

FCC SAR Compliance Test Report

LTE/HSPA+/HSUPA/HSDPA/ UMTS/GSM/GPRS/EDGE

Mobile Phone with Bluetooth

201HW

Project Name:

Model : _____

FCC ID : QISU9201L

Report No. : SYBH(Z-SAR)011062012-2

	APPROVED	CHECKED	PREPARED
BY	Liu Chunlin	Alvinway	Yang Hang
DATE	2012-08-13	2012-08-13	2012-08-13

The test results of this test report relate exclusively to the item(s) tested, The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Table of Contents

1 G	General Information	4
1.1	Statement of Compliance	
1.2	RF exposure limits	
1.3	EUT Description	
_	.3.1 General Description	
	.3.2 LTE information Summary	
1.4	Test specification(s)	
1.5	Testing laboratory	
1.6	Applicant and Manufacturer	
1.7	• • •	
	Application details	
1.8	Ambient Condition	
	SAR Measurement System	
2.1	SAR Measurement Set-up	
2.2	Test environment	
2.3	Data Acquisition Electronics description	
2.4	Probe description	
2.5	Phantom description	
2.6	Device holder description	
2.7	, , , , , , , , , , , , , , , , , , ,	
3 S	SAR Measurement Procedure	13
3.1	Scanning procedure	
3.2	Spatial Peak SAR Evaluation	
3.3	·	
	System Verification Procedure	
4.1	·	
4.2		
4.3	·	
	Measurement Uncertainty Evaluation	
5 ivi	Measurement uncertainty evaluation for SAR test	
5.2		
		21
	SAR Test Configuration	
6.1		
6.2		
6.3		
7 S	SAR Measurement Results	
7.1		
	1.1.1 Conducted power measurements GSM1900	
	7.1.2 Conducted power measurements LTE Band XLI	
7.2		
7.	i.2.1 Head SAR of GSM1900	28
7.	7.2.2 Hotspot/Body SAR of GSM1900	28
7.	.2.3 Head SAR of LTE Band XLI	29
7.	2.4 Hotspot/Body SAR of LTE Band XLI	
	.2.5 Head SAR of WiFi	
	.2.6 Hotspot/Body SAR of WiFi	
7.3		
_	3.1 Stand-alone SAR	
	3.2 Simultaneous Transmission Possibilities	
	Appendix A. System Check Plots	
	Appendix B. SAR Measurement Plots	
	Appendix C. Calibration Certificate	
Α	uppendix D. Photo documentation	37

*** * Modified History * ***

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Release	2012-07-27	Yang Hang
Rev.1.1	 Updated the report as below the following: 1) Update the LTE Band XLI tune-up power in table 1; 2) Updated the power difference used 50%RB allocation instead of all the RB allocation on page 31; 3) Update the target MPR value of 50%RB and remove MPR Allowed by 3GPP(dB) column on section 7.1.2. 	2012-08-09	Yang Hang
Rev.1.2	Add a brief explanation for the derivation of the 0.429 duty cycle into the SAR report on page 23~24.	2012-08-13	Yang Hang

2012-08-13 Page 3 of 37

General Information 1

Report No.: SYBH(Z-SAR)011062012-2

Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for 201HW are as below Table 1.

Band	Test Configuration	Test Mode	Measured MAX SAR1g (W/kg)	MAX Conducted Power (dBm)	Tune-up Power (dBm)	Extrapolated Result (W/kg)
GSM	Head	GSM	0.439	29.76	30.50	0.521
1900	Body Worn(10mm)	GPRS 2TS	0.603	26.79	28.00	0.797
1300	Hotspot(10mm)	GPRS 2TS	0.632	26.79	28.00	0.835
LTE	Head	QPSK	0.270	23.31	23.50	0.282
Band XLI	Body Worn(10mm)	QPSK	0.716	23.23	23.50	0.762
2 611 161 7 121	Hotspot(10mm)	QPSK	0.936	23.31	23.50	0.978
	Head	802.11 b	0.227	15.73	/	/
WiFi	Body Worn(10mm)	802.11 b	0.179	15.73	/	/
	Hotspot(10mm)	802.11 b	0.179	15.73	/	/
Simultaneous SAR _{Max} is 0.936W/kg						

Table 1: Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005 and FCC OET Bulletin 65 Supplement C Edition 01-01.

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2012-08-13 Page 4 of 37

1.3 EUT Description

Device Information:				
DUT Name:	LTE/HSPA+/HSUPA/HSDF	PA/UMTS/GSM/GPRS/	/EDGE Mobile Phone	
	with Bluetooth			
Type Identification:	201HW			
FCC ID :	QISU9201L			
S/N No.:	T2E01B9231400082			
Device Type :	portable device			
Exposure Category:	uncontrolled environment / general population			
Hardware Version :	U9201L VA	gorrorai population		
Software Version :	U9201LV100R001C111B1	08		
Antenna Type :	Internal			
Battery Options :	Huawei Technologies Co.,	I td		
Datiery Options :	Rechargeable Li-ion	2.0.		
	Battery Model: HB5R1H;			
	Rated capacity: 1930mAh;			
	Nominal Voltage: === +3.7	7V:		
	Charging Voltage: === +4			
Others Accessories	Headset			
Device Operating Configurations				
Supporting Mode(s)	GSM1900,LTE Band XLI,W	/iFi(Tested): Blueto	oth	
Test Modulation	GMSK, QPSK/16QAM			
Device Class	B			
Device Glade	Band	Tx (MHz)	Rx (MHz)	
	GSM1900	1850-1910	1930-1990	
Operating Frequency Range(s)	LTE Band XLI	2545-2575	2545-2575	
	Bluetooth	2400-2483.5	2400-2483.5	
	WiFi	2400-2483.5	2400-2483.5	
	Max Number of Timeslots i		2	
GPRS Multislot Class (10)	Max Number of Timeslots		4	
()	Max Total Timeslot:		5	
	Max Number of Timeslots i	in Uplink:	2	
EGPRS Multislot Class (10)	Max Number of Timeslots		4	
	Max Total Timeslot:		5	
5 01	1, tested with power level 0	(GSM1900)		
Power Class :	3, tested with power contro	l all Max.(LTE Band XI	LI)	
	512-661-810 (GSM1900)	,	,	
Toot Channels (law mid high):	40190-40290-40390(LTE Band XLI BW=10MHz)			
Test Channels(low-mid-high):	40240-40290-40340(LTE Band XLI BW=20MHz)			
	1-6-11(WiFi)			

Table 3: Device information and operating configuration

1.3.1 General Description

201HW is subscriber equipment in the LTE/WCDMA/GSM system. The LTE frequency band is AXGP B41, it included in this report. The HSPA+/HSUPA/HSDPA/UMTS frequency band is Band I, Band VIII and Band XI, but not included in this report. The GSMGPRS/EDGE frequency band includes GSM900 and DCS1800 and PCS1900, but only PCS1900MHz test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, LTE/WCDMA/GSM protocol processing, voice, video, MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and USIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

