

SAR TEST REPORT

Product Name	HUAWEI MediaPad T1 8.0
Model Name	S8-702u
FCC ID	QISS8-702U
Client	Huawei Technologies Co., Ltd.
Manufacturer	Huawei Technologies Co., Ltd.
Date of issue	June 30, 2014

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Approved by

Weizhong Yang Director Revised by

Minbao Ling SAR Manager Performed by

Yi Zhang SAR Engineer

TABLE OF CONTENT

١.	Gen	ierai illoritation	. :
	1.1.	Notes of the Test Report	. 5
	1.2.	Testing Laboratory	. 5
	1.3.	Applicant Information	. 6
	1.4.	Manufacturer Information	. 6
	1.5.	Information of EUT	. 7
	1.6.	EUT Antenna Locations	. 8
	1.7.	The Maximum Reported SAR _{1q}	. 9
	1.8.	Maximum Conducted Power of Each Tested Mode	
	1.9.	Test Date	
2.	SAF	R Measurements System Configuration	
	2.1.	SAR Measurement Set-up	
	2.2.	DASY5 E-field Probe System	
	2.2.		
	2.2.	·	
	2.3.	Other Test Equipment	
	2.3.	• •	
	2.3.		
	_	Scanning Procedure	
	2.5.	Data Storage and Evaluation	
	2.5.	•	
	2.5.	•	
3.	Lab	oratory Environment	
4.		ue-equivalent Liquid	
	4.1.	Tissue-equivalent Liquid Ingredients	
	4.2.	Tissue-equivalent Liquid Properties	
		tem Check	
	5.1.	Description of System Check	
	5.2.	System Check Results	
		erational Conditions during Test	
	6.1.	General Description of Test Procedures	
	6.2.	Test Configuration	
	6.2.	· ·	
	6.2.	-	
	6.2.	-	
	6.2.4	•	
	6.2.	-	
	6.3.	Measurement Variability	
	6.4.	Test Positions	
	6.4.		
	6.4.	-	
	6.4.	•	
7.		Results	

Report No. RHA1406-0059SAR	Page 4 of 172
7.1. Conducted Power Results	36
7.2. SAR Test Results	
7.2.1. GSM 850 (GSM/GPRS/EGPRS)	
7.2.2. GSM 1900 (GSM/GPRS/EGPRS)	
7.2.3. UMTS Band II (WCDMA/HSDPA/HSUPA)	
7.2.4. UMTS Band V (WCDMA/HSDPA/HSUPA)	
7.2.5. WIFI	
7.3. Simultaneous Transmission Conditions	
8. Measurement Uncertainty	
9. Main Test Instruments	
ANNEX A: Test Layout	
ANNEX B: System Check Results	62
ANNEX C: Graph Results	68
ANNEX D: Probe Calibration Certificate	129
ANNEX E: D835V2 Dipole Calibration Certificate	140
ANNEX F: D1900V2 Dipole Calibration Certificate	148
ANNEX G: D2450V2 Dipole Calibration Certificate	156
ANNEX H: DAE4 Calibration Certificate	164
ANNEY I: The EUT Appearances and Test Configuration	167

Report No. RHA1406-0059SAR Page 5 of 172

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample undergoing test was selected by the Client. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RHA1406-0059SAR Page 6 of 172

1.3. Applicant Information

Company: Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian,

Longgang District

Address: Shenzhen

518129 P.R.China

1.4. Manufacturer Information

Company: Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian,

Longgang District

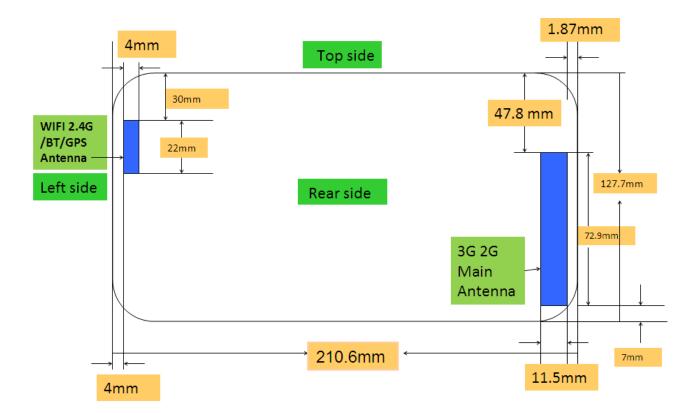
Address: Shenzhen

518129 P.R.China Report No. RHA1406-0059SAR Page 7 of 172

1.5. Information of EUT

General Information

Exposure Category: Uncontrolled Environment / General Population	Device Type:	Portable Device		
Product IMEI: A6L0114402000079 Hardware Version: SH1S8701UM Software Version: S8-702u V100R001C001 Antenna Type: Internal Antenna Device Operating Configurations: GSM 850/GSM 1900; UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 6 DC-HSDPA UE Category: 6 DC-HSDPA UE Category: 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852	Exposure Category:	Uncontrolled Environment / General Population		
Hardware Version: SH1S8701UM Software Version: \$8-702u V100R001C001 Antenna Type: Internal Antenna Device Operating Configurations: GSM 850/GSM 1900; UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 14 HSUPA UE Category: 6 DC-HSDPA UE Category: 24 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Max Number of Timeslots in Uplink 4 Max Total Timeslot 5 Max Total Timeslot 5 Max Total Timeslots in Downlink 4 Max Total Timeslots in Downlink 4 Max Total Timeslot 5 UMTS Band II 1852.4 ~ 1907.6 UMTS Band II 1852.4 ~ 1907.6 UMTS Band II 2402	State of Sample:	Prototype Unit		
Software Version: S8-702u V100R001C001 Antenna Type: Internal Antenna Device Operating Configurations: GSM 850/GSM 1900; UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 14 HSUPA UE Category: 6 DC-HSDPA UE Category: 24 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Sould Timeslot <	Product IMEI:	A6L0114402000079		
Device Operating Configurations :	Hardware Version:	SH1S8701UM		
Device Operating Configurations: GSM 850/GSM 1900; UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B B HSDPA UE Category: 14 HSUPA UE Category: 6 DC-HSDPA UE Category: 24 Max Number of Timeslots in Uplink 4 GPRS Multislot Class(12): Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 4 EGPRS Multislot Class(12): Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 WIFI 2412 ~ 2462 CSM 850: 4 GSM 850: level 5 GSM 1900: level 0	Software Version:	S8-702u V100R001C001		
GSM 850/GSM 1900; UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 14 HSUPA UE Category: 6 GC-HSDPA UE Category: 9 Max Number of Timeslots in Uplink 4 Max Total Timeslot 5 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band III/V: 3 GSM 850: level 5 GSM 1900: level 0	Antenna Type:	Internal Antenna		
Test Mode(s): UMTS Band II/UMTS Band V; 802.11b/g/n HT20; Bluetooth; Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 14 HSUPA UE Category: 6 DC-HSDPA UE Category: 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Max Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 1900: 1 UMTS Band IIIV: 3 GSM 1900: level	Device Operating Configurations :			
Box Box		GSM 850/GSM 1900;		
Bluetooth; Bluetooth; Bluetooth; Bluetooth; Bluetooth; CGSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B	Test Mode(s):	-		
Test Modulation: (GSM)GMSK; (UMTS)QPSK; (WIFI)CCK; Device Class: B HSDPA UE Category: 14 HSUPA UE Category: 6 DC-HSDPA UE Category: 24 GPRS Multislot Class(12): Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 Test Frequency Range(s): UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 81uetooth 2402 ~ 2480 WIFI 2412 ~ 2462 90.0 GSM 1900: 1 UMTS Band IIIV: 3 UMTS Band IIIV: 3 GSM 850: level 5 GSM 1900: level 0 GSM 1900: level 0	1 331 (11) 335 (3).	_		
Device Class: B		,		
HSDPA UE Category: 14			K;	
HSUPA UE Category: 6 24				
DC-HSDPA UE Category: 24 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 GSM 1900: level 0 GSM 1900: level 0				
Max Number of Timeslots in Uplink 4				
GPRS Multislot Class(12): Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 1852.2 ~ 1909.8 Max N	DC-HSDPA UE Category:			
Max Total Timeslot 5 Max Number of Timeslots in Uplink 4 Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Test Frequency Range(s): Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 GSM 900: level 0 GSM 1900: level 0		· ·		
## Max Number of Timeslots in Uplink 4	GPRS Multislot Class(12):	Max Number of Timeslots in Downlink		
EGPRS Multislot Class(12): Max Number of Timeslots in Downlink 4 Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 Power Level: GSM 1900: level 0		Max Total Timeslot	5	
Max Total Timeslot 5 Mode Tx (MHz) GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~2480 WIFI 2412 ~2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 Power Level:		Max Number of Timeslots in Uplink	4	
Mode	EGPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4	
GSM 850 824.2 ~ 848.8 GSM 1900 1850.2 ~ 1909.8 UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 GSM 1900: level 0		Max Total Timeslot	5	
GSM 1900 1850.2 ~ 1909.8		Mode	Tx (MHz)	
Test Frequency Range(s): UMTS Band II 1852.4 ~ 1907.6 UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~2480 WIFI 2412 ~2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 Power Level: GSM 1900: level 0		GSM 850	824.2 ~ 848.8	
UMTS Band V 826.4 ~ 846.6 Bluetooth 2402 ~ 2480 WIFI 2412 ~ 2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 Fower Level: GSM 1900: level 0		GSM 1900	1850.2 ~ 1909.8	
Bluetooth 2402 ~2480 WIFI 2412 ~2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 Power Level: GSM 1900: level 0	Test Frequency Range(s):	UMTS Band II	1852.4 ~ 1907.6	
WIFI 2412 ~2462 GSM 850: 4 GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 GSM 1900: level 0		UMTS Band V	826.4 ~ 846.6	
GSM 850: 4		Bluetooth	2402 ~2480	
GSM 1900: 1 UMTS Band II/V: 3 GSM 850: level 5 GSM 1900: level 0		WIFI	2412 ~2462	
UMTS Band II/V: 3 GSM 850: level 5 Power Level: GSM 1900: level 0		GSM 850: 4		
GSM 850: level 5 Power Level: GSM 1900: level 0	Power Class:	GSM 1900: 1		
Power Level: GSM 1900: level 0		UMTS Band II/V: 3		
		GSM 850: level 5		
UMTS Band II/V: all up bits	Power Level:	GSM 1900: level 0		
		UMTS Band II/V: all up bits		


Report No. RHA1406-0059SAR

Page 8 of 172

Auxiliary Equipment Details

Name	Model	Manufacturer	S/N
Battery	HB3080G1EBC	Huawei Technologies Co., Ltd.	1

1.6. EUT Antenna Locations

Report No. RHA1406-0059SAR

Page 9 of 172

1.7. The Maximum Reported SAR_{1g}

Head SAR Configuration

		Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
Mode	Test Position		Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
GSM 850	Left/Cheek	190/836.6	0.525	0.603
GSM 1900	Right/Cheek	661/1880	0.383	0.434
UMTS Band II	Right/Cheek	9400/1880	0.416	0.541
UMTS Band V	Right/Cheek	4183/836.6	0.467	0.580
WiFi(802.11b)	Left/Cheek	6/2437	0.000815	0.00087

Body SAR Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg	
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
2Txslots GPRS 850	Test Position 1/ Back side	251/836.6	0.757	0.938
2Txslots EGPRS 1900	Test Position 1/ Back side	661/1880	0.702	0.791
UMTS Band II	Test Position 1/ Back side	9538/1907.6	0.883	1.327
UMTS Band V	Test Position 1/ Back side	4233/846.6	0.743	0.923
WiFi(802.11b)	Test Position 1/ Back side	11/2462	1.2	1.277

1.8. Maximum Conducted Power of Each Tested Mode

Mode		Maximum Burst Conducted Power (dBm)	Maximum Average Power (dBm)
	GSM	32.90	23.87
GSM 850	GPRS(GMSK), 2 Txslots	30.99	24.97
	EGPRS(GMSK), 2 Txslots	30.89	24.87
	GSM	29.99	20.96
GSM 1900	GPRS(GMSK), 2 Txslots	28.64	22.62
	EGPRS(GMSK), 2 Txslots	28.68	22.66

Mode	Maximum Conducted Power (dBm)
UMTS Band II	22.95
UMTS Band V	23.20
WiFi(802.11b)	13.51

Note: The detail Power refers to Table 13 (Conducted Power Measurement Results).

1.9. Test Date

The test performed from June 17, 2014 to June 20, 2014.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

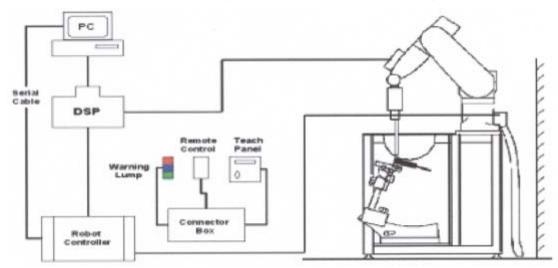


Figure 1. SAR Lab Test Measurement Set-up

Report No. RHA1406-0059SAR Page 12 of 172

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

> Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

> Linearity: ± 0.2 dB (30 MHz to 6 GHz)

± 0.3 dB in HSL (rotation around probe axis) Directivity

± 0.5 dB in tissue material (rotation normal

to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

> diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers:

1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

2.EX3DV4 E-field **Figure**

Probe

Figure 3. EX3DV4 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

Report No. RHA1406-0059SAR

2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG do simetric probes and dipoles.

Shell Thickness 2±0.2 mm

Filling Volume Approx. 30 liters

Dimensions 190×600×0 mm (H x L x W)

Page 14 of 172

Figure 4.ELI4 Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Report No. RHA1406-0059SAR

Page 15 of 172

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) (∆x _{area} , ∆y _{area})	Maximum Zoom Scan Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) ∆z _{zoom} (n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

Report No. RHA1406-0059SAR

Page 18 of 172

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or

[Siemens/m]

= equivalent tissue density in

g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance $< 0.5 \Omega$		
Ambient noise is checked and found very low and in compliance with requirement of standards.		

Reflection of surrounding objects is minimized and in compliance with requirement of standards.

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz				
Water	41.45				
Sugar	56				
Salt	1.45				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9				

MIXTURE%	FREQUENCY(Brain) 1900MHz				
Water	55.242				
Glycol monobutyl	44.452				
Salt	0.306				
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40				
Target Value	f=1900MHz ε=40.0 σ=1.40				

MIXTURE%	FREQUENCY(Brain) 2450MHz				
Water	62.7				
Glycol	36.8				
Salt	0.5				
Dielectric Parameters Target Value	f=2450MHz ε=39.20 σ=1.80				

Table 4: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY (Body) 1900MHz			
Water	69.91			
Glycol monobutyl	29.96			
Salt	0.13			
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52			

MIXTURE%	FREQUENCY(Body) 2450MHz				
Water	73.2				
Glycol	26.7				
Salt	0.1				
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95				

Report No. RHA1406-0059SAR Page 21 of 172

4.2. Tissue-equivalent Liquid Properties

Table 5: Dielectric Performance of Tissue Simulating Liquid

			Measured Dielectric		Target Dielectric		Limit	
Eroguanav	Test Date	Temp	Para	Parameters		Parameters		า ±5%)
Frequency	Test Date	${\mathfrak C}$		a(c/m)		-1-1	Dev	Dev
			ε _r	σ(s/m)	٤r	σ(s/m)	ε _r (%)	σ(%)
835MHz	2014-6-17	21.5	41.3	0.92	41.50	0.90	-0.48	2.22
(head)	2014-0-17	21.5	41.3	0.92	41.50	0.90	-0.40	2.22
1900MHz	2014-6-17	21.5	39.6	1.43	40.00	1.40	-1.00	2.14
(head)	2014-0-17	21.5	39.0	1.43	40.00	1.40	-1.00	2.14
2450MHz	2014-6-20	21.5	39.1	1.80	39.20	1.80	-0.26	0.00
(head)	2014-6-20	21.5	39.1	1.00	39.20	1.00	-0.20	0.00
835MHz	2014-6-18	21.5	55.8	0.09	EE 20	0.97	1.09	1.03
(body)	2014-0-10	21.5	33.6	0.98	55.20	0.97	1.09	1.03
1900MHz	2014-6-19	21.5	52.6	1.51	53.30	1.52	-1.31	-0.66
(body)	2014-0-19	21.3	32.0	1.01	ეე.ეე	1.32	-1.31	-0.00
2450MHz	2014-6-20	21.5	52.1	1.99	52.70	1.95	-1.14	2.05
(body)	2014-0-20	21.5	52.1	1.99	32.70	1.95	-1.14	2.05

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

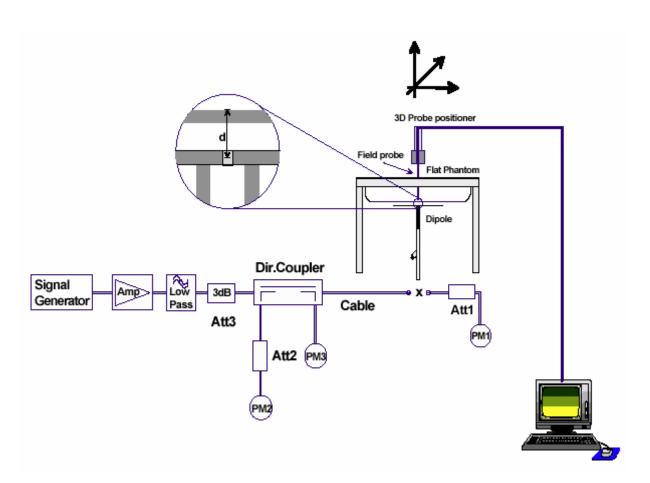


Figure 5. System Check Set-up

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D835V2 SN: 4d020								
Head Liquid								
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)					
8/26/2011	-27.7	/	52.9 Ω-3.1 jΩ					
8/25/2012	-29.1	5.0%	55.0 Ω-2.9 jΩ					
8/24/2013	-26.6	4.1%	55.3 Ω-3.2 jΩ					
	Body Liq	uid						
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω)							
8/26/2011	-25.1	1	48.7 Ω-5.4 jΩ					
8/25/2012	-24.3	3.2%	50.6 Ω-4.7 jΩ					
8/24/2013	-24.7	1.6%	51.1 Ω-4.5 jΩ					

Dipole D1900V2 SN: 5d060								
Head Liquid								
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)					
8/31/2011	-22.3	/	52.6 Ω+7.5 jΩ					
8/30/2012	-21.7	2.7%	51.4 Ω+7.9 jΩ					
8/29/2013	-21.4	4.2%	50.5 Ω+ 8.1 jΩ					
	Body Liq	uid						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)					
8/31/2011	-21.3	/	47.3 Ω+ 7.9 jΩ					
8/30/2012	-20.9	1.9%	45.9 Ω+ 8.2 jΩ					
8/29/2013	-20.4	4.4%	44.8 Ω+ 8.4 jΩ					

Dipole D2450V2 SN: 786								
Head Liquid								
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)					
8/29/2011	-25.5	1	55.0 Ω+ 2.4 jΩ					
8/28/2012	-26.8	5.1%	56.5 Ω+ 2.1 jΩ					
8/27/2013	-26.4	3.5%	56.9 Ω+ 2 jΩ					
	Body Liqu	id						
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)					
8/29/2011	-29.0	/	50.4 Ω+ 3.5 jΩ					
8/28/2012	-29.9	3.1%	52.1 Ω+ 2.9 jΩ					
8/27/2013	-28.2	2.8%	52.7 Ω+ 2.8 jΩ					

5.2. System Check Results

Table 6: System Check in Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		ε _r	σ(s/m)		(W/kg)		Deviation)
835MHz	2014-6-17	41.3	0.92	2.44	9.76	9.34	4.50%
1900MHz	2014-6-17	39.6	1.43	9.48	37.92	40.30	-5.91%
2450MHz	2014-6-20	39.1	1.80	13.70	54.8	53.80	1.86%

Note: 1. The graph results see ANNEX B.

