

Appendix C. Calibration Certificate

Table of contends
Calibration report "DAE4-SN1235"
Calibration report "DAE4-SN1236"
Calibration report "Probe EX3DV4-SN3753"
Calibration report "D900-SN1d112"
Calibration report "D1900-SN5d018"
Calibration report "D2450-SN860"

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Fallures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Huawei SH (Auden)

Certificate No: DAE4-1235_Oct10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 1235

Calibration procedure(s) QA CAL-06.v22

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: October 22, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Committee Standards	ID#	Check Date (in house)	Scheduled Check
Secondary Standards		and the same of th	

Calibrated by:

Eric Hainfeld

Name

Function Technician Signature

Approved by:

Fin Bomholt

R&D Director

. d Coo.

Issued: October 22, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.043 ± 0.1% (k=2)	403.796 ± 0.1% (k=2)	404.476 ± 0.1% (k=2)
Low Range	3.98307 ± 0.7% (k=2)	3.99486 ± 0.7% (k=2)	4.00121 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	336.0°±1°
---	-----------

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199997.9	5.39	0.00
Channel X + Input	20001.01	1.41	0.01
Channel X - Input	-19999.44	0.46	-0.00
Channel Y + Input	200004.3	3.03	0.00
Channel Y + Input	19998.90	-0.60	-0.00
Channel Y - Input	-20002.98	-3.08	0.02
Channel Z + Input	200006.9	6.51	0.00
Channel Z + Input	19999.61	0.21	0.00
Channel Z - Input	-20001.30	-1.40	0.01
Charmer 2 - Imput	-20001.00	20200	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.0	0.08	0.00
Channel X + Input	200.18	0.08	0.04
Channel X - Input	-199.66	0.34	-0.17
Channel Y + Input	2000.0	0.09	0.00
Channel Y + Input	198.98	-1.12	-0.56
Channel Y - Input	-200.36	-0.46	0.23
Channel Z + Input	2000.0	-0.06	-0.00
Channel Z + Input	198.38	-1.62	-0.81
Channel Z - Input	-200.42	-0.42	0.21

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	6.15	4.28
	- 200	-3.38	-5.02
Channel Y	200	-24.10	-24.67
	- 200	24.10	23,63
Channel Z	200	6.41	6.19
	- 200	-8.23	-8.29

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	4.15	0.10
Channel Y	200	1.18		5.30
Channel Z	200	2.50	-0.57	+

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16175	16115
Channel Y	16301	15823
Channel Z	15852	16484

5. Input Offset Measurement

DÂSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.38	-1.26	0.18	0.28
Channel Y	-0.06	-1.25	1.85	0.46
Channel Z	-0.93	-2.13	0.48	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zerolng (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Report "DAE4-SN1236"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Huawei SH (Auden)

Certificate No: DAE4-1236 Oct10

Accreditation No.: SCS 108

Object	DAE4 - SD 000 D	04 BJ - SN: 1236	THE STATE OF
Calibration procedure(s)	QA CAL-06.v22 Calibration process	dure for the data acquisition	electronics (DAE)
Calibration date:	October 26, 2010		
		eral standards, which realize the physic obstitity are given on the following pag	
All calibrations have been condu	icted in the closed laboratory	tacility: erwironment temperature (22 :	± 3)°C and humidity < 70%.
		r tacility: environment temperature (22	±3 °C and humidity < 70%.
Calibration Equipment used (M8 Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M8 Primary Standards	TE critical for calibration)		
Calibration Equipment used (M8 Primary Standards Keithlay Multimeter Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0610278	Cal Date (Certificate No.) 28-Sep-10 (No.10376) Check Date (in house)	Scheduled Calibration Sep-11 Scheduled Check
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	TE critical for calibration) ID # SN: 0610278	Cal Date (Certificate No.) 28-Sep-10 (No:10076)	Scheduled Calibration Sep-11
Calibration Equipment used (M8 Primary Standards Keithlay Multimeter Type 2001 Secondary Standards	ID # SN: 0610278 ID # SE UMS 006 AB 1004	Cal Date (Certificate No.) 28-Sep-10 (No:10076) Check Date (in house) 07-Jun-10 (in house check)	Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11
Calibration Equipment used (M8 Primary Standards Keithlay Multimeter Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0610278	Cal Date (Certificate No.) 28-Sep-10 (No.10376) Check Date (in house)	Scheduled Calibration Sep-11 Scheduled Check