2012-08-13 Page 5 of 37

1.3.2 LTE information Summary

Items	Device Operating Configurations for LTE	Remark
1	Frequency Range of each LTE transmission band	Band 41: 2545 MHz to 2575 MHz
2	Channel Bandwidths	Band 41: 10MHz, 20MHz
		10MHz:
		Ch No.: 40190 (2550MHz)
		Ch No.: 40290 (2560MHz)
		Ch No.: 40390 (2570MHz)
3	H,M,L channel numbers and frequencies	20MHz:
		Ch No.: 40240 (2555MHz)
		Ch No.: 40240 (25551MHz)
40	LIE Cotogony	Ch No.: 40340 (2565MHz)
4a	UE Category	3 ODSK 460AM
4b	Modulations Supported in UL	QPSK, 16QAM
5	Description of LTE Tx and Ant. Implementation	Refer to page 33, Definition of Antennas
		Exposure conditions
6	Identify the LTE voice/data requirements in each	1) Head&Body SAR is required;
	operating mode and exposure condition	2) Hotspot SAR is required:
	LTE MPR Permanently implement per 3GPP	Yes, pls refer to page 22.
7	TS36.101 section 6.2.3~6.2.5?(manufacturer	MPR is permanently built-in by
,	attestation to be provided)	design; A-MPR was disabled.
	Conducted power table provided for 1RB(Low and	Refer to the RF Output Power
8	high offset),50%RB(centered),100%RB	Table
	riight choody,500 /or to (contered), 100 /or to	* Supported band & Exposure
		conditions
		1) Bluetooth 2.4GHz
		- Exposure Conditions: BT SAR is
		not required due to its low power
		and antenna separation distance.
		2) WiFi 2.4GHz
9~10	Non-LTE operating Modes and Band	- Exposure Conditions: Head/Body
		SAR required
		* WiFi Hotspot is supported.
		3) Supported WWAN bands: GSM1900
		-Exposure Conditions: Head and
		Body SAR required; Hotspot SAR
		required on select modes.
4.4	Simultaneous Ty Conditions	Refer to page 34, Simultaneous Tx
11	Simultaneous Tx Conditions	Combination
12	Power Reduction used for SAR Compliance	NO
13	Supporting descriptions for power reduction	NO
14	When appropriate, include a SAR test plan proposal	Not Applicable
1 7	with respect to the above	. Tot / ipprioablo
	If applicable, include preliminary SAR test data	
	and/or supporting information in laboratory testing	
15	inquiries to address specific issues and concerns or	Not Applicable
	for requesting further test reduction considerations appropriate for the device; for example, simultaneous	
	transmission configurations	
<u></u>	_ aanomoolon oomgalationo	1

Table 4: LTE information Summary per FCC KDB 941225 D05

2012-08-13 Page 6 of 37

1.4 Test specification(s)

IEEE Std C95.1 – 1999	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
	Recommended Practice for Determining the Peak Spatial-Average
IEEE Std 1528-2003	Specific Absorption Rate (SAR) in the Human Head from Wireless
0.0. 10_0 _000	Communications Devices: Measurement Techniques
	IEEE Recommended Practice for Determining the Peak Spatial-
IEEE Std 1528a-2005	Average Specific Absorption Rate (SAR) in the Human Head from
ILLE 3td 1320a-2003	Wireless Communications Devices: Measurement Techniques
	Amendment 1: CAD File for Human Head Model (SAM Phantom)
OET Bulletin No. 65,	Evaluating Compliance with FCC Guidelines for Human Exposure to
Supplement C Edition	Radiofrequency Electromagnetic FieldsAdditional Information for
01-01- 2001	Evaluating Compliance of Mobile and Portable Devices with FCC Limits
	for Human Exposure to Radiofrequency Emissions
Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in
,	the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication
	Apparatus (All Frequency Bands (Issue 4 of March 2010)
KDB248227 D01	SAR Measurement Procedures for 802.11 a,b,g Transmitters
KDB941225 D06	Hot Spot SAR v01
KDB941225 D05	SAR for LTE Devices v01
KDB648474 D01	SAR Handsets Multi Xmiter and Ant v01r05

1.5 Testing laboratory

Test Site	The Reliability Laboratory of Huawei Technologies Co., Ltd.
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China
Telephone	+86 755 28780808
Fax	+86 755 89652518
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number: L0310 A2LA Registration number: 2174.01

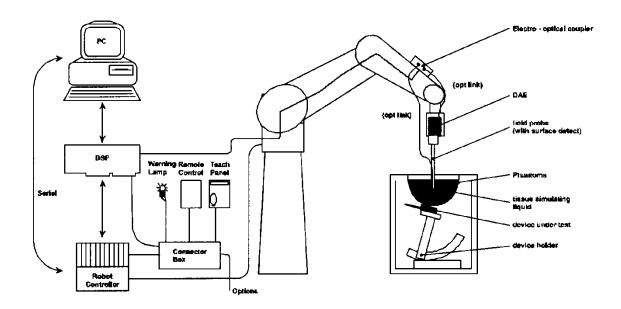
1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

1.7 Application details

Start Date of test	2012-06-27
End Date of test	2012-07-23

1.8 Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2012-08-13 Page 7 of 37

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

2012-08-13 Page 8 of 37

Report No.: SYBH(Z-SAR)011062012-2 FCC ID:QISU9201L

2.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a $1.5 \times 1.5 \text{ m}^2$ array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment. The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	Enhant Symmetriginering An
The Inputs	symmetrical and floating	TYPE: DAE 4 PART Nr.: SO 000 Dok BJ SERIAL Nr.: 851
Common mode rejection	above 80 dB	DATE: 03/08

2012-08-13 Page 9 of 37

2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

Symmetrical design with triangular core	
Interleaved sensors	-
Built-in shielding against static charges	
PEEK enclosure material (resistant to organic	
solvents, e.g., DGBE)	
ISO/IEC 17025 calibration service available.	
10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4	
GHz)	
± 0.2 dB in HSL (rotation around probe axis)	
± 0.3 dB in tissue material (rotation normal to	
probe axis)	
5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB	
Overall length: 330 mm (Tip: 20 mm)	
Tip diameter: 3.9 mm (Body: 12 mm)	
Distance from probe tip to dipole centers: 2.0 mm	
General dosimetry up to 4 GHz	
Dosimetry in strong gradient fields	
Compliance tests of mobile phones	
	Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) ISO/IEC 17025 calibration service available. 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz) ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis) 5 µW/g to > 100 mW/g; Linearity: ± 0.2 dB Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm General dosimetry up to 4 GHz Dosimetry in strong gradient fields

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)
Calibration	In air from 10 MHz to 2.5 GHz In head tissue simulating liquid (HSL) at 900 (800- 1000) MHz and 1.8 GHz (1700-1910 MHz) (accuracy ± 11%; k=2) Calibration for other liquids and frequencies upon request
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (EX3DV4 only)
Dimensions	Overall length: 337 mm Tip length: 9 mm Body diameter: 10 mm Tip diameter:2.5 mm Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (EX3DV4)

2012-08-13 Page 10 of 37

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm
Filling Volume	Approximately 30 liters
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet
Measurement Areas	Flat phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2012-08-13 Page 11 of 37

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment Devices used during the test described are marked \boxtimes

