

FCC Test Report

Product Name: HUAWEI MediaPad 7 Lite

Model Number: S7-932u

Report No: SYBH(Z-RF)025072012-2004 FCC ID: QISS7-932U

Reliability Laboratory of Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Notice

- 1. The laboratory has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L0310.
- 2. The laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. The site recognition number is 97456.
- 3. The laboratory has been listed by industry Canada to perform electromagnetic emission measurement. The site recognition number is 6369A-2.
- 4. The test report is invalid if not marked with "exclusive stamp for the test report".
- 5. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 6. The test report is invalid if there is any evidence of erasure and/or falsification.
- 7. If there is any dissidence for the test report, please file objection to the test centre within 15 days from the date of receiving the test report.
- 8. Normally, the test report is only responsible for the samples that have undergone the test.
- 9. Context of the test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the laboratory.

REGULATION	FCC CFR47 Part 2:2011: Subpart J;
	FCC CFR47 Part 15:2011: Subpart C;
	ANSI C63.10:2009
	·
START OF TEST	July., 30, 2012
END OF TEST	Aug.,09, 2012
Final Judgement	Pass

Approved By Senior Engineer	Aug., 13, 2012	Dai Linjun	Dailingun
	Date	Name	Signature

Reviewed By	Aug., 13, 2012	Cousy Xu	Cousu XU
•	Date	Name	Signature

Operated By Aug., 13, 2012 Huang Qiuliang Date Name Signature

Contents

1	<u>Su</u>	<u>ımmary</u>	5
2	Pro	oduct Description	6
	2.1	PRODUCTION INFORMATION	6
	2.2	MODIFICATION INFORMATION	6
3	Tes	st Site Description	7
4	Ge	eneral Setup Description	7
5	Pro	oduct Description	8
	5.1	TECHNICAL CHARACTERISTICS	8
	5.2	EUT IDENTIFICATION LIST	10
6	Ma	ain Test Instruments	12
7	Tra	ansmitter Measurements	13
	7.1	BANDWIDTH MEASUREMENT	13
	7.2	CARRIER FREQUENCY SEPARATION MEASUREMENT	15
	7.3	NUMBER OF HOPPING CHANNEL	17
	7.4	TIME OF OCCUPANCY	19
	7.5	PEAK OUTPUT POWER	21
	7.6	BAND EDGE SPURIOUS EMISSION	23
	7.7	CONDUCTED RF SPURIOUS	25
	7.8	RADIATED SPURIOUS EMISSION & SPURIOUS IN RESTRICTED BAND	27
	7.9	CONDUCTED EMISSION AT POWER PORT	30
8	Sy:	stem Measurement Uncertainty	33
9	Ap	pendices List	34

1 **Summary**

The table below summarizes the measurements and results for the EUT. Detailed results and descriptions are shown in the following pages.

Table 1 Summary of results

FCC Measurement Specification	Description	Result
15.247 (a) (1)	Bandwidth measurement	PASS
15.247 (a) (1)	Carrier frequency separation measurement	PASS
15.247 (a) (1) III	Number of hopping channel	PASS
15.247 (a) (1) III	Time of occupancy	PASS
15.247 (b) (1)	Peak output power	PASS
15.247 (d)	Band edge compliance measurement	PASS
15.247 (d)	Conducted RF spurious	PASS
15.247 (d) / 15.205 & 15.209	Radiated spurious emission & Radiated restricted band measurement	PASS
15.207	Conducted emission test for power port	PASS

2 Product Description

2.1 Production Information

2.1.1 General Description

HSDPA/UMTS/EDGE/GPRS/GSM information terminal HUAWEI MediaPad 7 Lite with Bluetooth and Wi-Fi is subscriber equipment in the WCDMA/GSM system. The HSPA+/HSDPA/HSUPA/UMTS frequency band is Band II and Band V. The EDGE/GPRS/GSM frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900.