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

Low Range: 1LSB = 6.1μV , High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.985 ± 0.1% (k=2)	404.913 ± 0.1% (k=2)	405.914 ± 0.1% (k=2)
Low Range	3.98821 ± 0.7% (k=2)	3.96798 ± 0.7% (k=2)	4.00517 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	136.0 ° ± 1 °
Connector Angle to be used in DASY system	136.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199987.8	-5.07	-0.00
Channel X + Input	19999.45	-0.25	-0.00
Channel X - Input	-19998.46	1.54	-0.01
Channel Y + Input	199997.8	-3.16	-0,00
Channel Y + Input	19996.97	-2.53	-0.01
Channel Y - Input	-20000.89	-1.19	0.01
Channel Z + Input	200011.7	1.18	0.00
Channel Z + Input	19996.30	-3.10	-0.02
Channel Z - Input	-20000.89	-1.19	0.01

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.1	0.05	0.00
Channel X + Input	200.81	0.71	0.35
Channel X - Input	+199.97	-0.07	0.04
Channel Y + Input	2000.5	0.57	0.03
Channel Y + Input	199.61	-0.29	-0.15
Channel Y - Input	-201.03	-1.03	0.52
Channel Z + Input	2001.1	1.19	0.06
Channel Z + Input	199.04	-0.86	-0.43
Channel Z - Input	-200.59	-0.59	0.30

2. Common mode sensitivity DASY measurement parameters: A

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	16.27	14.87
	- 200	-14.51	-15.98
Channel Y	200	-15.41	-15.97
	- 200	14.99	14.94
Channel Z	200	-14.10	-14.71
	- 200	12.74	12.83

3. Channel separation
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.01	1.24
Channel Y	200	-0.12		2.79
Channel Z	200	1.72	-0.74	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15748	17238
Channel Y	16003	17264
Channel Z	16296	16350

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time; 3 sec Input 10MO.

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.08	-2.17	2.32	0.78
Channel Y	-0.81	-3.36	2.26	0.79
Channel Z	-0.94	-2.13	0.38	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA.)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-B	-9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auder

Accreditation No.: SCS 108

Object EX3DV4-SN:3753 Calibration procedure(s) QA CAL-01 v6. QA CAL-14 v3. QA CAL-23 v3 and CA CAL-25 v2 Calibration procedure procedure procedure procedure procedure.

Calibration date:

December 13-2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
SN: S5129 (30b)	·	Mar-11
SN: 3013		Dec-10
SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
ID#	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Name	Function	Signature
Kara same		
Nicia Kuatar	A Paulo Maria	3,940,000
	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Kata Postoric	MY41495277

Issued: December 14, 2010

Certificate No: EX3-3753_Dec10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

ConvF DCP

diode compression point

CF A, B, C crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3753 Dec10

EX3DV4 SN:3753 December 13, 2010

Probe EX3DV4

SN:3753

Manufactured:

March 16, 2010

Calibrated:

December 13, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4 SN:3753 December 13, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.49	0.52	± 10.1%
DCP (mV) ^B	99.3	98.8	103.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	120.2	± 2.9 %
			Y	0.00	0.00	1.00	111.7	
		<u> </u>	Z	0.00	0.00	1.00	118.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

