/A	NA
\boxtimes	Agilent	Signal Generator	N5181A	MY47420989	2013-02-27	One year
\boxtimes	MINI-CIRCUITS	Amplifier	ZHL-42W	QA1123001	N/A	NA
\boxtimes	AR	Directional Coupler	DC7144M1	311190	2013-05-13	One year
	R&S	Power Meter	NRP	MY44420359	2013-08-28	One year
	R&S	Power Meter Sensor	NRP-Z11	100740	2013-08-28	One year
	Agilent	Power Meter	E4417A	MY45101339	2013-02-26	One year
	Agilent	Power Meter Sensor	E9321A	MY44420359	2013-02-26	One year

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

- 1) Per KDB865664 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2013-12-23 Page 13 of 53

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y- dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δ xzoom, Δ yzoom ≤2GHz ≤8mm, 2-4GHz ≤5 mm and 4-6 GHz-≤4mm; Δ zzoom ≤3GHz ≤5 mm, 3-4 GHz-≤4mm and 4-6GHz-≤2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.)are shown in table form form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2013-12-23 Page 14 of 53

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $5 \times 5 \times 7$ points(with 8mm horizontal resolution) or $7 \times 7 \times 7$ points(with 5mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated.
 This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe
 and the distance between the surface and the lowest measuring point is about 1 mm (see probe
 calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting
 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2013-12-23 Page 15 of 53

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	$ConvF_{i}$
	 Diode compression point 	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters: - Conductivity σ

- Density ho

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \circ cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

2013-12-23 Page 16 of 53

FCC ID:QISY530-U051

E-field probes: $E_{i} = (V_{i} / Norm_{i} \cdot ConvF)^{1/2}$ H-field probes: $H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes

f = sensor sensitivity factors for H-field probes
f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2013-12-23 Page 17 of 53

System Verification Procedure

Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)	Head Tissue					
Frequency Band (MHz)	450	835	1800	1900	2450	2600
Water	38.56	41.45	52.64	55.242	62.7	55.242
Salt (NaCl)	3.95	1.45	0.36	0.306	0.5	0.306
Sugar	56.32	56.0	0.0	0.0	0.0	0.0
HEC	0.98	1.0	0.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	47.0	44.542	36.8	44.452
Ingredients (% of weight)			Body Tis	sue		
Frequency Band (MHz)	450	835	1800	1900	2450	2600
Water	51.16	52.4	69.91	69.91	73.2	64.493
Salt (NaCl)	1.49	1.40	0.13	0.13	0.04	0.024
Sugar	46.78	45.0	0.0	0.0	0.0	0.0
HEC	0.52	1.0	0.0	0.0	0.0	0.0
Bactericide	0.05	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	29.96	29.96	26.7	32.252

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16MΩ+ resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1.1.3.3-tetramethylbutyl)phenyllether

THIOH A-	Triton X-100(uitra pure): Polyetnylene glycol mono [4-(1,1,3,3-tetrametnylbutyl)pnenyljetne Tianua Measured Tissue Measured Tissue						
Tissue Type	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/-5%)	Er	σ (S/m)	Liquid Temp.	Test Date
	825	41.60 (39.52~43.68)	0.90 (0.86~0.95)	39.66	0.876		
835H	835	41.50 (39.43~43.58)	0.90 (0.86~0.95)	39.53	0.879	21.4°C	2013-12-11
	850	41.50 (39.43~43.58)	0.92 (0.87~0.96)	39.33	0.895		
	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.51	0.951		
835B	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.36	0.962	21.4°C	2013-12-09
	850	55.20 (52.44~57.96)	0.99 (0.94~1.04)	53.28	0.974		
	1850	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.27	1.339		
400011	1880	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.23	1.341	21.4°C	2013-12-12
1900H	1900	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.17	1.356	21.40	2013-12-12
	1910	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.14	1.369		

2013-12-23 Page 18 of 53

	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.16	1.525		
40000	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.08	1.560	04.400	0040 40 44
1900B	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.02	1.576	21.4°C	2013-12-11
	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	50.96	1.584		
	2410	39.30 (37.34~41.26)	1.76 (1.67~1.85)	40.95	1.781		
2450H	2435	39.20 (37.24~41.16)	1.79 (1.70~1.88)	40.88	1.779	21.4°C	2013-12-18
243011	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	40.86	1.812	21.4 0	2013-12-10
	2460	39.20 (37.24~41.16)	1.81 (1.72~1.90)	40.87	1.823		
	2410	52.80 (50.16~55.44)	1.91 (1.81~2.00)	50.76	1.960		
2450B	2435	52.70 (50.07~55.34)	1.94 (1.84~2.04)	50.69	1.996	21.4°C	2013-12-15
24306	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	50.67	2.010	21.4 0	2013-12-13
	2460	52.70 (50.07~55.34)	1.96 (1.86~2.06)	50.62	2.023		
		ε _r = Relati	ve permittivity, σ=	Conductiv	ity	·	

Table 5:Measured Tissue Parameter

Note: 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

- 2) KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

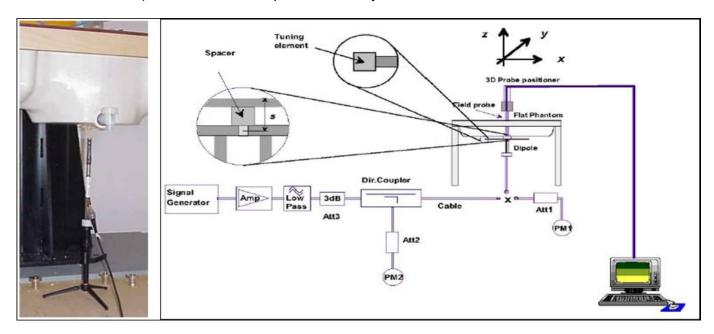
2013-12-23 Page 19 of 53

4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests(Graphic Plot(s) see Appendix A).

System	Target SAR (1W) (+/-10%)			red SAR zed to 1W)	Liquid	Test Date
Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date
D835V2 Head	9.49 (8.54~10.44)	6.18 (5.56~6.80)	9.52	6.16	21.4°C	2013-12-11
D1900V2 Head	40.60 (36.54~44.66)	21.20 (19.08~23.32)	40.00	21.12	21.4°C	2013-12-12
D2450V2 Head	53.20 (47.88~58.52)	24.20 (21.78~26.62)	54.00	24.44	21.4°C	2013-12-18
D835V2 Body	9.42 (8.48~10.36)	6.19 (5.57~6.80)	9.60	6.32	21.4°C	2013-12-09
D1900V2 Body	41.40 (37.26~45.54)	21.80 (19.62~23.98)	43.20	22.44	21.4°C	2013-12-11
D2450V2 Body	50.1 (45.09~55.11)	23.3 (20.97~25.63)	52.80	24.24	21.4°C	2013-12-15

Table 6:System Check Results


2013-12-23 Page 20 of 53

4.3 System check Procedure

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW(below 5GHz) or 100mW(above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2013-12-23 Page 21 of 53