	Manufacturer	Device Device	Туре	Serial number	Date of last calibration)*
\boxtimes	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2011-09-27
\boxtimes	SPEAG	Dosimetric E-Field Probe	EX3DV4	3736	2012-04-26
	SPEAG	750 MHz Validation Dipole	D750V3	1044	2011-09-16
	SPEAG	835 MHz Validation Dipole	D835V2	4d126	2011-11-07
	SPEAG	1800 MHz Validation Dipole	D1800V2	2d184	2011-03-08
\boxtimes	SPEAG	1900 MHz Validation Dipole	D1900V2	5d143	2011-09-26
\boxtimes	SPEAG	2450 MHz Validation Dipole	D2450V2	860	2011-03-08
\boxtimes	SPEAG	2600 MHz Validation Dipole	D2600V2	1021	2011-11-22
\boxtimes	SPEAG	Data acquisition electronics	DAE4	852	2011-11-16
\boxtimes	SPEAG	Data acquisition electronics	DAE4	1236	2012-03-28
	SPEAG	Data acquisition electronics	DAE4	914	2011-12-08
\boxtimes	SPEAG	Software	DASY 5	N/A	N/A
	SPEAG	Twin Phantom	SAM1	TP-1475	N/A
	SPEAG	Twin Phantom	SAM2	TP-1474	N/A
\boxtimes	SPEAG	Twin Phantom	SAM3	TP-1597	N/A
\boxtimes	SPEAG	Twin Phantom	SAM4	TP-1620	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A
\boxtimes	Anritsu	WideBand Radio Communication Tester	MT8820C	6200971028	2012-05-09
\boxtimes	R & S	Universal Radio Communication Tester	CMU 200	111379	2011-08-06
\boxtimes	Agilent)*	Network Analyser	E5071B	MY42404956	2012-02-14
\boxtimes	Agilent	Dielectric Probe Kit	85070E	2484	N/A
\boxtimes	Agilent	Signal Generator	N5181A	MY47420989	2012-02-14
\boxtimes	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A
\boxtimes	Agilent	Power Meter	E4417A	MY45101339	2012-02-14
Mata	Agilent	Power Meter Sensor	E9321A	MY44420359	2012-02-14

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

- 1) Per KDB 450824 D02 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System validation with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2012-08-13 Page 12 of 37

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The reference and drift measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The surface check measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The area scan measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A 7x7x7 zoom scan measures the field in a volume around the 2D peak SAR value acquired in the previous coarse scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY5 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2012-08-13 Page 13 of 37

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $7 \times 7 \times 7$ points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated.
 This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe
 and the distance between the surface and the lowest measuring point is about 1 mm (see probe
 calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting
 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2012-08-13 Page 14 of 37

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Nom_i \cdot ConvF)^{1/2}$

2012-08-13 Page 15 of 37

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2012-08-13 Page 16 of 37

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)	•	Head Tissue						
Frequency Band (MHz)	750	835	1800	1900	2450	2600		
Water	39.2	41.45	52.64	54.9	62.7	55.242		
Salt (NaCl)	2.7	1.45	0.36	0.18	0.5	0.306		
Sugar	57.0	56.0	0.0	0.0	0.0	0.0		
HEC	0.0	1.0	0.0	0.0	0.0	0.0		
Bactericide	0.0	0.1	0.0	0.0	0.0	0.0		
Cellulose	1.0	0.0	0.0	0.0	0.0	0.0		
DGBE	0.0	0.0	47.0	44.92	36.8	44.452		
Preventol	0.1	0.0	0.0	0.0	0.0	0.0		
Ingredients (% of weight)			Body Tis	sue				
Frequency Band (MHz)	750	835	1800	1900	2450	2600		
Water	50.3	52.4	69.91	71.88	73.2	70.4		
Salt (NaCl)	1.6	1.40	0.13	0.39	0.04	0.1		
Sugar	47	45.0	0.0	0.0	0.0	0.0		
HEC	0.0	1.0	0.0	0.0	0.0	0.0		
Bactericide	0.0	0.1	0.0	0.0	0.0	0.0		
Cellulose	1.0	0.0	0.0	0.0	0.0	0.0		
DGBE	0.0	0.0	29.96	29.44	26.7	29.5		
Preventol	0.1	0.0	0.0	0.0	0.0	0.0		

Table 5: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16MΩ+ resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Tissue	Measured			ssue Measured Tissue		Liquid	Took Data
Туре	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/-5%)	εr	σ (S/m)	Temp.	Test Date
	1850	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.65	1.382		
1900H	1880	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.60	1.410	21.4°C	2012-6-27
190011	1910	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.49	1.431	21.4 C	
	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	40.39	1.428		
	1850	53.3 (50.64~55.97)	1.52 (1.44~1.60)	52.60	1.534		
1900B	1880	53.3 (50.64~55.97)	1.52 (1.44~1.60)	52.49	1.560	21.4°C	2012-6-27
19000	1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	52.34	1.584	21.4 0	2012-0-21
	1910	53.3 (50.64~55.97)	1.52 (1.44~1.60)	52.37	1.590		

2012-08-13 Page 17 of 37

		1					_
	2410	39.3 (37.34~41.26)	1.76 (1.67~1.85)	40.30	1.772		
H		39.2	1.79			+	
	2435	(37.24~41.16)	_	40.21	1.799		
2450H		, ,	(1.70~1.88)			21.4°C	2012-07-09
	2460	39.2	1.81	40.10	1.826		
	2-100	(37.24~41.16)	(1.72~1.90)	40.10	1.020		
	0.450	39.2	1.80	40.44	4.045		
	2450	(37.24~41.16)	(1.71~1.89)	40.14	1.815		
	0.440	52.8	1.91	50.40	1.938	21.4°C	
	2410	(50.16~55.44)	(1.81~2.00)	52.10			2012-07-06
	2435	52.7	1.94	52.03	1.969		
2450B		(50.07~55.34)	(1.84~2.04)				
24300	2460	52.7	1.96	F4.00	2.000		
		(50.07~55.34)	(1.86~2.06)	51.96	2.000		
	0.450	52.7	1.95	F4 00	4 000		
	2450	(50.07~55.34)	(1.85~2.05)	51.98	1.986		
000011	0000	39.0	1.96	07.07	0.005	04.400	0040 07 04
2600H	2600	(37.05~40.95)	(1.86~2.06)	37.87	2.025	21.4°C	2012-07-21
2600D	2000	52.5	2.16	E2 0E	0.445	24.490	2042 07 22
∠600B	2600	(49.88~55.13)	(2.05~2.27)	53.05	2.115	21.40	2012-07-22
2600H 2600B	2600	(37.05~40.95) 52.5	(1.86~2.06) 2.16	37.87 53.05	2.025 2.115	21.4°C 21.4°C	2012-07-2

 ε_r = Relative permittivity, σ = Conductivity

Table 6: Measured Tissue Parameter Note:

- 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.
- 2) KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests (Graphic Plot(s) see Appendix A).