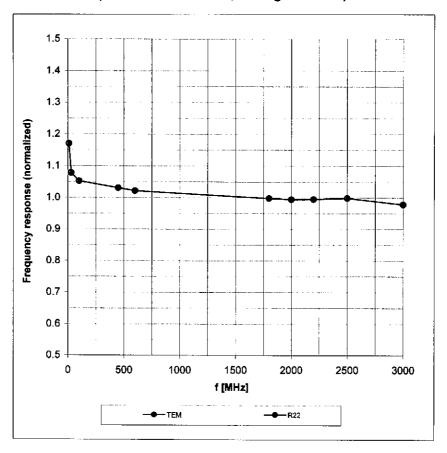
DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	9.52	9.52	9.52	0.52	0.72 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	9.06	9.06	9.06	0.58	0.70 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	8.25	8.25	8.25	0.67	0.64 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.90	7.90	7.90	0.54	0.71 ± 11.0%
2000	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.82	7.82	7.82	0.62	0.65 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.11	7.11	7.11	0.38	0.83 ± 11.0%
5200	± 50 / ± 100	$36.0 \pm 5\%$	$4.66 \pm 5\%$	4.96	4.96	4.96	0.32	1.90 ± 13.1%
5300	± 50 / ± 100	$35.9 \pm 5\%$	4.76 ± 5%	4.69	4.69	4.69	0.40	1.90 ± 13.1%
5500	± 50 / ± 100	$35.6 \pm 5\%$	$4.96 \pm 5\%$	4.43	4.43	4.43	0.45	1.90 ± 13.1%
5600	± 50 / ± 100	$35.5 \pm 5\%$	5.07 ± 5%	4.44	4.44	4.44	0.45	1.90 ± 13.1%
5800	± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.32	4.32	4.32	0.45	1.90 ± 13.1%

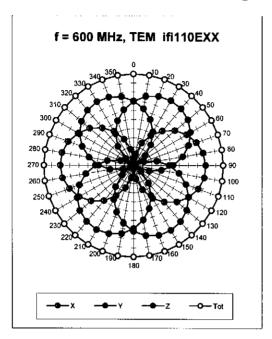
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

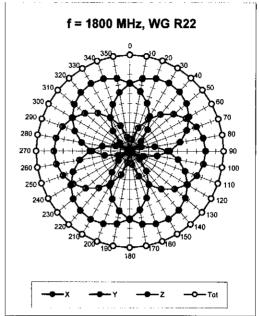
DASY/EASY - Parameters of Probe: EX3DV4 SN:3753

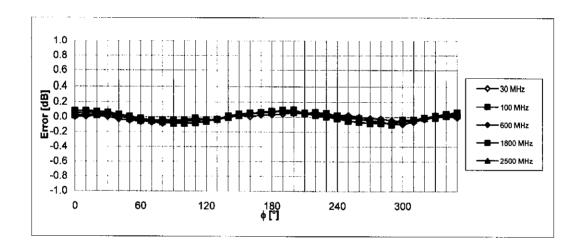

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	9.25	9.25	9.25	0.54	0.74 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	9.07	9.07	9.07	0.55	0.73 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1. 49 ± 5 %	7.48	7.48	7.48	0.32	1.19 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.17	7.17	7.17	0.55	0.96 ± 11.0%
2000	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.22	7.22	7.22	0.96	0.52 ± 11.0%
2300	± 50 / ± 100	52.8 ± 5%	1.85 ± 5%	7.11	7.11	7.11	0.54	0.75 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.91	6.91	6.91	0.54	0.88 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.86	6.86	6.86	0.97	0.34 ± 11.0%
3500	± 50 / ± 100	$51.3 \pm 5\%$	3.31 ± 5%	6.19	6.19	6.19	0.35	1.20 ± 13.1%
5200	± 50 / ± 100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	4.21	4.21	4.21	0.55	1.95 ± 13.1%
5300	± 50 / ± 100	$48.9 \pm 5\%$	$5.42 \pm 5\%$	4.02	4.02	4.02	0.55	1.95 ± 13.1%
5500	± 50 / ± 100	$48.6 \pm 5\%$	5.65 ± 5%	3.69	3.69	3.69	0.55	1.95 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.41	3.41	3.41	0.60	1.95 ± 13.1%
5800	± 50 / ± 100	$48.2 \pm 5\%$	$6.00 \pm 5\%$	3.90	3.90	3.90	0.60	1.95 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