HUAWEI MediaPad 7 Lite (MediaPad 7 Lite for short) is a 7 inch tablet computer that simultaneously supports 3G and Wi-Fi data services, and has an ultra high definition IPS screen with a resolution of up to 1024 × 600 pixels. MediaPad 7 Lite incorporates Huawei's own rockchip dual-core 1.2 GHz processor and is based on the Android 4.0 (Ice Cream Sandwich) operating system, enjoying both Google Android Play Store and Huawei's unique Cloud+ solutions.

Note: Only the Bluetooth test data is included in this report.

2.1.2 Supporting Function and Service

The EUT support the Bluetooth's function and service as follows:

Table 2 Service and Test mode List

Service Name	Characteristic	Corresponding Test Mode	Note
Data and Voice	Modulation: GFSK	TM1	/

2.2 Modification Information

For original equipment, following table is not application.

Table 3 Modification Information

Model Number	Board/M odule	Original Version	New Version	Modify Information
	4		0	
		25 25		

3 Test Site Description

The test site of:

Huawei Technologies Co. Ltd.
P.O. Box 518129
Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, P.R.C

4 **General Setup Description**

The Bluetooth hopping frequency system of EUT can Support 2.4GHz Band. To comply with FCC regulation 47CFR part15 subpart C, we set the EUT as in the following test mode to do all compliance tests.

Bluetooth MODE:

TM1: GFSK Modulation

5 Product Description

5.1 Technical Characteristics

5.1.1 Frequency Range

Table 4 Frequency Range

Uplink band:	2400 to 2	483.5 MHz
Downlink band:	2400 to 2	483.5 MHz
Hop frequency support:	⊠ YES	□NO

5.1.2 Channel Spacing / Separation

Table 5 Channel Spacing / Separation

Channel spacing:	1 MHz
Channel separation:	1 MHz

5.1.3 Antenna Information

Table 6 Antenna Information

Туре:	Integrated / Internal
Maximum Gain(dBi):	-1.0(from 2400MHz to 2483.5MHz)

5.1.4 Environmental Requirements

Table 7 Environmental Requirements

Minimum temperature:	- 10 °C
Maximum temperature:	+ 55 °C
Relative Humidity:	5%-95%

5.1.5 Power Source

Table 8 Power Source

AC voltage nominal:	~120V
AC voltage range	~100V-240V

5.1.6 Tune-up Procedure

According to CFR (FCC) part 2, subpart 2, section 2.1033(c) (9).

Please reference the document Tune-up Procedure in TCF.

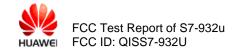
5.2 EUT Identification List

5.2.1 Board Information

Table 9 Board Information

	HUAWEI MediaPad 7 Lite	
	S7-932u	
Board and Module		
Software Version	Hardware Version	LCD Panel
S7-932u V100R001C001	SH1931UM	LCD Panel

5.2.2 Adapter Technical Data


AC/DCAdapter Model	HW-050200U3W
Manufacturer	Huawei Technologies Co., Ltd.
Input Voltage	100V~240V AC and 50/60 Hz,0.5A
Output Voltage	+5V 2A

5.2.3 Battery Technical Data

Name	Qty.	Manufacture	Description
Li-ion	1	Huawei Technologies Co., Ltd.	Battery Model: HB3G1 Rated capacity: 4000 mAh Nominal Voltage: === +3.7V Charging Voltage: === +4.2V

5.2.4 Cables Used during Test

Cable	Quantity	Length	Type of Cable
USB	1	<3m	shielded
Earphone	1	<3m	unshielded

5.2.5 Associated Equipment Used during Test

Name	Model	Manufacturer	S/N	Calibrated Deadline	Cal interval (month)
Notebook	X200	Lenovo	3108052581	/	/
TF card	2GB	Kingdon	1040RE5672k	/	/