5 Measurement Uncertainty Evaluation

5.1 Measurement uncertainty evaluation for SAR test

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Uncertainty component	Clause	Tol. (± %)	Prob. Dist.	Divi- sor	c _i (1- g)	c _i (10- g)	1 g ui (± %)	10 g ui (± %)	v _i ² or V _{eff}
Measurement System									
Probe calibration	E.2.1	6.0%	N	1	1	1	6.00%	6.00%	∞
Axial isotropy	E.2.2	4.7%	R	√3	0.7	0.7	1.9%	1.9%	∞
Hemispherical isotropy	E.2.2	9.6%	R	√3	0.7	0.7	3.9%	3.9%	∞
Boundary effects	E.2.3	1.0%	R	√3	1	1	0.6%	0.6%	∞
Probe linearity	E.2.4	4.7%	R	√3	1	1	2.7%	2.7%	∞
System Detection limits	E.2.5	1.0%	R	√3	1	1	0.6%	0.6%	∞
Readout Electronics	E.2.6	0.3%	N	1	1	1	0.3%	0.3%	∞
Response time	E.2.7	0.8%	R	√3	1	1	0.5%	0.5%	∞
Integration time	E.2.8	2.6%	R	√3	1	1	1.5%	1.5%	∞
RF ambient conditions— noise	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	∞
RF ambient conditions— reflections	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	8
Probe positioned	E.6.2	0.4%	R	√3	1	1	0.2%	0.2%	∞
Probe positioning	E.6.3	2.9%	Ν	√3	1	1	1.7%	1.7%	∞
Max. SAR evaluation	E.5.2	1.0%	N	√3	1	1	0.6%	0.6%	∞
Test Sample Related									
Device positioning	E.4.2	1.9%	N	1	1	1	1.9%	1.9%	71
Device holder	E.4.1	3.6%	N	1	1	1	3.6%	3.6%	∞
Power drift	6.6.2	5.0%	R	√3	1	1	2.9%	2.9%	∞
Phantom and Set-up									
Phantom uncertainty	E.3.1	4.0%	R	√3	1	1	2.3%	2.3%	∞
Liquid conductivity (target)	E.3.2	5.0%	R	√3	0.64	0.43	1.8%	1.2%	∞
Liquid conductivity (meas.)	E.3.3	4.2%	Ν	1	0.64	0.43	2.7%	1.8%	9
Liquid permittivity (target)	E.3.2	5.0%	R	√3	0.6	0.49	1.7%	1.4%	∞
Liquid permittivity (meas.)	E.3.3	4.2%	N	1	0.6	0.49	2.5%	2.1%	9
Combined Uncertainty							11.2%	10.8%	/
Expanded Std. Uncertainty (K=2)							22.3%	21.5%	1

Table 7:Measurement uncertainties applicable for frequencies less than 3GHz

2013-12-23 Page 22 of 53

Uncertainty component	Clause	Tol. (± %)	Prob. Dist.	Divi- sor	c _i (1- g)	c _i (10- g)	1 g ui (± %)	10 g ui (± %)	v _i ² or V _{eff}
Measurement System									
Probe calibration	E.2.1	6.55%	N	1	1	1	6.55%	6.55%	∞
Axial isotropy	E.2.2	4.7%	R	√3	0.7	0.7	1.9%	1.9%	8
Hemispherical isotropy	E.2.2	9.6%	R	√3	0.7	0.7	3.9%	3.9%	8
Boundary effects	E.2.3	2.0%	R	√3	1	1	1.2%	1.2%	8
Probe linearity	E.2.4	4.7%	R	√3	1	1	2.7%	2.7%	8
System Detection limits	E.2.5	1.0%	R	√3	1	1	0.6%	0.6%	8
Readout Electronics	E.2.6	0.3%	Ν	1	1	1	0.3%	0.3%	8
Response time	E.2.7	0.8%	R	√3	1	1	0.5%	0.5%	8
Integration time	E.2.8	2.6%	R	√3	1	1	1.5%	1.5%	8
RF ambient conditions— noise	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	8
RF ambient conditions— reflections	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	8
Probe positioned	E.6.2	0.8%	R	√3	1	1	0.5%	0.5%	∞
Probe positioning	E.6.3	6.7%	Ν	√3	1	1	3.9%	3.9%	∞
Max. SAR evaluation	E.5.2	4.0%	Ν	√3	1	1	2.3%	2.3%	∞
Test Sample Related									
Device positioning	E.4.2	1.9%	Ν	1	1	1	1.9%	1.9%	71
Device holder	E.4.1	3.6%	Ν	1	1	1	3.6%	3.6%	∞
Power drift	6.6.2	5.0%	R	√3	1	1	2.9%	2.9%	∞
Phantom and Set-up									
Phantom uncertainty	E.3.1	4.0%	R	√3	1	1	2.3%	2.3%	8
Liquid conductivity (target)	E.3.2	5.0%	R	√3	0.64	0.43	1.8%	1.2%	8
Liquid conductivity (meas.)	E.3.3	4.2%	Ν	1	0.64	0.43	2.7%	1.8%	9
Liquid permittivity (target)	E.3.2	5.0%	R	√3	0.6	0.49	1.7%	1.4%	∞
Liquid permittivity (meas.)	E.3.3	4.2%	N	1	0.6	0.49	2.5%	2.1%	9
Combined Uncertainty							12.2%	11.9%	/
Expanded Std. Uncertainty (K=2)							24.5%	23.7%	1

Table 8:Measurement uncertainties applicable for frequencies up to 6GHz

2013-12-23 Page 23 of 53

6 SAR Test Configuration

6.1 GSM Test Configuration

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 10 for this EUT, it has at most 2 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

-		•	•				
Number of time assigni	•	Reduction of maximum output power (dB)					
Band	Time Slots	GPRS (GMSK)	EGPRS (GMSK)	EGPRS (8PSK)			
GSM850	1 TX slot	0	0	0			
GSIVIOSU	2 TX slots	2	2	0			
GSM1900	1 TX slot	0	0	0			
G3W1900	2 TX slots	2	2	0			

Table 9: The allowed power reduction in the multi-slot configuration of GSM

6.2 UMTS Test Configuration

1) RMC

As the SAR body tests for UMTS Band V/II, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

2013-12-23 Page 24 of 53

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 kbps RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

Sub-test₽	βe₽	β _d ₽	β _d (SF)₽	$\beta_c/\beta_{d^{4^3}}$	β _{hs} (1) ₄ 3	CM(dB)(2)	MPR (dB)₽
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2€	12/15(3)₽	15/15(3)₽	64₽	12/15(3)₽	24/15₽	1.0₽	0€
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c \neq 0$

Note 2 : CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{ha}/\beta_c=24/15$. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Table 10: Sub-tests for UMTS Release 5 HSDPA

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 11:settings of required H-Set 1 QPSK acc. to 3GPP 34.121

2013-12-23 Page 25 of 53

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 12:HSDPA UE category

3) HSUPA

Body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-set 1 and QPSK for FRC and 12.2kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Device' sections of 3G device.

2013-12-23 Page 26 of 53

Sub -test₽	βc€	βd€	β _d (SF)	β₀/β₫₽	β _{hs} (1	β _{ec}	β _{ed} ₽	βe c↔ (SF)↔	βed↔ (code)↔	CM(2)+ (dB)+2	MP R _e (dB) _e	AG(4)+/ Inde X+/	E- TFC I _e
1₽	11/15(3)	15/15(3)+2	64₽	11/15(3)+3	22/15₽	209/22 5₽	1039/225₽	4₽	1₽	1.0₽	0.0₽	20₽	75₽
2₽	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15	94/75₽	4₽	1₽	3.0₽	2.0₽	12₽	67₽
3₽	15/15\$	9/154	64₽	15/94	30/15₽	30/15	β _{ed1} :47/1 5 ₄ β _{ed2:47/1} 5 ₄	4₽	2₽	2.0₽	1.0₽	15₽	92₽
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15 ⁽⁴⁾	15/15(4)	64₽	15/15(4)+2	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0	210	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_{cd}$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 13:Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
2	2	8	2	4	2798	1 4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
4	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	10	2SF2&2SF	11484	5.76	
(No DPDCH)	4	4	2	4	20000	2.00	
7	4	8	2	2SF2&2SF	22996	?	
(No DPDCH)	4	4	10	4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 14:HSUPA UE category

2013-12-23 Page 27 of 53

Report No.: SYBH(Z-SAR)008112013-2 FCC ID:QISY530-U051

WiFi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band GHz		Channel	"Default Test Channels"		
iviode Band		Griz	Charmer	802.11b	802.11g	
802.11b/g 2.4 GHz		2.412	1#	√	Δ	
	2.4 GHz	2.437	6	√	Δ	
		2.462	11#	√	Δ	

Notes:

802.11 Test Channels per FCC Requirements

2013-12-23 Page 28 of 53

^{√ = &}quot;default test channels"

^{△=} possible 802.11g channels with maximum average output ¼ dB the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

7 SAR Measurement Results

Report No.: SYBH(Z-SAR)008112013-2

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used.

SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter.