Table 7: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		ε _r	σ(s/m)		(W/kg)		Deviation)
835MHz	2014-6-18	55.8	0.98	2.52	10.08	9.46	6.55%
1900MHz	2014-6-19	52.6	1.51	9.82	39.28	41.70	-5.80%
2450MHz	2014-6-20	52.1	1.99	13.20	52.8	51.70	2.13%

Note: 1. The graph results see ANNEX B.

^{2.} Target Values used derive from the calibration certificate

^{2.} Target Values used derive from the calibration certificate

Report No. RHA1406-0059SAR

Page 25 of 172

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Configuration

6.2.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. Since the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

GSM 850 GPRS (GMSK):

or to comon,	
Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

Report No. RHA1406-0059SAR

Page 26 of 172

EGPRS(8PSK):

Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

EGPRS(GMSK):

Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

GSM 1900

GPRS (GMSK):

Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

EGPRS(8PSK):

Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

EGPRS(GMSK):

Number of timeslots in	reduction of maximum
uplink assignment	output power, (dB)
1	0
2	2
3	4
4	6

Page 27 of 172

Report No. RHA1406-0059SAR

6.2.2. UMTS Test Configuration

6.2.2.1. Output power Verification

Maximum output power is verified on the High, Middle and Low channel according to the procedures described in section 5.2 of 3GPP TS 34. 121, using the appropriate RMC or AMR with TPC(transmit power control) set to all up bits for WCDMA/HSDPA or applying the required inner loop power control procedures to the maximum output power while HSUPA is active. Results for all applicable physical channel configuration (DPCCH, DPDCH_n and spreading codes, HSDPA, HSPA) should be tabulated in the SAR report. All configuration that are not supported by the DUT or can not be measured due to technical or equipment limitations should be clearly identified

6.2.2.2. Head SAR Measurements

SAR for head exposure configurations in voice mode is measured using a 12.2kbps RMC with TPC bits configured to all up bits. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2kbps AMR with a 3.4 kbps SRB(Signaling radio bearer) using the exposure configuration that results in the highest SAR in 12.2kbps RMC for that RF channel.

6.2.2.3. Body SAR Measurements

SAR for body exposure configurations in voice and data modes is measured using 12.2kbps RMC with TPC bits configured to all up bits. SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average output of each RF channel, for each spreading code and DPDCH_n configuration, are less than 1/4 dB higher than those measured in 12.2kbps RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 kbps RMC. When more than 2 DPDCH_n are supported by the DUT, it may be necessary to configure additional DPDCH_n for a DUT using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

6.2.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors($\beta c, \beta d$), and HS-DPCCH power offset

parameters(\triangle ACK, \triangle NACK, \triangle CQI)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 8: Subtests for UMTS Release 5 HSDPA

Sub-set β _c		β_{c} β_{d}		0.10	eta_{hs}	CM(dB)	MDD(4D)	
Sub-set	Sub-set β _c		(SF)	β_c/β_d	(note 1, note 2)	(note 3)	MPR(dB)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	2 12/15 1 (note 4) (n		64	12/15	24/15	1.0	0.0	
2				(note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \Leftrightarrow β_{hs} =30/15* β_c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs} =30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQl} = 7 (A_{hs} =24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

Table 9: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (<i>N_{INF}</i>)	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	1	0.67
Number of Physical Channel Codes	Codes	5
Modulation	1	QPSK

Report No. RHA1406-0059SAR Page 29 of 172

6.2.3.1. DC-HSDPA Test Configuration

body SAR is also measured for DC-HSDPA when the maximum average output of each RF channel with DC-HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for DC-HSDPA is measured using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

Configure DC-HSDPA parameters for base station

- a) Set up the HSDPA RB Test Mode Parameters
 - RB Test HS-DSCH Configuration Type = User Defined
 - RB Test User Defined HS-DSCH MAC entity = MAC-ehs (Note 1)
 - RB Test User Defined HARQ Processes = 6 (Note 2)
 - RB Test User Defined UE IR Buffer Allocation = Implicit
 - RB Test User Defined DC-HSDPA State = On
 - RB Test Mode DC-HSDPA DPCH Loopback State = On
- b) Set up the Serving Cell Parameters
 - RB Test User Defined 64QAM State =On
 - RB Test User Defined Active HS-PDSCHs =15
 - RB Test User Def Transport Block Size Index =62
 - RB Test User Defined Modulation Type =64QAM
 - RB Test User Defined Inter-TTI Interval =1
- c) Set up the Secondary Serving Cell Parameters
 - RB Test User Def Secondary Cell 64QAM State =On
 - RBTM User Def Sec Cell Active HS-PDSCHs = 15
 - RBTM User Def Sec Cell TB Size Index = 62
 - RBTM User Def Sec Cell Modulation Type =64QAM
 - RBTM User Def Sec Cell Inter-TTI Interval = 1
- d) Set the HSDPA Conn DL Channel Levels
 - HSDPA Cell 1 Connected CPICH Level = -8
 - HSDPA Cell 1 Connected P-CCPCH/SCH Level = -20
 - HSDPA Cell 1 Connected PICH Level = off
 - HSDPA Cell 1 Connected DPCH Level = -30
 - HSDPA Cell 1 Connected HS-PDSCH Level (Sum) = -1 dBm
 - HSDPA Cell 1 Connected HS-SCCH 1 to 4 Level = -20,-20,off,off
 - Secondary Cell HSDPA Conn CPICH Level = -8
 - Secondary Cell HSDPA Conn PCCPCH/SCH Level = -20
 - Secondary Cell HSDPA Conn PICH Level = off
 - Secondary Cell HSDPA Conn HS-PDSCHs Lvl (Sum) = -1 dBm
 - Secondary Cell HSDPA Conn HS-SCCH 1 to 4 Level = -20,-20,off,off

Report No. RHA1406-0059SAR Page 30 of 172

Table 10: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400	1		
Category 5	5	1	7298	57600	ODCK 4COAM		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200		Not	Not applicable (dual cell operation not supported)
Category 8	10	1	14411	134400		applicable (MIMO not	
Category 9	15	1	20251	172800			
Category 10	15	1	27952	172800	1	supported)	
Category 11	5	2	3630	14400	0.000		
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK,		
Category 14	15	1	42192	259200	16QAM, 64QAM		
Category 15	15	1	23370	345600	ODCK 4	20111	
Category 16	15	1	27952	345600	QPSK, 16	MADO	
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	supported)
NOTE 2		1881	23370	345600	-	QPSK, 16QAM	
Category 18	15	1	42192	259200	QPSK, 16QAM, 64QAM	-	
NOTE 3	1.4.7.77		27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 400A	M CAOAM	
Category 20	15	1	42192	518400	QPSK, 16QAI	WI, 04QAM	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-	- 1	QPSK,
Category 24	15	1	42192	518400		(6)	16QAM, 64QAM

6.2.4. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E- DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

Table 11: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	β_{c}	β_{d}	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	$eta_{ m ec}$	$eta_{\sf ed}$	β _{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1} 47/15$ $\beta_{ed2} 47/15$	1 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to βc = 14/15 and βd = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: Bed can not be set directly; it is set by Absolute Grant Value.

Table 12: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
	2	8	2	4	2798	4.4500
2	2	4	10	4	14484	1.4592
3	2	4 10 4		14484	1.4592	
_	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10	2 3 7 2 & 2 3 7 4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

Report No. RHA1406-0059SAR Page 32 of 172

6.2.5. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 7 for 802.11 b mode by software, This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RHA1406-0059SAR Page 33 of 172

6.4. Test Positions

6.4.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.4.2. Body Configuration

The overall diagonal dimension of the display section of a tablet is 24 cm > 20 cm, Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. SAR evaluation for the front surface of tablet display screens are generally not necessary. The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

Per KDB 647484, when the over diagonal dimension of the device is > 20.0 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Extremity 10-g SAR is also not required for the front (top) surface of large form factor full size tablets. The more conservative tablet SAR results can be used to support the 10-g extremity SAR for phablet mode.

- Test Position 1: The back surface of the EUT towards to the bottom of the flat phantom. (ANNEX I Picture 13).
- Test Position 2: The left edge of the EUT towards the bottom of the flat phantom. (ANNEX I Picture 14).
- Test Position 3: The right edge of the EUT towards the bottom of the flat phantom. (ANNEX I Picture 15).
- Test Position 4: The top edge of the EUT towards the bottom of the flat phantom. (ANNEX I Picture 16).
- Test Position 5: The bottom edge of the EUT towards the bottom of the flat phantom. . (ANNEX I Picture 17).

Report No. RHA1406-0059SAR

Page 34 of 172

6.4.3. SAR test reduction and exclusion guidance

(1) The SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) *√ Frequency (GHz) ≤3.0 (min. test separation distance, mm)

- (2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:
 - a) at 100 MHz to 1500 MHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f _(MHz)/150)] mW

b) at > 1500 MHz and ≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW

Report No. RHA1406-0059SAR

Page 35 of 172

Band	Test Position	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR
	Head	850	24.47	5	51.6	3.0	Yes
	Back side	850	25.48	5	65.1	3.0	Yes
GSM	Left Edge	850	25.48	197.23	25.48	29.9	No
850	Right Edge	850	25.48	5	65.1	3.0	Yes
850	Top Edge	850	25.48	47.8	6.8	3.0	Yes
	Bottom Edge	850	25.48	7	46.5	3.0	Yes
	Head	1900	21.47	5	38.7	3.0	Yes
	Back side	1900	22.98	5	54.8	3.0	Yes
GSM	Left Edge	1900	22.98	197.23	22.98	32	No
1900	Right Edge	1900	22.98	5	54.8	3.0	Yes
	Top Edge	1900	22.98	47.8	5.7	3.0	Yes
	Bottom Edge	1900	22.98	7	39.1	3.0	Yes
	Head	1900	24	5	69.2	3.0	Yes
	Back side	1900	24	5	69.2	3.0	Yes
WCDMA	Left Edge	1900	24	197.23	24	32	No
II	Right Edge	1900	24	5	69.2	3.0	Yes
	Top Edge	1900	24	47.8	7.2	3.0	Yes
	Bottom Edge	1900	24	7	49.5	3.0	Yes
	Head	850	24	5	46.3	3.0	Yes
	Back side	850	24	5	46.3	3.0	Yes
WCDMA	Left Edge	850	24	197.23	24	29.9	No
V	Right Edge	850	24	5	46.3	3.0	Yes
	Top Edge	850	24	47.8	4.8	3.0	Yes
	Bottom Edge	850	24	7	33.1	3.0	Yes
	Head	2450	14	5	7.9	3.0	Yes
	Back side	2450	14	5	7.9	3.0	Yes
000 445	Left Edge	2450	14	5	7.9	3.0	Yes
802.11b	Right Edge	2450	14	202.6	14	32.1	No
	Top Edge	2450	14	30	1.3	3.0	No
	Bottom Edge	2450	14	75.7	14	25.5	No
	Head	2450	1.5	5	0.4	3.0	No
	Back side	2450	1.5	5	0.4	3.0	No
DT	Left Edge	2450	1.5	5	0.4	3.0	No
BT	Right Edge	2450	1.5	202.6	1.5	32.1	No
	Top Edge	2450	1.5	30	0.1	3.0	No
	Bottom Edge	2450	1.5	75.7	1.5	25.5	No

Report No. RHA1406-0059SAR Page 36 of 172

7. Test Results

7.1. Conducted Power Results

Table 13: Conducted Power Measurement Results

GSM 850		Burst Conducted Power(dBm)			1	Average power(dBm)		
		Channel/Frequency(MHz)				Channel/Frequency(MHz)		
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
GSM		32.7	32.9	32.7	-9.03dB	23.67	23.87	23.67
	1Txslot	32.61	32.71	32.53	-9.03dB	23.58	23.68	23.5
GPRS	2Txslots	30.9	30.99	30.57	-6.02dB	24.88	24.97	24.55
(GMSK)	3Txslots	28.8	28.78	28.43	-4.26dB	24.54	24.52	24.17
	4Txslots	26.75	26.72	26.55	-3.01dB	23.74	23.71	23.54
EGPRS (GMSK)	1Txslot	32.63	32.75	32.56	-9.03dB	23.6	23.72	23.53
	2Txslots	30.89	30.89	30.52	-6.02dB	24.87	24.87	24.5
	3Txslots	28.76	28.8	28.52	-4.26dB	24.5	24.54	24.26
	4Txslots	26.81	26.53	26.51	-3.01dB	23.8	23.52	23.5
EGPRS (8PSK)	1Txslot	26.7	26.63	26.45	-9.03dB	17.67	17.6	17.42
	2Txslots	25.16	24.96	24.82	-6.02dB	19.14	18.94	18.8
	3Txslots	22.93	22.91	22.71	-4.26dB	18.67	18.65	18.45
	4Txslots	21.81	21.8	21.5	-3.01dB	18.8	18.79	18.49
GSM 1900		Burst Conducted Power(dBm)				Average power(dBm)		
		Channel/Frequency(MHz)			1	Channel/Frequency(MHz)		
		512/1850.2	661/1880	810/1909.8		512/1850.2	661/1880	810/1909.8
GSM		29.88	29.96	29.99	-9.03dB	20.85	20.93	20.96
GPRS (GMSK)	1Txslot	29.79	30	29.88	-9.03dB	20.76	20.97	20.85
	2Txslots	28.64	28.6	28.33	-6.02dB	22.62	22.58	22.31
	3Txslots	26.72	26.54	26.22	-4.26dB	22.46	22.28	21.96
								24.44
	4Txslots	24.67	24.38	24.15	-3.01dB	21.66	21.37	21.14
	4Txslots 1Txslot	24.67 29.92	24.38 29.95	24.15 30	-3.01dB -9.03dB	21.66 20.89	21.37	20.97
EGPRS								
EGPRS (GMSK)	1Txslot	29.92	29.95	30	-9.03dB	20.89	20.92	20.97
	1Txslot 2Txslots	29.92 28.68	29.95 28.48	30 28.42	-9.03dB -6.02dB	20.89 22.66	20.92 22.46	20.97 22.4
	1Txslot 2Txslots 3Txslots	29.92 28.68 26.71	29.95 28.48 26.35	30 28.42 26.33	-9.03dB -6.02dB -4.26dB	20.89 22.66 22.45	20.92 22.46 22.09	20.97 22.4 22.07
	1Txslot 2Txslots 3Txslots 4Txslots	29.92 28.68 26.71 24.58	29.95 28.48 26.35 24.26	30 28.42 26.33 24.22	-9.03dB -6.02dB -4.26dB -3.01dB	20.89 22.66 22.45 21.57	20.92 22.46 22.09 21.25	20.97 22.4 22.07 21.21
(GMSK)	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	29.92 28.68 26.71 24.58 25.67	29.95 28.48 26.35 24.26 25.4	30 28.42 26.33 24.22 25.48	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB	20.89 22.66 22.45 21.57 16.64	20.92 22.46 22.09 21.25 16.37	20.97 22.4 22.07 21.21 16.45

Note:

To average the power, the division factor is as follows:

¹⁾ Division Factors

Report No. RHA1406-0059SAR Page 37 of 172

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

		C	Conducted Power (dBr	n)	
UMTS	Band II	(Channel/Frequency(MH:	z)	
		9262/1852.4	9400/1880	9538/1907.6	
	12.2kbps RMC	22.95	22.86	22.23	
DMO	64kbps RMC	22.94	22.84	22.21	
RMC	144kbps RMC	22.91	22.82	22.2	
	384kbps RMC	22.9	22.83	22.2	
	Sub - Test 1	21.94	21.82	21.3	
LICDDA	Sub - Test 2	22.06	21.86	21.28	
HSDPA	Sub - Test 3	21.62	21.36	20.88	
	Sub - Test 4	21.58	21.39	20.9	
	Sub - Test 1	21.33	21.53	20.7	
	Sub - Test 2	20.63	20.74	20.29	
HSUPA	Sub - Test 3	21.15	21.06	20.4	
	Sub - Test 4	20.6	20.7	20.25	
	Sub - Test 5	21.31	21.51	20.68	
	Sub - Test 1	21.82	21.7	21.18	
DC-HSDPA	Sub - Test 2	21.94	21.74	21.16	
DC-HSDPA	Sub - Test 3	21.5	21.24	20.76	
	Sub - Test 4	21.46	21.27	20.78	
		C	onducted Power (dBr	n)	
UMTS	Band V	(Channel/Frequency(MH:	z)	
		4132/826.4	4183/836.6	4233/846.6	
	12.2kbps RMC	23.08	23.06	23.2	
RMC	64kbps RMC	23.05	23.04	23.16	
IZIVIO	144kbps RMC	23.06	23.05	23.18	
	384kbps RMC	23.04	23.02	23.15	
	Sub - Test 1	21.88	21.72	21.89	
HSDPA	Sub - Test 2	21.9	21.8	21.76	
IIODEA	Sub - Test 3	21.53	21.3	21.43	
	Sub - Test 4	21.5	21.3	21.28	
HSUPA	Sub - Test 1	21.75	21.59	21.06	

Report No. RHA1406-0059SAR Page 38 of 172

	Sub - Test 2	20.86	20.75	20.44
	Sub - Test 3	21.3	21.28	21.22
	Sub - Test 4	20.88	20.78	20.53
	Sub - Test 5	21.64	21.61	21.02
	Sub - Test 1	21.76	21.6	21.77
DC-HSDPA	Sub - Test 2	21.78	21.68	21.64
DC-HSDPA	Sub - Test 3	21.41	21.18	21.31
	Sub - Test 4	21.38	21.18	21.16

The average output power of BT antenna is as following:

	Conducted Power (dBm)						
ВТ	Channel/Frequency(MHz)						
	Ch 0/2402 MHz	Ch 39/2441 MHz	Ch 78/2480 MHz				
GFSK	0.08	0.07	0.09				

TA Technology (Shanghai) Co., Ltd. Test Report Report No. RHA1406-0059SAR

The average output power of WIFI antenna is as following:

	Channel/	Data rate	AV 5 (17)
Mode	Frequency(MHz)	(Mbps)	AV Power (dBm)
		1	13.08
	4/0440	2	13.01
	1/2412	5.5	12.97
		11	13.22
		1	13.27
000 445	0/0407	2	13.13
802.11b	6/2437	5.5	13.51
		11	13.12
		1	12.94
	44/0400	2	13.05
	11/2462	5.5	13.24
		11	12.91
		6	13.17
		9	12.95
		12	13.04
	4/0440	18	12.75
	1/2412	24	12.62
		36	13.21
		48	13.01
		54	12.94
		6	12.78
		9	12.83
		12	12.87
000 44 ~	0/0407	18	12.52
802.11g	6/2437	24	12.74
		36	12.85
		48	12.71
		54	12.69
		6	12.57
		9	12.48
		12	12.17
	11/2462	18	11.93
	11/2462	24	12.02
		36	12.18
		48	12.02
		54	11.96
		MCS0	10.94
		MCS1	11.06
802.11n HT20	1/2412	MCS2	11.24
		MCS3	10.81
		MCS4	10.97