5.2.6 FCC Identification

Grantee Code: QIS

Product Code: \$7-932U FCC Identification: QISS7-932U

6 Main Test Instruments

Table 10 Main Test Equipments

Equipment Description	Manufacturer	Model	Serial Number	Calibrated until
Power supply	KEITHLEY	2303	1288003	Sept., 27, 2012
Wireless Communication Test set	Agilent	N4010A	MY49081592	Nov., 26, 2012
Spectrum Analyzer	Agilent	E4440A	MY48250119	Jul., 17, 2013
Signal Analyzer	R&S	FSQ31	200021	Sept., 27, 2012
Spectrum Analyzer	Agilent	N9030A	MY49431698	Oct., 16, 2012
Temperature Chamber	WEISS	WKL64	24600294	Feb., 13, 2013
Signal generator	Agilent	E8257D	MY49281095	Jul., 09, 2013
Test receiver	R&S	ESU26	100150	May, 29, 2013
Spectrum analyzer	R&S	FSU3	200474	Mar., 05, 2013
Spectrum analyzer	R&S	FSU43	100144	Mar., 05, 2013
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100304	Apr., 05, 2013
Double-Ridged Waveguide Horn Antenna (1G~18GHz)	R&S	HF907	100391	Apr., 05, 2013
Trilog Broadband Antenna (30M~3GHz)	SCHWARZBE CK	VULB 9163	9163-521	Jul., 07, 2013
Pyramidal Horn Antenna(26GHz-40GHz)	ETS-Lindgren	3160-10	00123940	Feb., 27, 2013
Pyramidal Horn Antenna(18GHz-26.5GHz)	ETS-Lindgren	3160-09	00125912	Feb.,27, 2013
EMI TEST RECEIVER	R&S	ESCI	101163	Mar.05, 2013
Artificial Mains Network	R&S	ENV216	100382	Mar.21, 2013

Note: All the equipments are calibrated once a year. When it's almost due, we will arrange calibration again before the calibration deadline.

7 <u>Transmitter Measurements</u>

7.1 Bandwidth measurement

7.1.1 Test Conditions

Table 11 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55%
Test Configurations:	TM1 at channel No.0, 40, 78

7.1.2 Test Specifications and Limits

7.1.2.1 Specification

CFR 47 (FCC) part 15.247 (a) (1) and DA 00-705

7.1.2.2 Supporting Standards

Table 12 Supporting Standards:

ANSI C63.10-2009

7.1.2.3 Limits

Not Applicable.

7.1.3 Test Method and Setup

- (a) Connect EUT test port to universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function, then set the measuring frequency number, finally test the bandwidth with universal communication tester.

Test setup

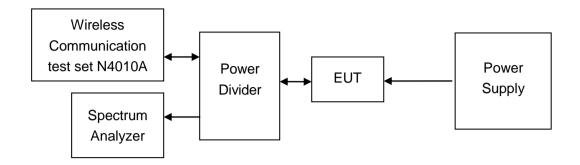


Figure 1. Test Set-up

7.1.4 Measurement Results

Table 13 Measurement Results

Channel Position	Channel Number	Frequency [MHz]	Bandwidth Type	Measured Bandwidth [MHz]	Result
ı	0	2402	20dB	0.955	Pass
L	0	2402	99%	0870	Pass
М	40	40 2442	20dB	0.947	Pass
IVI	40		99%	0.873	Pass
Н	H 78	2480	20dB	1.018	Pass
П	70	2400	99%	0.874	Pass

7.1.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix A.

7.2 Carrier frequency separation measurement

7.2.1 Test Conditions

Table 14 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55%
Test Configurations:	TM1 at channel No.39, 40, 41

7.2.2 Test Specifications and Limits

7.2.2.1 Specification

CFR 47 (FCC) part 15.247 (a) (1) and DA 00-705

7.2.2.2 Supporting Standards

Table 15 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.2.2.3 Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Table 16 Limits

Regulation:	≥ 0.025 or 2/3 of the 20 dB bandwidth
Limit:	$\geq 2/3 \times 1.018M = 0.679MHz$

7.2.3 Test Method and Setup

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function, then set the measured frequency number to two adjacent channels separately and test the carrier frequency separation with spectrum analyzer.