Note: CMU200 measures GSM peak and average output power for active timeslots.For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.1	1:2.77	1:2.08
timebased avg. power compared to slotted avg. power	-9.19dB	-6.13dB	-4.42dB	-3.18dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

7.1.1 Conducted power measurements GSM850

GSM850		Burst-Ave	eraged outp (dBm)	out Power	Division Factors		-Averaged ower (dBm	-
		128CH	190CH	251CH	1 actors	128CH		
GSM	1 (CS)	33.60	33.58	33.63	-9.19	24.41	24.39	24.44
GPRS	1 Tx Slot	33.59	33.56	33.64	-9.19	24.40	24.37	24.45
(GMSK)		-6.13	25.36	25.35	25.44			
EDGE	1 Tx Slot	33.59	33.55	33.66	-9.19	24.40	24.36	24.47
(GMSK)	2 Tx Slots	31.49	31.46	31.57	-6.13	25.36	25.33	25.44
EDGE	1 Tx Slot	26.79	26.75	26.78	-9.19	17.60	17.56	17.59
(8PSK)	2 Tx Slots	26.63	26.63	26.62	-6.13	20.50	20.50	20.49

Table 15:Test results conducted power measurement GSM850

Note: 1. The conducted power of GSM850 is measured with RMS detector.

- 2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.
- 3. Per KDB 941225 D03v01,the bolded GPRS 2Tx mode was selected for SAR testing according to the highest frame –averaged output power table.

2013-12-23 Page 29 of 53

7.1.2 Conducted power measurements GSM1900

Report No.: SYBH(Z-SAR)008112013-2

GSM1900		Burst-Ave	eraged outp (dBm)	out Power	Division		-Averaged Power (dBm	•
		512CH	661CH	810CH	Factors	512CH 661CH 810		810CH
GSM	1 (CS)	30.96	30.87	30.92	-9.19	21.77	21.68	21.73
GPRS 1	1 Tx Slot	30.98	30.87	30.92	-9.19	21.79	21.68	21.73
(GMSK)	2 Tx Slots	28.58	28.53	28.46	-6.13	22.45	22.40	22.33
EDGE	1 Tx Slot	30.96	30.86	30.94	-9.19	21.77	21.67	21.75
(GMSK)	2 Tx Slots	28.57	28.52	28.45	-6.13	22.44	22.39	22.32
EDGE	1 Tx Slot	26.50	26.42	26.53	-9.19	17.31	17.23	17.34
(8PSK)	2 Tx Slots	26.40	26.37	26.38	-6.13	20.27	20.24	20.25

Table 16:Test results conducted power measurement GSM1900

Note: 1. The conducted power of GSM1900 is measured with RMS detector.

- 2. Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.
- 3 . Per KDB 941225 D03v01,the bolded GPRS 2Tx mode was selected for SAR testing according to the highest frame –averaged output power table.

2013-12-23 Page 30 of 53

7.1.3 Conducted power measurements UMTS Band V

UMTS	Dand V	Co	onducted Power (dE	Bm)
UIVITS	Danu v	4132CH 4182CH 4233CH		
	12.2kbps RMC	24.47	24.50	24.48
WCDMA	64kbps RMC	24.47 24.50 24.46 24.52 24.47 24.47 24.45 24.45 23.49 23.36 23.36 23.31 22.93 22.87 22.90 22.89 22.32 22.20 22.26 22.15 22.62 22.42	24.49	
VVCDIVIA	144kbps RMC	24.47	24.47	24.48
	384kbps RMC	24.45	24.45	24.46
	Subtest 1	23.49 23.36	23.36	23.47
HSDPA	Subtest 2	23.36	23.31	23.37
ПОДРА	Subtest 3	22.93	22.87	22.99
	Subtest 4	22.90	22.89	22.99
	Subtest 1	22.32	22.20	22.18
	Subtest 2	22.26	22.15	22.19
HSUPA	Subtest 3	22.05	22.10	22.10
	Subtest 4	22.62	22.42	22.42
	Subtest 5	### ##################################	22.37	22.33

Table 17:Test results conducted power measurement UMTS Band V

Note:

- 1) The conducted power of UMTS Band V is measured with RMS detector.
- 2) Per KDB941225 D01v02, when maximum output of each RF channel with HSDPA/HSUPA active is ≤ ¼ dB higher than without HSDPA/HSUPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75% of SAR limit, SAR evaluation for HSDPA/HSUPA is not required.

2013-12-23 Page 31 of 53

7.1.4 Conducted power measurements UMTS Band II

LIMTO	Dond II	Co	onducted Power (dE	Bm)
UIVITS	Band II	9262CH 9400CH 9538CH		
	12.2kbps RMC	24.31	24.52	24.14
WCDMA	64kbps RMC	24.34	9262CH 9400CH 953 24.31 24.52 24 24.34 24.56 24 24.29 24.52 24 24.40 24.51 24 23.34 23.47 23 23.21 23.40 23 22.74 22.78 22 23.22 23.31 23 22.27 22.36 23 21.63 21.71 25 22.40 22.44 23	24.14
VVCDIVIA	144kbps RMC	24.29	24.52	24.14
	384kbps RMC	24.40	24.51	24.21
	Subtest 1	23.34	24.56 24.52 24.51 23.47 23.40 22.78 22.82 23.31 22.36	23.36
HSDPA	Subtest 2	23.21	23.40	23.16
HODEA	64kbps RMC 144kbps RMC 384kbps RMC Subtest 1	22.74	22.78	22.58
	Subtest 4	22.78	22.82	22.54
	Subtest 1	23.22	23.31	23.16
	Subtest 2	22.27	22.36	22.24
HSUPA	Subtest 3	21.63	21.71	21.59
	Subtest 4	22.40	22.44	22.36
	Subtest 5	23.20	24.52 24.56 24.52 24.51 23.47 23.40 22.78 22.82 23.31 22.36 21.71	23.14

Table 18:Test results conducted power measurement UMTS Band II

Note:

- 1) The conducted power of UMTS Band II is measured with RMS detector.
- 2) Per KDB941225 D01v02, when maximum output of each RF channel with HSDPA/HSUPA active is ≤ ¼ dB higher than without HSDPA/HSUPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75% of SAR limit, SAR evaluation for HSDPA/HSUPA is not required.

2013-12-23 Page 32 of 53

7.1.5 Conducted power measurements WiFi&BT

The output power of BT antenna is as following:

	Average Conducted Power (dBm)						
BT 2450	0CH	39CH	78CH				
	4.10	4.50	4.40				

Table 19:Test results conducted power measurement BT.

Note: The conducted power of BT is measured with RMS detector.

The output power of WiFi antenna is as following:

Wi-Fi		Average Power (dBm) for Data Rates (Mbps)								
2450MHz	Channel	1	2	5.5	11	/	/	/	/	
	1	15.97	16.09	15.93	15.77	/	/	/	/	
802.11b	6	15.49	15.35	15.26	15.03	/	/	/	/	
	11	15.99	16.12	15.92	15.56	/	/	/	/	
	Channel	6	9	12	18	24	36	48	54	
802.11g	1	11.95	11.02	11.07	11.66	10.97	10.59	10.13	10.02	
002.11g	6	11.69	11.67	11.65	11.98	11.63	11.29	10.60	10.51	
	11	11.64	11.65	11.61	11.24	10.62	10.53	10.27	10.46	
	Channel	6.5	13	19.5	26	39	52	58.5	65	
802.11n	1	9.68	9.56	9.43	9.46	9.24	9.18	9.02	8.72	
(HT20,800ns)	6	9.66	9.74	9.38	9.42	9.41	9.15	9.07	8.66	
	11	9.58	9.36	9.37	9.38	9.13	9.26	9.02	8.69	

Table 20:Test results conducted power measurement WiFi.

Note:

- 1. The Average conducted power of WiFi is measured with RMS detector.
- 2. Per KDB248227, For each frequency band, Testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.