Page 39 of 172

Report No. RHA1406-0059SAR

Page 40 of 172

		MCS5	10.93
		MCS6	10.84
		MCS7	10.77
		MCS0	10.57
		MCS1	10.93
		MCS2	11.28
	0/0407	MCS3	11.16
	6/2437	MCS4	10.98
		MCS5	11.21
		MCS6	11.61
		MCS7	11.09
		MCS0	11.03
		MCS1	10.75
		MCS2	11.31
	44/0400	MCS3	10.85
	11/2462	MCS4	11.13
		MCS5	10.71
		MCS6	10.65
		MCS7	10.82

Report No. RHA1406-0059SAR Page 41 of 172

7.2. SAR Test Results

7.2.1. **GSM 850 (GSM/GPRS/EGPRS)**

Table 14: SAR Values [GSM/GSM 850 (GSM/GPRS/EGPRS)]

Total	Channel/	T :	Det	Maximum	Conducted	Drift ± 0.21dB	ı	imit SAF	R _{1g} 1.6 W/kç)	
Test Position	Frequency (MHz) Time Duty Allowed Power (dBm)			Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results			
Test Position of Head											
Left/Cheek	190/836.6	GSM	1:8.3	33.5	32.9	0.05	0.525	1.15	0.603	Figure 12	
Left/Tilt	190/836.6	GSM	1:8.3	33.5	32.9	-0.06	0.469	1.15	0.538	Figure 13	
Right/Cheek	190/836.6	GSM	1:8.3	33.5	32.9	0.01	0.513	1.15	0.589	Figure 14	
Right/Tilt	190/836.6	GSM	1:8.3	33.5	32.9	0.09	0.432	1.15	0.496	Figure 15	
			Test F	Position of I	Body (Distan	ce 0mm)					
	251/836.6	2Txslots	1:4.15	31.5	30.57	-0.05	0.757	1.24	0.938	Figure 16	
Test Position 1	190/836.6	2Txslots	1:4.15	31.5	30.99	-0.081	0.725	1.12	0.815	Figure 17	
	128/824.2	2Txslots	1:4.15	31.5	30.9	0.107	0.568	1.15	0.652	Figure18	
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 3	190/836.6	2Txslots	1:4.15	31.5	30.99	0.18	0.424	1.12	0.477	Figure 19	
Test Position 4	190/836.6	2Txslots	1:4.15	31.5	30.99	0.12	0.064	1.12	0.072	Figure20	
Test Position 5	190/836.6	2Txslots	1:4.15	31.5	30.99	0.025	0.090	1.12	0.101	Figure21	
		Worst (Case Pos	sition of Bo	dy with EGP	RS(Distanc	e 0mm)				
Test Position 1	251/836.6	2 Txslots	1:4.15	31.5	30.52	-0.053	0.729	1.25	0.914	Figure22	

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
- 5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Report No. RHA1406-0059SAR Page 42 of 172

7.2.2. GSM 1900 (GSM/GPRS/EGPRS)

Table 15: SAR Values [GSM 1900 (GSM/GPRS/EGPRS)]

Test	Channel/	Time	Duty	Maximum Allowed	Conducted	Drift ± 0.21dB	I	_imit SAF	R _{1g} 1.6 W/kզ)
Position	Frequency (MHz)	slot	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test Pos	ition of Head	ı				
Left/Cheek	661/1880	GSM	1:8.3	30.5	29.96	-0.05	0.339	1.13	0.384	Figure 23
Left/Tilt	661/1880	GSM	1:8.3	30.5	29.96	0.09	0.272	1.13	0.308	Figure 24
Right/Cheek	661/1880	GSM	1:8.3	30.5	29.96	0.12	0.383	1.13	0.434	Figure 25
Right/Tilt	661/1880	GSM	1:8.3	30.5	29.96	-0.01	0.271	1.13	0.307	Figure 26
			Test F	Position of I	Body (Distan	ce 0mm)				
Test Position 1	661/1880	2 Txslots	1:4.15	29	28.6	0.063	0.661	1.10	0.725	Figure 27
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 3	661/1880	2 Txslots	1:4.15	29	28.6	0.027	0.125	1.10	0.137	Figure 28
Test Position 4	661/1880	2 Txslots	1:4.15	29	28.6	0.024	0.007	1.10	0.007	Figure 29
Test Position 5	661/1880	2 Txslots	1:4.15	29	28.6	0.035	0.029	1.10	0.032	Figure 30
		Worst (Case Pos	sition of Bo	dy with EGP	RS(Distanc	e 0mm)			
Test Position 1	661/1880	2 Txslots	1:4.15	29	28.48	-0.045	0.702	1.13	0.791	Figure 31

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
- 5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Report No. RHA1406-0059SAR Page 43 of 172

7.2.3. UMTS Band II (WCDMA/HSDPA/HSUPA)

Table 16: SAR Values [UMTS Band II (WCDMA/HSDPA/HSUPA)]

_ ,	Channel/			Maximum	Conducted	Drift ± 0.21dB	ı	Limit SAR	_{1g} 1.6 W/kg			
Test Position	ition Frequency Type Cycle Power (dBm)		Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results					
				Test Posi	ition of Head							
Left/Cheek	9400/1880	RMC 12.2K	1:1	24	22.86	-0.01	0.361	1.30	0.469	Figure 32		
Left/Tilt	9400/1880	RMC 12.2K	1:1	24	22.86	-0.14	0.287	1.30	0.373	Figure 33		
Right/Cheek	9400/1880	RMC 12.2K	1:1	24	22.86	0.02	0.416	1.30	0.541	Figure 34		
Right/Tilt	9400/1880	RMC 12.2K	1:1	24	22.86	-0.11	0.302	1.30	0.393	Figure 35		
	Test Position of Body (Distance 0mm)											
	9538/1907.6	RMC 12.2K	1:1	24	22.23	0.022	0.883	1.50	1.327	Figure 36		
Test Position 1	9400/1880	RMC 12.2K	1:1	24	22.86	-0.160	0.783	1.30	1.018	Figure 37		
	9262/1852.4	RMC 12.2K	1:1	24	22.95	0.053	0.852	1.27	1.085	Figure38		
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Test Position 3	9400/1880	RMC 12.2K	1:1	24	22.86	-0.030	0.147	1.30	0.191	Figure 39		
Test Position 4	9400/1880	RMC 12.2K	1:1	24	22.86	0.116	0.035	1.30	0.045	Figure 40		
Test Position 5	9400/1880	RMC 12.2K	1:1	24	22.86	0.064	0.093	1.30	0.121	Figure 41		
	Worst Case Position of Body With Earphone (Distance 0mm)											
Test Position 1	9538/1907.6	RMC 12.2K	1:1	24	22.23	0.120	0.757	1.50	1.138	Figure 42		
		Worst Case	Position	on of SAR (1 st Repeated	SAR, Dista	nce 0mm)		•			
Test Position 1	9538/1907.6	RMC 12.2K	1:1	24	22.23	-0.034	0.873	1.50	1.312	Figure 43		
Note: 1 The value	e with blue color	is the maximi	ım SAR	Value of ear	ch test hand	l	1		1	<u>I</u>		

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WCDMA mode was tested under RMC 12.2kbps with HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level and the maximum measured SAR for 12.2kbps RMC was less than 75% SAR limit.
- 4. WCDMA mode was tested under RMC 12.2kbps with DC-HSDPA inactive per KDB Publication 941225 D02. DC-HSDPA SAR for body was not required since the average output power of the DC-HSDPA subtests was not more than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.
- 5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Report No. RHA1406-0059SAR Page 44 of 172

Table 17: SAR Measurement Variability Results[UMTS Band II (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	9538/1907.6	0.883	0.873	1.01	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RHA1406-0059SAR Page 45 of 172

7.2.4. UMTS Band V (WCDMA/HSDPA/HSUPA)

Table 18: SAR Values [UMTS Band V (WCDMA/HSDPA/HSUPA)]

_ ,	Channel/			Maximum	Conducted	Drift \pm 0.21dB	Limit SAR		_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test Pos	ition of Head					
Left/Cheek	4183/836.6	RMC 12.2K	1:1	24	23.06	0.02	0.458	1.24	0.569	Figure 44
Left/Tilt	4183/836.6	RMC 12.2K	1:1	24	23.06	-0.04	0.411	1.24	0.510	Figure 45
Right/Cheek	4183/836.6	RMC 12.2K	1:1	24	23.06	-0.04	0.467	1.24	0.580	Figure 46
Right/Tilt	4183/836.6	RMC 12.2K	1:1	24	23.06	-0.02	0.391	1.24	0.485	Figure 47
			Test P	osition of E	Body (Distan	ce 0mm)				
	4233/846.6	RMC 12.2K	1:1	24	23.06	0.183	0.743	1.24	0.923	Figure 48
Test Position 1	4183/836.6	RMC 12.2K	1:1	24	23.06	0.023	0.733	1.24	0.910	Figure 49
	4132/826.4	RMC 12.2K	1:1	24	23.06	0.094	0.639	1.24	0.793	Figure 50
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 3	4183/836.6	RMC 12.2K	1:1	24	23.06	-0.04	0.495	1.24	0.615	Figure 51
Test Position 4	4183/836.6	RMC 12.2K	1:1	24	23.06	0.18	0.055	1.24	0.069	Figure 52
Test Position 5	4183/836.6	RMC 12.2K	1:1	24	23.06	0.051	0.073	1.24	0.091	Figure 53

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WCDMA mode was tested under RMC 12.2kbps with HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level and the maximum measured SAR for 12.2kbps RMC was less than 75% SAR limit.
- 4. WCDMA mode was tested under RMC 12.2kbps with DC-HSDPA inactive per KDB Publication 941225 D02. DC-HSDPA SAR for body was not required since the average output power of the DC-HSDPA subtests was not more than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.
- 5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Report No. RHA1406-0059SAR Page 46 of 172

7.2.5. WIFI

Table 19: SAR Values (802.11b)

Total	Channel/		Duti	Maximum	Conducted	Drift \pm 0.21dB		Limit of S	SAR 1.6 W/I	kg		
Test Position	Frequency (MHz)	Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
Test Position of Head												
Left/Cheek	6/2437	DSSS	1:1	14	13.74	0.129	0.000815	1.06	0.00087	Figure 54		
Left/Tilt	6/2437	DSSS	1:1	14	13.74	0.014	0.000214	1.06	0.00023	Figure 55		
Right/Cheek	6/2437	DSSS	1:1	14	13.74	0.170	0.000222	1.06	0.00024	Figure 56		
Right/Tilt	6/2437	DSSS	1:1	14	13.74	0.024	0.000061	1.06	0.00007	Figure 57		
				Test Pos	sition of Bod	y (0mm)						
	11/2462	DSSS	1:1	14	13.73	0.030	1.2	1.06	1.277	Figure 58		
Test Position 1	6/2437	DSSS	1:1	14	13.74	0.070	1.01	1.06	1.072	Figure 59		
	1/2412	DSSS	1:1	14	13.72	0.190	0.845	1.07	0.901	Figure 60		
Test Position 2	6/2437	DSSS	1:1	14	13.74	-0.194	0.577	1.06	0.613	Figure 61		
Test Position 3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Test Position 5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
		Worst 0	Case Po	osition of S	AR (1 st Repe	ated SAR, D	istance 0m	m)				
Test Position 1	11/2462	DSSS	1:1	14	13.73	0.033	1.03	1.06	1.096	Figure 62		

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

Report No. RHA1406-0059SAR Page 47 of 172

Table 20: SAR Measurement Variability Results[WIFI (802.11b)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	11/2462	1.2	1.03	1.17	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RHA1406-0059SAR Page 48 of 172

7.3. Simultaneous Transmission Conditions

Air- Interface	Band (MHz)	Туре	SimultaneousTransmissions	Voice Over Digital Transport (Data)
	850	Voice	Yes WIFI or BT	NA
GSM	1900	Voice	Yes WIFI or BT	NA
	GPRS /EGPRS	Data	Yes WIFI or BT	NA
WCDMA	UMTS Band II	Voice	Yes WIFI or BT	NA
	UMTS Band V	Voice	Yes WIFI or BT	NA
	HSDPA/HSUP A/RMC/DC-HS DPA	Data	Yes WIFI or BT	NA
WIFI	2450	Data	Yes GSM,GPRS,EGPRS, WCDMA/HSDPA/HSUPA/RM C/DC-HSDPA	Yes
Bluetooth (BT)	2450	Data	Yes GSM,GPRS,EGPRS, WCDMA/HSDPA/HSUPA/RM C/ DC-HSDPA	NA

Report No. RHA1406-0059SAR Page 49 of 172

Estimated SAR

(1) for test separation distances ≤ 50 mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances ≤ 50 mm.

Estimated SAR=
$$\frac{\text{(max. power of channel, including tune-up tolerance, mW)}}{\text{(min. test separation distance, mm)}} \, \Box \, \frac{\sqrt{\text{f (GHz)}}}{7.5}$$

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth .	Head	2480	1.5	5	0.059
	Body	2480	1.5	5	0.059

(2) for test separation distances > 50 mm

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio =
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(min. test separation distance, mm)} < 0.04$$

Report No. RHA1406-0059SAR Page 50 of 172

GSM/UMTS&WIFI Mode

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band V	WIFI	MAX. Σ SAR _{1g}	peak location separation ratio
Left hand, Touch cheek	0.603	0.384	0.469	0.569	0.00087	0.60387	No
Left hand, Tilt 15 Degree	0.538	0.308	0.373	0.510	0.00023	0.53823	No
Right hand, Touch cheek	0.589	0.434	0.541	0.580	0.00024	0.58924	No
Right hand, Tilt 15 Degree	0.496	0.307	0.393	0.485	0.00007	0.49607	No
Test Position 1	0.938	0.791	1.327	0.923	1.277	2.604	Yes
Test Position 2	0.4	0.4	0.4	0.4	0.613	1.013	No
Test Position 3	0.477	0.137	0.191	0.615	0.4	1.015	No
Test Position 4	0.072	0.007	0.045	0.069	0.175	0.247	No
Test Position 5	0.101	0.032	0.121	0.091	0.4	0.521	No

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

MAX. $\Sigma SAR_{1g} = 2.604W/kg > 1.6 W/kg$, so the SAR to peak location separation ratio should be considered

Simultaneous Transmission for test position of Test Position 1

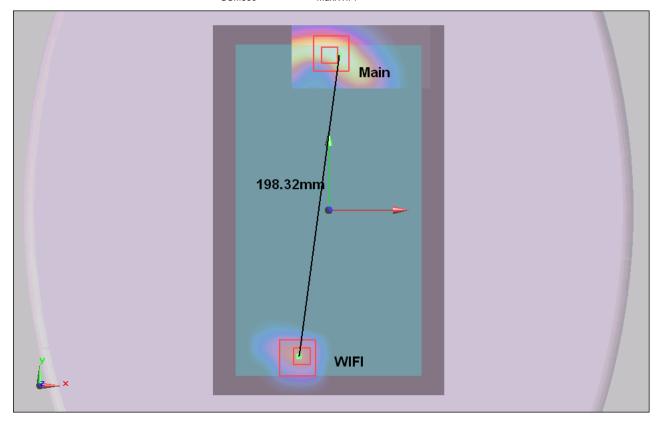
Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band V	WIFI	MAX. ΣSAR _{1g}	Peak location separation ratio
	0.938	/	1	/	1.277	2.215	Yes
Toot Desition 1	/	0.791	/	1	1.277	2.068	Yes
Test Position 1	/	/	1.327	1	1.277	2.604	Yes
	/	/	1	0.923	1.277	2.200	Yes

Note: 1.The value with blue color is the $SAR_{1g} > 1.6 W/kg$.

2. when the MAX. Σ SAR_{1g} potio>1.6 W/kg in a position, simultaneous transmission conditions of other bands also need consideration in this position.

^{2.} MAX. ΣSAR_{1g} = Reported $SAR_{Max.WIFI}$ + Reported $SAR_{Max.GSM/UMTS}$

Report No. RHA1406-0059SAR

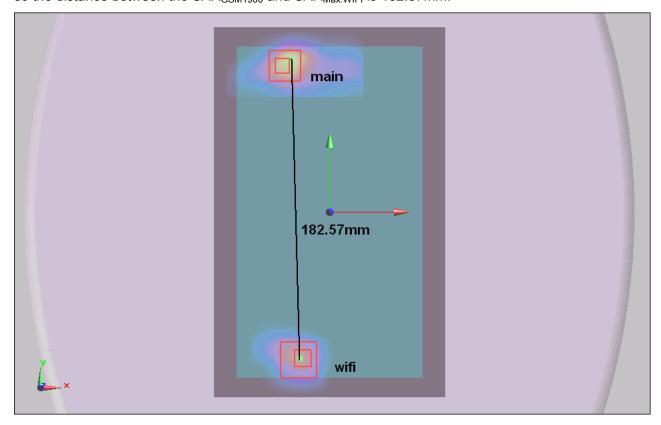

Page 51 of 172

Pair Simultaneous Transmission for GSM 850 and WIFI

The position SAR_{GSM850} is $(x_1 = 13.5, y_1 = 99, z_1 = -178.2)$,

The position SAR_{Max.WIFI} is $(x_2=-22.5, y_2=-96, z_2=-175.9)$

so the distance between the SAR_{GSM850} and $SAR_{Max.WIFI}$ is 198.31mm.


The peak location separation ratio is 0.017<0.04, so the Simultaneous transimition SAR with volum scan are not required for WIFI and Main antenna.

Pair Simultaneous Transmission for GSM 1900 and WIFI

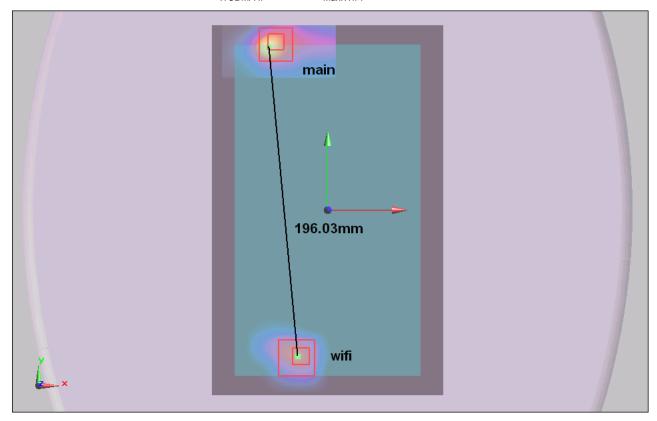
The position SAR_{GSM1900} is $(x_1 = -27, y_1 = 86.5, z_1 = -178.2)$,

The position SAR_{Max.WIFI} is $(x_2=-22.5, y_2=-96, z_2=-175.9)$

so the distance between the $SAR_{GSM1900}$ and $SAR_{Max.WIFI}$ is 182.57mm.

The peak location separation ratio is 0.016<0.04, so the Simultaneous transimition SAR with volum scan are not required for WIFI and Main antenna.

Report No. RHA1406-0059SAR

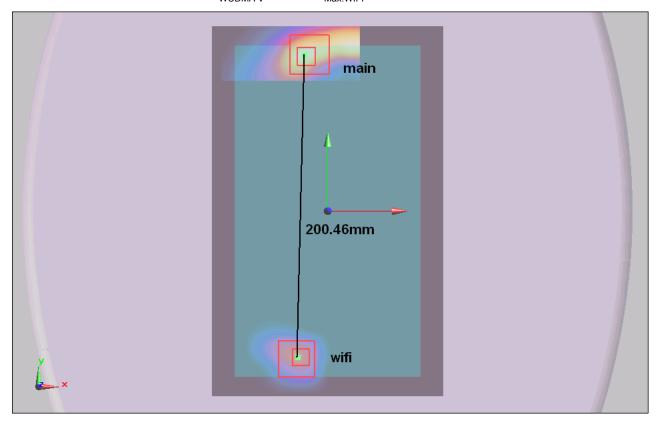

Page 53 of 172

Pair Simultaneous Transmission for WCDMA II and WIFI

The position SAR_{WCDMA II} is $(x_1 = -42, y_1 = 103.5, z_1 = -178.1)$,

The position SAR_{Max.WIFI} is $(x_2=-22.5, y_2=-96, z_2=-175.9)$

so the distance between the SAR $_{\text{WCDMA II}}$ and SAR $_{\text{Max.WIFI}}$ is 200.46mm.