Test setup

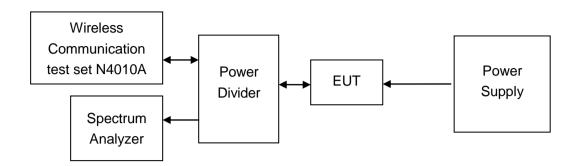


Figure 2. Test Set-up

7.2.4 Measurement Results

Table 17 Measurement Results

Channel No.	Frequency [GHz]	Channel No.	Frequency [GHz]	Measured frequency separation [MHz]	Limit [MHz]	Result
40	2.442	39	2.441	0.90	≥0.679	Pass
40	2.442	41	2.443	0.90	≥0.679	Pass

7.2.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix B.

7.3 Number of hopping channel

7.3.1 Test Conditions

Table 18 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55%
Test Configurations:	TM1 at hopping frequency state

7.3.2 Test Specifications and Limits

7.3.2.1 Specification

CFR 47 (FCC) part 15.247 (a) (1) iii and DA 00-705

7.3.2.2 Supporting Standards

Table 19 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.3.2.3 Limits

Number of hopping channel should be compliance with the requirements in part15.247 (a) (1) iii.

Table 20 Limits

	Limits	≥ 15 hopping frequency channel
--	--------	--------------------------------

7.3.3 Test Method and Setup

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on frequency hopping function, then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.
- (c) Count the quantity of peaks to get the number of hopping channels.

Test setup

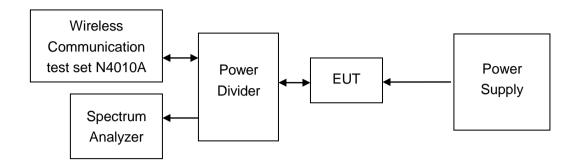


Figure 3. Test Set-up

7.3.4 Measurement Results

Table 21 Measurement Results

Measured frequency range [MHz]	Channel No. range	Measured Channel No.	Limit	Result
2400 to 2483.5	0-78	79	≥ 15	Pass

7.3.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix C.

7.4 Time of occupancy

7.4.1 Test Conditions

Table 22 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25°C
Relative humidity:	55%
Test Configurations:	TM1 at hopping frequency state

7.4.2 Test Specifications and Limits

7.4.2.1 Specification

CFR 47 (FCC) part 15.247 (a) (1) iii and DA 00-705

7.4.2.2 Supporting Standards

Table 23 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.4.2.3 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Table 24 Limits

Limits for time of occupancy	≤ 0.4s
------------------------------	--------

7.4.3 Test Method and Setup

- (a) Connect EUT test port to spectrum analyzer and universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on frequency hopping function.

- (c) Set the span of spectrum analyzer to 0 Hz, and set the resolution bandwidth to 1 MHz and the video bandwidth to 1 MHz, then get the time domain measured diagram. Set sweep time to 2 times of one burst occupancy time, and measure the time of occupancy of one burst.
- (d) Set the resolution bandwidth to 1 MHz and the video bandwidth to 3 MHz, and set the sweep time to a period (0.4 seconds multiplied by the number of hopping channels employed), and count the number of the bursts.
- (e) Calculate the time of occupancy in a period with time occupancy of a burst and quantity of bursts.

Test setup

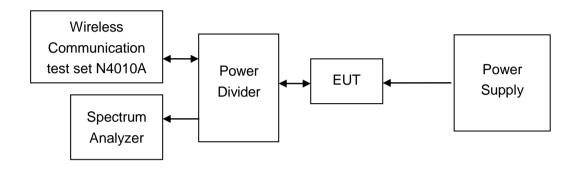


Figure 4. Test Set-up

7.4.4 Measurement Results

Table 25 Measurement Results

Time of Single Slot [ms]	Numbers of slots in a period	Time of occupied in a period [s]	Limit [s]	Result
2.9	106.7	0.30943	≤ 0.4	Pass

Note: The result is measured at DH5 mode in GFSK modulation, which has the longest time in one transmission burst.

7.4.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix D.

7.5 Peak output power

7.5.1 Test Conditions

Table 26 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Antenna connector
Ambient temperature:	25 °C
Relative humidity:	55%
Test Configurations:	TM1 at channel No.0, 40, 78

7.5.2 Test Specifications and Limits

7.5.2.1 Specification

CFR 47 (FCC) part 15.247 (b) (1) and DA 00-705

7.5.2.2 Supporting Standards

Table 27 Supporting Standards:

ANSI C63.10-2009 American National Standard for Testing Unlicensed Wireless Devices

7.5.2.3 Limits

Comply with part 15.247 (b) (1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watt.