System Check	Target SAR (1W) (+/-10%)		red SAR zed to 1W)	Liquid	Test Date	
	1-g (mW/g) 10-g (mW/g)		1-g (mW/g)	10-g (mW/g)	Temp.	103t Date	
D1900V2 Head	40.60 (36.54~44.66)	21.20 (19.08~23.32)	39.32	20.04	21.4°C	2012-06-27	
D2450V2 Head	53.70 (48.33~59.07)	24.90 (22.41~27.39)	53.60	24.64	21.4°C	2012-07-09	
D2600V2 Head	58.80 (52.92~64.68)	26.40 (23.76~29.04)	60.00	26.48	21.4°C	2012-07-21	
D1900V2 Body	41.40 (37.26~45.54)	21.80 (19.62~23.98)	41.20	21.36	21.4°C	2012-06-27	
D2450V2 Body	52.80 (47.52~58.08)	24.50 (22.05~26.95)	54.00	25.12	21.4°C	2012-07-06	
D2600V2 Body	55.60 (50.04~61.16)	24.90 (22.41~27.39)	59.60	26.48	21.4°C	2012-07-22	

Table 7: System Check Results

2012-08-13 Page 18 of 37



4.3 Validation Procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2012-08-13 Page 19 of 37

5 Measurement Uncertainty Evaluation

5.1 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10.9% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 21.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncerta inty Value	Probability Distribution	Divi -sor	c _i 1g	c _i 10g	Standard Uncertai nty 1g	Standard Uncertaint y10g	V _i ² Or V _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	∞
Spatial resolution	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	∞
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	∞
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	∞
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty						± 10.9%	± 10.7%	387
Expanded Std. Uncertainty						± 21.9%	± 21.4%	

Table 8: Measurement uncertainties

2012-08-13 Page 20 of 37

5.2 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 9.5% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 18.9%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncerta inty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standar d Uncertai nty10g	V _i ² or V _{eff}
Measurement System								
Probe calibration	± 6.0%	Normal	1	1	1	± 6.0%	± 6.0%	8
Axial isotropy	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
RF ambient conditions	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	8
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Dipole								
Deviation of experimental dipole	± 5.5%	Rectangular	√3	1	1	± 3.2%	± 3.2%	8
Dipole axis to liquid distance	± 2.0%	Rectangular	1	1	1	± 1.2%	± 1.2%	8
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	8
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	8
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	8
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty						± 9.5%	± 9.2%	
Expanded Std. Uncertainty Table 9: Measurement uncertainty						± 18.9%	± 18.4%	

Table 9: Measurement uncertainties

2012-08-13 Page 21 of 37

6 SAR Test Configuration

6.1 GSM Test Configuration

SAR tests for GSM1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "0" in SAR of GSM1900. The tests in the band of GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 10 for this EUT, it has at most 2 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

	f timeslots in ssignment	Reduction of maximum output power,(dB)				
Band	Time Slots	GPRS (GMSK)	EGPRS (8PSK)			
GSM1900	1 TX slot	0	0	0		
G3W1900	2 TX slots	2.5	2.5	0		

Table 10: The allowed power reduction in the multi-slot configuration of GSM

6.2 LTE Test Configuration

SAR for LTE band exposure configurations is measured according to the Procedures of KDB941225 D05. The MT8820C WideBand Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed (see 3GPP standards) for the channel bandwidth and modulation combinations may be tested with MPR. Configurations with RB allocations below the required RB thresholds must be tested without MPR. A-MPR must always be disabled.

LTE Band XLI MPR as belows:

Modulation	Channel bandwidth / T configura	MPR		
	10 20		IVIFIX	
	MHz	MHz MHz		
QPSK	1	1	0	
QPSK	≤ 12	≤ 18	0	
QPSK	> 12	> 18	1	
16 QAM	≤ 12	≤ 18	1	
16 QAM	> 12	> 18	2	

2012-08-13 Page 22 of 37

For LTE TDD, which shares the same channel bandwidth between the uplink (UL) and the downlink (DL). And for TDD Type 2 Frame Structure, Each radio frame of length $T_r = 307200 \cdot T_s = 10 \, \text{ms}$ consists of two half-frames of length $T_r = 307200 \cdot T_s = 10 \, \text{ms}$ consists of two half-frames of length $T_r = 307200 \cdot T_s = 10 \, \text{ms}$.

Table 6.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Special		clic prefix in do	wnlink	Extended cyclic prefix in downlink				
subframe	DwPTS	UpPTS		DwPTS	UpPTS			
configuration		Normal	Extended		Normal cyclic	Extended cyclic		
		cyclic prefix	cyclic prefix		prefix in uplink	prefix in uplink		
		in uplink	in uplink					
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$				
1	$19760 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$		
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$	2192·1 ₈			
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$				
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$				
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$		
6	$19760 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$				
7	$21952 \cdot T_{\rm s}$	7304.1 ₈	3120.1 ₈	-	-	-		
8	$24144 \cdot T_{\rm s}$			-	-	-		

Table 6.2-2: Uplink-downlink configurations.

Opinik downinik ooringaradorio.											
Uplink-downlink	Downlink-to-Uplink	Subframe number									
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	כ	ם	D	D	S	U	D	D
3	10 ms	D	S	\Box	\Box	J	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Table 6.2-1 and Table 6.2-2 from 3GPP spec 36211-a00 shows the configuration of special subframe (lengths of DwPTS/GP/UpPTS) and uplink-downlink configurations. 201HW only supports Uplink-downlink configuration 1 and configuration 2. For configuration of special subframe, 201HW only support Normal cyclic prefix in uplink, Extended cyclic prefix in uplink is not supported.

From Table 4.2-1 and 201HW Specific Uplink-downlink configurations and Configuration of special subframes, We listed all the uplink duty factor below for 201HW. The maximum duty factor for 201HW is 0429.

Uplink/Downlink Configuration	Special subframe configuration	UpPTS(Ts)	UpPTS(Subframe)	Uplink Subframes(Subframe)	Uplink duty factor
	0	2192	0.07	2	0.414
	1	2192	0.07	2	0.414
	2	2192	0.07	2	0.414
	3	2192	0.07	2	0.414
1	4	2192	0.07	2	0.414
	5	4384	0.14	2	0.429
	6	4384	0.14	2	0.429
	7	4384	0.14	2	0.429
	8	4384	0.14	2	0.429
2	0	2192	0.07	1	0.214

2012-08-13 Page 23 of 37

1	2192	0.07	1	0.214
2	2192	0.07	1	0.214
3	2192	0.07	1	0.214
4	2192	0.07	1	0.214
5	4384	0.14	1	0.229
6	4384	0.14	1	0.229
7	4384	0.14	1	0.229
8	4384	0.14	1	0.229

For each LTE frequency band, detail reduce test information is referred to section 7.2.3 to 7.2.4 and final test summary is as belows:

- a. Per KDB941225 D05 page 4,3) A),QPSK with 50% RB is requied for the highest bandwide(20MHz).
- b. Per KDB941225 D05 page 4,3) B),QPSK with 1 RB for both channel edges are requied for the highest bandwide(20MHz).
- c. Per KDB941225 D05 page 4,4) A),16QAM with 50% RB is requied for the highest bandwide (20MHz).
- d. Per KDB941225 D05 page 4,4) B),16QAM with 1 RB for both channel edges are requied for the highest bandwide(20MHz).
- e. Per KDB941225 D05 page 4, 3) A) I and 4) A) I,100% RB allocation is not requied to be tested since SAR is not >1.45W/kg for the highest bandwide(20MHz).
- f. Per KDB941225 D05 page 5,5) B), 10 MHz BW is not requied to be tested since the max average conducted power is within ½ dB for 20 MHzBW, and SAR of QPSK with 50 % RB (20 MHz) is < 1.45 W/kg. Band XLI Head and Hotspot Body SAR

Bandwidth	Modulation Type	RB Size and Allocation	Test Channel	SAR Test
			High Channel	No Test*
		50% Centered	Middle Channel	Tested*
			Low Channel	No Test*
			High Channel	No Test
	QPSK	1RB Lower EDGE	Middle Channel	Tested
			Low Channel	No Test
			High Channel	No Test
		1RB Upper EDGE	Middle Channel	Tested
20MHz			Low Channel	No Test
20101112			High Channel	No Test
		50% Centered	Middle Channel	Tested
			Low Channel	No Test
			High Channel	No Test
	16QAM	1RB Lower EDGE	Middle Channel	No Test
			Low Channel	Tested
			High Channel	No Test
		1RB Upper EDGE	Middle Channel	No Test
			Low Channel	Tested

^{*}Please check SAR test result table of middle channel is <0.8W/kg, other channels are not required.