The peak location separation ratio is 0.02<0.04, so the Simultaneous transimition SAR with volum scan are not required for WIFI and Main antenna.

Report No. RHA1406-0059SAR

Page 54 of 172

Pair Simultaneous Transmission for WCDMA V and WIFI

The position SAR_{WCDMA V} is (x_1 = -25.5, y_1 = 100, z_1 = -177.8), The position SAR_{Max.WIFI} is (x_2 =-22.5, y_2 =-96, z_2 =-175.9) so the distance between the SAR_{WCDMA V} and SAR_{Max.WIFI} is 196.03mm.

The peak location separation ratio is 0.017<0.04, so the Simultaneous transimition SAR with volum scan are not required for WIFI and Main antenna.

Report No. RHA1406-0059SAR

Page 55 of 172

GSM/UMTS&BT Mode

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band V	ВТ	MAX. Σ SAR _{1g}	peak location separation ratio
Left hand, Touch cheek	0.603	0.384	0.469	0.569	0.059	0.662	No
Left hand, Tilt 15 Degree	0.538	0.308	0.373	0.510	0.059	0.597	No
Right hand, Touch cheek	0.589	0.434	0.541	0.580	0.059	0.648	No
Right hand, Tilt 15 Degree	0.496	0.307	0.393	0.485	0.059	0.555	No
Test Position 1	0.938	0.791	1.327	0.923	0.059	1.386	No
Test Position 2	0.4	0.4	0.4	0.4	0.059	0.459	No
Test Position 3	0.477	0.137	0.191	0.615	0.4	1.015	No
Test Position 4	0.072	0.007	0.045	0.069	0.059	0.131	No
Test Position 5	0.101	0.032	0.121	0.091	0.4	0.521	No

Note: 1. The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

MAX. ΣSAR_{1g} = 1.386W/kg < 1.6 W/kg, so the Simultaneous SAR are not required for BT and GSM/UMTS antenna.

WIFI & BT Mode

BT and WIFI antenna cannot transmit simultaneously.

^{2.} MAX. ΣSAR_{1g} = Reported $SAR_{Max.WIFI}$ + Reported $SAR_{Max.GSM/UMTS}$

Report No. RHA1406-0059SAR Page 56 of 172

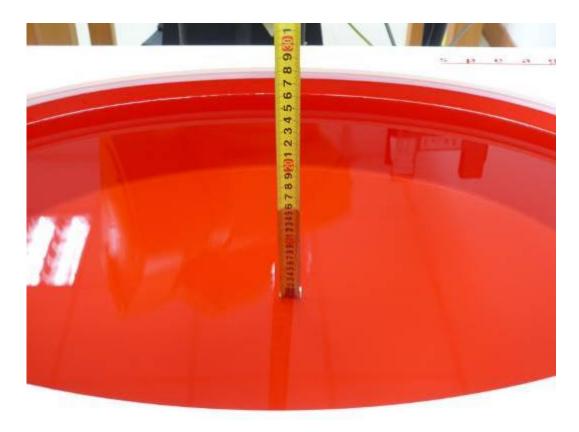
8. Measurement Uncertainty

The measured SAR were <1.5 W/kg for all frequency bands, therefore per KDB Publication 865664 D01v01r03, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports

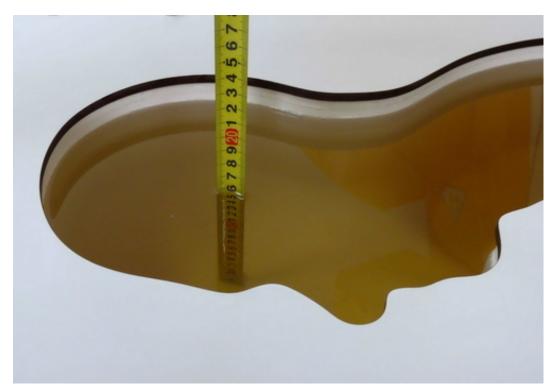
Report No. RHA1406-0059SAR Page 57 of 172

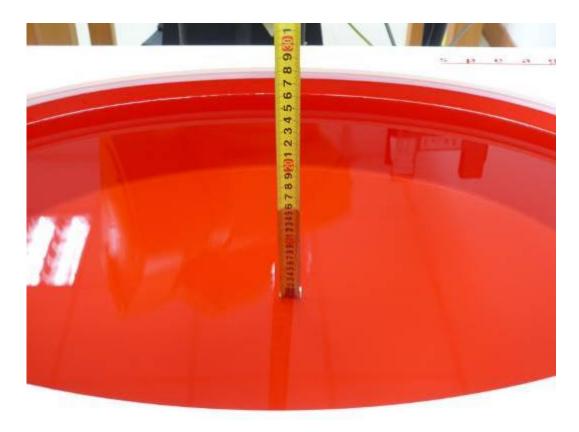
9. Main Test Instruments

Table 21: List of Main Instruments

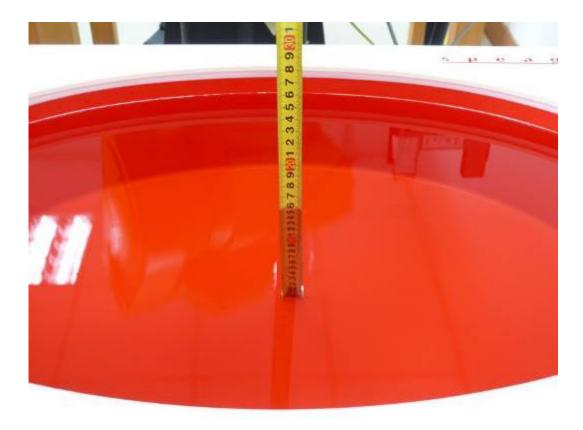

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 10, 2013	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration R	equested
03	Power meter	Agilent E4417A	GB41291714	March 9, 2014	One year
04	Power sensor	Agilent N8481H	MY50350004	September 23, 2013	One year
05	Power sensor	E9327A	US40441622	January 1, 2014	One year
06	Signal Generator	HP 8341B	2730A00804	September 9, 2013	One year
07	Dual directional coupler	778D-012	50519	March 24, 2014	One year
08	Dual directional coupler	777D	50146	March 24, 2014	One year
09	Amplifier	IXA-020	0401	No Calibration Requested	
10	BTS	E5515C	MY48360988	November 30, 2013	One year
11	E-field Probe	EX3DV4	3677	November 28, 2013	One year
12	DAE	DAE4	1317	January 16, 2014	One year
13	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Three years
14	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Three years
15	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Three years
16	Temperature Probe	JM222	AA1009129	March 13, 2014	One year
17	Hygrothermograph	WS-1	64591	September 26, 2013	One year

***END OF REPORT ***


ANNEX A: Test Layout


Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)


Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Picture 4: Liquid depth in the Flat Phantom (1900 MHz, 15.1cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Picture 6: Liquid depth in the Flat Phantom (2450 MHz, 15.3cm depth)

Picture 7: Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 6/17/2014

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; ε_r = 41.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.64 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 2.64 mW/g

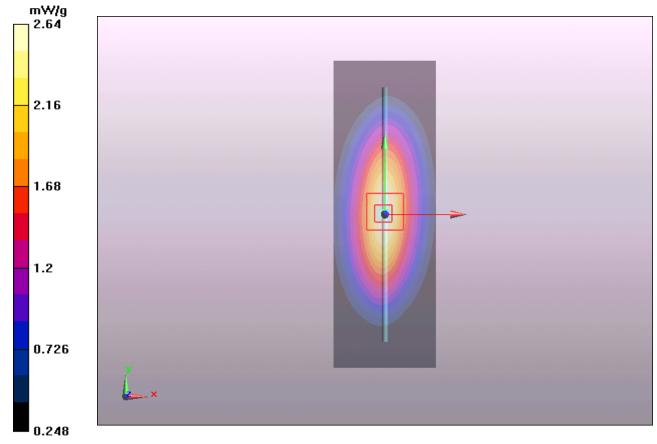


Figure 6 System Performance Check 835MHz 250mW

Page 63 of 172

Report No. RHA1406-0059SAR

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 6/18/2014

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ε_r = 55.8; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.73 mW/g

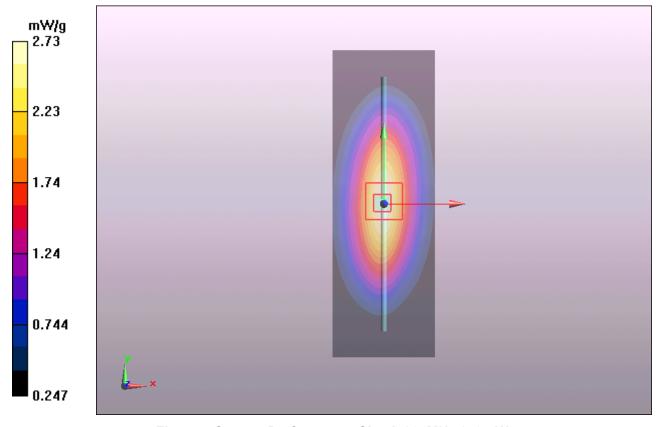


Figure 7 System Performance Check 835MHz 250mW

Report No. RHA1406-0059SAR Page 64 of 172

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 6/17/2014

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ε_r = 39.6; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.48 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

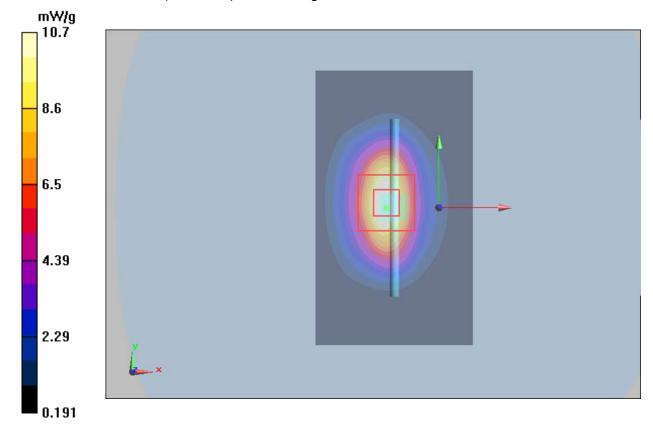


Figure 8 System Performance Check 1900MHz 250mW

Report No. RHA1406-0059SAR Page 65 of 172

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 6/19/2014

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11 mW/g

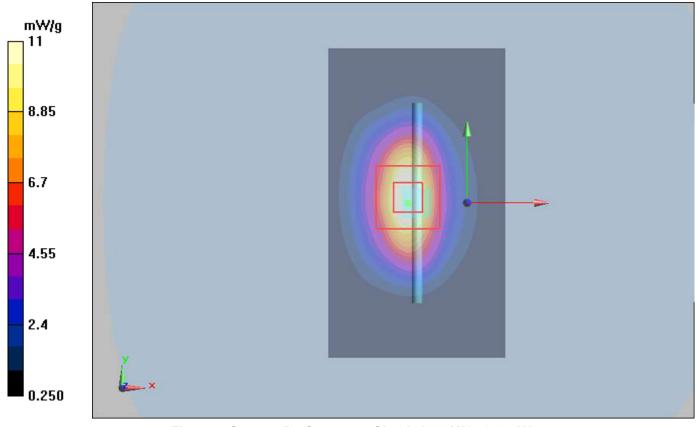


Figure 9 System Performance Check 1900MHz 250mW

Report No. RHA1406-0059SAR Page 66 of 172

System Performance Check at 2450 MHz Head TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 6/20/2014

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.80 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g Maximum value of SAR (measured) = 15.9 mW/g

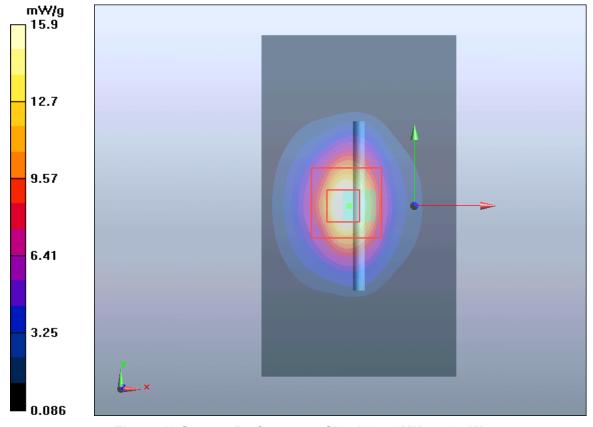


Figure 10 System Performance Check 2450MHz 250mW

Report No. RHA1406-0059SAR Page 67 of 172

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 6/20/2014

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI v4.0; Type: QDOVA001BB;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g

Maximum value of SAR (measured) = 15 mW/g

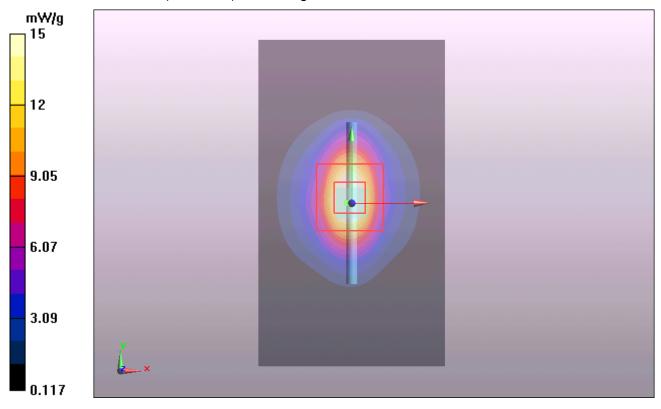


Figure 11 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

GSM 850 Left Cheek Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

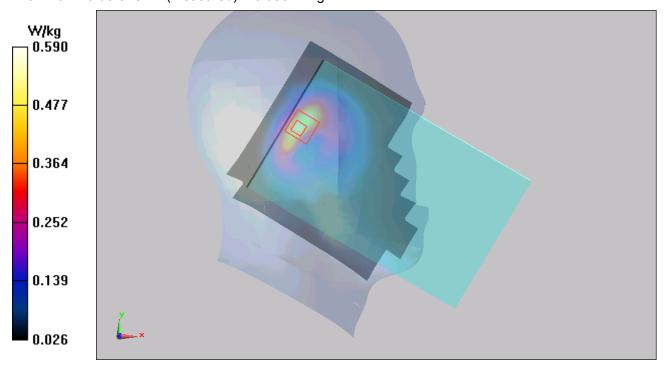
DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Left Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.512 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.705 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.862 W/kg

SAR(1 g) = 0.525 W/kg; SAR(10 g) = 0.308 W/kg Maximum value of SAR (measured) = 0.590 W/kg

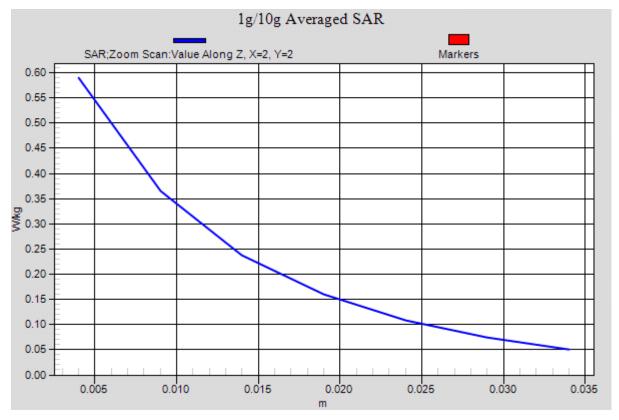


Figure 12 Left Hand Touch Cheek GSM 850 Channel 190

GSM 850 Left Tilt Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.458 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.308 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.469 W/kg; SAR(10 g) = 0.279 W/kg

Maximum value of SAR (measured) = 0.500 W/kg

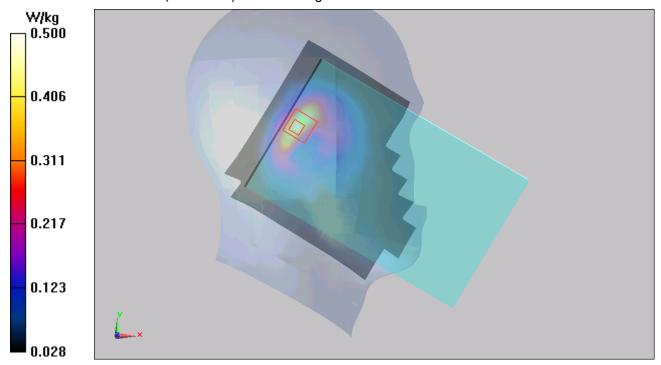


Figure 13 Left Hand Tilt 15° GSM 850 Channel 190

GSM 850 Right Cheek Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.544 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.121 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.513 W/kg; SAR(10 g) = 0.287 W/kg

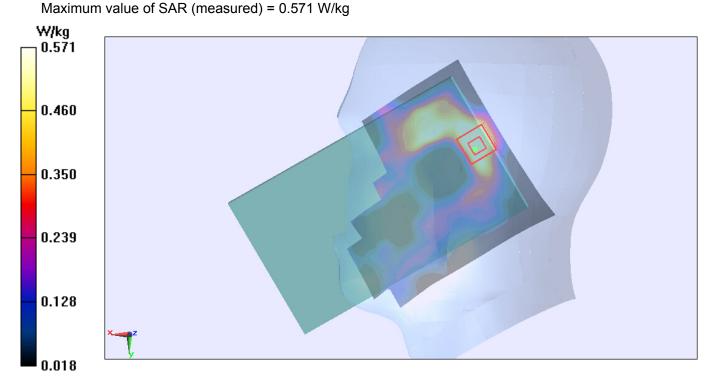


Figure 14 Right Hand Touch Cheek GSM 850 Channel 190

GSM 850 Right Tilt Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.496 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.369 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.432 W/kg; SAR(10 g) = 0.250 W/kg

Maximum value of SAR (measured) = 0.503 W/kg

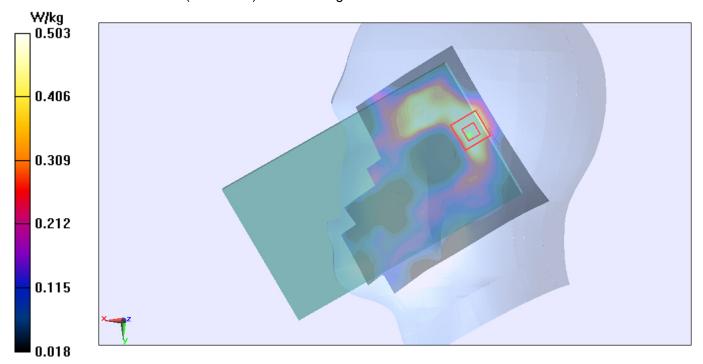


Figure 15 Right Hand Tilt 15° GSM 850 Channel 190

GSM 850 GPRS (2TXslots) with Test Position 1 High

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 848.8 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 849 MHz; $\sigma = 1.006 \text{ S/m}$; $\varepsilon_r = 55.736$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