Table 28 Limits

2.4GHz and 5.8GHz hopping frequency system	1 Watt (=30 dBm)

7.5.3 Test Method and Setup

- (a) Connect EUT test port to universal communication tester.
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted output power separately.

Test setup

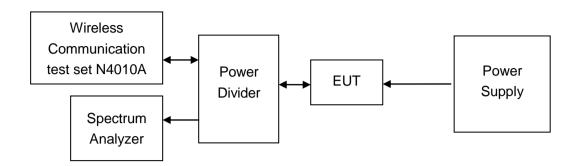


Figure 5. Test Set-up

7.5.4 Measurement Results

Table 29 Measurement Results

Channel	Channel No.	Center Freq.[MHz]	Meas. Level (Cond.) [dBm]	Limit [dBm]	Result
L	0	2402	7.19	< 30	Pass
M	40	2442	8.58	< 30	Pass
Н	78	2480	8.63	< 30	Pass

7.5.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix E.

7.6 Band edge spurious emission

7.6.1 Test Conditions

Table 30 Test Conditions

Preconditioning:	0.5 hour	
Measured at:	Antenna connector	
Ambient temperature:	25°C	
Relative humidity:	55%	
Test Configurations:	TM1 at channel No. 0, 78 and frequency hopping state	

7.6.2 Test Specifications and Limits

7.6.2.1 Specification

CFR 47 (FCC) part 15.247 (d) and DA 00-705

7.6.2.2 Supporting Standards

Table 31 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.6.2.3 Limits

Comply with part 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

Table 32. Limits

Band edge spurious:	20 dBc/100kHz
---------------------	---------------

7.6.3 Test Method and Setup

- (a) Connect EUT test port to spectrum analyzer and universal communication tester
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, low frequency and measure the conducted band edge spurious separately.
- (d) Switch on the frequency hopping function, and repeat above measurement.

Test setup

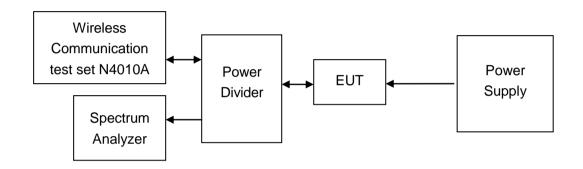


Figure 6. Test Set-up

7.6.4 Measurement Results

Table 33 Measurement Results for Band Edge immediately outside the 2.4GHz Band

	Channel No.	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max. Spurious Level [dBm]	Limit [dBm]	Result
Low	0	2402	6.73	Off	-53.85	-13.3	Pass
Edge	-	-	6.57	On	-54.78	-13.4	Pass
High	78	2480	8.38	Off	-53.61	-11.6	Pass
Edge	-	-	8.41	On	-53.57	-11.6	Pass

7.6.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix F.

7.7 Conducted RF Spurious

7.7.1 Test Conditions

Table 34 Test Conditions

Preconditioning:	0.5 hour	
Measured at:	Antenna connector	
Ambient temperature:	25 °C	
Relative humidity:	55%	
Test Configurations:	TM1 at channel No.0, 40, 78	

7.7.2 Test Specifications and Limits

7.7.2.1 Specification

CFR 47 (FCC) part 15.247 (d) and DA 00-705

7.7.2.2 Supporting Standards

Table 35 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.7.2.3 Limits

Comply with part 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

Table 36 Limits

Band edge spurious:	20 dBc/100kHz
---------------------	---------------

7.7.3 Test Method and Setup

- (a) Connect EUT test port to spectrum analyzer and universal communication tester
- (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function.
- (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted band edge spurious separately.
- (d) Switch on the frequency hopping function, and repeat the above measurement.

