

TEST REPORT No. I17Z61234-EMC01

for

Huawei Technologies Co., Ltd.

Smart Phone

SLA-L23

with

FCC ID: QISSLA-L23

Hardware Version: 3.18.31

Software Version: SLA-L23C900B121

Issued Date: 2017-08-22

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I17Z61234-EMC01	Rev.0	1 st edition	2017-08-22

CONTENTS

1.	TEST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	PROJECT DATA	4
1.4.	. SIGNATURE	4
2.		
2.1.	. APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	. ABOUT EUT	6
3.2.	. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3.	. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4.	. EUT SET-UPS	8
4.	REFERENCE DOCUMENTS	9
4.1.	. REFERENCE DOCUMENTS FOR TESTING	9
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	11
7.	TEST EQUIPMENTS UTILIZED	12
ANI	NEX A: MEASUREMENT RESULTS	13

1. Test Laboratory

1.1. Testing Location

Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China

100191

1.2. Testing Environment

Normal Temperature: 15-35°C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2017-08-10
Testing End Date: 2017-08-15

1.4. Signature

Wang Junqing

(Prepared this test report)

张 颖

Zhang Ying (Reviewed this test report)

Liu Baodian

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R.

China

City: Shenzhen
Postal Code: 518129
Country: China

Telephone: 0086-0755-28970299 Fax: 0086-0755-89650226

2.2. Manufacturer Information

Company Name: Huawei Technologies Co., Ltd.

Huawei Base, Bantian, Longgang District, Shenzhen 518129, P.R.

China

City: Hong Kong

Postal Code: /

Country: China

Telephone: +86-10-57877542 Fax: +86-10-58863425

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

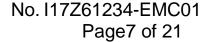
3.1. About EUT

Description Smart Phone
Model Name SLA-L23
FCC ID QISSLA-L23

Extreme vol. Limits 3.6VDC to 4.4VDC (nominal: 3.8VDC)

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT.

3.2. Internal Identification of EUT used during the test



 EUT ID*
 SN or IMEI
 HW Version
 SW Version

 EUT1
 865548030021606/ 865548030023057
 3.18.31
 SLA-L23C900B121

3.3. Internal Identification of AE used during the test

	AE ID*	Description	SN	Remarks		
	AE1	Battery	/	/		
	AE2	Battery	/	/		
	AE3	Charger	/	/		
	AE4	Charger	/	/		
	AE5	Charger	/	/		
	AE14	USB Cable	/	/		
	AE15	USB Cable	/	/		
	AE16	USB Cable	/	/		
P	Æ1					
	Model		HB405979ECW			
	Manufactu	urer	Sunwoda Electro	nic Co., Ltd.		
	Capacitar	ice	2920 mAh			
	Nominal v	roltage	3.82 V			
A	Æ2					
	Model		HB405979ECW			
	Manufactu	urer	Huizhou Desay E	Battery Co., Ltd.		
	Capacitar	ice	2920 mAh			
	Nominal v	roltage	3.82 V			
A	NE3					
	Model		HW-050100U01			
Manufacturer		ırer	HUIZHOU BYD I	HUIZHOU BYD ELECTRONIC CO., LTD.		
	Length of	cable	/			

^{*}EUT ID: is used to identify the test sample in the lab internally.

AE4

Model HW-050100U01

Manufacturer Phihong Technology Co., Ltd.

Length of cable

AE5

Model HW-050100U01

Manufacturer Shenzhen Huntkey Electric Co., Ltd.

Length of cable /

AE14

Model

Manufacturer LiXun Length of cable 95cm

AE15

Model

Manufacturer FuShiKang Length of cable 95cm

AE16

Model

Manufacturer HongLin Length of cable 95cm

*AE ID: is used to identify the test sample in the lab internally.

Note: The USB cables are shielded.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1	EUT1+ AE1+AE3+AE14	Charger
Set.3	EUT1+ AE1+AE4+AE14	Charger
Set.5	EUT1+ AE1+AE5+AE14	Charger
Set.25	EUT1+ AE14	USB

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15, Subpart B	Radio frequency devices - Unintentional Radiators	2016
ANSI C63.4	American National Standard for	2014
	Methods of Measurement of Radio-	
	Noise Emissions from Low-Voltage	
	Electrical and Electronic Equipment	
	in the Range of 9 kHz to 40 GHz	

Note: The test methods have no deviation with standards.