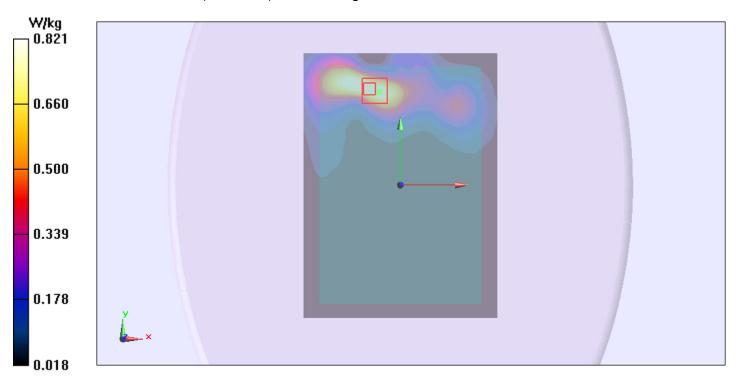
Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.816 W/kg


Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.122 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.757 W/kg; SAR(10 g) = 0.407 W/kg

Maximum value of SAR (measured) = 0.821 W/kg

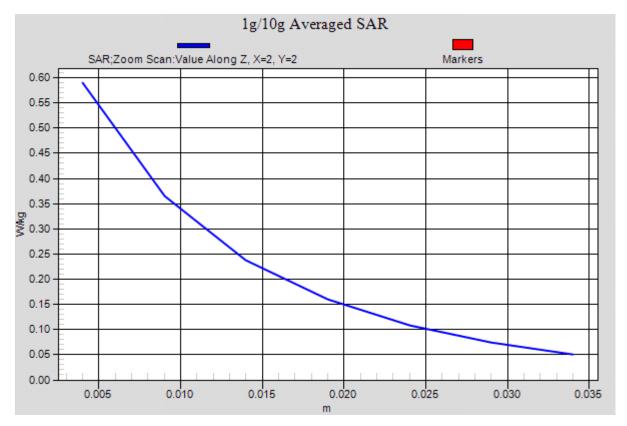


Figure 16 GSM 850 GPRS (2TXslots) with Test Position 1 Channel 251

GSM 850 GPRS (2TXslots) with Test Position 1 Middle

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.882; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

0.015

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.690 W/kg

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.782 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.725 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.709 W/kg



Figure 17 GSM 850 GPRS (2TXslots) with Test Position 1 Channel 190

GSM 850 GPRS (2TXslots) with Test Position 1 Low

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.14954 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978$ S/m; $\epsilon_r = 55.938$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

0.013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Low/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.621 W/kg

Test Position 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.970 V/m; Power Drift = 0.107 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 0.594 W/kg

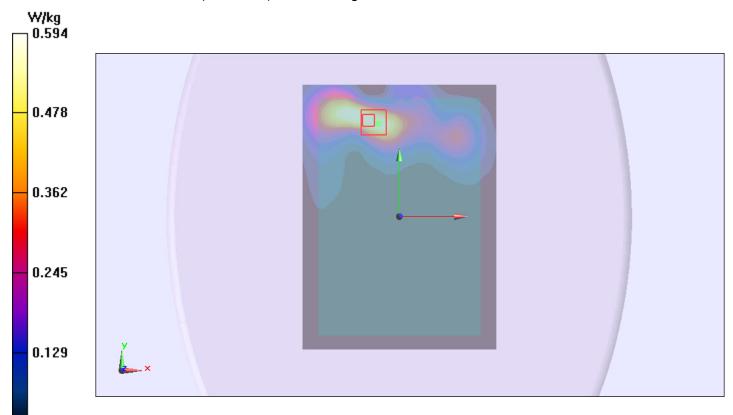


Figure 18 GSM 850 GPRS (2TXslots) with Test Position 1 Channel 128

GSM 850 GPRS (2TXslots) with Test Position 3 Middle

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.882; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 3 Middle/Area Scan (51x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.465 W/kg

Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.078 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.424 W/kg; SAR(10 g) = 0.251 W/kg Maximum value of SAR (measured) = 0.428 W/kg

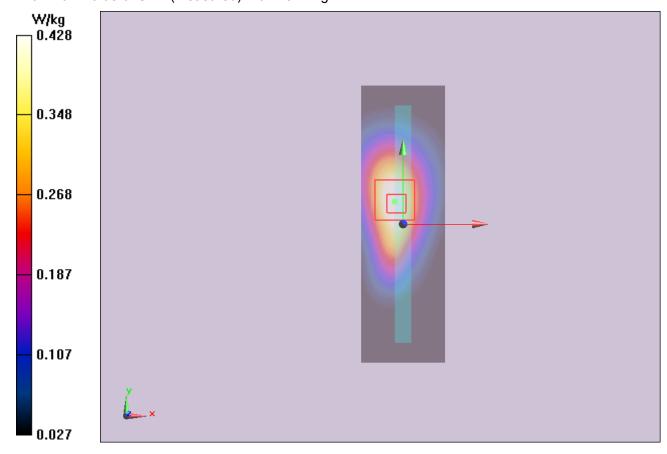


Figure 19 GSM 850 GPRS (2TXslots) with Test Position 3 Channel 190

GSM 850 GPRS (2TXslots) with Test Position 4 Middle

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.882; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 4 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0620 W/kg

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.572 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.0732 W/kg

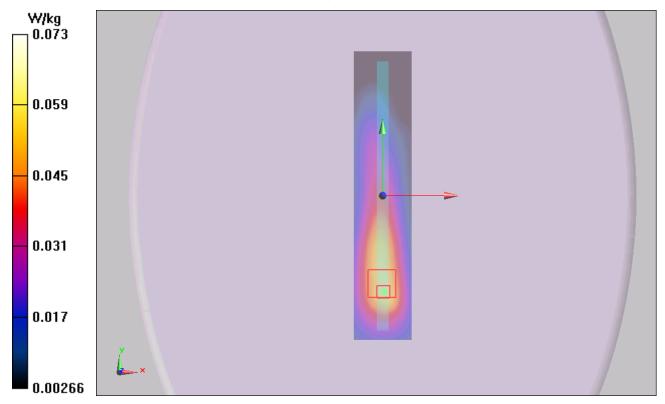


Figure 20 GSM 850 GPRS (2TXslots) with Test Position 4 Channel 190

GSM 850 GPRS (2TXslots) with Test Position 5 Middle

Date: 6/18/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.882; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 5 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0937 W/kg

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.875 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.0928 W/kg

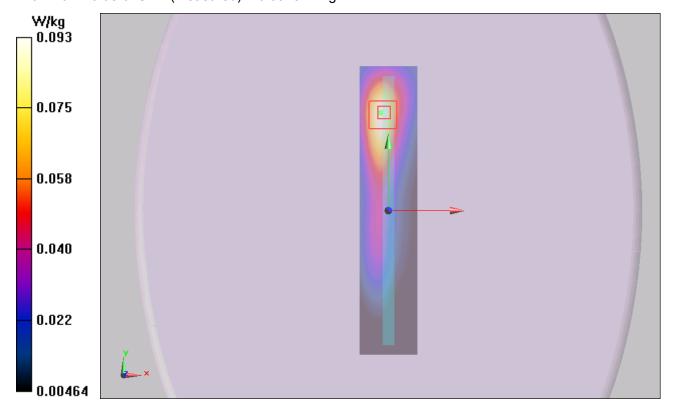


Figure 21 GSM 850 GPRS (2TXslots) with Test Position 5 Channel 190

Page 80 of 172

Report No. RHA1406-0059SAR

GSM 850 EGPRS (2TXslots) with Test Position 1 High

Date: 6/18/2014

Communication System: UID 0, EGPRS 2TX (0); Frequency: 848.8 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 849 MHz; $\sigma = 1.006 \text{ S/m}$; $\varepsilon_r = 55.736$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

0.00136

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.776 W/kg

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.963 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.729 W/kg; SAR(10 g) = 0.392 W/kg

Maximum value of SAR (measured) = 0.808 W/kg

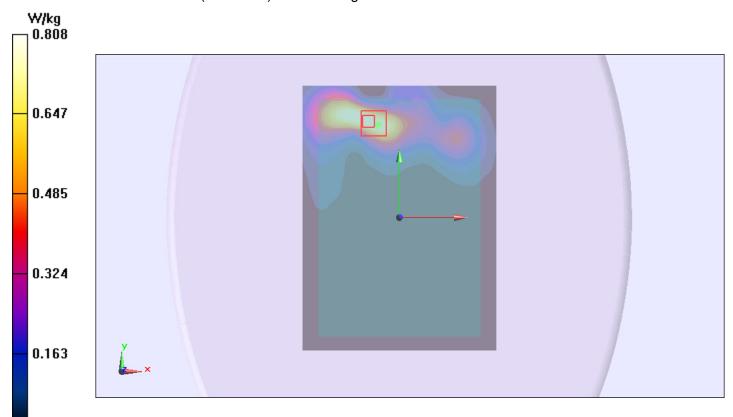


Figure 22 GSM 850 EGPRS (2TXslots) with Test Position 1 Channel 251

GSM 1900 Left Cheek Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.401 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.473 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.362 W/kg

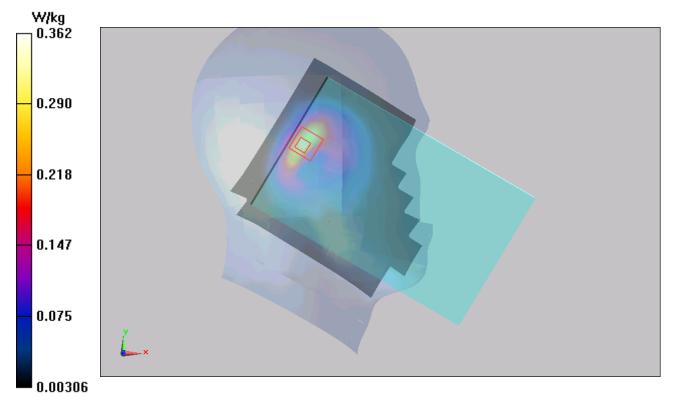


Figure 23 Left Hand Touch Cheek GSM 1900 Channel 661

GSM 1900 Left Tilt Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.309 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.001 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.272 W/kg; SAR(10 g) = 0.155 W/kg

Maximum value of SAR (measured) = 0.274 W/kg

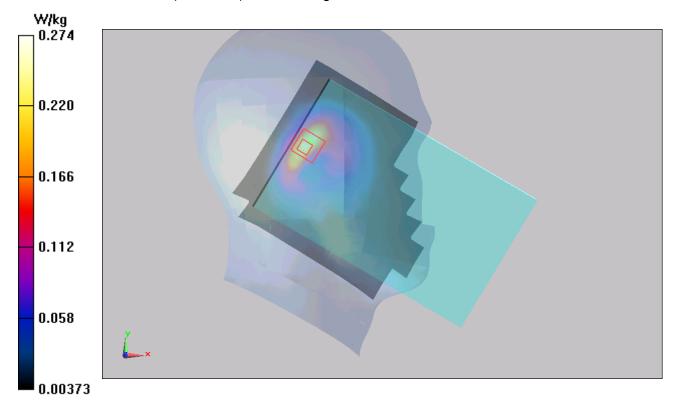


Figure 24 Left Hand Tilt 15° GSM 1900 Channel 661

GSM 1900 Right Cheek Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

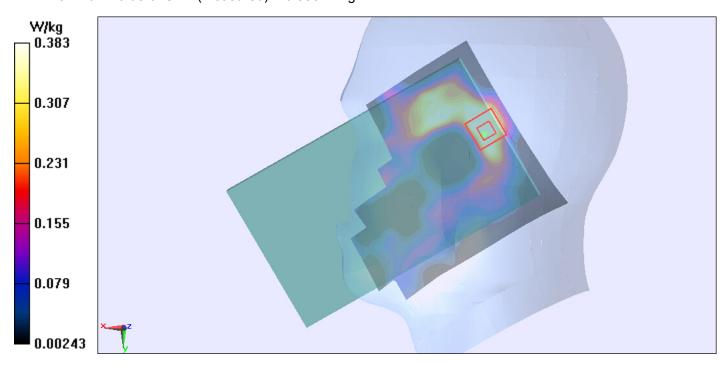
Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.411 W/kg


waximum value of SAR (interpolated) = 0.411 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.156 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.602 W/kg

SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.225 W/kg Maximum value of SAR (measured) = 0.383 W/kg

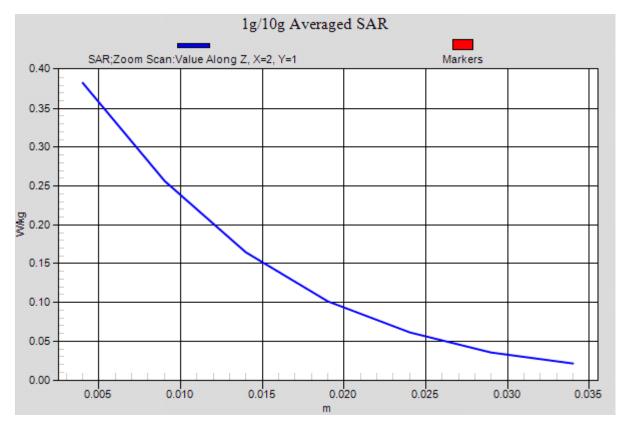


Figure 25 Right Hand Touch Cheek GSM 1900 Channel 661

GSM 1900 Right Tilt Middle

Date: 6/17/2014

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.296 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.908 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.274 W/kg

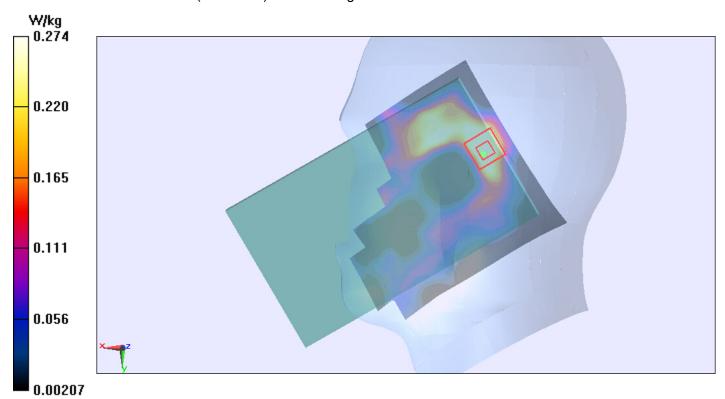


Figure 26 Right Hand Tilt 15° GSM 1900 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 1 Middle

Date: 6/19/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.493 S/m; ε_r = 52.676; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.649 W/kg

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.584 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.661 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.791 W/kg

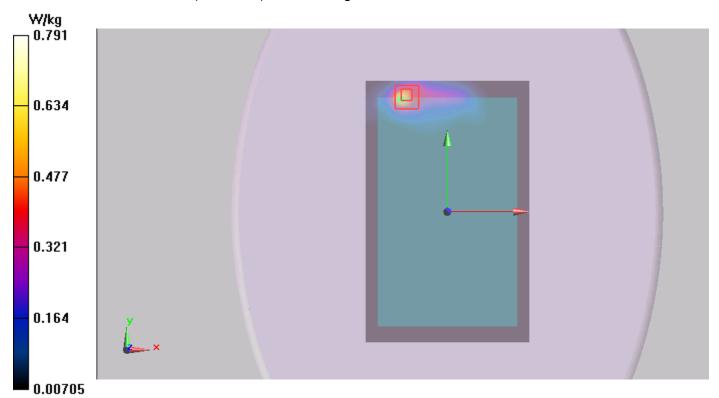


Figure 27 GSM 1900 GPRS (2TXslots) with Test Position 1 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 3 Middle

Date: 6/19/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.493 S/m; ε_r = 52.676; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 3 Middle/Area Scan (51x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.138 W/kg

Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.486 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.068 W/kg

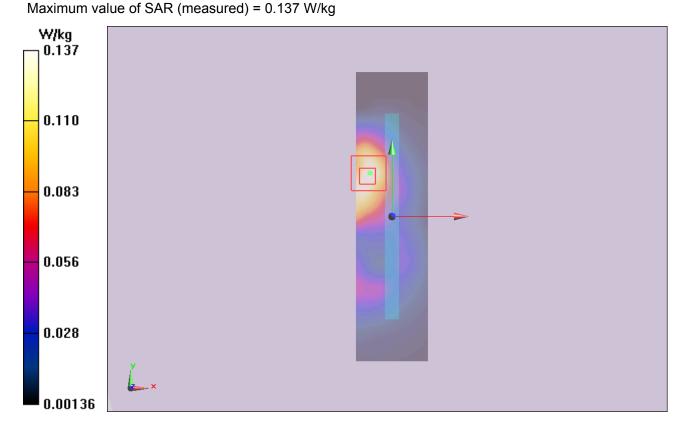


Figure 28 GSM 1900 GPRS (2TXslots) with Test Position 3 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 4 Middle

Date: 6/19/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.493 S/m; ε_r = 52.676; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 4 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.00936 W/kg

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.681 V/m; Power Drift = 0.0243 dB

Peak SAR (extrapolated) = 0.0110 W/kg

SAR(1 g) = 0.007 W/kg; SAR(10 g) = 0.00281 W/kg

Maximum value of SAR (measured) = 0.00843 W/kg

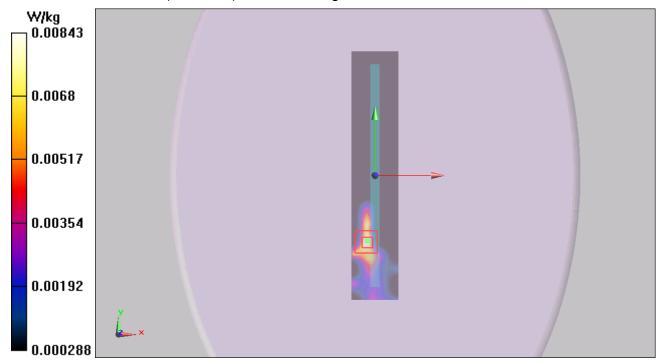


Figure 29 GSM 1900 GPRS (2TXslots) with Test Position 4 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 5 Middle

Date: 6/19/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.493 S/m; ε_r = 52.676; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 5 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0287 W/kg

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.442 V/m; Power Drift = 0.0354 dB

Peak SAR (extrapolated) = 0.0480 W/kg

SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.015 W/kg

Maximum value of SAR (measured) = 0.0300 W/kg

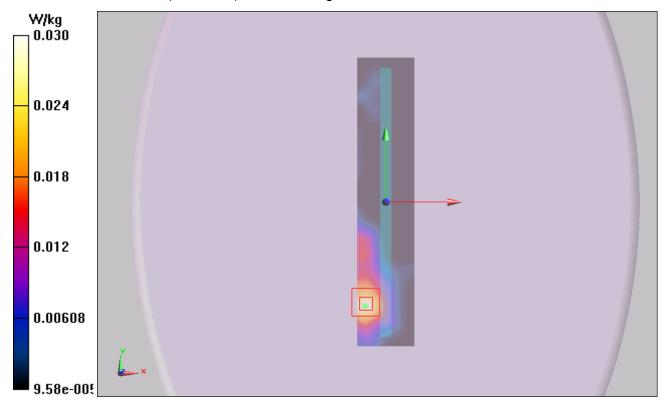


Figure 30 GSM 1900 GPRS (2TXslots) with Test Position 5 Channel 661

GSM 1900 EGPRS (2TXslots) with Test Position 1 Middle

Date: 6/19/2014

Communication System: UID 0, GPRS 2TX (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.493 S/m; ε_r = 52.676; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

