C SAR Test Report No: RHA1611-0091SAR01R1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate
 the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97075 Page 2 of 8

Report No: RHA1611-0091SAR01R1

E-mail; cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	**
Frequency	2450 MHz ±1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1,80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ±6 %	1.84 mho/m±6 %
Head TSL temperature change during test	<1.0 °C	2 <u>000</u> 2	8200

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.5 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1VV	24.8 mW/g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0±0.2) °C	51.3±6%	2.00 mho/m±6 %
Body TSL temperature change during test	<1.0 °C	(1744)	D2950

SAR result with Body TSL

SAR averaged over 1 cm ³ (1g) of Body TSL	Condition	
SAR measured	250 mW input power	13.3 mW/g
SAR for nominal Body TSL parameters	normalized to 1VV	52.4 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.20 mW/g
SAR for nominal Body TSL parameters	normalized to 1VV	24.6 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97075 Page 3 of 8 Report No: RHA1611-0091SAR01R1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.1Ω- 0.57jΩ	
Return Loss	- 23.6dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.0Ω+3.31jΩ
Return Loss	- 23.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	
-----------------------	--

Certificate No: Z14-97075

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Date: 01.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

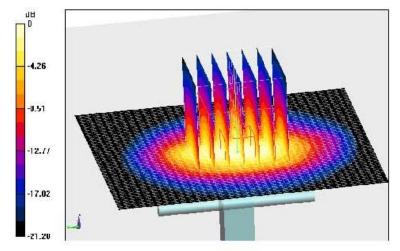
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Me asurement grid:


dx=5mm, dy=5mm, dz=5mm

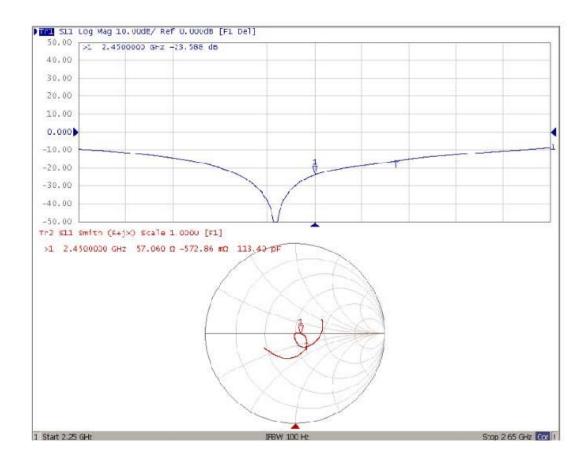
Reference Value = 99.583 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg


Certificate No: Z14-97075 Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z14-97075 Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Date: 01.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.988 \text{ S/m}$; $\epsilon_r = 51.25$; $\rho = 1000 \text{ kg/m}^3$

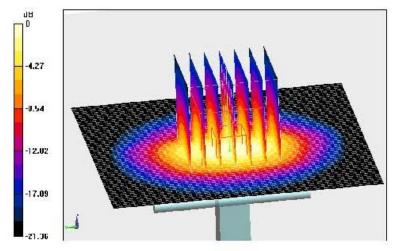
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Me asurement grid:


dx=5mm, dy=5mm, dz=5mm

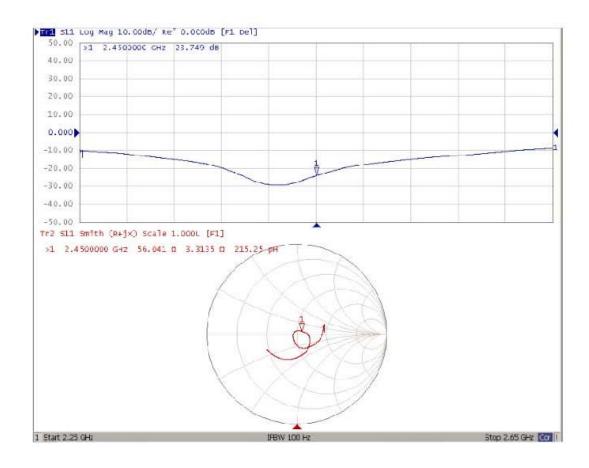
Reference Value = 97.120 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg


Certificate No: Z14-97075 Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97075 Page 8 of 8

Report No: RHA1611-0091SAR01R1

ANNEX K: D2600V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

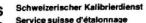
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

	ERTIFICATE		
Object	D2600V2 - SN: 1	025	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	December 08, 20	014	
This calibration certificate docum	ents the traceability to nati	ional standards, which realize the physical un robability are given on the following pages an	nits of measurements (SI).
All calibrations have been conduc	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°6	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # GB37480704	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Power meter EPM-442A			
Power meter EPM-442A Power sensor HP 8481A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Oct-15 Oct-15 Oct-15 Apr-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
Reference Probe ES3DV3 DAE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 90-Dec-13 (No. ES3-3205_Dec13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 90-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2600V2-1025_Dec14

Page 1 of 8



Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Report No: RHA1611-0091SAR01R1

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1025_Dec14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	will opacer
Frequency	2600 MHz ± 1 MHz	

Report No: RHA1611-0091SAR01R1

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	56.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1025_Dec14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.7 Ω - 6.2 jΩ	
Return Loss	- 24.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 5.4 jΩ	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns
, (

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	May 13, 2008		

Certificate No: D2600V2-1025_Dec14

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

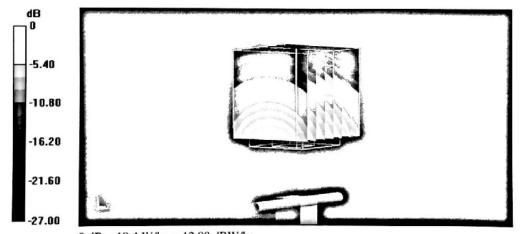
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.46, 4.46, 4.46); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

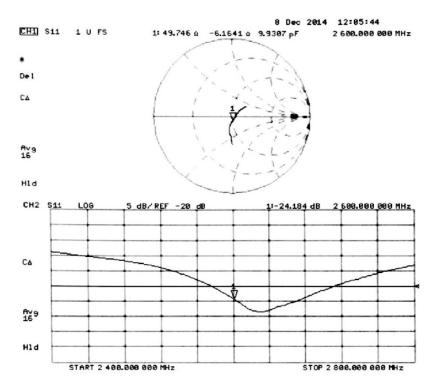

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 19.4 W/kg


0 dB = 19.4 W/kg = 12.88 dBW/kg

Certificate No: D2600V2-1025_Dec14

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1025_Dec14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 08.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

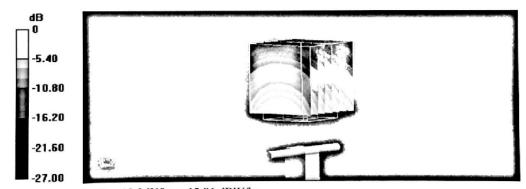
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.24, 4.24, 4.24); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

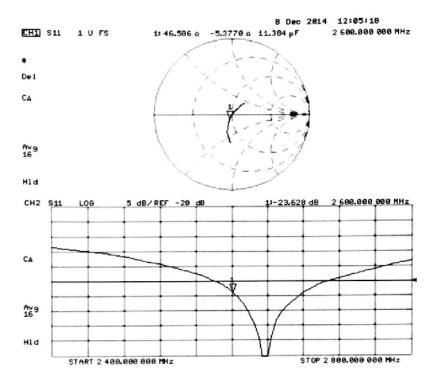

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.72 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (measured) = 19.3 W/kg