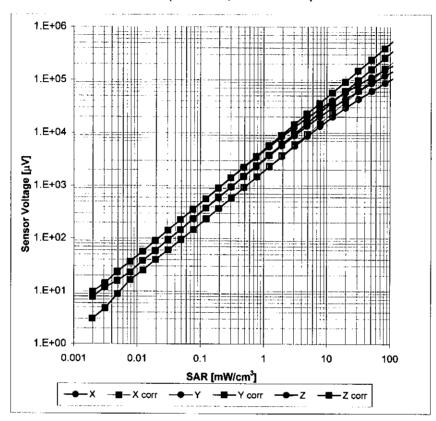

Frequency Response of E-Field

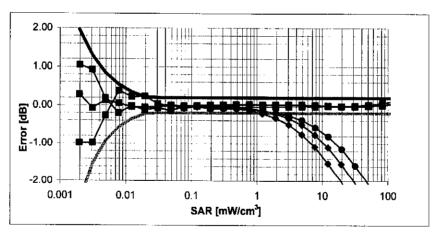

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

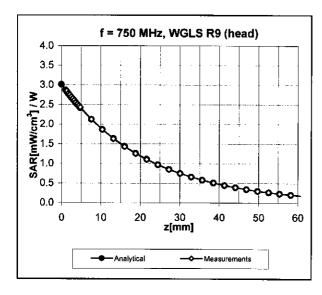


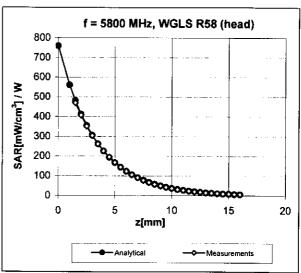


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

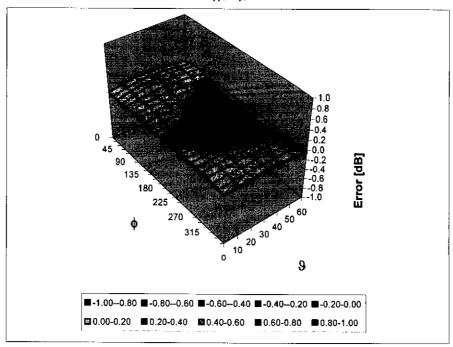
(TEM cell, f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4 SN:3753 December 13, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

EX3DV4 SN:3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Huawei Shenzhen (Auden)

Certificate No: D900V2-1d112 Mar11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D900V2 - SN: 1d112

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: March 9, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Town Considerate	I ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	GB37480704	08-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Reference 20 dB Attenuator	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Type-N mismatch combination	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
Reference Probe ES3DV3 DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
O composition of the composition	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
Power sensor HP 8481A	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06 Network Алајухег HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Siβpature _\
Celibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	00160

Issued: March 10, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR normalized	normalized to 1W	11.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	11.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	7.13 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

ne following parameters and calculations were a	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.05 mha/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2,84 mW / g
AND	normalized to 1W	11.4 mW / g
SAR normalized SAR for nominal Body TSL parameters	normalized to 1W	11.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.83 mW / g
	normalized to 1W	7.32 mW / g
SAR normalized		7.30 mW / g ± 16.5 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	7.30 mW / g ± 16.5 %

Appendix

Antenna Parameters with Head TSL

	A CONTRACTOR OF THE CONTRACTOR	
Impedance, transformed to feed point	50.3 Ω - 6.0 jΩ	
Return Loss	- 24,4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 8.3 jΩ
Return Loss	- 20.5 dB