2013-12-23 Page 33 of 53

7.2 SAR measurement Result

- 1) Per KDB447498 D01v05r01,testing of other required channels within the operating mode of a frequency band is not required when the reported(Scaled) SAR for the middle channel or highest output power channels is ≤ 0.8 W/kg. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 2) Per KDB865664 D01v01r02,for each frequency band,repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 3).Per KDB648474 D04v01r02,SAR is evaluated without a headset connected to the device.When the standalone reported SAR is ≤1.2 W/kg, no additional SAR evaluations using a headset are required.
- 4) Per KDB248227, for each frequency band of WiFi, SAR test at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.
- 5) Per KDB447498 D01v05r01,Body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 6) Per KDB941225 D01v02, when maximum output of each RF channel with HSDPA/HSUPA active is ≤ ¼ dB higher than without HSDPA/HSUPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75% of SAR limit, SAR evaluation for HSDPA/HSUPA is not required.
- 7) Per KDB941225 D06v01r01, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 8) All measurement SAR result is scaled-up to account for tune-up tolerance is compliant

7.2.1 SAR measurement Result of GSM850

Test Position of Head	Test	Test		Value 'kg)	Power Drift	Conducted	Tune- up	Scaled	Liquid		
rest Position of nead	channel /Frequency	Mode	1-g	10-g	(dB)	Power (dBm)	Power (dBm)	SAR1-g (W/kg)	Temp.		
		Test	data wi	th the b	attery 1#						
Left Hand Touched	251/848.8	GSM	0.458	0.349	-0.040	33.63	34.00	0.499	21.4°C		
Left Hand Touched	190/836.6	GSM	0.436	0.332	-0.170	33.58	34.00	0.480	21.4°C		
Left Hand Touched	128/824.2	GSM	0.369	0.284	0.140	33.60	34.00	0.405	21.4°C		
Left Hand Tilted 15°	190/836.6	GSM	0.299	0.228	-0.070	33.58	34.00	0.329	21.4°C		
Right Hand Touched	190/836.6	GSM	0.376	0.286	0.010	33.58	34.00	0.414	21.4°C		
Right Hand Tilted 15°	190/836.6	GSM	0.295	0.224	0.040	33.58	34.00	0.325	21.4°C		
	Tes	ted at w	orst pos	sition wit	h the bat	tery 2#					
Left Hand Touched	251/848.8	GSM	0.445	0.342	0.020	33.63	34.00	0.485	21.4°C		
	Tes	ted at w	orst pos	sition wit	h the bat	tery 3#					
Left Hand Touched	251/848.8	GSM	0.466	0.357	-0.020	33.63	34.00	0.507	21.4°C		
	Tested at worst position with the battery 4#										
Left Hand Touched	251/848.8	GSM	0.450	0.342	-0.040	33.63	34.00	0.490	21.4°C		
	Tes	ted at w	orst pos	sition wit	h the bat	tery 5#					
Left Hand Touched	251/848.8	GSM	0.436	0.332	-0.100	33.63	34.00	0.475	21.4°C		

Table 21: Test results head SAR GSM850

2013-12-23 Page 34 of 53

Test Position of	Test	Test	SAR \ (W/		Power	Conducted	Tune- up	Scaled	Liquid
Body-Worn with 15mm	/Frequency	Mode	1-g	10-g	Drift (dB)	Power (dBm)	Power (dBm)	SAR1-g (W/kg)	Temp.
		7	est data	with the	battery '	1#			
Front Side	190/836.6	GSM	0.614	0.472	-0.110	33.58	34.00	0.676	21.4°C
Back Side	251/848.8	GSM	0.826	0.623	-0.140	33.63	34.00	0.899	21.4°C
Back Side- repeated*	251/848.8	GSM	0.846	0.637	-0.020	33.63	34.00	0.921	21.4°C
Back Side	190/836.6	GSM	0.769	0.581	-0.070	33.58	34.00	0.847	21.4°C
Back Side	128/824.2	GSM	0.757	0.575	-0.050	33.60	34.00	0.830	21.4°C
		Tested a	at worst p	osition	with the b	attery 2#			
Back Side	251/848.8	GSM	0.805	0.608	-0.060	33.63	34.00	0.877	21.4°C
		Tested a	at worst p	osition	with the b	attery 3#			
Back Side	251/848.8	GSM	0.790	0.597	0.020	33.63	34.00	0.860	21.4°C
		Tested a	at worst p	osition	with the b	attery 4#			
Back Side	251/848.8	GSM	0.816	0.617	-0.070	33.63	34.00	0.889	21.4°C
		Tested a	at worst p	oosition	with the b	attery 5#			
Back Side	251/848.8	GSM	0.801	0.605	-0.070	33.63	34.00	0.872	21.4°C

Table 22:Test results Body-Worn SAR GSM850

2013-12-23 Page 35 of 53

Test Position of	Test channel	Test	SAR (W/		Power Drift	Conducted	Tune- up	Scaled	Liquid	
Hotspot with 10mm	/Frequency	Mode	1-g	10-g	(dB)	Power (dBm)	Power (dBm)	SAR1-g (W/kg)	Temp.	
Test data with the battery 1#										
Front Side	190/836.6	GPRS 2TS	0.704	0.547	-0.190	31.48	32.00	0.794	21.4°C	
Back Side	251/848.8	GPRS 2TS	1.030	0.782	-0.020	31.57	32.00	1.137	21.4°C	
Back Side	190/836.6	GPRS 2TS	1.080	0.817	-0.020	31.48	32.00	1.217	21.4°C	
Back Side	128/824.2	GPRS 2TS	1.080	0.824	0.040	31.49	32.00	1.215	21.4°C	
Left Side	251/848.8	GPRS 2TS	0.900	0.627	-0.100	31.57	32.00	0.994	21.4°C	
Left Side	190/836.6	GPRS 2TS	0.949	0.661	-0.070	31.48	32.00	1.070	21.4°C	
Left Side	128/824.2	GPRS 2TS	0.926	0.646	0.020	31.49	32.00	1.041	21.4°C	
Right Side	251/848.8	GPRS 2TS	0.837	0.578	0.000	31.57	32.00	0.924	21.4°C	
Right Side	190/836.6	GPRS 2TS	0.870	0.603	-0.010	31.48	32.00	0.981	21.4°C	
Right Side	128/824.2	GPRS 2TS	0.853	0.593	0.020	31.49	32.00	0.959	21.4°C	
Bottom Side	190/836.6	GPRS 2TS	0.068	0.041	-0.060	31.48	32.00	0.076	21.4°C	
		Tested a	at worst	position	with the b	pattery 2#				
Back Side	190/836.6	GPRS 2TS	1.100	0.834	0.000	31.48	32.00	1.240	21.4°C	
		Tested a	at worst	position	with the b	oattery 3#				
Back Side	190/836.6	GPRS 2TS	1.100	0.835	-0.010	31.48	32.00	1.240	21.4°C	
		Tested a	at worst	position	with the b	pattery 4#				
Back Side	190/836.6	GPRS 2TS	1.150	0.876	-0.140	31.48	32.00	1.296	21.4°C	
Back Side- repeated*	190/836.6	GPRS 2TS	1.140	0.868	0.030	31.48	32.00	1.285	21.4°C	
		Tested a	at worst	position	with the b	pattery 5#				
Back Side	190/836.6	GPRS 2TS	1.150	0.872	0.010	31.48	32.00	1.296	21.4°C	

Table 23:Test results Hotspot SAR GSM850

Note:

- 1) Per KDB941225 D06, for the antenna-to-edge distance is greater than 2.5 cm, so the top side does not need to be tested.
- 2) * repeated at the highest SAR measurement according to the FCC KDB 865664.

2013-12-23 Page 36 of 53

7.2.2 SAR measurement Result of GSM1900

Test Position of Head	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid
rest rosition of nead	/Frequency	Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
		Test	data wi	th the b	attery 1#				
Left Hand Touched	661/1880	GSM	0.158	0.096	-0.090	30.87	31.00	0.163	21.4°C
Left Hand Tilted 15°	661/1880	GSM	0.109	0.061	0.070	30.87	31.00	0.112	21.4°C
Right Hand Touched	810/1909.8	GSM	0.200	0.122	-0.020	30.92	31.00	0.204	21.4°C
Right Hand Touched	661/1880	GSM	0.229	0.145	0.170	30.87	31.00	0.236	21.4°C
Right Hand Touched	512/1850.2	GSM	0.219	0.137	0.160	30.96	31.00	0.221	21.4°C
Right Hand Tilted 15°	661/1880	GSM	0.105	0.060	-0.170	30.87	31.00	0.108	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 2#			
Right Hand Touched	661/1880	GSM	0.225	0.141	0.040	30.87	31.00	0.232	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 3#			
Right Hand Touched	661/1880	GSM	0.221	0.139	0.170	30.87	31.00	0.228	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 4#			
Right Hand Touched	661/1880	GSM	0.228	0.142	0.150	30.87	31.00	0.235	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 5#			
Right Hand Touched	661/1880	GSM	0.232	0.144	0.130	30.87	31.00	0.239	21.4°C