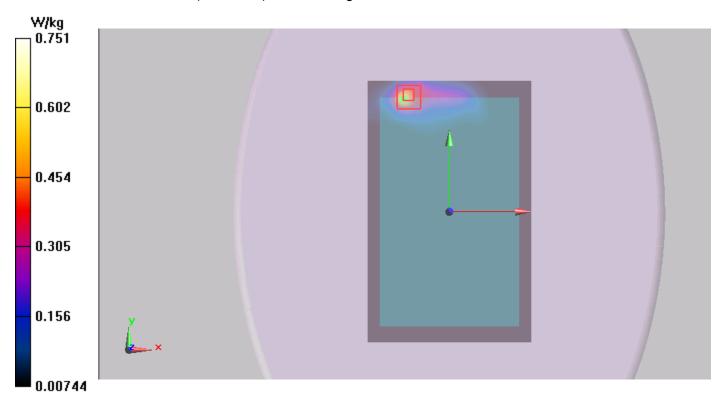
Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg


Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.769 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.702 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.751 W/kg

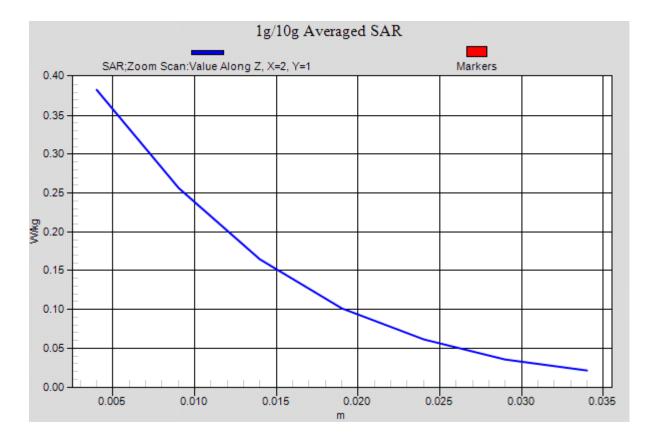


Figure 31 GSM 1900 EGPRS (2TXslots) with Test Position 1 Channel 661

UMTS Band II Left Cheek Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.426 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.923 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.642 W/kg

SAR(1 g) = 0.361 W/kg; SAR(10 g) = 0.209 W/kg

Maximum value of SAR (measured) = 0.384 W/kg

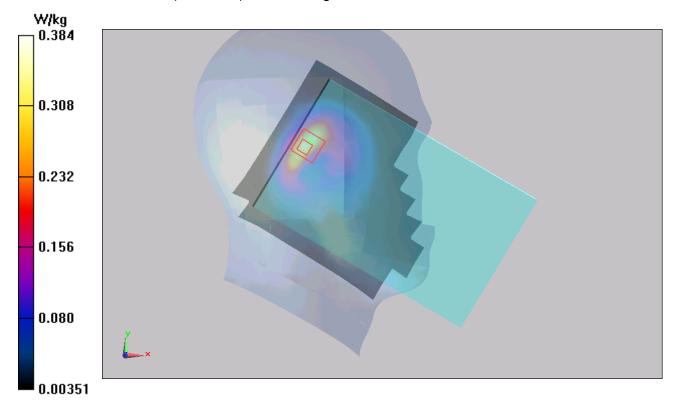


Figure 32 Left Hand Touch Cheek UMTS Band II Channel 9400

UMTS Band II Left Tilt Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.323 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.606 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.524 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.162 W/kg

Maximum value of SAR (measured) = 0.289 W/kg

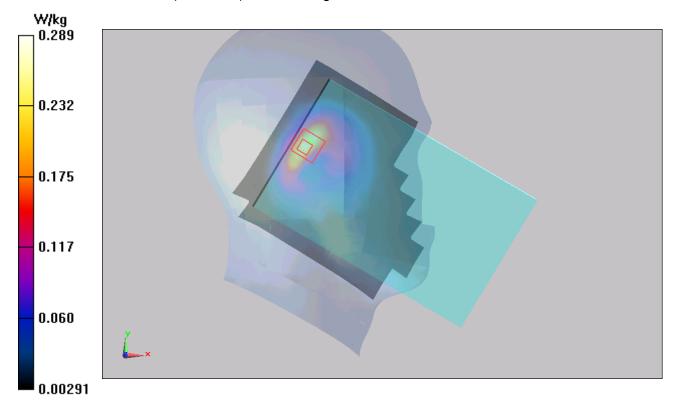


Figure 33 Left Hand Tilt 15° UMTS Band II Channel 9400

UMTS Band II Right Cheek Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

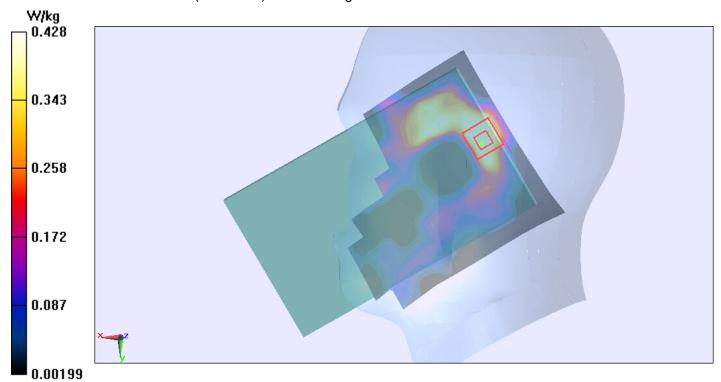
Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.454 W/kg


waximum value of SAR (interpolated) = 0.454 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.757 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.655 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.428 W/kg

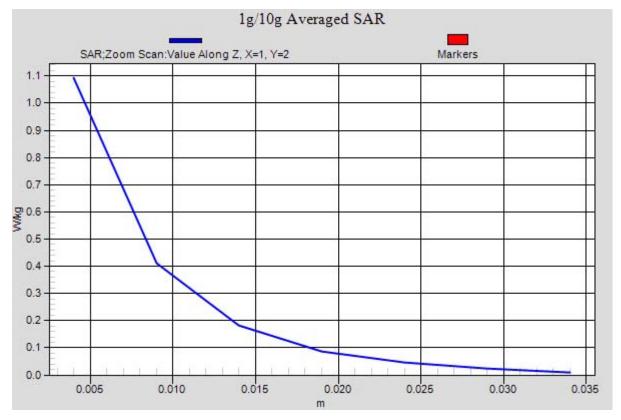


Figure 34 Right Hand Touch Cheek UMTS Band II Channel 9400

UMTS Band II Right Tilt Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.689$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.335 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.711 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.302 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.318 W/kg

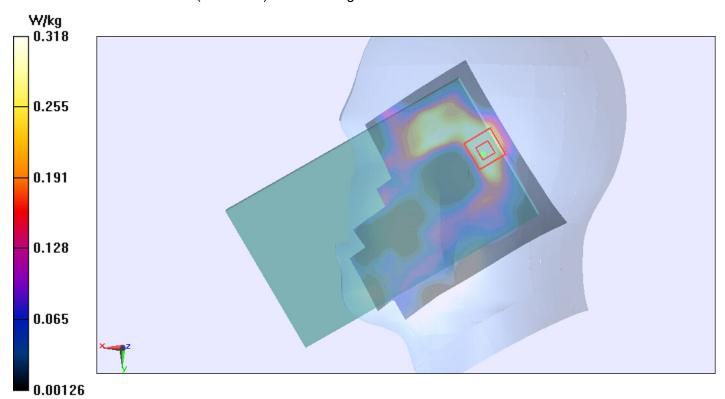


Figure 35 Right Hand Tilt 15° UMTS Band II Channel 9400

UMTS Band II with Test Position 1 High

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.529$ S/m; $\varepsilon_r = 52.625$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.698 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 2.22 W/kg

SAR(1 g) = 0.883 W/kg; SAR(10 g) = 0.376 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

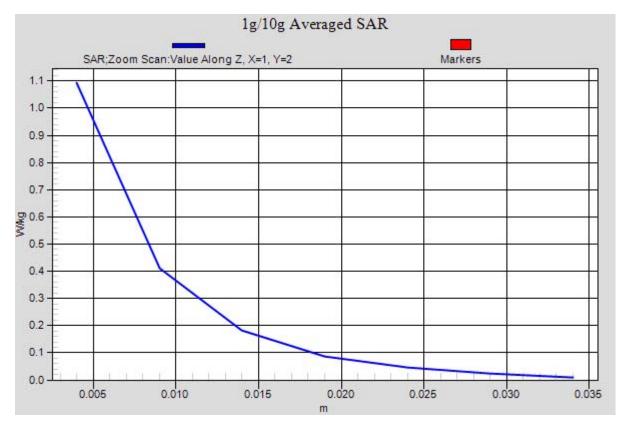


Figure 36 UMTS Band II with Test Position 1 Channel 9538

UMTS Band II with Test Position 1 Middle

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.676$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.786 W/kg

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.045 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.783 W/kg; SAR(10 g) = 0.335 W/kg

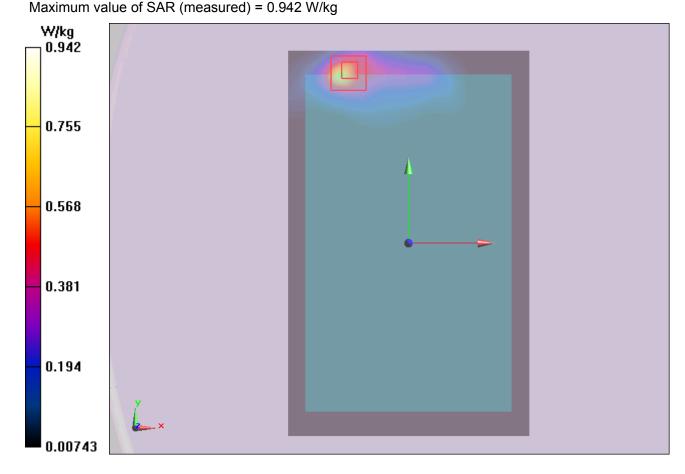


Figure 37 UMTS Band II with Test Position 1 Channel 9400

UMTS Band II with Test Position 1 Low

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.464 \text{ S/m}$; $\varepsilon_r = 52.752$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Low/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.919 W/kg

Test Position 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.487 V/m; Power Drift = 0.053 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.359 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

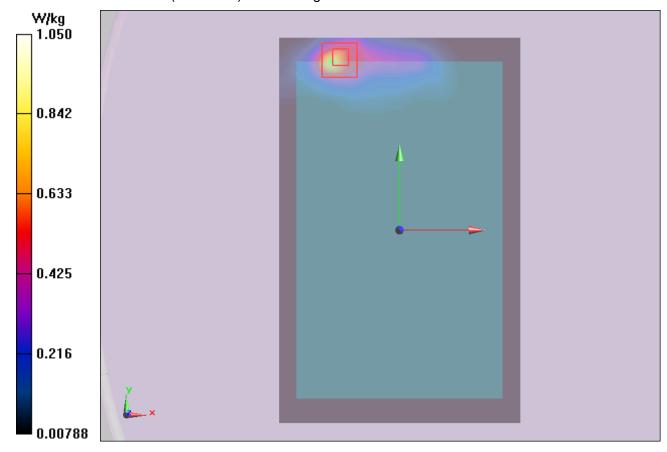


Figure 38 UMTS Band II with Test Position 1 Channel 9262

UMTS Band II with Test Position 3 Middle

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.676$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 3 Middle/Area Scan (51x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.182 W/kg

Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.413 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.079 W/kg Maximum value of SAR (measured) = 0.151 W/kg

Figure 39 UMTS Band II with Test Position 3 Channel 9400

UMTS Band II with Test Position 4 Middle

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.676$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 4 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0367 W/kg

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.527 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.018 W/kg Maximum value of SAR (measured) = 0.0380 W/kg

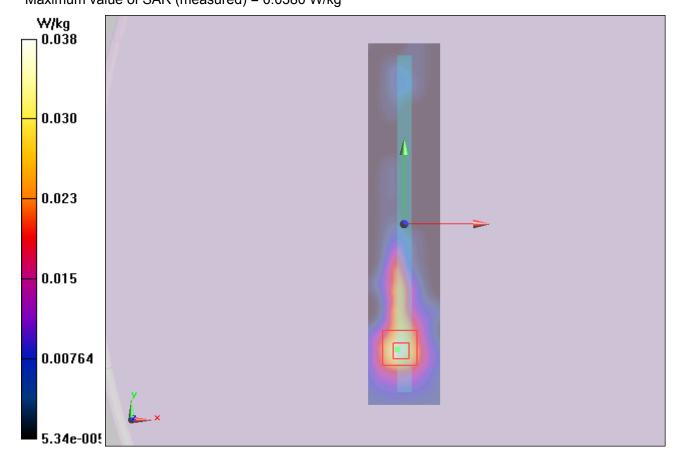


Figure 40 UMTS Band II with Test Position 4 Channel 9400

UMTS Band II with Test Position 5 Middle

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.676$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 5 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.106 W/kg

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.590 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 0.163 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.049 W/kg

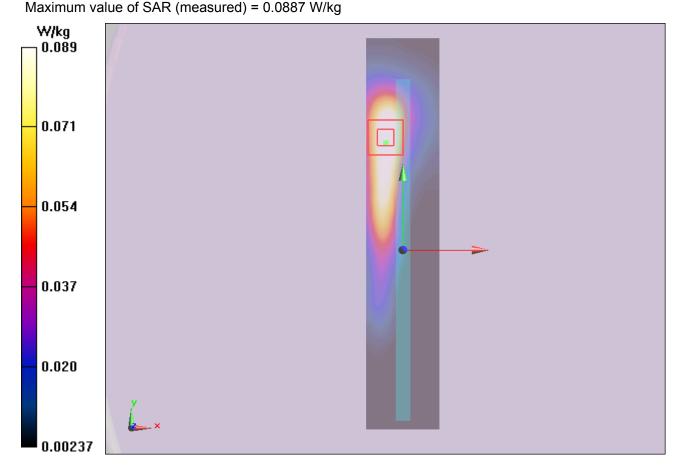


Figure 41 UMTS Band II with Test Position 5 Channel 9400

UMTS Band II with Test Position 1 High (Earphone)

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.529$ S/m; $\varepsilon_r = 52.625$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.963 W/kg

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.546 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.757 W/kg; SAR(10 g) = 0.321 W/kg

Maximum value of SAR (measured) = 0.941 W/kg

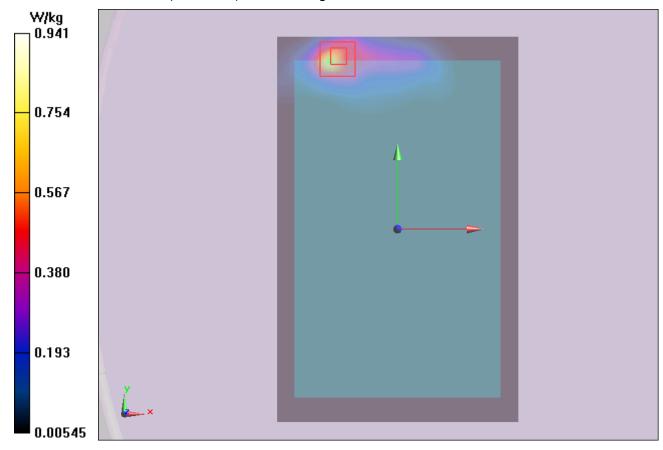


Figure 42 UMTS Band II with Test Position 1 Channel 9538

UMTS Band II with Test Position 1 High (1st Repeated SAR)

Date: 6/19/2014

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.529$ S/m; $\varepsilon_r = 52.625$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.931 W/kg

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.565 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 0.873 W/kg; SAR(10 g) = 0.371 W/kg

Maximum value of SAR (measured) = 1.08 W/kg

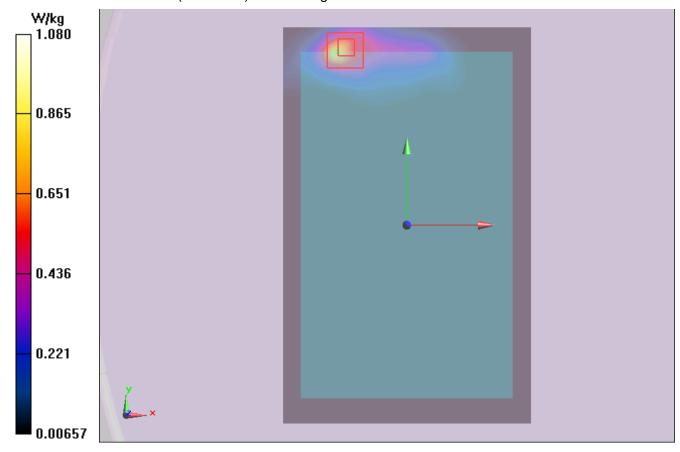


Figure 43 UMTS Band II with Test Position 1 Channel 9538

UMTS Band V Left Cheek Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.390 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.036 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.458 W/kg; SAR(10 g) = 0.252 W/kg

Maximum value of SAR (measured) = 0.512 W/kg

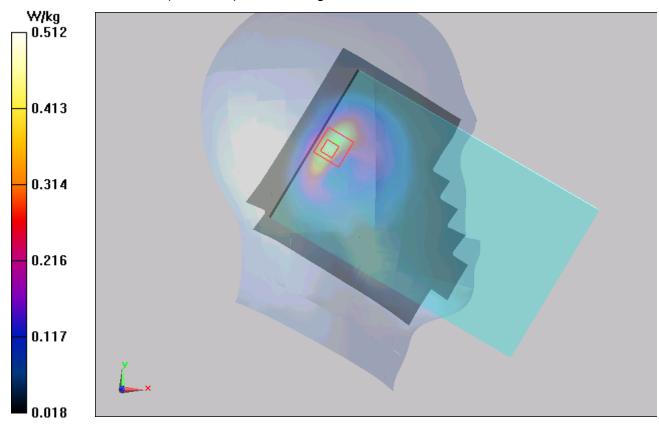


Figure 44 Left Hand Touch Cheek UMTS Band V Channel 4183

UMTS Band V Left Tilt Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.413 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.958 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.246 W/kg

Maximum value of SAR (measured) = 0.451 W/kg

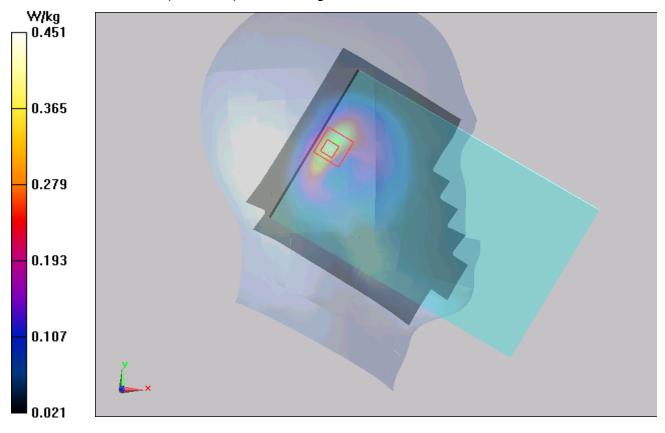


Figure 45 Left Hand Tilt 15° UMTS Band V Channel 4183

UMTS Band V Right Cheek Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

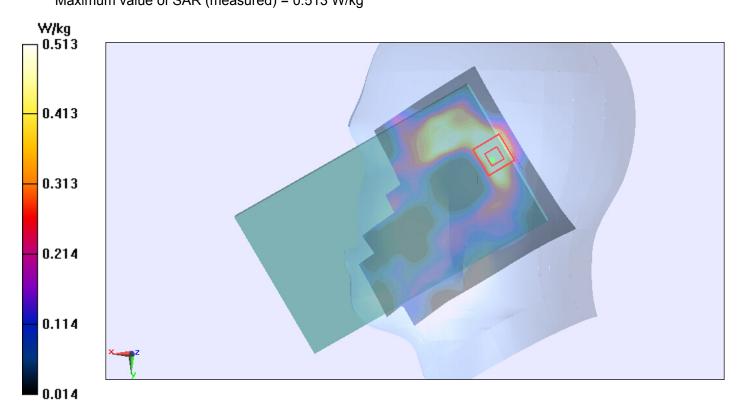
DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Right Cheek Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.465 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.794 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.467 W/kg; SAR(10 g) = 0.259 W/kg Maximum value of SAR (measured) = 0.513 W/kg