2012-08-13 Page 24 of 37

6.3 WiFi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz.During the test,at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1,6,11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band	GHz	Channel	"Default Test Channels"		
Mode	Danu	GHZ	Charlie	802.11b	802.11g	
		2.412	1#	√	Δ	
802.11b/g	2.4 GHz	2.437	6	√	Δ	
		2.462	11#	√	Δ	

Notes:

802.11 Test Channels per FCC Requirements

2012-08-13 Page 25 of 37

^{√ = &}quot;default test channels"

 $[\]triangle$ = possible 802.11g channels with maximum average output ½ dB the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 and WideBand Radio Communication Tester MT8820C were used.

SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter. Note:1)CMU200 measures GSM peak and average output power for active timeslots. For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
timebased avg. power compared to slotted avg. power	-9dB	-6dB	-4.25dB	-3dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

2) MT8820C measures LTE TDD peak and average output power for active timeslots. For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal (The device is just for supporting configuration 1 and 2):

No. of Configuration	1	2
Duty Cycle	0.429	0.229
timebased avg. power compared to slotted avg. power	-3.68dB	-6.40dB

Note: According to duty cycle of configuration 1 and configuration 2. Max outpower should be Configuration 1. so we just tested the conduction power and SAR of configuration 1.

7.1.1 Conducted power measurements GSM1900

GSM1900		Burst Average Power (dBm)			Division	Frame Average Power (dBm)			
		512CH	661CH	810CH	Factors	512CH 661CH 8		810CH	
GSM (CS)		29.72	29.76	29.87	-9	20.72	20.76	20.87	
GPRS	1 Tx Slot	29.45	29.57	29.64	-9	20.45	20.57	20.64	
(GMSK)	2 Tx Slots	26.69	26.79	26.96	-6	20.69	20.79	20.96	
EDGE	1 Tx Slot	29.51	29.58	29.48	-9	20.51	20.58	20.48	
(GMSK)	2 Tx Slots	26.71	26.78	26.89	-6	20.71	20.78	20.89	
EDGE	1 Tx Slot	25.48	25.39	25.54	-9	16.48	16.39	16.54	
(8PSK)	2 Tx Slots	25.43	25.46	25.57	-6	19.43	19.46	19.57	

Table 11: Test results conducted power measurement GSM1900

Note: The conducted power of GSM1900 is measured with RMS detector.

2012-08-13 Page 26 of 37

7.1.2 Conducted power measurements LTE Band XLI

Low Channel

Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Target MPR(dB)	Burst Average Power (dBm)	Frame Average Power (dBm)
		1	0	QPSK	0	22.95	19.27
		1	49	QPSK	0	22.73	19.05
		25	13	QPSK	1	21.86	18.18
40100 10	50	0	QPSK	1	21.73	18.05	
40190	40190 10	1	0	16-QAM	1	21.95	18.27
		1	49	16-QAM	1	21.79	18.11
		25	13	16-QAM	2	20.81	17.13
		50	0	16-QAM	2	20.72	17.04
		1	0	QPSK	0	22.93	19.25
		1	99	QPSK	0	22.83	19.15
		50	25	QPSK	1	21.77	18.09
40240	20	100	0	QPSK	1	21.88	18.20
40240	20	1	0	16-QAM	1	22.15	18.47
		1	99	16-QAM	1	22.21	18.53
		50	25	16-QAM	2	20.59	16.91
		100	0	16-QAM	2	20.78	17.10

Mid Channel

Mid Channel							
Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Target MPR(dB)	Burst Average Power (dBm)	Frame Average Power (dBm)
		1	0	QPSK	0	23.19	19.51
		1	49	QPSK	0	23.18	19.50
	10	25	13	QPSK	1	21.89	18.21
		50	0	QPSK	1	21.68	18.00
		1	0	16-QAM	1	21.89	18.21
		1	49	16-QAM	1	21.88	18.20
		25	13	16-QAM	2	20.75	17.07
40290		50	0	16-QAM	2	20.66	16.98
40290		1	0	QPSK	0	23.31	19.63
		1	99	QPSK	0	23.23	19.55
		50	25	QPSK	1	21.86	18.18
	20	100	0	QPSK	1	21.88	18.20
	20	1	0	16-QAM	1	22.07	18.39
		1	99	16-QAM	1	22.02	18.34
		50	25	16-QAM	2	20.63	16.95
		100	0	16-QAM	2	20.65	16.97

2012-08-13 Page 27 of 37

High Channel

Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Target MPR(dB)	Burst Average Power (dBm)	Frame Average Power (dBm)
		1	0	QPSK	0	22.83	19.15
	40390 10	1	49	QPSK	0	22.87	19.19
		25	13	QPSK	1	21.89	18.21
40200		50	0	QPSK	1	21.82	18.14
40390		1	0	16-QAM	1	21.79	18.11
		1	49	16-QAM	1	21.77	18.09
		25	13	16-QAM	2	20.67	16.99
		50	0	16-QAM	2	20.69	17.01
		1	0	QPSK	0	22.89	19.21
		1	99	QPSK	0	22.92	19.24
		50	25	QPSK	1	21.63	17.95
40340	20	100	0	QPSK	1	21.75	18.07
40340	20	1	0	16-QAM	1	22.08	18.40
		1	99	16-QAM	1	22.02	18.34
		50	25	16-QAM	2	20.57	16.89
		100	0	16-QAM	2	20.71	17.03

Note: The conducted power of LTE Band XLI is measured with RMS detector, and Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 10 timesolts.

7.2 SAR measurement Result

7.2.1 Head SAR of GSM1900

Test Position of Head	Test Mode	Test channel	SAR \ (W/		Power Drift	Conducted Power	Liquid Temp.
rioda		/Frequency	1-g	10-g	(dB)	(dBm)	romp.
Left Hand Touched	GSM	661/1880	0.439	0.254	0.080		21.4°C
Left Hand Tilted 15°	GSM	661/1880	0.145	0.084	-0.040	29.76	21.4°C
Right Hand Touched	GSM	661/1880	0.239	0.146	0.170	29.70	21.4°C
Right Hand Tilted 15°	GSM	661/1880	0.151	0.092	0.090		21.4°C

7.2.2 Hotspot/Body SAR of GSM1900

Test Position of Body with 10mm	Test Mode	Test channel	SAR V (W/I		Power Drift	Conducted Power	Liquid Temp.
With Tollini		/Frequency	1-g	10-g	(dB)	(dBm)	Temp.
Towards Phantom	GPRS 1TS	661/1880	0.302	0.181	0.130	29.57	21.4°C
Towards Phantom	GPRS 2TS	661/1880	0.340	0.203	0.140		21.4°C
Towards Ground	GPRS 2TS	661/1880	0.603	0.337	0.060		21.4°C
Left edge	GPRS 2TS	661/1880	0.202	0.118	0.080	26.79	21.4°C
Right edge	GPRS 2TS	661/1880	0.040	0.024	-0.160		21.4°C
Bottom edge	GPRS 2TS	661/1880	0.632	0.348	-0.020		21.4°C
Bottom edge	EDGE 1TS	661/1880	0.550	0.303	-0.080	29.58	21.4°C
Bottom edge	EDGE 2TS	661/1880	0.603	0.337	-0.120	26.78	21.4°C
Towards Ground with Headset	GSM	661/1880	0.564	0.315	-0.130	29.76	21.4°C