Table 24:Test results head SAR GSM1900

2013-12-23 Page 37 of 53

Test Position	Test		_	Value 'kg)	Power	Conducte	Tune-	Scale d	
of Body-Worn with 15mm	channel /Frequency	Test Mode	1-g	10-g	Drift (dB)	d Power (dBm)	up Power (dBm)	SAR1- g (W/kg	Liquid Temp.
		Te	est data v	with the b	attery 1#				
Front Side	661/1880	GSM	0.215	0.134	-0.130	30.87	31.00	0.222	21.4°C
Back Side	661/1880	GSM	0.200	0.128	0.080	30.87	31.00	0.206	21.4°C
		Tested a	t worst po	sition wit	th the batt	ery 2#			
Front Side	661/1880	GSM	0.208	0.130	-0.010	30.87	31.00	0.214	21.4°C
		Tested a	t worst po	sition wit	th the batt	ery 3#			
Front Side	661/1880	GSM	0.211	0.132	-0.090	30.87	31.00	0.217	21.4°C
		Tested a	t worst po	sition wit	th the batt	ery 4#			
Front Side	661/1880	GSM	0.206	0.129	0.000	30.87	31.00	0.212	21.4°C
		Tested a	t worst po	sition wi	th the batt	ery 5#	·	·	
Front Side	661/1880	GSM	0.213	0.133	0.170	30.87	31.00	0.219	21.4°C

Table 25:Test results Body-Worn SAR GSM1900

2013-12-23 Page 38 of 53

Test Position	Test	el lest Mode	SAR V (W/k		Power	Conducted	Tune-	Scaled	
of Hotspot with 10mm	channel /Frequency		1-g	10-g	Drift (dB)	Power (dBm)	up Power (dBm)	SAR1- g (W/kg)	Liquid Temp.
			Test da	ta with tl	he battery	1#			
Front Side	661/1880	GPRS 2TS	0.332	0.201	0.070	28.53	29.00	0.370	21.4°C
Back Side	661/1880	GPRS 2TS	0.348	0.214	0.190	28.53	29.00	0.388	21.4°C
Left Side	661/1880	GPRS 2TS	0.113	0.065	0.120	28.53	29.00	0.126	21.4°C
Right Side	661/1880	GPRS 2TS	0.096	0.057	0.100	28.53	29.00	0.107	21.4°C
Bottom Side	661/1880	GPRS 2TS	0.238	0.129	0.070	28.53	29.00	0.265	21.4°C
		Teste	ed at wors	t positio	n with the	battery 2#			
Back Side	661/1880	GPRS 2TS	0.362	0.225	0.190	28.53	29.00	0.403	21.4°C
		Teste	ed at wors	t positio	n with the	battery 3#			
Back Side	661/1880	GPRS 2TS	0.354	0.221	0.120	28.53	29.00	0.394	21.4°C
		Teste	ed at wors	t positio	n with the	battery 4#			
Back Side	661/1880	GPRS 2TS	0.375	0.231	0.180	28.53	29.00	0.418	21.4°C
		Teste	ed at wors	t positio	n with the	battery 5#			
Back Side	661/1880	GPRS 2TS	0.352	0.220	0.190	28.53	29.00	0.392	21.4°C

Table 26:Test results Hotspot SAR GSM1900

Note

1) Per KDB941225 D06,for the antenna-to-edge distance is greater than 2.5 cm,so the top side does not need to be tested.

2013-12-23 Page 39 of 53

7.2.3 SAR measurement Result of UMTS Band V

Test Position of Head	Test	Test	_	Value 'kg)	Power	Conducted	Tune- up	Scaled	Liquid
rest Position of nead	channel /Frequency	Mode	1-g	10-g	Drift (dB)	Power (dBm)	Power (dBm)	SAR1-g (W/kg)	Temp.
		Test	t data wi	th the b	attery 1#				
Left Hand Touched	4233/846.6	RMC	0.565	0.427	-0.010	24.48	25.20	0.667	21.4°C
Left Hand Touched	4182/836.4	RMC	0.431	0.329	-0.010	24.50	25.20	0.506	21.4°C
Left Hand Touched	4132/826.4	RMC	0.391	0.298	-0.020	24.47	25.20	0.463	21.4°C
Left Hand Tilted 15°	4182/836.4	RMC	0.274	0.208	0.020	24.50	25.20	0.322	21.4°C
Right Hand Touched	4182/836.4	RMC	0.401	0.305	-0.030	24.50	25.20	0.471	21.4°C
Right Hand Tilted 15°	4182/836.4	RMC	0.270	0.207	0.030	24.50	25.20	0.317	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 2#			
Left Hand Touched	4233/846.6	RMC	0.561	0.424	-0.010	24.48	25.20	0.662	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 3#			
Left Hand Touched	4233/846.6	RMC	0.561	0.424	0.100	24.48	25.20	0.662	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 4#			
Left Hand Touched	4233/846.6	RMC	0.565	0.427	0.010	24.48	25.20	0.667	21.4°C
	Tes	ted at w	orst pos	sition wit	h the bat	tery 5#			
Left Hand Touched	4233/846.6	RMC	0.575	0.433	0.170	24.48	25.20	0.679	21.4°C

Table 27:Test results head SAR UMTS Band V

Test Position of	Test	Test	SAR \		Power	Power	Tune- up	Scaled SAR1-	Liquid
Body-Worn with 15mm	channel /Frequency	Mode	1-g	10-g	Drift (dB)	(dBm)	Power (dBm)	g (W/kg)	Temp.
			Test da	ta with th	e battery 1	l#			
Front Side	4182/836.4	RMC	0.534	0.410	-0.040	24.50	25.20	0.627	21.4°C
Back Side	4233/846.6	RMC	0.772	0.581	0.050	24.48	25.20	0.911	21.4°C
Back Side	4182/836.4	RMC	0.710	0.535	-0.080	24.50	25.20	0.834	21.4°C
Back Side	4132/826.4	RMC	0.705	0.532	0.110	24.47	25.20	0.834	21.4°C
		Teste	d at wors	t position	with the b	attery 2#			
Back Side	4233/846.6	RMC	0.778	0.586	0.000	24.48	25.20	0.918	21.4°C
		Teste	d at wors	t position	with the b	attery 3#			
Back Side	4233/846.6	RMC	0.767	0.579	-0.100	24.48	25.20	0.905	21.4°C
		Teste	d at wors	t position	with the b	attery 4#			
Back Side	4233/846.6	RMC	0.759	0.570	-0.080	24.48	25.20	0.896	21.4°C
		Teste	d at wors	t position	with the b	attery 5#			
Back Side	4233/846.6	RMC	0.783	0.589	-0.020	24.48	25.20	0.924	21.4°C

Table 28:Test results Body-worn SAR UMTS Band V

2013-12-23 Page 40 of 53

Test Position of Hotspot with 10mm	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-	Liquid
_	/Frequency	Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	g (W/kg)	Temp.
			Test da	ta with th	e battery 1	#			
Front Side	4182/836.4	RMC	0.603	0.466	-0.120	24.50	25.20	0.708	21.4°C
Back Side	4233/846.6	RMC	1.020	0.765	0.020	24.48	25.20	1.204	21.4°C
Back Side- repeated*	4233/846.6	RMC	0.973	0.733	-0.150	24.48	25.20	1.148	21.4°C
Back Side	4182/836.4	RMC	0.897	0.676	-0.040	24.50	25.20	1.054	21.4°C
Back Side	4132/826.4	RMC	0.870	0.658	0.030	24.47	25.20	1.029	21.4°C
Left Side	4182/836.4	RMC	0.680	0.472	-0.110	24.50	25.20	0.799	21.4°C
Right Side	4182/836.4	RMC	0.685	0.475	-0.070	24.50	25.20	0.805	21.4°C
Bottom Side	4182/836.4	RMC	0.045	0.028	0.190	24.50	25.20	0.053	21.4°C
		Teste	d at wors	t position	with the b	attery 2#			
Back Side	4233/846.6	RMC	1.000	0.755	-0.090	24.48	25.20	1.180	21.4°C
		Teste	d at wors	t position	with the b	attery 3#			
Back Side	4233/846.6	RMC	0.997	0.753	0.010	24.48	25.20	1.177	21.4°C
		Teste	d at wors	t position	with the b	attery 4#			
Back Side	4233/846.6	RMC	0.951	0.717	-0.080	24.48	25.20	1.122	21.4°C
		Teste	d at wors	t position	with the b	attery 5#			
Back Side	4233/846.6	RMC	0.957	0.724	0.000	24.48	25.20	1.130	21.4°C

Table 29:Test results Hotspot SAR UMTS Band V

Note:

- 1) Per KDB941225 D06,for the antenna-to-edge distance is greater than 2.5 cm,so the top side does not need to be tested.
- 2) * repeated at the highest SAR measurement according to the FCC KDB 865664

2013-12-23 Page 41 of 53

7.2.4 SAR measurement Result of UMTS Band II

Test Position	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid
of Head	/Frequency	Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
			Test da	ata with	the battery	/ 1#			
Left Hand Touched	9400/1880	RMC	0.318	0.199	0.020	24.52	25.20	0.372	21.4°C
Left Hand Tilted 15°	9400/1880	RMC	0.204	0.116	0.090	24.52	25.20	0.239	21.4°C
Right Hand Touched	9538/1907.6	RMC	0.399	0.245	0.120	24.14	25.20	0.509	21.4°C
Right Hand Touched	9400/1880	RMC	0.479	0.295	0.120	24.52	25.20	0.560	21.4°C
Right Hand Touched	9262/1852.4	RMC	0.533	0.331	-0.040	24.31	25.20	0.654	21.4°C
Right Hand Tilted 15°	9400/1880	RMC	0.198	0.114	-0.150	24.52	25.20	0.232	21.4°C
		Teste	d at wor	st position	on with the	battery 2#			
Right Hand Touched	9262/1852.4	RMC	0.521	0.318	0.120	24.31	25.20	0.639	21.4°C
		Teste	d at wor	st position	on with the	battery 3#			
Right Hand Touched	9262/1852.4	RMC	0.521	0.323	-0.020	24.31	25.20	0.639	21.4°C
		Teste	d at wor	st position	on with the	battery 4#			
Right Hand Touched	9262/1852.4	RMC	0.512	0.318	-0.010	24.31	25.20	0.628	21.4°C
	,	Teste	d at wor	st position	on with the	battery 5#			
Right Hand Touched	9262/1852.4	RMC	0.576	0.357	0.070	24.31	25.20	0.707	21.4°C

Table 30:Test results head SAR UMTS Band II

Test Position of	orn Channel Mode		_	Value 'kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid	
Body-Worn with 15mm		Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.	
			Test d	ata with	the battery	1#				
Front Side	9400/1880	RMC	0.374	0.234	-0.080	24.52	25.20	0.437	21.4°C	
Back Side	9400/1880	RMC	0.420	0.266	0.110	24.52	25.20	0.491	21.4°C	
		Teste	d at wor	st position	on with the	battery 2#				
Back Side	9400/1880	RMC	0.415	0.263	0.050	24.52	25.20	0.485	21.4°C	
		Teste	d at wor	st position	on with the	battery 3#				
Back Side	9400/1880	RMC	0.392	0.249	0.070	24.52	25.20	0.458	21.4°C	
		Teste	d at wor	st position	on with the	battery 4#				
Back Side	9400/1880	RMC	0.428	0.271	0.060	24.52	25.20	0.501	21.4°C	
		Teste	d at wor	st position	on with the	battery 5#				
Back Side	9400/1880	RMC	0.427	0.270	0.100	24.52	25.20	0.499	21.4°C	

Table 31:Test results Body-Worn SAR UMTS Band II

2013-12-23 Page 42 of 53

Test Position of Hotspot	Test channel	Test	_	Value /kg)	Power Drift	Conducted	Tune- up	Scaled SAR1-g	Liquid
with 10mm	/Frequency	Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
			Test da	ata with t	he battery	1#			
Front Side	9400/1880	RMC	0.642	0.389	0.050	24.52	25.20	0.751	21.4°C
Back Side	9538/1907.6	RMC	0.807	0.436	0.080	24.14	25.20	1.030	21.4°C
Back Side	9400/1880	RMC	0.748	0.462	0.070	24.52	25.20	0.875	21.4°C
Back Side	9262/1852.4	RMC	0.960	0.598	-0.170	24.31	25.20	1.178	21.4°C
Back Side- repeated*	9262/1852.4	RMC	0.984	0.603	0.090	24.31	25.20	1.208	21.4°C
Left Side	9400/1880	RMC	0.237	0.138	0.120	24.52	25.20	0.277	21.4°C
Right Side	9400/1880	RMC	0.223	0.131	0.100	24.52	25.20	0.261	21.4°C
Bottom Side	9400/1880	RMC	0.523	0.287	-0.040	24.52	25.20	0.612	21.4°C
		Tested	d at wors	st positio	n with the	battery 2#			
Back Side	9262/1852.4	RMC	0.940	0.583	0.010	24.31	25.20	1.154	21.4°C
		Tested	at wors	st positio	n with the	battery 3#			
Back Side	9262/1852.4	RMC	0.881	0.544	0.010	24.31	25.20	1.081	21.4°C
		Tested	d at wors	st positio	n with the	battery 4#			
Back Side	9262/1852.4	RMC	0.917	0.570	0.110	24.31	25.20	1.126	21.4°C
	Tested at worst position with the battery 5#								
Back Side	9262/1852.4	RMC	0.928	0.577	-0.020	24.31	25.20	1.139	21.4°C

Table 32:Test results Hotspot SAR UMTS Band II

Note:

- 1) Per KDB941225 D06,for the antenna-to-edge distance is greater than 2.5 cm,so the top side does not need to be tested.
- 2) * repeated at the highest SAR measurement according to the FCC KDB 865664

2013-12-23 Page 43 of 53

7.2.5 SAR measurement Result of WiFi

Test Position of	Test channel	Test	_	Value 'kg)	Power Drift	Conduct ed	Tune-up Power	Scaled SAR1-	Liquid
Head	/Frequency	Mode	1-g	10-g	(dB)	Power (dBm)	(dBm)	g (W/kg)	Temp.
			Test data	a with the	battery 1	#			
Left Hand Touched	11/2462	802.11 b	0.062	0.028	-0.100	15.99	17.00	0.078	21.4°C
Left Hand Tilted 15°	11/2462	802.11 b	0.092	0.039	-0.030	15.99	17.00	0.116	21.4°C
Left Hand Tilted 15°	6/2437	802.11 b	0.135	0.058	-0.160	15.49	17.00	0.191	21.4°C
Left Hand Tilted 15°	1/2412	802.11 b	0.129	0.056	-0.100	15.97	17.00	0.164	21.4°C
Right Hand Touched	11/2462	802.11 b	0.053	0.023	-0.010	15.99	17.00	0.067	21.4°C
Right Hand Tilted 15°	11/2462	802.11 b	0.083	0.035	-0.170	15.99	17.00	0.104	21.4°C
		Tested	at worst	position	with the b	attery 2#			
Left Hand Tilted 15°	6/2437	802.11 b	0.128	0.055	0.110	15.49	17.00	0.181	21.4°C
Left Hand Tilted 15°	6/2437	802.11 b	0.134	0.058	0.100	15.49	17.00	0.190	21.4°C
Left Hand Tilted 15°	6/2437	802.11 b	0.128	0.055	0.170	15.49	17.00	0.181	21.4°C
Left Hand Tilted 15°	6/2437	802.11 b	0.124	0.053	0.170	15.49	17.00	0.176	21.4°C

Table 33: Test results head SAR WiFi 2450MHz

Test Position of	channel Mode		Value //kg)	Power Drift	Conduct ed	Tune- up	Scaled SAR1-g	Liquid	
Body-Worn with 15mm	/Frequency	Mode	1-g	10-g	(dB)	Power (dBm)	Power (dBm)	(W/kg)	Temp.
Test data with the battery 1#									
Front Side	11/2462	802.11 b	0.007	0.003	-0.060	15.99	17.00	0.008	21.4°C
Back Side	11/2462	802.11 b	0.040	0.021	0.140	15.99	17.00	0.050	21.4°C
		Tested	l at wors	t position	with the ba	attery 2#			
Back Side	11/2462	802.11 b	0.044	0.023	-0.140	15.99	17.00	0.056	21.4°C
		Tested	l at wors	t position	with the ba	attery 3#			
Back Side	11/2462	802.11 b	0.046	0.024	0.190	15.99	17.00	0.058	21.4°C
		Tested	l at wors	t position	with the ba	attery 4#			
Back Side	11/2462	802.11 b	0.045	0.023	0.130	15.99	17.00	0.057	21.4°C
		Tested	l at wors	t position	with the ba	attery 5#			
Back Side	11/2462	802.11 b	0.046	0.023	-0.180	15.99	17.00	0.058	21.4°C