General Antenna Parameters and Design

1.411 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 22, 2010

DASY5 Validation Report for Head TSL

Date/Time: 09.03.2011 15:53:14

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d112

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

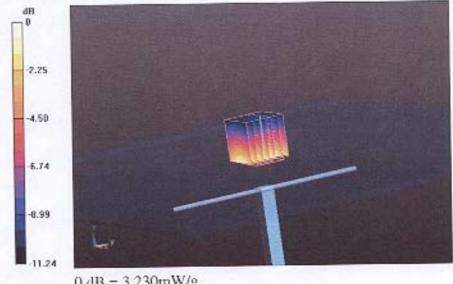
Electronics: DAE4 Sn601: Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Scrial: 1001

Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)

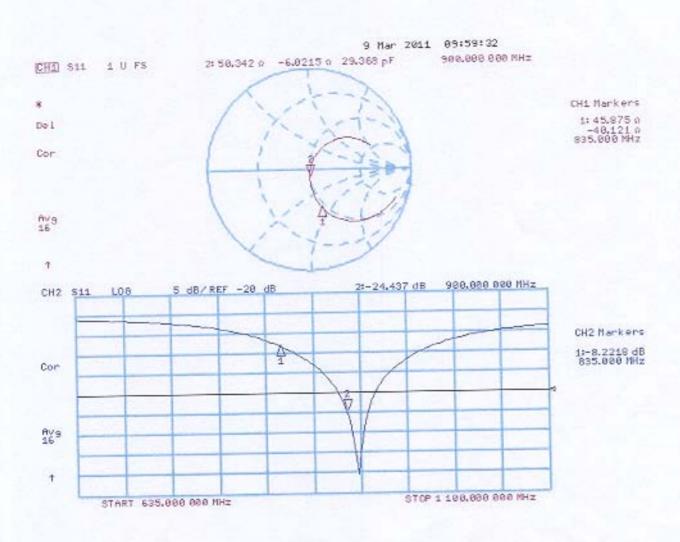
Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Head/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.051 V/m; Power Drift = -0.0029 dB

Peak SAR (extrapolated) = 4.164 W/kg


SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.230 mW/g

0 dB = 3.230 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 09.03.2011 11:47:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d112

Communication System; CW; Frequency; 900 MHz; Duty Cycle: 1:1

Medium: M900

Medium parameters used: f = 900 MHz; $\sigma = 1.05 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

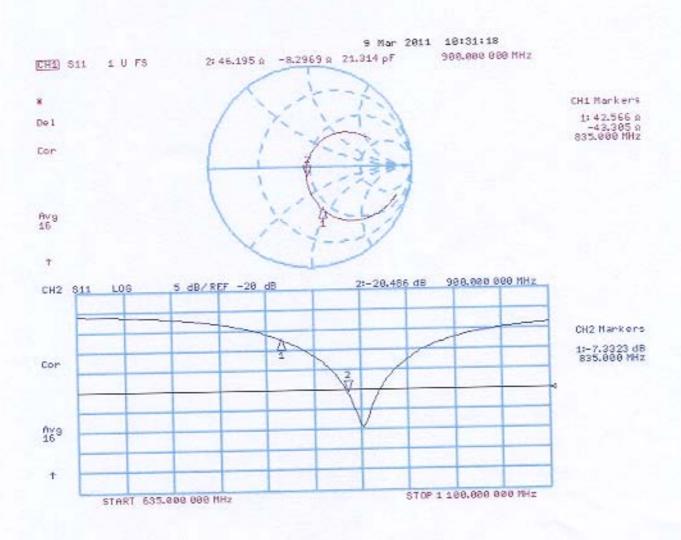
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6 Build 2, Version 52.6.2 (424)
- Postprocessing SW: SEMCAD X, V14.4 Build 4, Version 14.4.4 (2829)

Body/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.188 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 4.264 W/kg