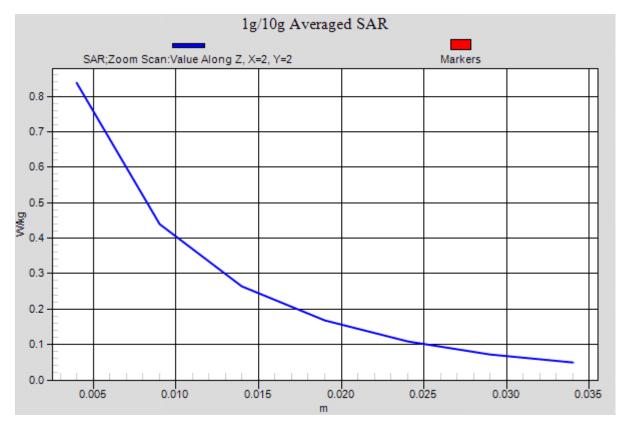


Figure 46 Right Hand Touch Cheek UMTS Band V Channel 4183

UMTS Band V Right Tilt Middle

Date: 6/17/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.932$ S/m; $\varepsilon_r = 41.357$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilt Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.430 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.778 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.227 W/kg

Maximum value of SAR (measured) = 0.438 W/kg

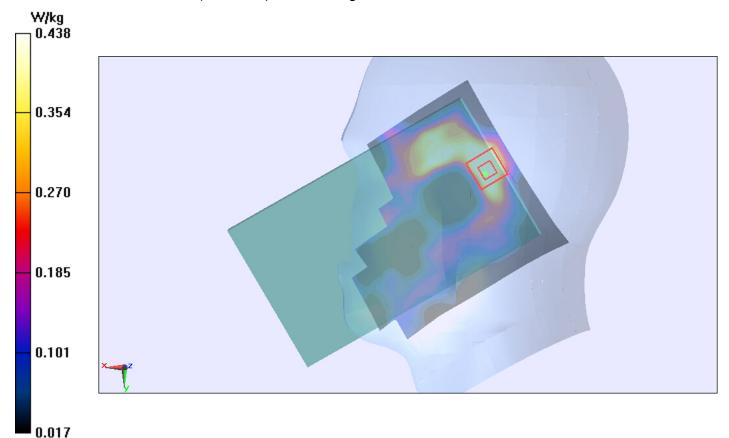


Figure 47 Right Hand Tilt 15° UMTS Band V Channel 4183

UMTS Band V with Test Position 1 High

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; $\sigma = 1.004$ S/m; $\varepsilon_r = 55.772$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.777 W/kg

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.981 V/m; Power Drift = 0.183 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.743 W/kg; SAR(10 g) = 0.386 W/kg

Maximum value of SAR (measured) = 0.838 W/kg

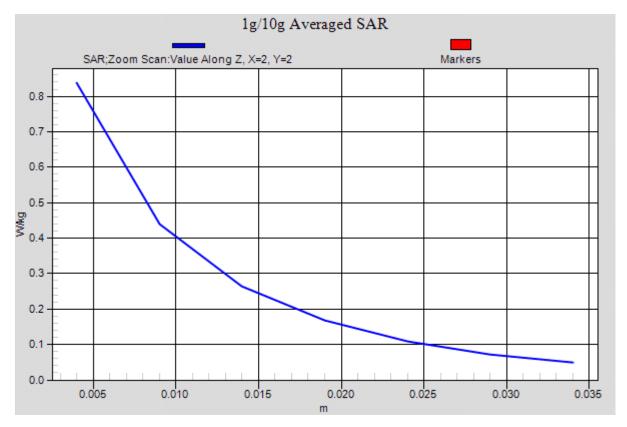


Figure 48 UMTS Band V with Test Position 1 Channel 4233

UMTS Band V with Test Position 1 Middle

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ S/m; $\varepsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.734 W/kg

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.588 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.733 W/kg; SAR(10 g) = 0.381 W/kg

Maximum value of SAR (measured) = 0.871 W/kg

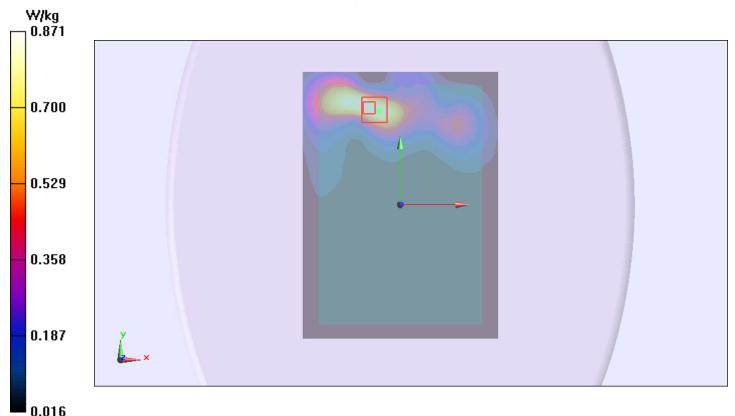


Figure 49 UMTS Band V with Test Position 1 Channel 4183

Report No. RHA1406-0059SAR

Page 114 of 172

UMTS Band V with Test Position 1 Low

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.98 \text{ S/m}$; $\epsilon_r = 55.933$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Low/Area Scan (101x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.641 W/kg

Test Position 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.262 V/m; Power Drift = 0.094 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.329 W/kg

Maximum value of SAR (measured) = 0.723 W/kg

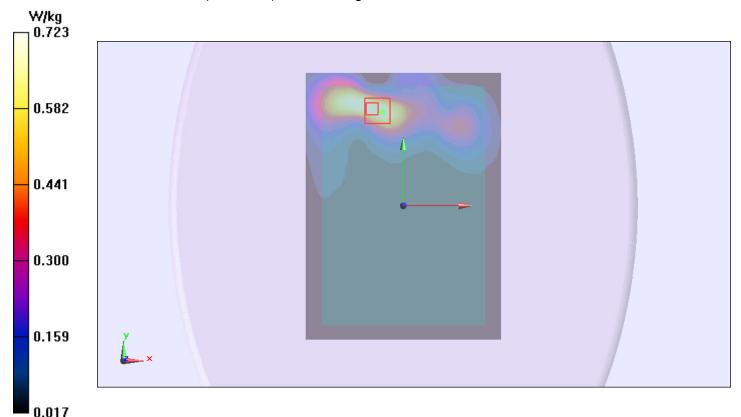


Figure 50 UMTS Band V with Test Position 1 Channel 4132

UMTS Band V with Test Position 3 Middle

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 3 Middle/Area Scan (51x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.506 W/kg

Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.690 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.817 W/kg

SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.293 W/kg Maximum value of SAR (measured) = 0.494 W/kg

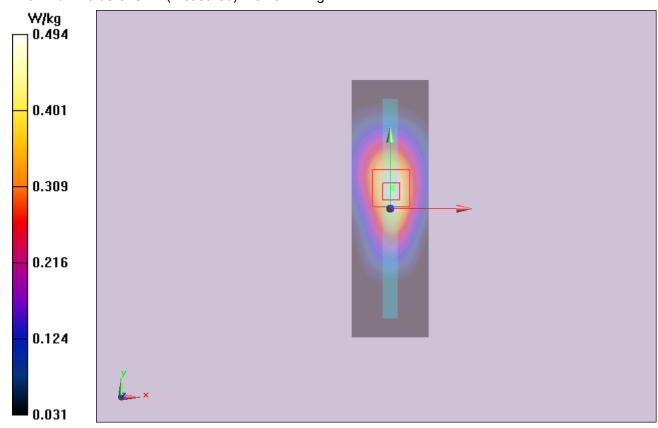


Figure 51 UMTS Band V with Test Position 3 Channel 4183

UMTS Band V with Test Position 4 Middle

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ S/m; $\varepsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 4 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0536 W/kg

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.054 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.034 W/kg

Maximum value of SAR (measured) = 0.0597 W/kg

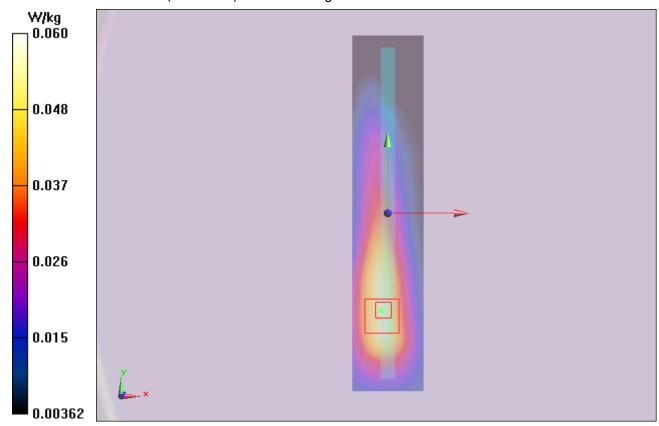


Figure 52 UMTS Band V with Test Position 4 Channel 4183

UMTS Band V with Test Position 5 Middle

Date: 6/18/2014

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.992$ S/m; $\varepsilon_r = 55.882$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 5 Middle/Area Scan (51x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0883 W/kg

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.210 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.042 W/kg

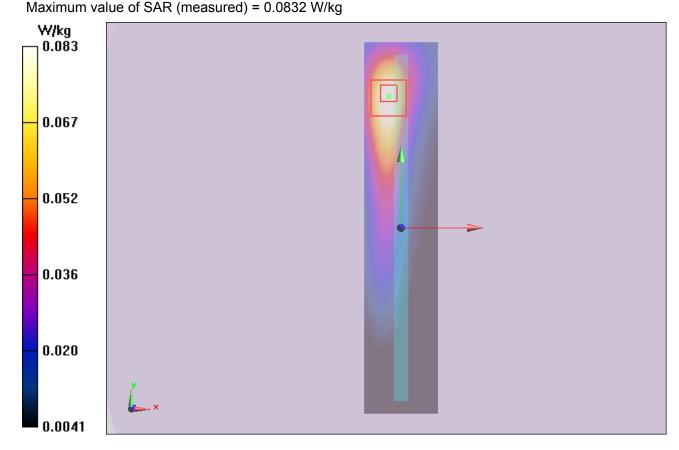


Figure 53 UMTS Band V with Test Position 5 Channel 4183

802.11b Left Cheek Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.787$ S/m; $\epsilon_r = 39.199$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013;

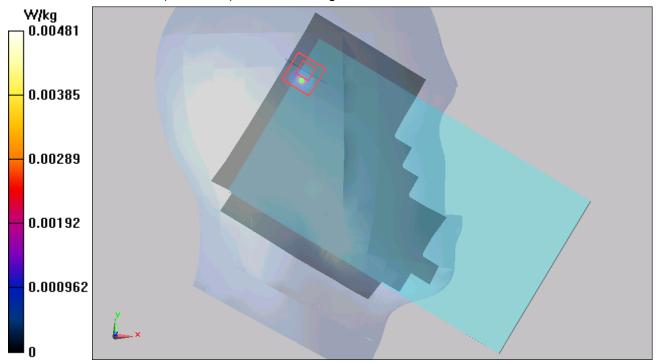
Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.00371 W/kg


Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.096 V/m; Power Drift = 0.129 dB

Peak SAR (extrapolated) = 0.0180 W/kg

SAR(1 g) = 0.000815 W/kg; SAR(10 g) = 8.5e-005 W/kg

Maximum value of SAR (measured) = 0.00481 W/kg

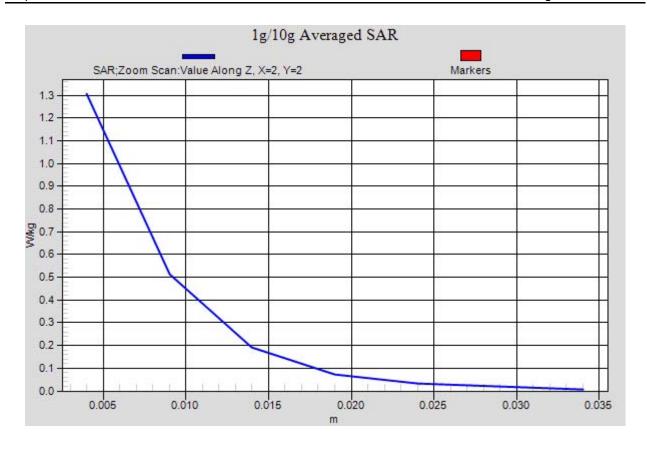


Figure 54 Left Hand Touch Cheek 802.11b Channel 6

802.11b Left Tilt Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.787$ S/m; $\epsilon_r = 39.199$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Tilt Middle/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0172 W/kg

Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.00498 W/kg

SAR(1 g) = 0.000214 W/kg; SAR(10 g) = 2.9e-005 W/kg

Maximum value of SAR (measured) = 0.00486 W/kg

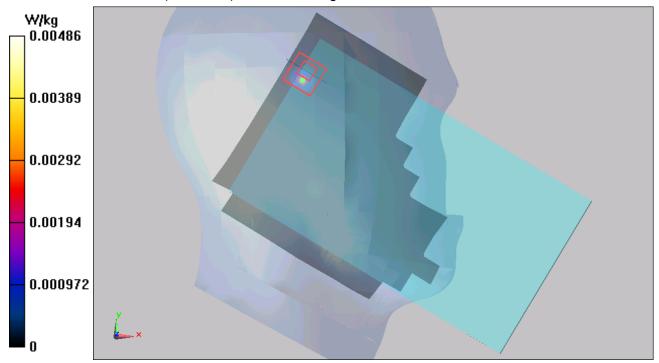


Figure 55 Left Hand Tilt 15° 802.11b Channel 6

802.11b Right Cheek Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.787$ S/m; $\epsilon_r = 39.199$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek Middle/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.00553 W/kg

Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.00359 W/kg

SAR(1 g) = 0.000222 W/kg; SAR(10 g) = 1.8 e-005 W/kg.

Maximum value of SAR (measured) = 0.00359 W/kg

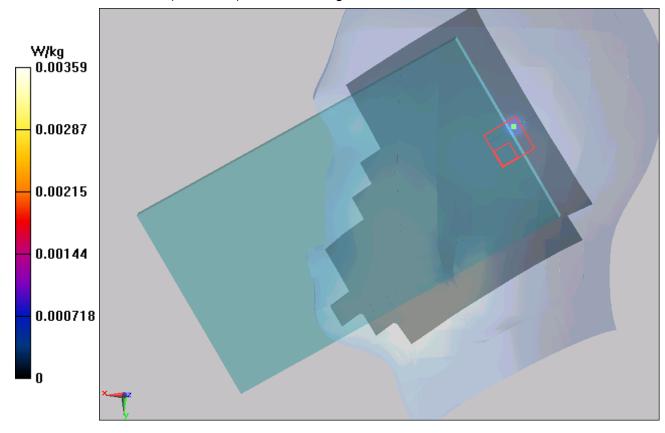


Figure 56 Right Hand Touch Cheek 802.11b Channel 6

802.11b Right Tilt Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.787$ S/m; $\epsilon_r = 39.199$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: SAM 2; Type: SAM;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Tilt Middle/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.000792 W/kg

Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.040 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.00296 W/kg

SAR(1 g) = 6.1e-005 W/kg; SAR(10 g) = 9e-006 W/kg

Maximum value of SAR (measured) = 0.00238 W/kg

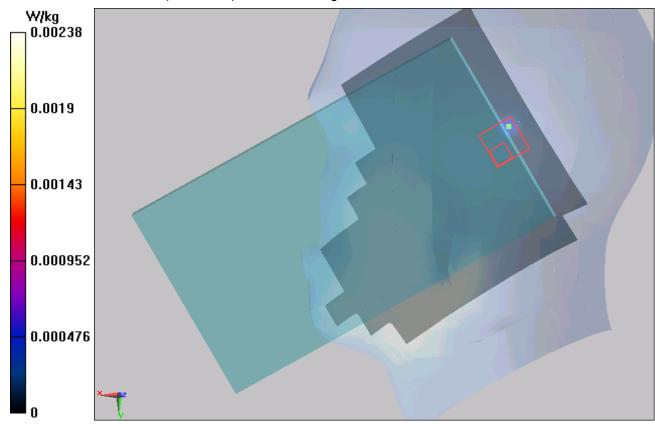


Figure 57 Right Hand Tilt 15° 802.11b Channel 6

802.11b Test Position 1 High

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.009$ S/m; $\epsilon_r = 52.109$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

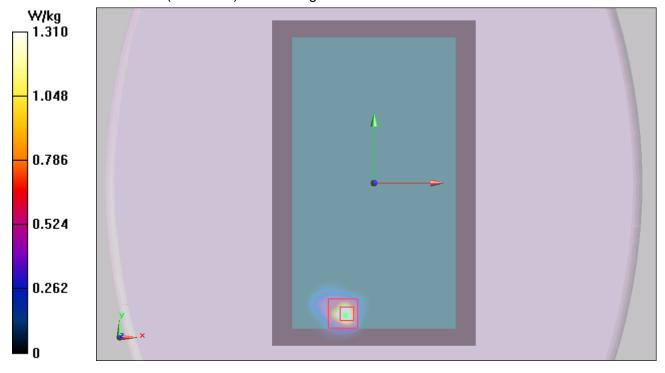
Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.742 W/kg


Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.400 W/kg

Maximum value of SAR (measured) = 1.31 W/kg

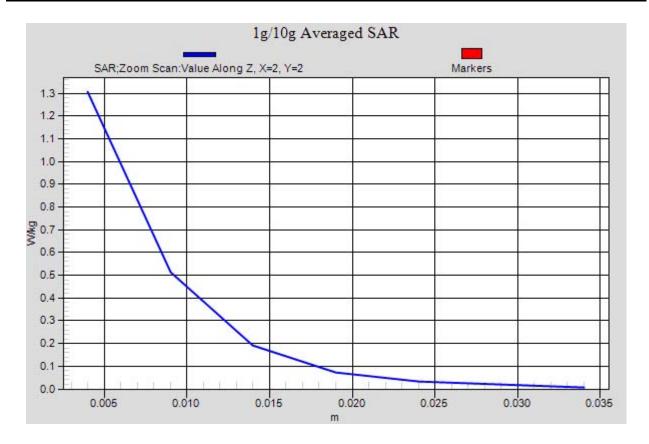


Figure 58 802.11b Test Position 1 Channel 11

802.11b Test Position 1 Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ S/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Middle/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.82 W/kg

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.82 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.374 W/kg

Maximum value of SAR (measured) = 1.21 W/kg

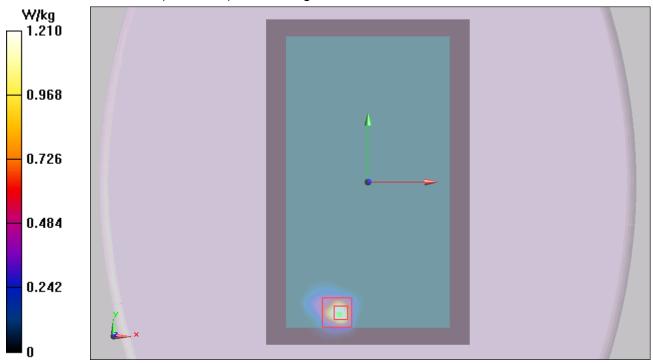


Figure 59 802.11b Test Position 1 Channel 6

802.11b Test Position 1 Low

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.945$ S/m; $\epsilon_r = 52.239$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 Low/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.28 W/kg