0 dB = 19.3 W/kg = 12.86 dBW/kg

Certificate No: D2600V2-1025_Dec14

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1025_Dec14

ANNEX L: D5GHzV2 Dipole Calibration Certificate

E-mail: Info@emcite.com Http://www.emcite.com Certificate No: J13-2-3045 Client TA-Shanghai CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1151 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: December 30, 2013 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date(Calibrated by, Certificate No.) Primary Standards ID# 11-Sep-13 (TMC, No.JZ13-443) Sep-14 102083 Power Meter NRVD Sep -14 Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Reference Probe EX3DV4 SN 3846 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) Sep-14 Feb -14 SN 777 22-Feb-13 (SPEAG, DAE4-777_Feb13) MY49070393 13-Nov-13 (TMC, No.JZ13-394) Nov-14 Signal Generator E4438C MY49000861 31-Jan-13 (TMC, No.JZ13-633) Jan-14 Network Analyzer N5230C Function Signature Name Calibrated by: SAR Test Engineer Zhao Jing Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the labo Issued: January 3, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J13-2-3045

Page 1 of 15

CALIBRATION LABORATORY

Report No: RHA1611-0091SAR01R1

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Field from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the pominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-3045

Page 2 of 15

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	13%
Phantom	ELI 4.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.63 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.3 mW /g ± 22.2 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com E-mail: Info@emcite.com

Head TSL parameters at 5300 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.71 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.3 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.3 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	78.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.29 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW /g ± 22.2 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.67 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	76.7 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		_

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	-
SAR measured	100 mW input power	7.48 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	74.7 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.7 mW /g ± 22.2 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tet: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304637-2504 Fax: +86-10-6230467-2504 Fax: +86-10-6230467-2504 Fax: +86-10-623047-2504 Fax: +86-10-623047-2504 Fax: +86-10-623047-2504 Fax: +86-10-6230467-2504 Fax: +86-10-623047-2504 Fax: +86-10-62047-25047-25047-25047-25047-25047-

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.5 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.70 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.9 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600 MHz

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.85 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	_	_

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	80.7 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.27 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW /g ± 22.2 % (k=2)

Certificate No: J13-2-3045

Page 6 of 15

n Collaboration with

S P E A G

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	6.09 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	72.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	20.4 mW /g ± 22.2 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	54.6Ω - 3.74jΩ
Return Loss	- 24.9dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	45.2Ω - 4.88jΩ
Return Loss	- 22.8dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.6Ω + 3.63jΩ
Return Loss	- 22.1dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	50.6Ω – 9.91jΩ
Return Loss	- 20.2dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.8Ω - 3.44jΩ	
Return Loss	- 26.2dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	46.4Ω - 3.33jΩ	
Return Loss	- 25.8dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.1Ω − 2.54jΩ
Return Loss	- 22.1dB

Certificate No: J13-2-3045

Page 8 of 15

CALIBRATION LABORATORY

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.emcite.com

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	47.9Ω - 8.33jΩ
Return Loss	- 21.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: J13-2-3045

Page 9 of 15

Date: 30.12.2013

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

anbei Road, Haidian District, Beijing, 100191, China 633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz, $\sigma = 4.58 \text{ mho/m}$; $\epsilon r = 36.42$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 4.71 \text{ mho/m}$; $\epsilon r = 36.19$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.11 \text{ mho/m}$; $\epsilon r = 35.62$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5800 MHz; $\sigma = 5.36$ mho/m; $\epsilon r = 35.11$; $\rho = 1000$ kg/m³ Phantom section: ELI 4.0

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(5.25,5.25,5.25); Calibrated: 2013/9/3, ConvF(5.04,5.04,5.04); Calibrated: 2013/9/3, ConvF(4.52,4.52,4.52); Calibrated: 2013/9/3, ConvF(4.51,4.51,4.51); Calibrated: 2013/9/3,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: ELI 4.0; Type: QDOVA001BA;
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Head Tissue/Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dv=4mm, dz=1,4mm Reference Value = 67.621 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 32.8 W/kg $SAR(1 \ q) = 7.63 \ W/kq; SAR(10 \ q) = 2.22 \ W/kq$

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.925 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.33 W/kgMaximum value of SAR (measured) = 18.8 W/kg

Certificate No: J13-2-3045

Page 10 of 15