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber SAC-1 (23 meters \times 17meters \times 10meters) did not exceed following limits along the EMC testing:

Min. = 15 °C, Max. = 35 °C
Min. = 15 %, Max. = 75 %
0.014MHz-1MHz, >60dB;
1MHz - 1000MHz, >90dB.
> 2 M
< 4
< ±4 dB, 10 m distance
Between 0 and 6 dB, from 1GHz to 6GHz
Between 0 and 6 dB, from 80 to 3000 MHz

Shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz, >60dB;
	1MHz-1000MHz, >90dB.
Electrical insulation	> 2 M
Ground system resistance	< 4

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Р		Pass
Verdict Column	NA	Not applicable
	F	Fail
Location Column huayuan North Road		The test is performed in test location huayuan North
		Road which is described in section 1.1 of this report

Items	Test Name	Clause in FCC rules	Section in this report	Verdict	Test Location
1	Radiated Emission	15.109(a)	A.1	Р	1

7. Test Equipments Utilized

NO.	Description	TYPE	SERIES NUMBER	MANUFACTURE	CAL DUE DATE	CALIBRATI ON INTERVAL
1	Test Receiver	ESU26	100235	R&S	2018-03-01	1 year
2	Test Receiver	ESCI 7	100344	R&S	2018-03-15	1 year
3	Universal Radio Communication Tester	CMW500	143008	R&S	2017-12-01	1 year
4	Universal Radio Communication Tester	CMW500	155415	R&S	2018-02-15	1 year
5	LISN	ENV216	101200	R&S	2018-08-03	1 year
6	EMI Antenna	VULB 9163	9163-301	Schwarzbeck	2017-12-16	3 years
7	EMI Antenna	3115	6914	ETS-Lindgren	2017-12-15	3 years
8	PC	OPTIPLEX 380	2X1YV2X	DELL	N/A	N/A
9	Printer	P1606dn	VNC3L52122	HP	N/A	N/A
10	Keyboard	L100	CN0RH6596589 07ATOI40	DELL	N/A	N/A
11	Mouse	M-UAE119	LZ935220ZRC	Lenovo	N/A	N/A

Test Item	Test Software and Version	Software Vendor
Radiated Continuous Emission	EMC32 V9.01	R&S
Conducted Emission	EMC32 V8.52.0	R&S

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission

Reference

FCC: CFR Part 15.109(a).

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (charging mode of MS) at distances of 3 meters(for 30MHz-1GHz) and 3 meters (for above 1GHz) is tested. Tested in accordance with the procedures of ANSI C63.4 – 2014, section 8.3.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3/10 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode:

The MS is operating in the charging mode. During the test MS is connected to a charger in the case of charging mode.

Note: I/O information: Printer – USB, Mouse – PS/2, Keyboard – USB.

A.1.3 Measurement Limit

Frequency range	Field strength limit (μV/m)			
(MHz)	Quasi-peak Average		Peak	
30-88	100			
88-216	150			
216-960	200			
960-1000	500			
>1000		500	5000	

Note: the above limit is for 3 meters test distance. 10 meters' limit is got by converting.

A.1.4 Test Condition

Frequency	range (MHz)	RBW/VBW	Sweep Time (s)	Detector
30-	1000	120kHz (IF Bandwidth)	5	Peak/Quasi-peak
Abov	re 1000	1MHz/1MHz	15	Peak, Average

A.1.5 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

Result = $P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

GA: Antenna factor of receive antenna

G_{PL}: Path Loss

P_{Mea}: Measurement result on receiver.

Measurement uncertainty (worst case): 30MHz-1GHz: 4.86dB, 1GHz-18GHz: 5.26dB, k=2.

Measurement results for Set.1:

Charging Mode/Average detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17979.600	43.5	-17.7	45.6	15.600	Н
17962.600	43.3	-17.7	45.6	15.400	V
17959.767	43.3	-17.7	45.6	15.400	V
17967.133	43.3	-17.7	45.6	15.400	Н
17980.733	43.2	-17.7	45.6	15.300	V
17952.967	43.2	-17.7	45.6	15.300	Н

Charging Mode/Peak detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17981.300	55.2	-17.7	45.6	27.300	Н
17975.067	54.7	-17.7	45.6	26.800	Н
17901.400	54.4	-18.5	45.6	27.300	V
17884.967	54.2	-18.5	45.6	27.100	V
17973.933	54.2	-17.7	45.6	26.300	V
17888.367	54.1	-18.5	45.6	27.000	Н

Sample calculation: Peak detector, 17884.967MHz

Result = P_{Mea} (27.1dB μ V)+ G_A (45.6dB/m)+ G_{PL} (-18.5 dB) =54.2dB μ V/m

Measurement results for Set.3:

Charging Mode/Average detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	$P_{Mea}(dB\mu V)$	Polarity
17971.667	43.5	-17.7	45.6	15.600	V
17982.433	43.2	-17.7	45.6	15.300	Н
17954.667	43.1	-17.7	45.6	15.200	Н
17988.667	43.1	-17.7	45.6	15.200	Н
17981.300	43.1	-17.7	45.6	15.200	V
17963.167	43.1	-17.7	45.6	15.200	Н