SAR(1 g) = 2.84 mW/g; SAR(10 g) = 1.83 mW/g

Maximum value of SAR (measured) = 3.341 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

C	lie	nt	

100	157	1737	žΝ,
Δı	ıd	ρ	n

Accreditation No.: SCS 108

Client Auden		Co	ertificate No: D1900V2-5d018_Jun11
CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 5	d018	
Calibration procedure(s)	QA CAL-05.v8 Calibration proced	dure for dipole validation	ı kits above 700 MHz
Calibration date:	June 16, 2011		
The measurements and the unce	rtainties with confidence pr	obability are given on the followi	physical units of measurements (SI). ng pages and are part of the certificate. re $(22 \pm 3)^{\circ}$ C and humidity < 70%.
Calibration Equipment used (M&7	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr	11) Apr-12
DAE4	SN: 601	8-Jun-11 (No. DAE4-601_Jun	11) Jun-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oc	t-09) In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct	-09) In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oc	t-10) In house check: Oct-11
- m	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Techni	cian W.Riw
Approved by:	Katja Pokovic	Technical Manage	ir Alls
			Issued: June 16, 2011

Certificate No: D1900V2-5d018_Jun11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d018_Jun11

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	· · · · · · · · · · · · · · · · · · ·	
DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.31 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d018_Jun11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω + 3.9 jΩ
Return Loss	- 27.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω + 3.8 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 04, 2002

Certificate No: D1900V2-5d018_Jun11

DASY5 Validation Report for Head TSL

Date: 15.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Communication System: CW; Frequency: 1900 MHz

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

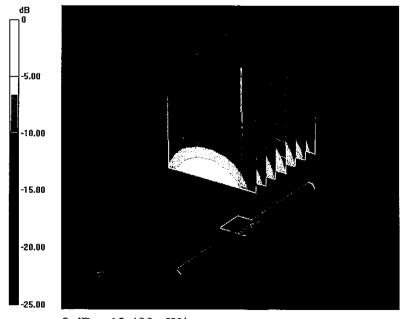
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 08.06.2011

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

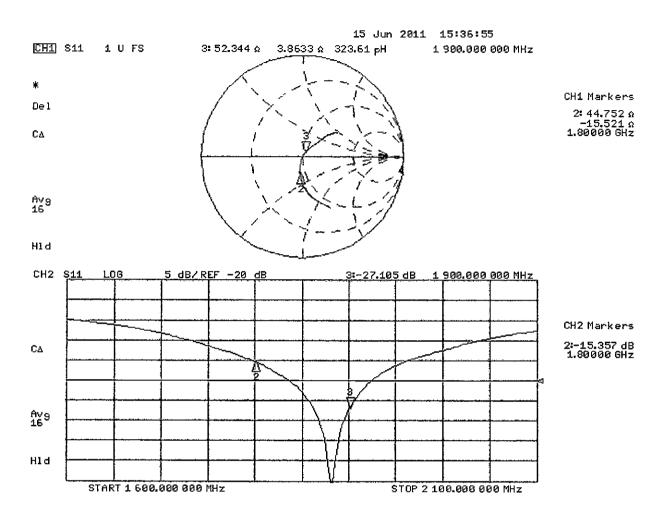
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.065 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.190 W/kg


SAR(1 g) = 10 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 12.484 mW/g

0 dB = 12.480 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Communication System: CW; Frequency: 1900 MHz

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

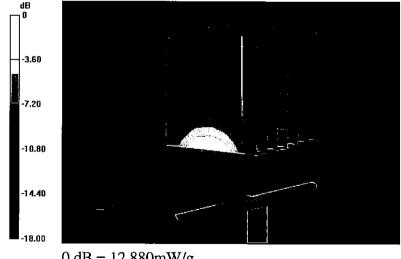
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 5.0 (back); Type: OD000P50AA; Serial: 1002