Test setup

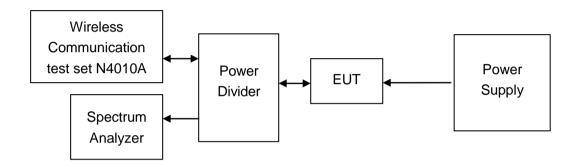


Figure 7. Test Set-up

7.7.4 Measurement Results

Table 37 Measurement Results

Test Frequency Range	Channel No.	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max. Spurious Level [dBm]	Limit [dBm]	Result
9kHz-25GHz	0	2402	6.24	Off	-41.17	-13.8	Pass
9kHz-25GHz	40	2442	7.45	Off	-44.22	-12.6	Pass
9kHz-25GHz	78	2480	7.72	Off	-47.12	-12.3	Pass

7.7.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix G.

7.8 Radiated spurious emission & spurious in restricted band

7.8.1 Test Conditions

Table 38 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Enclosure
Ambient temperature:	25 °C
Relative humidity:	55 %
Test Configurations:	TM1 at channel No.0, 40, 78

7.8.2 Test Specifications and Limits

7.8.2.1 Specification

CFR 47 (FCC) part 15.247 (d), 15.205 & 15.209 and DA 00-705

7.8.2.2 Supporting Standards

Table 39 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.8.2.3 Limits

According to part 15.247 (d) / 15.205 & 15.209, all spurious emission in the frequency range from 30MHz to 10th harmonics of carrier frequency should be meet the requirement of following table.

Table 40 Limits

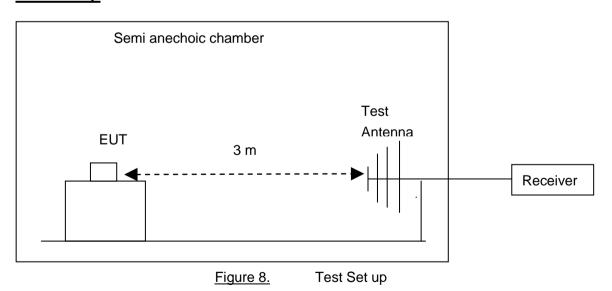
Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)	Detector
30 - 88	100	40	3	QP
88 - 216	150	43.5	3	QP
216 - 960	200	46	3	QP
960 -1000	500	54	3	QP
Above 1000	500	54	3	AV
Above 1000	500	74	3	PK

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a) (see above table).

7.8.3 Test Method and Setup

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2009). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2009. The Radiated Disturbance measurements were made using a Rohde and Schwarz Test Receiver and control software.

A preliminary scan and a final scan of the emissions were made by using test script of software; the emissions were measured using a Quasi-Peak Detector below 1GHz, Peak Detector and AV detector above 1GHz. The maximal emission value was acquired by adjusting the antenna height, polarisation and turntable azimuth in accordance with the software setup. Normally, the height range of antenna was 1m to 4m, and the azimuth range of turntable was 0°to 360°. The receive antenna has two polarizations V and H.


A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other nonmetallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z) axis positions such that emissions from the EUT are maximized.

The EUT communicates with the BTS simulator through Air interface. The EUT transmits maximum output power at 2.4GHz and switch off frequency hopping function.

Measurement bandwidth: 30 MHz - 1000 MHz: 120 kHz

Measurement bandwidth: 1000 MHz - 10th Carrier Frequency: 1 MHz

Test set up

7.8.4 Measurement Results

Note 1: The following measurement results exceed the limit line is the carrier frequency. Note 2: This test was carried out in all test modes, here only shows the worst test result.

Test Frequency Range	Chann el No.	Carrier Frequency [MHz]	Measured	Result
30MHz-26.5GHz	0	2402	Refer to Appendix H	Pass
30MHz-26.5GHz	40	2442	Refer to Appendix H	Pass
30MHz-26.5GHz	78	2480	Refer to Appendix H	Pass

7.8.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix H.