Charging Mode/Peak detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	$P_{Mea}(dB\mu V)$	Polarity
17875.900	54.6	-18.5	45.6	27.500	V
17993.200	54.5	-17.7	45.6	26.600	V
17993.767	54.2	-17.7	45.6	26.300	V
17874.767	54.1	-18.5	45.6	27.000	Н
17962.033	54.1	-17.7	45.6	26.200	Н
17951.267	54.0	-17.7	45.6	26.100	Н

Sample calculation: Peak detector, 17962.033MHz

Result = P_{Mea} (26.2dB μ V)+ G_A (45.6dB/m)+ G_{PL} (-17.7 dB) =54.1dB μ V/m

Measurement results for Set.5:

Charging Mode/Average detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17979.600	43.1	-17.7	45.6	15.200	V
17990.933	43.0	-17.7	45.6	15.100	Н
17997.167	43.0	-17.7	45.6	15.100	Н
17976.200	43.0	-17.7	45.6	15.100	Н
17965.433	43.0	-17.7	45.6	15.100	V
17948.433	43.0	-17.7	45.6	15.100	V

Charging Mode/Peak detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17971.667	55.2	-17.7	45.6	27.300	Н
17854.367	54.5	-18.5	45.6	27.400	Н
17872.500	54.5	-18.5	45.6	27.400	V
17839.633	54.4	-18.5	45.6	27.300	V
17890.067	54.4	-18.5	45.6	27.300	V
17657.167	54.2	-18.9	45.6	27.500	Н

Sample calculation: Peak detector, 17890.067MHz

Result = P_{Mea} (27.3dB μ V)+ G_A (45.6dB/m)+ G_{PL} (-18.5 dB) =54.4dB μ V/m

Measurement results for Set.25:

USB Mode/Average detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17879.300	43.9	-18.5	45.6	16.800	Н
17851.250	43.6	-18.5	45.6	16.500	Н
17974.500	43.6	-17.7	45.6	15.700	V
17963.450	43.6	-17.7	45.6	15.700	Н
17965.150	43.6	-17.7	45.6	15.700	Н
17954.100	43.5	-17.7	45.6	15.600	Н

USB Mode/Peak detector

Frequency(MHz)	Result(dB _μ V/m)	G _{PL} (dB)	G _A (dB/m)	P _{Mea} (dBµV)	Polarity
17994.050	55.0	-17.7	45.6	27.100	Н
17848.700	54.4	-18.5	45.6	27.300	V
17940.500	54.3	-17.7	45.6	26.400	V
17966.000	54.3	-17.7	45.6	26.400	Н
17954.100	54.1	-17.7	45.6	26.200	V
17785.800	53.8	-18.5	45.6	26.700	Н

Sample calculation: Peak detector, 17954.100MHz

Result = P_{Mea} (26.2dB μ V)+ G_A (45.6dB/m)+ G_{PL} (-17.7 dB) =54.1dB μ V/m

Note: The measurement results of Set.1, Set.3, Set.5 and Set.25 showed here are worst cases of the combinations of different batteries and USB cables.

Charging Mode, Set.1

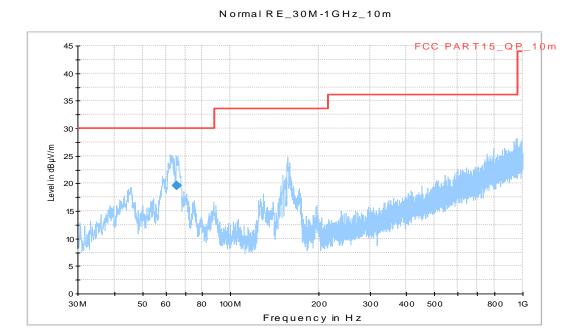
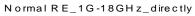



Figure A.1 Radiated Emission from 30MHz to 1GHz

Final Result 1

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)
65.331000	19.6	30.00	10.4	1000.	120.000	100.0	٧	30.0

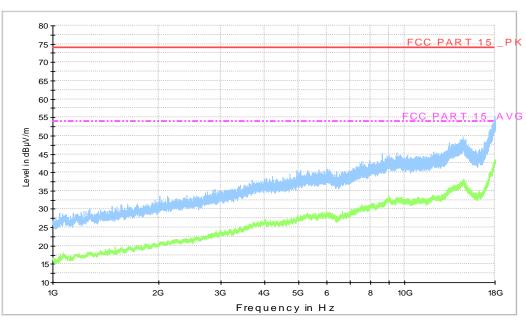
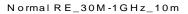