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 0.845 W/kg; SAR(10 g) = 0.319 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

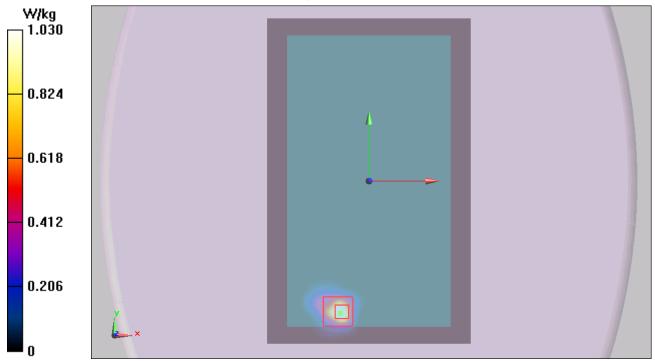


Figure 60 802.11b Test Position 1 Channel 1

802.11b Test Position 2 Middle

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.977$ S/m; $\varepsilon_r = 52.177$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 2 Middle/Area Scan (51x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.727 W/kg

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.613 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.577 W/kg; SAR(10 g) = 0.226 W/kg Maximum value of SAR (measured) = 0.647 W/kg

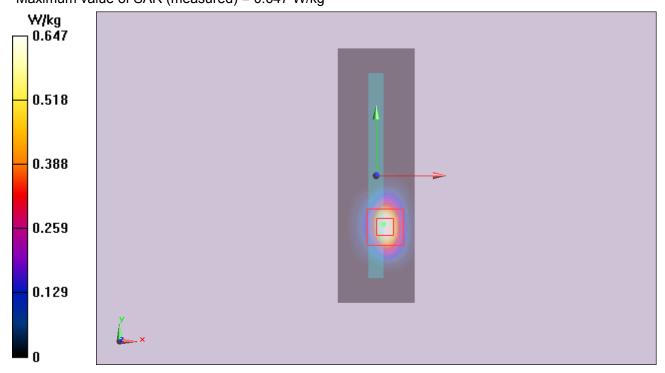


Figure 61 802.11b Test Position 2 Channel 6

802.11b Test Position 1 High (1st Repeated SAR)

Date: 6/20/2014

Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.009$ S/m; $\epsilon_r = 52.109$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Test Position 1 High/Area Scan (131x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.33 W/kg

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 2.72 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.391 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

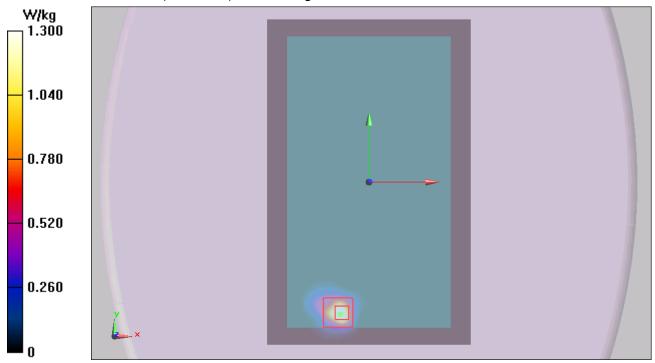


Figure 62 802.11b Test Position 1 Channel 11

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1406-0059SAR

Page 129 of 172

ANNEX D: Probe Calibration Certificate

Client

TA-ShangHai

Certificate No: J13-2-2971

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3677

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

November 28, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC, No. JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14
	Name	Function . N. S. C.	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	- Sate

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the

Issued: November 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-2971

Page 1 of 11

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1406-0059SAR

Page 130 of 172

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

Certificate No: J13-2-2971

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

 NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN: 3677

Calibrated: November 28, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.38	0.44	0.38	±10.8%
DCP(mV) ⁸	99.8	100.9	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	93.3	±2.6%
		Y	0.0	0.0	1.0		101.7	7
		Z	0.0	0.0	1.0		92.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd. Test Report

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.94	9.94	9.94	0.16	1.13	±12%
850	41.5	0.92	9.41	9.41	9.41	0.11	1.47	±12%
1750	40.1	1.37	8.22	8.22	8.22	0.14	2.11	±12%
1900	40.0	1.40	8.15	8.15	8.15	0.14	2.34	±12%
2100	39.8	1.49	7.87	7.87	7.87	0.13	3.21	±12%
2450	39.2	1.80	7.64	7.64	7.64	0.39	0.95	±12%
5200	36.0	4.66	5.73	5.73	5.73	0.95	0.62	±13%
5300	35.9	4.76	5.68	5.68	5.68	0.87	0.67	±13%
5500	35.6	4.96	5.62	5.62	5.62	0.97	0.62	±13%
5600	35.5	5.07	5.29	5.29	5.29	0.89	0.63	±13%
5800	35.3	5.27	5.29	5.29	5.29	1.02	0.61	±13%

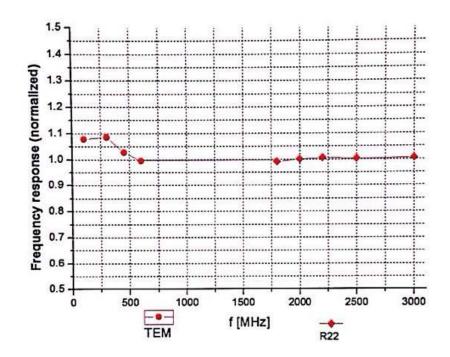
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd. Test Report

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY – Parameters of Probe: EX3DV4 - SN: 3677

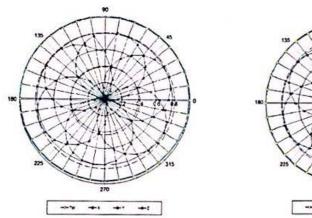
Calibration Parameter Determined in Body Tissue Simulating Media

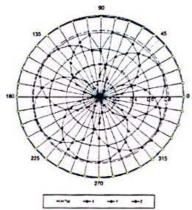

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.72	9.72	9.72	0.11	1.97	±12%
850	55.2	0.99	9.51	9.51	9.51	0.15	1.55	±12%
1750	53.4	1.49	7.77	7.77	7.77	0.14	3.23	±12%
1900	53.3	1.52	7.63	7.63	7.63	0.15	2.81	±12%
2100	53.2	1.62	7.97	7.97	7.97	0.16	4.09	±12%
2450	52.7	1.95	7.61	7.61	7.61	0.45	0.92	±12%
5200	49.0	5.30	4.72	4.72	4.72	0.66	1.10	±13%
5300	48.9	5.42	4.67	4.67	4.67	0.64	1.19	±13%
5500	48.6	5.65	4.34	4.34	4.34	0.73	0.80	±13%
5600	48.5	5.77	4.29	4.29	4.29	0.74	0.81	±13%
5800	48.2	6.00	4.46	4.46	4.46	0.78	0.80	±13%

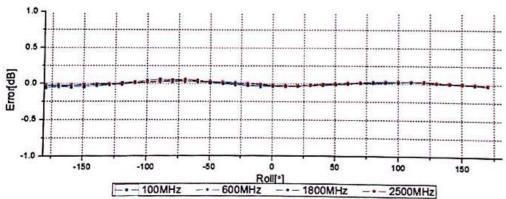
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2971

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

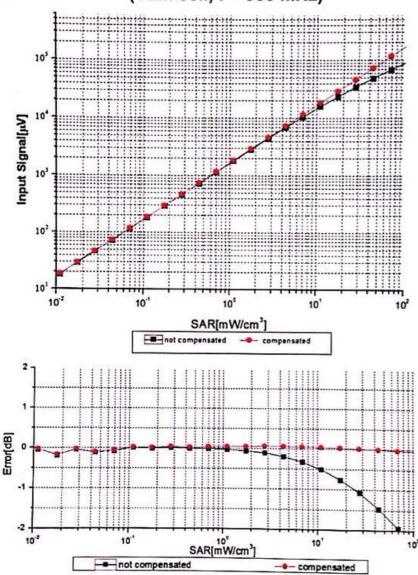

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)




Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

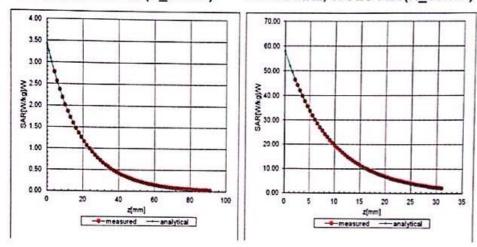


Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

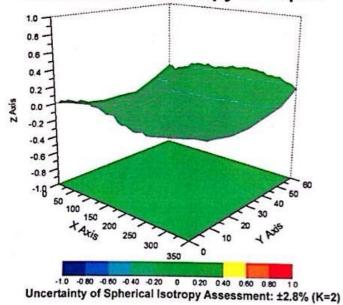
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

E-mail: Info@emcite.com



Http://www.emcite.com


Conversion Factor Assessment

f=850 MHz, WGLS R9(H_convF)

f=2450 MHz, WGLS R26(H_convF)

Deviation from Isotropy in Liquid

Certificate No: J13-2-2971

Page 10 of 11

TA Technology (Shanghai) Co., Ltd. Test Report

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: D835V2-4d020_Aug11 TA-Shanghai (Auden) Client CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz August 26, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Primary Standards Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100006 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: August 26, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D835V2-4d020_Aug11

Page 1 of 8

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1406-0059SAR

Page 141 of 172

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1406-0059SAR

Page 142 of 172

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

00 25 11 3 4 4 4 4 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.11 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

7	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW inpút power	1.59 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.26 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RHA1406-0059SAR

Page 143 of 172

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 22, 2004	

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated; 29.04.2011

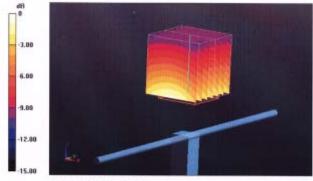
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

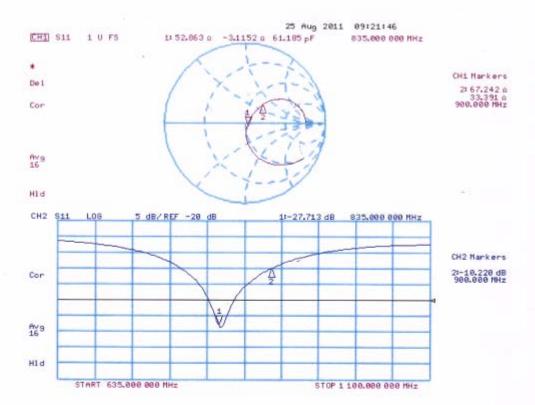
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.930 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.421 W/kg


SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.708 mW/g

0 dB = 2.710 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

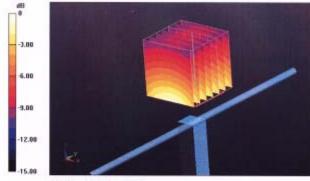
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³

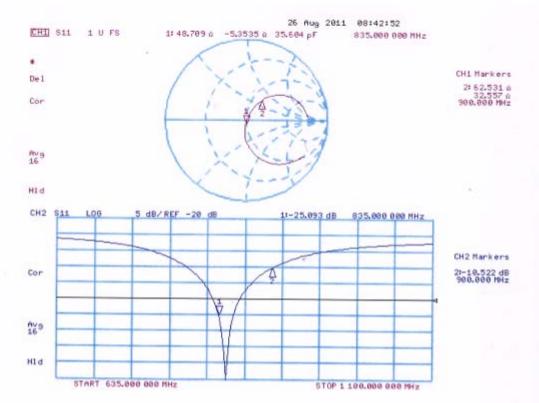
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.406 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.509 W/kg SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.827 mW/g

0 dB = 2.830 mW/g

Impedance Measurement Plot for Body TSL

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Client

TA-Shanghai (Auden)

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION (JENTIN ICAN		The Addition of the
Object	D1900V2 - SN: 5	5d060	
Calibration procedure(s)	QA CAL-05.v8		
	Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 31, 2011	IN THE ENGINEER	A STATE OF THE STA
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)	°C and humidity < 70%.
Ill calibrations have been conducted all calibration Equipment used (M&	cted in the closed laborato		
all calibrations have been conducted in the calibration Equipment used (M& rimary Standards and Tower meter EPM-442A	cted in the closed laborato TE critical for calibration)	ry facility: environment temperature (22 \pm 3)	C and humidity < 70%. Scheduled Calibration Oct-11
all calibrations have been condu- calibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	ry facility: environment temperature (22 ± 3)' Cal Date (Certificate No.)	Scheduled Calibration
il calibrations have been condu- alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11
All calibrations have been conducted with the calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
Calibrations have been conducted in Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
All calibrations have been conductable and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
Calibrations have been condu- calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	Cited in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
Calibrations have been conductable calibration Equipment used (M&Calibration Equipment used (M&C	Cited in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibrations have been conductable calibration Equipment used (M&Calibration Equipment used (M&C	Cited in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	Cited in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Call Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibrations have been condu- Calibration Equipment used (M& Calibration Equipment used (M& C	Cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Call Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	Cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: \$5086 (20b) SN: \$5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Call Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul-11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

Report No. RHA1406-0059SAR

Page 149 of 172

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060_Aug11

Report No. RHA1406-0059SAR

Page 150 of 172

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhō/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Report No. RHA1406-0059SAR

Page 151 of 172

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.6 \Omega + 7.5 jΩ$	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

DASY5 Validation Report for Head TSL

Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

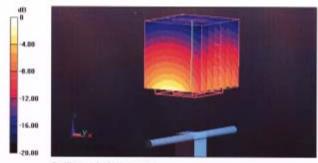
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

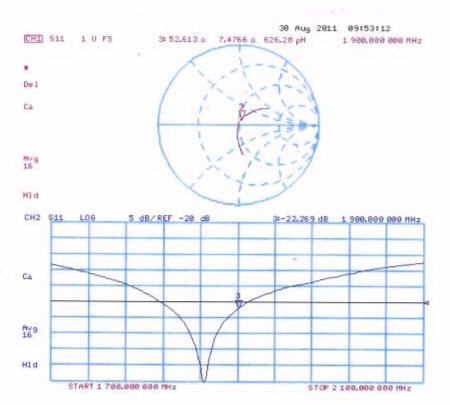
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.636 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.535 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.600 mW/g

0 dB = 12.600 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 31.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

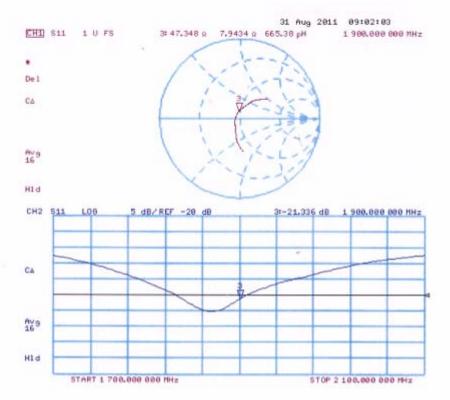
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.435 V/m; Power Drift = -0.0099 dB

Peak SAR (extrapolated) = 18.663 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 13.397 mW/g

0 dB = 13.400 mW/g

Impedance Measurement Plot for Body TSL

ANNEX G: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE			
Object	D2450V2 - SN: 786			
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	ove 700 MHz	
Calibration date:	August 29, 2011			
		*		
		ry facility: environment temperature (22 ± 3)*	Section and Section 2	
	\$1.00 A	Cal Date (Certificate No.)	Schadulad Calibration	
Primary Standards	ID # GB37480704	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11	
Primary Standards Power meter EPM-442A	ID#			
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	06-Oct-10 (No. 217-01266)	Oct-11	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oct-11 Oct-11	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 - Apr-12	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Oct-11 Oct-11 Apr-12 Apr-12	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-11 Oct-11 Apr-12 Apr-12 - Apr-12	
Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr-11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr-11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr-11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr-11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11	

Certificate No: D2450V2-786_Aug11

Page 1 of 8

Report No. RHA1406-0059SAR

Page 157 of 172

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Glossary:

TSL

tissue simulating liquid

Multilateral Agreement for the recognition of calibration certificates

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.4 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mhơ/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Report No. RHA1406-0059SAR

Page 159 of 172

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.4 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 3.5 jΩ	
Return Loss	- 29.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 06, 2005	

Certificate No: D2450V2-786_Aug11

DASY5 Validation Report for Head TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

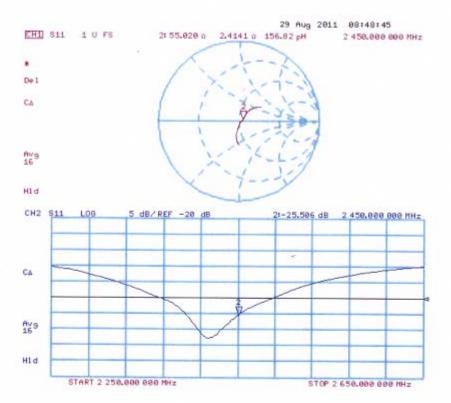
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.303 W/kg


SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g

Maximum value of SAR (measured) = 17.561 mW/g

0 dB = 17.560 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011

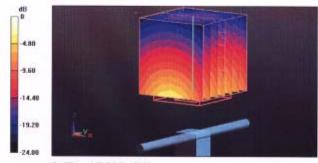
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

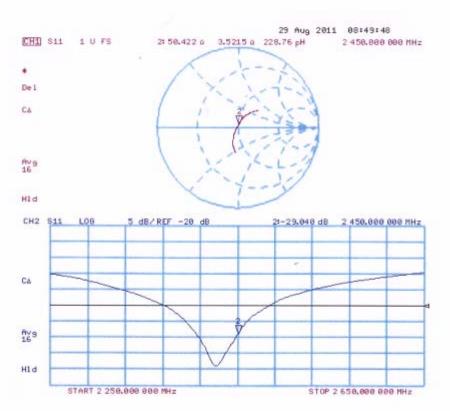
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.118 V/m; Power Drift = 0.0072 dB

Peak SAR (extrapolated) = 27.129 W/kg


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.1 mW/g

Maximum value of SAR (measured) = 17.387 mW/g

0 dB = 17.390 mW/g

Impedance Measurement Plot for Body TSL

Report No. RHA1406-0059SAR

Page 164 of 172

ANNEX H: DAE4 Calibration Certificate

In Collaboration with

S D e a g

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

TA(Shanghai) Certificate No: J14-2-0052 Client : CALIBRATION CERTIFICATE Object DAE4 - SN: 1317 Calibration Procedure(s) TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 16, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Documenting July-14 01-July-13 (TMC, No:JW13-049) Process Calibrator 753 1971018 Function Name Calibrated by: SAR Test Engineer Yu Zongying Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Deputy Director of the laboratory Lu Bingsong Issued January 16, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J14-2-0052

Page 1 of 3

Report No. RHA1406-0059SAR

Page 165 of 172

Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.erncite.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J14-2-0052

Add No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2079 Fax. +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 µV, full range = -100...+300 mV Low Range: 1LSB = 61 nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.058 ± 0.15% (k=2)	404.060 ± 0.15% (k=2)	403.954 ± 0.15% (k=2)
Low Range	3.99002 ± 0.7% (k=2)	3.99910 ± 0.7% (k=2)	3 98303 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	119° ± 1 °