2012-08-13 Page 28 of 37

Note: 1) The value with **bold** colour is the maximum SAR value of each test band. 2) If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

7.2.3 Head SAR of LTE Band XLI

Test Position	Test channel /Frequency	LTE Configuration	SAR V (W/I 1-g		Power Drift (dB)	Conducte d Power (dBm)	Liquid Temp.
		20MQ	PSK			, ,	
Left Hand Touched	40290/2560		0.193	0.099	-0.030		21.4°C
Left Hand Tilted 15°	40290/2560	500/ DD /#05	0.064	0.033	0.020	04.00	21.4°C
Right Hand Touched	40290/2560	50%RB/#25	0.116	0.062	0.170	21.86	21.4°C
Right Hand Tilted15°	40290/2560		0.103	0.051	0.190		21.4°C
		20MQ	PSK	•			•
Left Hand Touched	40290/2560		0.270	0.140	0.100		21.4°C
Left Hand Tilted 15°	40290/2560	1RB/#0	0.090	0.048	0.110	23.31	21.4°C
Right Hand Touched	40290/2560	IKD/#U	0.158	0.085	0.040	23.31	21.4°C
Right Hand Tilted15°	40290/2560		0.147	0.073	0.020		21.4°C
		20MQ	PSK				
Left Hand Touched	40290/2560		0.257	0.132	-0.170		21.4°C
Left Hand Tilted 15°	40290/2560	1RB/#99	0.100	0.052	-0.030	23.23	21.4°C
Right Hand Touched	40290/2560	11\D/#99	0.159	0.085	0.180		21.4°C
Right Hand Tilted15°	40290/2560		0.166	0.082	0.090		21.4°C
		20M/160	MAÇ				
Left Hand Touched	40290/2560		0.136	0.070	0.110		21.4°C
Left Hand Tilted 15°	40290/2560	50%RB/#25	0.051	0.026	-0.120	20.63	21.4°C
Right Hand Touched	40290/2560	30 /01 \D/#23	0.085	0.045	-0.070	20.00	21.4°C
Right Hand Tilted15°	40290/2560		0.084	0.042	0.030		21.4°C
		20M160	MAÇ				
Left Hand Touched	40240/2555		0.174	0.089	-0.010		21.4°C
Left Hand Tilted 15°	40240/2555	1RB/#0	0.057	0.030	0.150	22.15	21.4°C
Right Hand Touched	40240/2555	TND/#U	0.108	0.058	-0.010	22.13	21.4°C
Right Hand Tilted15°	40240/2555		0.100	0.049	0.020		21.4°C
		20M160	MAÇ				
Left Hand Touched	40240/2555		0.200	0.101	-0.010		21.4°C
Left Hand Tilted 15°	40240/2555	1RB/#99	0.065	0.034	0.150	22.21	21.4°C
Right Hand Touched	40240/2555	IND/#99	0.115	0.062	0.100	ZZ.Z I	21.4°C
Right Hand Tilted15°	40240/2555		0.114	0.057	-0.040		21.4°C

2012-08-13 Page 29 of 37

7.2.4 Hotspot/Body SAR of LTE Band XLI

Test Position	Test channel /Frequency	LTE Configuration		Value /kg) 10-g	Power Drift (dB)	Conducted Power (dBm)	Liquid Temp.
		20MQF			(- /	(-)	
Towards Phantom	40290/2560		0.280	0.149	0.170		21.4°C
Towards Ground	40290/2560	-	0.481	0.241	0.120	-	21.4°C
Left edge	40290/2560	50%RB/#25	0.107	0.058	0.080	21.86	21.4°C
Right edge	40290/2560		0.104	0.058	0.020		21.4°C
Bottom edge	40290/2560		0.642	0.324	0.170		21.4°C
J		20M/QF	SK		l .		
Towards Phantom	40290/2560		0.365	0.194	0.000		21.4°C
Towards Ground	40290/2560		0.703	0.354	-0.070		21.4°C
Left edge	40290/2560	1RB/#0	0.149	0.080	-0.100	23.31	21.4°C
Right edge	40290/2560		0.061	0.038	-0.080		21.4°C
Bottom edge	40290/2560		0.936	0.469	0.120		21.4°C
		20MQF	PSK				
Towards Phantom	40290/2560		0.394	0.210	-0.080		21.4°C
Towards Ground	40290/2560		0.716	0.356	0.130		21.4°C
Left edge	40290/2560	1RB/#99	0.158	0.083	0.060	23.23	21.4°C
Right edge	40290/2560		0.056	0.035	0.130		21.4°C
Bottom edge	40290/2560		0.914	0.460	0.100		21.4°C
		20M/16C	(MA)				
Towards Phantom	40290/2560		0.212	0.112	0.130		21.4°C
Towards Ground	40290/2560		0.382	0.190	-0.150		21.4°C
Left edge	40290/2560	50%RB/#25	0.084	0.048	-0.030	20.63	21.4°C
Right edge	40290/2560		0.035	0.022	-0.030		21.4°C
Bottom edge	40290/2560		0.496	0.247	0.050		21.4°C
		20W16C	MAQ				
Towards Phantom	40240/2555		0.272	0.144	0.010		21.4°C
Towards Ground	40240/2555		0.478	0.240	0.070		21.4°C
Left edge	40240/2555	1RB/#0	0.106	0.058	0.120	22.15	21.4°C
Right edge	40240/2555		0.042	0.025	0.030		
Bottom edge	40240/2555		0.644	0.324	0.080		21.4°C
		20M16C	MA				
Towards Phantom	40240/2555		0.282	0.149	0.090		21.4°C
Towards Ground	40240/2555		0.496	0.247	-0.030		21.4°C
Left edge	40240/2555	1RB/#99	0.111	0.062	0.050	22.21	21.4°C
Right edge	40240/2555		0.046	0.028	0.150		
Bottom edge	40240/2555		0.619	0.311	0.050		21.4°C

Note:

- 1) The value with **bold** colour is the maximum SAR value of each test band.
- 2) A-MPR was disabled by Radio Communication Tester for all SAR tests.
- 3) Per Crest factor is 2.33(1/duty cycle), so we set the PAR for 3.67dB during the SAR measurement.
- 4) LTE Head SAR was evaluated to cover third-party VoIP applications that may result in LTE being used near the head.
- 5) Per KDB 941225 D06-we performed the SAR testing at 10mm from the front and rear surfaces (Towards Phantom & Towards Ground) and also from side edges with a transmitting antenna \leq 2.5 cm from an edge (the distance refers to section 7.3 of Rear Side View picture).
- 6) LTE Band XLI test reduce is as below the following:

2012-08-13 Page 30 of 37

a. Per KDB941225 D05 page 4,3) A),QPSK with 50% RB is requied for the highest bandwide(20MHz). When the maximum output power variation across H, M and L channels is $\leq \frac{1}{2}$ dB, start with the middle channel; otherwise, start with the highest output power channel. When the measured 1-g SAR for the middle or highest output power channel is \leq 0.8 W/kg, testing of the remaining two channels in that device and exposure configuration is not necessary.