Figure A.2 Radiated Emission from 1GHz to 18GHz

Charging Mode, Set.3

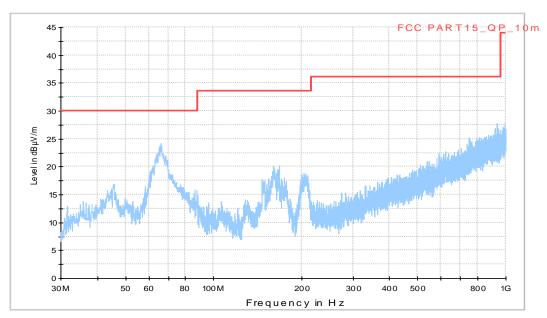
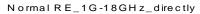



Figure A.3 Radiated Emission from 30MHz to 1GHz

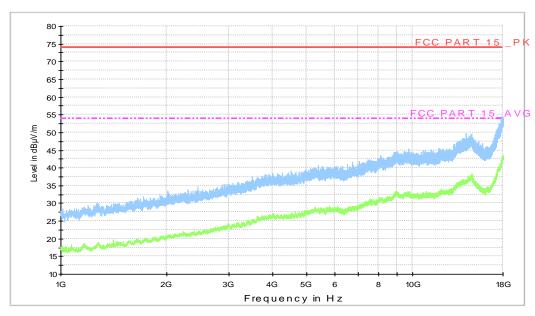
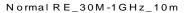



Figure A.4 Radiated Emission from 1GHz to 18GHz

Charging Mode, Set.5

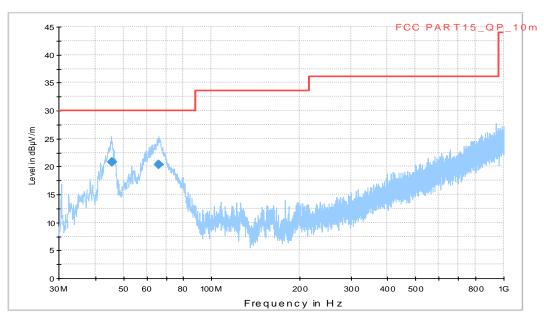


Figure A.5 Radiated Emission from 30MHz to 1GHz

Final Result 1

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)
45.603000	20.9	30.00	9.1	1000.	120.000	325.0	٧	30.0
66.167000	20.4	30.00	9.6	1000.	120.000	100.0	٧	30.0

Normal RE $_1G-18GHz_directly$

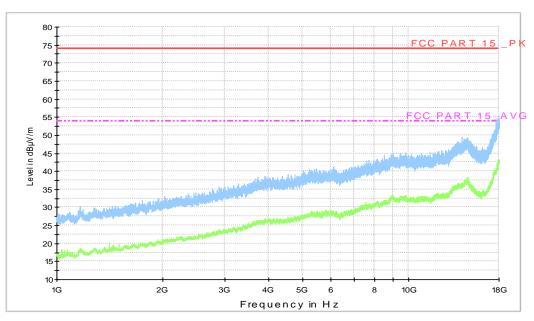


Figure A.6 Radiated Emission from 1GHz to 18GHz

©Copyright. All rights reserved by CTTL.

USB Mode, Set.25

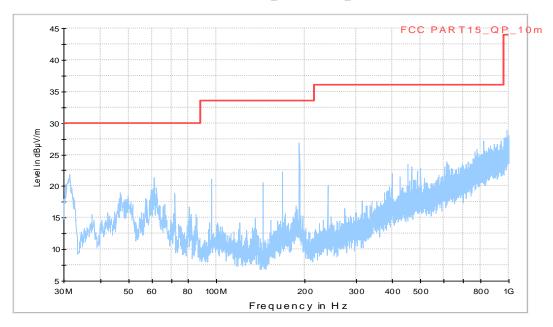
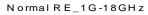



Figure A.7 Radiated Emission from 30MHz to 1GHz

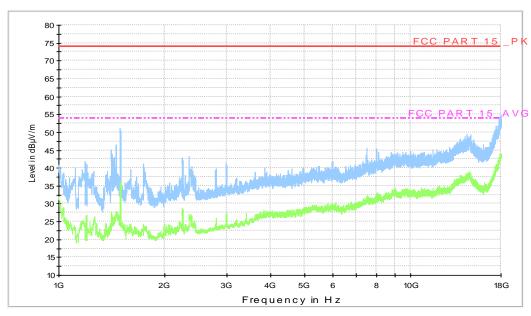


Figure A.8 Radiated Emission from 1GHz to 18GHz

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2016-09-29 through 2017-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

END OF REPORT