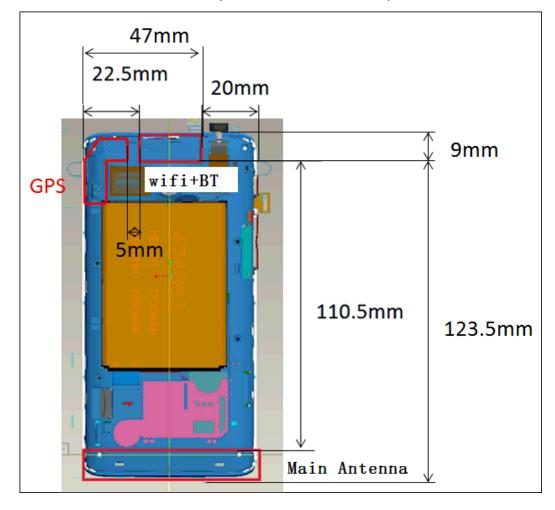
Table 34: Test results Body-worn SAR WiFi 2450MHz

2013-12-23 Page 44 of 53

Test Position of	Test channel	Test	_	Value /kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid
Hotspot with 10mm	/Frequency	Mode	1-g	10-g	(dB)	(dBm)	Power (dBm)	(W/kg)	Temp.
			Test d	lata with tl	ne battery	1#			
Front Side	11/2462	802.11 b	0.020	0.009	0.140	15.99	17.00	0.025	21.4°C
Back Side	11/2462	802.11 b	0.074	0.038	-0.190	15.99	17.00	0.093	21.4°C
Left Side	11/2462	802.11 b	0.007	0.002	0.180	15.99	17.00	0.009	21.4°C
Right Side	11/2462	802.11 b	0.012	0.005	0.070	15.99	17.00	0.016	21.4°C
Top Side	11/2462	802.11 b	0.089	0.041	0.050	15.99	17.00	0.113	21.4°C
		Teste	ed at wo	rst positio	n with the b	oattery 2#			
Top Side	11/2462	802.11 b	0.089	0.040	0.090	15.99	17.00	0.113	21.4°C
		Teste	ed at wo	rst positio	n with the b	oattery 3#			
Top Side	11/2462	802.11 b	0.100	0.045	0.170	15.99	17.00	0.126	21.4°C
		Teste	ed at wo	rst positio	n with the b	oattery 4#			
Top Side	11/2462	802.11 b	0.099	0.044	0.100	15.99	17.00	0.124	21.4°C
Tested at worst position with the battery 5#									
Top Side	11/2462	802.11 b	0.094	0.042	0.110	15.99	17.00	0.118	21.4°C

Table 35: Test results Hotspot SAR WiFi 2450MHz

2013-12-23 Page 45 of 53


¹⁾ Per KDB941225 D06,for the antenna-to-edge distance is greater than 2.5 cm,so the Bottom side does not need to be tested.

7.3 Multiple Transmitter Evaluation

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498D01 General RF Exposure Guidance v05.

The location of the antennas inside mobile phone is shown as below picture:

2013-12-23 Page 46 of 53

7.3.1 Stand-alone SAR test exclusion

The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Report No.: SYBH(Z-SAR)008112013-2

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

a) Head position

Mode	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	Exclusion threshold	SAR test exclusion
GSM850	34.00	2511.89	5	0.850	463.17	3.00	No
GSM1900	31.00	1258.93	5	1.900	347.06	3.00	No
UMTS Band V	25.20	331.13	5	0.850	61.06	3.00	No
UMTS Band II	25.20	331.13	5	1.900	91.29	3.00	No
WiFi	17.00	50.12	5	2.450	15.69	3.00	No
BT	6.00	3.98	5	2.450	1.25	3.00	Yes

Table 36: Standalone SAR test exclusion in head position

Note: * - maximum possible output power declared by manufacturer

b) Body-Worn position

Mode	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	Exclusion threshold	SAR test exclusion
GSM850	34.00	2511.89	15	0.850	154.39	3.00	No
GSM1900	31.00	1258.93	15	1.900	115.69	3.00	No
UMTS Band V	25.20	331.13	15	0.850	20.35	3.00	No
UMTS Band II	25.20	331.13	15	1.900	30.43	3.00	No
WiFi	17.00	50.12	15	2.450	5.23	3.00	No
BT	6.00	3.98	15	2.450	0.42	3.00	Yes

Table 37: Standalone SAR test exclusion in body-worn position

Note: * - maximum possible output power declared by manufacturer

2013-12-23 Page 47 of 53

c) Hotspot position

Mode	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	Exclusion threshold	SAR test exclusion
GSM850	34.00	2511.89	10	0.850	231.58	3.00	No
GSM1900	31.00	1258.93	10	1.900	173.53	3.00	No
UMTS Band V	25.20	331.13	10	0.850	30.53	3.00	No
UMTS Band II	25.20	331.13	10	1.900	45.64	3.00	No
WiFi	17.00	50.12	10	2.450	7.84	3.00	No
ВТ	6.00	3.98	10	2.450	0.62	3.00	Yes

Table 38: Standalone SAR test exclusion in hotspot position

Report No.: SYBH(Z-SAR)008112013-2

Note: * - maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm,where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Mode	Position	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	X	Estimated SAR (W/Kg)*
BT	Head	6.00	3.98	5	2.450	7.5	0.166
ВТ	Body- worn	6.00	3.98	15	2.450	7.5	0.055
ВТ	Hotspot	6.00	3.98	10	2.450	7.5	0.083

Table 39: Estimated SAR calculation for BT

Note: * - maximum possible output power declared by manufacturer

2013-12-23 Page 48 of 53

7.3.2 Simultaneous Transmission Possibilities

Report No.: SYBH(Z-SAR)008112013-2

The Simultaneous Transmission Possibilities are as below:

Simultaneous Tra	ansmission Possibilities			
Simultaneous Tx Combination	Configuration	Head	Body- Worn	Hotspot
1	GSM 850/1900(Voice)+ WiFi 2.4G	Yes	Yes	N/A
2	GPRS/EDGE 850/1900 (Data)+ WiFi 2.4G	N/A	N/A	Yes
3	GSM 850/1900(Voice)+BT	Yes	Yes	N/A
4	GPRS/EDGE 850/1900 (Data)+BT	N/A	N/A	Yes
5	UMTS Band II/V(Voice)+ WiFi 2.4G	Yes	Yes	N/A
6	UMTS Band II/V(Data)+ WiFi 2.4G	N/A	N/A	Yes
7	UMTS Band II/V(Voice)+ BT	Yes	Yes	N/A
8	UMTS Band II/V(Data)+ BT	N/A	N/A	Yes

Table 40: Simultaneous Transmission Possibilities

Note:

- 1) The device does not support simultaneous BT and WiFi, because they share the same antenna.
- 2) The device does not support DTM function.

7.3.3 SAR Summation Scenario

T	est Position	Scaled	SAR _{Max}	Σ1-g	SPLSR	Remark
1	est Position	GSM850	WiFi	SAR	SPLSK	Remark
	Left Hand Touched	0.507	0.078	0.585	N/A	N/A
Head	Left Hand Tilted 15°	0.329	0.191	0.520	N/A	N/A
пеац	Right Hand Touched	0.414	0.067	0.481	N/A	N/A
	Right Hand Tilted 15°	0.325	0.104	0.429	N/A	N/A
Body-Worn	Front Side	0.376	0.008	0.384	N/A	N/A
Body-worn	Back Side	0.921	0.058	0.979	N/A	N/A
	Front Side	0.794	0.025	0.819	N/A	N/A
	Back Side	1.296	0.093	1.389	N/A	N/A
Hotopot	Left Side	1.070	0.009	1.079	N/A	N/A
Hotspot	Right Side	0.981	0.016	0.997	N/A	N/A
	Top Side	0.000	0.126	0.126	N/A	N/A
	Bottom Side	0.076	0.000	0.076	N/A	N/A

Table 41: Simultaneous Tx Combination of GSM850 and WiFi.