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Conducted Power (dBm)	Max Difference
Low Channel	40240	20	50	25	QPSK	21.77	
Mid Channel	40290	20	50	25	QPSK	21.86	0.23
High Channel	40340	20	50	25	QPSK	21.63	

[→]Band XLI, Mid channel, 20MHz BW, 50%RB#25, QPSK has been selected.

b. Per KDB941225 D05 page 4,3) B),QPSK with 1 RB for both channel edges are requied for the highest bandwide.

If the maximum average conducted output power for a 1 RB allocation is $> \frac{1}{2}$ dB higher than the 50% RB allocation, instead of using the highest SAR channel measured for QPSK and 50% RB allocation, measure SAR on the highest output power channel for the 1 RB allocation.

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Conducted Power (dBm)	Difference	
Low Channel	40240	20	1	0	QPSK	22.93	1.16	
LOW Charmer	40240	20	49	25	QPSK	21.77	1.10	
Mid Channel	40290	20	1	0	QPSK	23.31	1.45	
Wild Charinei	40290	20	49	25	QPSK	21.86	1.45	
High Channel	40340	20	1	0	QPSK	22.89	1.26	
Tilgir Charine	40340	20	49	25	QPSK	21.63	1.20	

[→]Band XLI, Mid channel, 20 MHz BW, 1RB/#0, has been selected.

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Max Conducted Power (dBm)	Difference
Low Channel	40240	20	1	99	QPSK	22.83	1.06
Low Channel	40240	20	49	25	QPSK	21.77	1.06
Mid Channel	40290	20	1	99	QPSK	23.23	1.37
IVIII CHAIII ei	40290	20	49	25	QPSK	21.86	1.57
High Channal	40340	20	1	99	QPSK	22.92	1.29
High Channel	40340	20	49	25	QPSK	21.63	1.29

[→] Band XLI, Mid channel, 20 MHz BW, 1RB/#99, has been selected.

For measured SAR in QPSK with 1 RB is < 1.45 W/kg-> Test 1RB configuration on other channels is not required. (Refer to LTE SAR test result)

c. Per KDB941225 D05 page 4,4) A),16QAM with 50% RB is requied for the highest bandwide. If the maximum average conducted output power for 16QAM is more than ¼ dB higher than QPSK, apply the procedures for QPSK in 3) to test 16QAM.

If the maximum average conducted output power for 16QAM with 50% RB allocation is $> \frac{1}{2}$ dB higher than QPSK with 50% RB allocation, instead of using the highest SAR channel measured in QPSK measure SAR on the highest output power channel for 16QAM with 50% RB allocation.

2012-08-13 Page 31 of 37

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Max Conducted Power (dBm)	Difference
Low Channel	40240	20	1	99	16QAM	22.21	-0.72
LOW Charmer	40240	20	1	0	QPSK	22.93	-0.72
Mid Channel	40290	20	1	0	16QAM	22.07	-1.24
IVIIU CHAIITEI	40290	20	1	0	QPSK	23.31	-1.24
High Channal	40240	20	1	0	16QAM	22.08	-0.84
High Channel	40340	20	1	99	QPSK	22.92	-0.04

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Max Conducted Power (dBm)	Difference								
Low Channel	40240	20	50	25	16QAM	20.59	-1.18								
LOW Charmer		20	50	25	QPSK	21.77	-1.10								
Mid Channel	40290	20	50	25	16QAM	20.63	-1.23								
IVIId Channel 40	40290	40290	40290	40290	40290	40290	40290	40290	40290	20	50	25	QPSK	21.86	-1.23
High Channel	40340	20	50	25	16QAM	20.57	-1.06								
	40340	20	50	25	QPSK	21.63	-1.00								

[→] Band XLI, QPSK 50#RB High SAR channel, 20 MHz BW , 16QAM has been selected.

d. Per KDB941225 D05 page 4,4) B), 16QAM with 1 RB for both channel edges are requied for the highest bandwide.

If the maximum average conducted output power for a 1 RB allocation is $> \frac{1}{2}$ dB higher than the 50% RB allocation, instead of using the highest SAR channel measured for 16QAM and 50% RB measure SAR on the highest output power channel for the 1 RB allocation.

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Max Conducted Power (dBm)	Difference
Low Channel	40240	20	1	0	16QAM	22.15	1.56
Low Charmer	40240	20	49	25	16QAM	20.59	1.50
Mid Channel	40290	20	1	0	16QAM	22.07	1.44
IVIII CHAIIIIEI	40230	20	49	25	16QAM	20.63	1.44
Lligh Channal	-1 40240	20	1	0	16QAM	22.08	1.51
High Channel	40340	20	49	25	16QAM	20.57	1.51

→ Band XLI, Low channel, 20 MHz BW, 1RB/#0, 16QAM has been selected

LTE Band XLI	Uplink Channel Number	BW [MHz]	RB Size	RB Offset	Mod	Max Conducted Power (dBm)	Difference
Low Channel	40240	20	1	99	16QAM	22.21	1.62
LOW Charmer	40240	20	50	25	16QAM	20.59	1.02
Mid Channel	40290	20	1	99	16QAM	22.02	1.39
IVIIU CHAIIITEI	40290	20	50	25	16QAM	20.63	1.39
High Channal	hannal 10010	20	1	99	16QAM	22.02	1.45
High Channel	40340	20	50	25	16QAM	20.57	1.43

→ Band XLI, Low channel, 20 MHz BW, 1RB/#99, 16QAM has been selected

2012-08-13 Page 32 of 37

For measured SAR in QPSK with 1 RB is < 1.45 W/kg-> Test 1RB configuration on other channels is not required. (Refer to LTE SAR test result)

e. Per KDB941225 D05 page 5,5) B), 10MHz BW is not requied to be tested since the max average conducted power is within $\frac{1}{2}$ dB for 10MHzBW, and SAR of QPSK with 50% RB (10MHz) is < 1.45 W/kg.

Band XLI

Bandwidth(MHz)	20 MHz	10 MHz
Max Power	23.31	23.19
Difference		-0.12

SAR of QPSK with 50% RB (10MHz) is < 1.45 W/kg.

Therefore: that smaller channel bandwidth does not need testing

7.2.5 Head SAR of WiFi

Test Position of Head	Test Mode	Test channel		Value /kg)	Power Drift	Conducted Power	Liquid Temp.
		/Frequency	1-g	10-g	(dB)	(dBm)	romp.
Left Hand Touched	802.11 b	1/2412	0.202	0.098	0.030		21.4°C
Left Hand Tilted 15°	802.11 b	1/2412	0.277	0.130	0.070	15.73	21.4°C
Right Hand Touched	802.11 b	1/2412	0.201	0.098	0.140	13.73	21.4°C
Right Hand Tilted 15°	802.11 b	1/2412	0.273	0.128	0.090		21.4°C

7.2.6 Hotspot/Body SAR of WiFi

Test Position of	Test	Test channel	SAR \ (W/		Power Drift	Conducted Power	Liquid
Body with 10mm	Mode	/Frequency	1-g	10-g	(dB)	(dBm)	Temp.
Towards Phantom	802.11 b	1/2412	0.068	0.035	0.100		21.4°C
Towards Ground	802.11 b	1/2412	0.179	0.091	-0.140		21.4°C
Left edge	802.11 b	1/2412	0.029	0.016	0.090	15.73	21.4°C
Right edge	802.11 b	1/2412	0.035	0.019	-0.050		21.4°C
Top edge	802.11 b	1/2412	0.208	0.097	0.190		21.4°C

Note:

- 1) The value with **bold** colour is the maximum SAR value of each test band.
- 2) Per KDB248227, Tests high average RF output power channel for the lowest data rate, other modes including 802.11 g/n were not investigated since the average output powers were not greater than 0.25dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
- 3) Testing at higher data rates is not required, when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.
- 4) The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the other two channels is optional.
- 5) Per KDB 941225 D06 hotspot procedures, we performed the SAR testing at 10mm from the front and rear surfaces (Towards Phantom & Towards Ground) and also from side edges with a transmitting antenna ≤ 2.5 cm from an edge (the distance refers to section 7.3 of Rear Side View picture).