7.9 Conducted Emission at Power Port

7.9.1 Test Conditions

Table 41 Test Conditions

Preconditioning:	0.5 hour
Measured at:	Power port
Ambient temperature:	25°C
Relative humidity:	55 %
Test Configurations:	TM1 at channel No. 40

7.9.2 Test Specifications and Limits

7.9.2.1 Specification

CFR 47 (FCC) part 15.207 and DA 00-705

7.9.2.2 Supporting Standards

Table 42 Supporting Standards:

ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices
------------------	--

7.9.2.3 Limits

Compliance with part15.207, conducted emission must meet the requirement of following table.

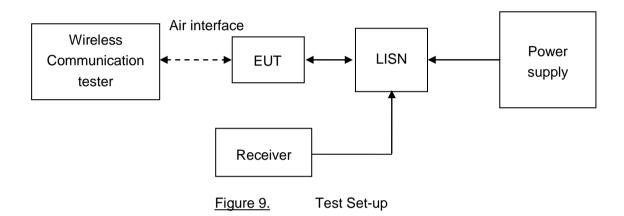
Table 43 Limits

Frequency of Emission	Conducted Limit (dBµV)	
(MHz)		
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Note: * Decreases with the logarithm of the frequency.

7.9.3 Test Method and Setup

The Table-top EUT was placed upon a non-metallic table 0.8 m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2009.


Conducted Disturbance at AC Port measurements were undertaken on the L and N Lines. The emissions were measured using a Quasi-Peak Detector and Average Detector.

The EUT communicates with the BTS simulator through Air interface, the BTS simulator controls the EUT to transmitter the maximum power which defined in specification of product. The EUT operated on the typical channel.

Measurement bandwidth (RBW) for 150kHz to 30 MHz: 9 kHz;

Test Set-up

The EUT was set in the screened chamber and operated under nominal conditions.

7.9.4 Measurement Results

Table 44 MEASUREMENT RESULT: QP DECTER

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.178393	46.9	9.7	64.6	17.7	L1	FLO
0.564642	41.9	9.7	56.0	14.1	Ν	FLO
1.117747	41.6	9.7	56.0	14.4	N	FLO
1.738114	41.9	9.7	56.0	14.1	N	FLO
3.303116	48.4	9.7	56.0	7.6	Ν	FLO
4.728792	45.5	9.8	56.0	10.5	L1	FLO

Table 45 MEASUREMENT RESULT: AV DECTER

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.185341	37.0	9.7	54.2	17.2	N	FLO
0.477030	29.6	9.7	46.4	16.8	N	FLO
1.307989	33.0	9.7	46.0	13.0	N	FLO
1.712598	30.2	9.7	46.0	15.8	N	FLO
3.305273	37.3	9.7	46.0	8.7	N	FLO
4.727959	34.4	9.8	46.0	11.6	L1	FLO

7.9.5 Conclusion

The equipment **PASSED** the requirement of this clause.

For the measurement results refer to appendix I.

8 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 as following:

Table 46 System Measurement Uncertainty

Items		Extended Uncertainty
Bandwidth measurement	Magnitude (%)	U=0.2%; k=2
Carrier frequency separation	Magnitude (%)	U=0.2%; k=2
measurement		
Time of occupancy	Magnitude (%)	U=0.2%; k=2
Peak output power	Power(dBm)	U=0.39dB; k=2
Band edge compliance	Disturbance Power(dBm)	U=2.0dB; k=2
measurement		
Conducted RF spurious	Disturbance Power(dBm)	U=2.0dB; k=2
Radiated spurious emission &	Field strength (dBµV/m)	U=2.2dB; k=2
Radiated restricted band		U=5dB; k=2
measurement		
Conducted emission test for power	Disturbance Voltage(dBµV)	U=4dB; k=2
port		

9 Appendices List

Appendix A	Measurement Results Bandwidth measurement
Appendix B	Measurement Results Carrier frequency separation measurement
Appendix C	Measurement Results Number of hopping channel
Appendix D	Measurement Results Time of occupancy
Appendix E	Measurement Results Peak output power
Appendix F	Measurement Results Band edge compliance measurement
Appendix G	Measurement Results Conducted RF spurious
Appendix H	Measurement Results Radiated spurious emission
Appendix I	Measurement Results Conducted emission test for power port
Appendix J	Photos of Test Setup

-----The END------