2013-12-23 Page 49 of 53

T	est Position	Scaled	SAR _{Max}	Σ1-g	SPLSR	Domork
10	est Position	GSM1900	WiFi	SAR	SPLSK	Remark
	Left Hand Touched	0.163	0.078	0.241	N/A	N/A
Head	Left Hand Tilted 15°	0.112	0.191	0.303	N/A	N/A
пеац	Right Hand Touched	0.239	0.067	0.306	N/A	N/A
	Right Hand Tilted 15°	0.108	0.104	0.212	N/A	N/A
Body-Worn	Front Side	0.222	0.008	0.230	N/A	N/A
Body-Wolfi	Back Side	0.206	0.058	0.264	N/A	N/A
	Front Side	0.370	0.025	0.395	N/A	N/A
	Back Side	0.418	0.093	0.511	N/A	N/A
Hotopot	Left Side	0.126	0.009	0.135	N/A	N/A
Hotspot	Right Side	0.107	0.016	0.123	N/A	N/A
	Top Side	0.000	0.126	0.126	N/A	N/A
	Bottom Side	0.265	0.000	0.265	N/A	N/A

Table 42: Simultaneous Tx Combination of GSM1900 and WiFi.

		Scaled	SAR _{Max}	Σ1 α		
Te	Test Position		WiFi	Σ1-g SAR	SPLSR	Remark
	Left Hand Touched	0.679	0.078	0.757	N/A	N/A
Head	Left Hand Tilted 15°	0.322	0.191	0.513	N/A	N/A
пеаи	Right Hand Touched	0.471	0.067	0.538	N/A	N/A
	Right Hand Tilted 15°	0.317	0.104	0.421	N/A	N/A
Body-Worn	Front Side	0.627	0.008	0.635	N/A	N/A
Body-Wolfi	Back Side	0.924	0.058	0.982	N/A	N/A
	Front Side	0.708	0.025	0.733	N/A	N/A
	Back Side	1.204	0.093	1.297	N/A	N/A
Hotopot	Left Side	0.799	0.009	0.808	N/A	N/A
Hotspot	Right Side	0.805	0.016	0.821	N/A	N/A
	Top Side	0.000	0.126	0.126	N/A	N/A
	Bottom Side	0.053	0.000	0.053	N/A	N/A

Table 43: Simultaneous Tx Combination of UMTS Band V and WiFi.

		Scaled	SAR _{Max}	Σ1-α		
Te	est Position	UMTS Band II	WiFi	Σ1-g SAR	SPLSR	Remark
	Left Hand Touched	0.372	0.078	0.450	N/A	N/A
Head	Left Hand Tilted 15°	0.239	0.191	0.430	N/A	N/A
пеац	Right Hand Touched	0.707	0.067	0.774	N/A	N/A
	Right Hand Tilted 15°	0.232	0.104	0.336	N/A	N/A
Pody Worn	Front Side	0.437	0.008	0.445	N/A	N/A
Body-Worn	Back Side	0.501	0.058	0.559	N/A	N/A
	Front Side	0.751	0.025	0.776	N/A	N/A
	Back Side	1.208	0.093	1.301	N/A	N/A
Llotopot	Left Side	0.277	0.009	0.286	N/A	N/A
Hotspot	Right Side	0.261	0.016	0.277	N/A	N/A
	Top Side	0.000	0.126	0.126	N/A	N/A
	Bottom Side	0.612	0.000	0.612	N/A	N/A

Table 44: Simultaneous Tx Combination of UMTS Band II and WiFi.

2013-12-23 Page 50 of 53

т.	not Docition	Scaled	SAR _{Max}	Σ1-g	SPLSR	Damark
10	est Position	GSM850	BT	SAR	SPLSK	Remark
	Left Hand Touched	0.507	0.166	0.673	N/A	N/A
Head	Left Hand Tilted 15°	0.329	0.166	0.495	N/A	N/A
Head	Right Hand Touched	0.414	0.166	0.580	N/A	N/A
	Right Hand Tilted 15°	0.325	0.166	0.491	N/A	N/A
Body-Worn	Front Side	0.376	0.055	0.431	N/A	N/A
Body-World	Back Side	0.921	0.055	0.976	N/A	N/A
	Front Side	0.794	0.083	0.877	N/A	N/A
	Back Side	1.296	0.083	1.379	N/A	N/A
Hotopot	Left Side	1.070	0.083	1.153	N/A	N/A
Hotspot	Right Side	0.981	0.083	1.064	N/A	N/A
	Top Side	0.000	0.083	0.083	N/A	N/A
	Bottom Side	0.076	0.083	0.159	N/A	N/A

Table 45: Simultaneous Tx Combination of GSM850 and BT.

T	est Position	Scaled	SAR _{Max}	Σ1-g	SPLSR	Remark
10	est Position	GSM1900	BT	SAR	SPLSK	Remark
	Left Hand Touched	0.163	0.166	0.329	N/A	N/A
Head	Left Hand Tilted 15°	0.112	0.166	0.278	N/A	N/A
пеаи	Right Hand Touched	0.239	0.166	0.405	N/A	N/A
	Right Hand Tilted 15°	0.108	0.166	0.274	N/A	N/A
Body More	Front Side	0.222	0.055	0.277	N/A	N/A
Body-Worn	Back Side	0.206	0.055	0.261	N/A	N/A
	Front Side	0.370	0.083	0.453	N/A	N/A
	Back Side	0.418	0.083	0.501	N/A	N/A
Hotopot	Left Side	0.126	0.083	0.209	N/A	N/A
Hotspot	Right Side	0.107	0.083	0.190	N/A	N/A
	Top Side	0.000	0.083	0.083	N/A	N/A
	Bottom Side	0.265	0.083	0.348	N/A	N/A

Table 46: Simultaneous Tx Combination of GSM1900 and BT.

		Scaled	SAR _{Max}	74 ~		
Test Position		UMTS Band V	ВТ	Σ1-g SAR	SPLSR	Remark
	Left Hand Touched	0.679	0.166	0.845	N/A	N/A
Head	Left Hand Tilted 15°	0.322	0.166	0.488	N/A	N/A
пеац	Right Hand Touched	0.471	0.166	0.637	N/A	N/A
	Right Hand Tilted 15°	0.317	0.166	0.483	N/A	N/A
Body-Worn	Front Side	0.627	0.055	0.682	N/A	N/A
Body-World	Back Side	0.924	0.055	0.979	N/A	N/A
	Front Side	0.708	0.083	0.791	N/A	N/A
	Back Side	1.204	0.083	1.287	N/A	N/A
Hotopot	Left Side	0.799	0.083	0.882	N/A	N/A
Hotspot	Right Side	0.805	0.083	0.888	N/A	N/A
	Top Side	0.000	0.083	0.083	N/A	N/A
	Bottom Side	0.053	0.083	0.136	N/A	N/A

Table 47: Simultaneous Tx Combination of UMTS Band V and BT.

2013-12-23 Page 51 of 53

Test Position		Scaled SAR _{Max}				
		UMTS Band II	ВТ	Σ1-g SAR	SPLSR	Remark
Head	Left Hand Touched	0.372	0.166	0.538	N/A	N/A
	Left Hand Tilted 15°	0.239	0.166	0.405	N/A	N/A
	Right Hand Touched	0.707	0.166	0.873	N/A	N/A
	Right Hand Tilted 15°	0.232	0.166	0.398	N/A	N/A
Body-Worn	Front Side	0.437	0.055	0.492	N/A	N/A
	Back Side	0.501	0.055	0.556	N/A	N/A
Hotspot	Front Side	0.751	0.083	0.834	N/A	N/A
	Back Side	1.208	0.083	1.291	N/A	N/A
	Left Side	0.277	0.083	0.360	N/A	N/A
	Right Side	0.261	0.083	0.344	N/A	N/A
	Top Side	0.000	0.083	0.083	N/A	N/A
	Bottom Side	0.612	0.083	0.695	N/A	N/A

Table 48: Simultaneous Tx Combination of UMTS Band II and BT.

7.3.4 Simultaneous Transmission Conlcusion

The above numeral summed SAR results and SPLSR analysis is sufficient to determin that simultaneous transmission cases will not exceed the SAR limit and therefore simultaneous transmission SAR with Volume Scans is not required per KDB 447498 D01v05

2013-12-23 Page 52 of 53

Appendix A. System Check Plots (Pls See Appendix A.)

Appendix B. SAR Measurement Plots (Pls See Appendix B.)

Appendix C. Calibration Certificate (Pls See Appendix C.)

Appendix D. Photo documentation (PIs See Appendix D.)

End

2013-12-23 Page 53 of 53