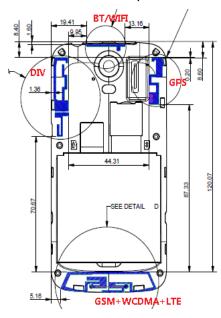
2012-08-13 Page 33 of 37

7.3 Multiple Transmitter Evaluation

7.3.1 Stand-alone SAR

These procedures were followed according to FCC "KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05", Sept 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz				
P_{Ref}	12	6	5	mW				
Device output power should be rounded to the nearest mW to compare with values specified in this table.								


Table 12: Output Power Thresholds for Unlicensed Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — output $\leq 60/f$: SAR not required output $\geq 60/f$: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when output $\leq 2 \cdot P_{Ref}$ and antenna is ≥ 5.0 cm from other antennas output $\leq P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas output $\leq P_{Ref}$ and antenna is ≤ 2.5 cm from other antennas, each with either output power $\leq P_{Ref}$ or 1-g SAR ≤ 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required otest SAR on highest output channel for each wireless mode and exposure condition if SAR for highest output channel is $\geq 50\%$ of SAR limit, evaluate all channels according to normal procedures	 o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply

Table 13: Summary of SAR Evaluation Requirements for a Cell Phone with Multiple Transmitters

2012-08-13 Page 34 of 37

The closest distance between BT/WiFi antenna and main antenna is 12.007cm > 5cm, and the location of the antennas inside mobile phone is shown as below picture:

Rear Side View

The output power of BT antenna is as following:

	Average Conducted Power (dBm)					
BT 2450MHz	0CH	39CH	78CH			
	1.23	3.43	2.08			

Table 14: Test results conducted power measurement BT 2450 MHz

Note: The conducted power of BT is measured with RMS detector.

The output power of WiFi antenna is as following:

The output power of will ranterina is as following.									
Wi-Fi	Channel		A۱	erage Pov	wer (dBm)	for Data R	ates (Mbp	s)	
2450MHz	Charine	1	2	5.5	11	/	/	/	/
	1	15.73	15.74	15.81	15.83	/	/	/	/
802.11b	6	15.65	15.57	15.42	15.54	/	/	/	/
	11	15.50	15.57	15.55	15.72	/	/	/	/
	Channel	6	9	12	18	24	36	48	54
802.11g	1	11.96	12.3	12.14	12.15	12.2	12.12	12.10	12.21
002.11g	6	12.05	12.00	11.95	12.01	12.06	11.93	11.95	12.00
	11	12.40	12.30	12.34	12.34	12.30	12.40	12.40	12.40
	Channel	6.5	13	19.5	26	39	52	58.5	65
802.11n	1	10.90	10.90	10.91	10.96	11.02	11.00	10.90	10.97
(HT20)	6	10.92	10.97	10.92	10.93	10.88	10.90	10.90	10.99
	11	11.24	11.08	11.24	11.22	11.26	11.31	11.28	11.25

Table 15: Test results conducted power measurement WiFi 2450 MHz

Note: The conducted power of WiFi is measured with RMS detector.

According to the output power measurement results and the distance between WiFi/BT antenna and LTE antenna we can draw the conclusion that:

2012-08-13 Page 35 of 37

- stand-alone SAR evaluation is not required for BT, because the output power of BT unlicensed is 3.43 dBm ≤ 2PRef (13.8dBm) and antenna is >5cm from other antennas.
- 2) Stand-alone SAR evaluation is required for WiFi, because the output power of WiFi unlicensed transmitter is 15.83dBm ≥ 24mW (13.8dBm).

7.3.2 Simultaneous Transmission Possibilities

The following table shows exposure conditions for all transmitters:

No.	Capable Tx Configration	LTE	GSM Voice	GPRS/EDGE	WiFi 2.4GHz	
1	LTE		NO	NO	Yes	
2	GSM Voice	NO		NO	Yes	
3	GPRS/EDGE	NO	NO		Yes	
4	WiFi 2.4GHz	Yes	Yes	Yes		
5	BT 2.4GHz	No SAR test				

Table 16: Simultaneous Transmission Possibilities

Note: This mode doesn't support simultaneous BT and WiFi, because they share the same antenna.

7.3.3 SAR Summation Scenario

Antenna	Antenna Use	Technologies	TX Bands
1	Voice/DATA TX/RX	GSM/LTE	GSM1900/LTE XGP_B41 (2545MHz~2575MHz)
2	DATA RX Diversity	LTE	LTE XGP_B41(2545MHz~2575MHz)
3	WLAN/BT	WIFI/Bluetooth	2400MHz
Key Feature	s: Mobile Hotspot support.		

Table 17: Definition of Antennas

Test Position		GSM1900 SAR(W/kg)	LTE Band XLI SAR(W/kg)	WiFi SAR (W/kg)	Σ1-g SARmax (W/kg)
	Left Hand Touched	0.439	0.270	0.202	0.641
Head	Left Hand Tilted 15°	0.145	0.100	0.277	0.422
SAR	Right Hand Touched	0.239	0.159	0.201	0.440
	Right Hand Tilted 15°	0.151	0.166	0.273	0.439
	Towards Phantom	0.340	0.394	0.068	0.462
	Towards Ground	0.603	0.716	0.179	0.895
Hotspot	Left edge	0.202	0.158	0.029	0.231
Body SAR	Right edge	0.040	0.104	0.035	0.139
	Top edge	0	0	0.208	0.208
	Bottom edge	0.632	0.936	0	0.936

Table 18: Simultaneous Tx Combination (GSM/LTE+WLAN)

According to the output power measurement results and the distance between WiFi/BT antenna and GSM/LTE antenna we can draw the conclusion that:

- 1) Simultaneous Transmission SAR evaluation is not required for GSM/LTE& BT,because stand-alone SAR are not required for BT and the sum of 1-g SAR_{max} is 0.936W/kg < 1.6 W/kg for all simultaneous transmitting antennas.
- 2) Simultaneous Transmission SAR evaluation is not required for GSWLTE & WiFi, because the sum of the 1g SAR $_{max}$ is 0.936W/kg < 1.6W/kg for all simultaneous transmitting antennas.

2012-08-13 Page 36 of 37

Appendix A. System Check Plots (Pls See Appendix A.)

Appendix B. SAR Measurement Plots (Pls See Appendix B.)

Appendix C. Calibration Certificate (Pls See Appendix C.)

Appendix D. Photo documentation (PIs See Appendix D.)

End

2012-08-13 Page 37 of 37