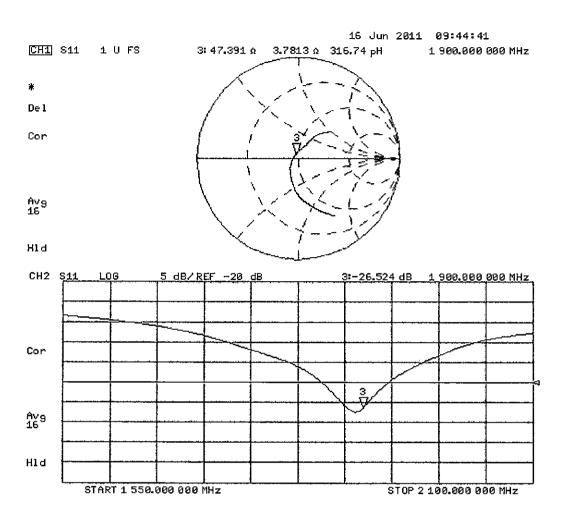
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.056 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 18.054 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.31 mW/g

Maximum value of SAR (measured) = 12.877 mW/g

0 dB = 12.880 mW/g

Impedance Measurement Plot for Body TSL

Annex 1.9 Calibration report "D2450-SN860"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D2450V2-860_Mar11 Huawei Shenzhen (Auden) CALIBRATION CERTIFICATE D2450V2 - SN: 860 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: March 08, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 In house check: Oct-11 4-Aug-99 (in house check Oct-09) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 9, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.72 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR normalized	normalized to 1W	52.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 mW / g
SAR normalized	normalized to 1W	24.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.9 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	1.92 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR normalized	normalized to 1W	52.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.0 Ω + 2.2 Ω	
Return Loss	- 27.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.0 \Omega + 4.9 j\Omega$	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

The state of the s	
Electrical Delay (one direction)	1.163 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 23, 2010

DASY5 Validation Report for Head TSL

Date/Time: 07.03.2011 14:59:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:860

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

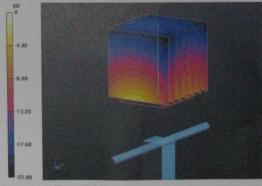
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY52, V52.6.2 Build (424)

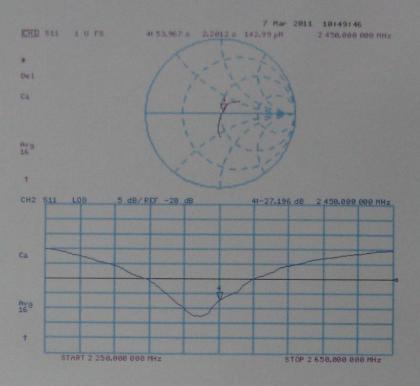
• Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.4 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 26.918 W/kg


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.19 mW/g

Maximum value of SAR (measured) = 16.865 mW/g

0 dB = 16.860 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.03.2011 14:50:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:860

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

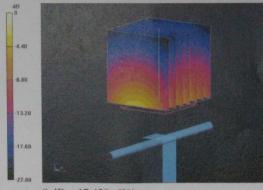
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• Measurement SW: DASY52, V52.6.2 Build (424)

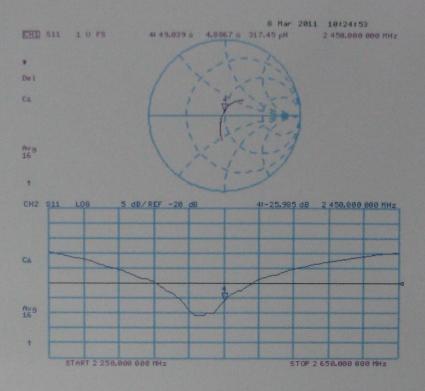
• Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.448 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.953 W/kg


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 17.417 mW/g

0 dB = 17.420 mW/g

Impedance Measurement Plot for Body TSL

