

FCC SAR Compliance Test Report

	APPROVED	PREPARED
	(Lab Manager)	(Test Engineer)
BY	Alvinway	gorgzhony
DATE	2014-01-09	2014-01-09

The test results of this test report relate exclusively to the item(s) tested, The HUAWEI does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of HUAWEI.

Reliability Laboratory of Huawei Technologies Co., Ltd.

Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C

Tel: +86 755 28780808 Fax: +86 755 89652518

Table of Contents

1	Gene	eral Informationeral information	
	1.1	Statement of Compliance	4
	1.2	RF exposure limits	
	1.3	EUT Description	
	1.3.1		
		Test specification(s)	
		Testing laboratory	
		Applicant and Manufacturer	
		Application details	
		Ambient Condition	
2		Measurement System	
_		SAR Measurement Set-up	
		Test environment	
	2.3	Data Acquisition Electronics description	
	2.3	·	
		Probe description	
	2.5	Phantom description	
	2.6	Device holder description	
^		Test Equipment List	
3		Measurement Procedure	
		Scanning procedure	
	3.2	Spatial Peak SAR Evaluation	
	3.3	Data Storage and Evaluation	
4		em Verification Procedure	
		Tissue Verification	
		System Check	
	4.3	System check Procedure	
5		surement Uncertainty Evaluation	
6		Test Configuration	
		GSM Test Configuration	
		UMTS Test Configuration	
		WiFi Test Configuration	
7		Measurement Results	
	7.1	Conducted power measurements	
	7.1.1		
	7.1.2		
	7.1.3	Conducted power measurements UMTS Band V	34
	7.1.4	Conducted power measurements UMTS Band II	35
	7.1.5	Conducted power measurements WiFi &BT	36
	7.2	SAR measurement Result	37
	7.2.1	SAR measurement Result of GSM850	37
	7.2.2	SAR measurement Result of GSM1900	38
	7.2.3	SAR measurement Result of UMTS Band V	39
	7.2.4	SAR measurement Result of UMTS Band II	40
	7.2.5		
		Multiple Transmitter Evaluation	
	7.3.1		
	7.3.2		
	7.3.3		
	7.3.4		
		endix A. System Check Plots	
		endix B. SAR Measurement Plots	
		endix C. Calibration Certificate	
		endix D. Photo documentation	
	whhe	JIGIA D. 1 HOLO GOGGIITEHIGUUH	···· J

% % Modified History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	2014-01-09	Gong Zhong

2014-01-09 Page 3 of 51

1 General Information

1.1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for S10-231u is as below Table 1.

Band	Position	MAX Reported 1-g SAR (W/kg)	
GSM850	Body 0mm	0.880	
GSM1900	Body 0mm	0.618	
UMTS Band V	Body 0mm	0.787	
UMTS Band II	UMTS Band II Body 0mm 0.798		
WiFi	Body 0mm	1.098	
The highest simultaneous SAR is 1.301W/kg per KDB690783 D01			

Table 1:Summary of test result

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005.

2014-01-09 Page 4 of 51

1.2 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

2014-01-09 Page 5 of 51

1.3 EUT Description

Device Information:			
DUT Name:	HUAWEI MediaPad 10 Link+		
Type Identification:	S10-231u		
FCC ID:	QISS10-231U		
SN No.:	K8D01A93C1200068		
Device Type :	portable device		
Exposure Category:	uncontrolled environmen	nt / general populati	on
Hardware Version:	SH1S10231LM		
Software Version:	S10-231uV100R001C00	01	
Antenna Type :	internal antenna		
Device Operating Configurations:			
Supporting Mode(s)	GSM850/1900, UMTS E	Band V/II, WiFi(teste	ed);BT
Test Modulation	GSM(GMSK/8PSK), UM	MTS(QPSK)	
Device Class	В		
	Band	Tx (MHz)	Rx (MHz)
	GSM850	824-849	869-894
	GSM1900	1850-1910	1930-1990
Operating Frequency Range(s)	UMTS Band V	824-849	869-894
	UMTS Band II	1850-1910	1930-1990
	WiFi	2412-2462	2412-2462
	BT	2402-2480	2402-2480
	Max Number of Timeslots in Uplink: 4		
GPRS Multislot Class(12)	Max Number of Timeslots in Downlink:		4
	Max Total Timeslot:		5
	Max Number of Timeslots in Uplink:		4
EGPRS Multislot Class(12)	Max Number of Timeslots in Downlink:		4
	Max Total Timeslot:		5
HSDPA UE Category:	14		
HSUPA UE Category:	6		
DC-HSDPA UE Category :	24		
	4,tested with power level 5(GSM850)		
Power Class:	1,tested with power level 0(GSM1900)		
l ower olass.	3, tested with power control "all 1"(UMTS Band V)		
3, tested with power control "all 1"(UMTS Band II)			and II)
	128-190-251 (GSM850)		
	512-661-810 (GSM1900)		
Test Channels (low-mid-high):	4132-4182-4233 (UMTS Band V)		
	9262-9400-9538 (UMTS Band II)		
	1-6-11 (WiFi)		

Table 3:Device information and operating configuration.

2014-01-09 Page 6 of 51

1.3.1 General Description

HUAWEI MediaPad 10 Link+ (MediaPad 10 Link+ for short) is a 10.1-inch tablet that incorporates Hislicon processor With support for 3G and WI-FI and BT data connections, MediaPad 10 Link+ provides users with unprecedented access to high-speed internet services

2014-01-09 Page 7 of 51

1.4 Test specification(s)

ANSI Std C95.1-1992	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)	
	Recommended Practice for Determining the Peak Spatial-Average	
IEEE Std 1528-2003	Specific Absorption Rate (SAR) in the Human Head from Wireless	
	Communications Devices: Measurement Techniques	
	IEEE Recommended Practice for Determining the Peak Spatial-Average	
IEEE Std 1528a-2005	Specific Absorption Rate (SAR) in the Human Head from Wireless	
1222 014 10204 2000	Communications Devices: Measurement Techniques	
	Amendment 1: CAD File for Human Head Model (SAM Phantom)	
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication	
1.00 102	Apparatus (All Frequency Bands (Issue 4 of March 2010)	
KDB941225 D01	SAR test for 3G devices v02	
KDB941225 D02	HSPA and 1x Advanced v02r02	
KDB941225 D03	SAR Test Reduction GSM GPRS EDGE v01	
KDB248227 D01	SAR meas for 802.11 a/b/g v01r02	
KDB447498 D01	General RF Exposure Guidance v05r01	
KDB616217 D04	SAR for laptop and tablets v01r01	
KDB865664 D01	SAR measurement 100 MHz to 6 GHz v01r02	
KDB865664 D02	SAR Reporting v01r01	

1.5 Testing laboratory

Test Site	The Reliability Laboratory of Huawei Technologies Co., Ltd.	
Test Location	Zone K3, Huawei Industrial Base, Bantian Industry Area, Longgang District, Shenzhen, Guangdong, China	
Telephone	+86 755 28780808	
Fax	+86 755 89652518	
State of	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025.	
accreditation	CNAS Registration number: L0310	

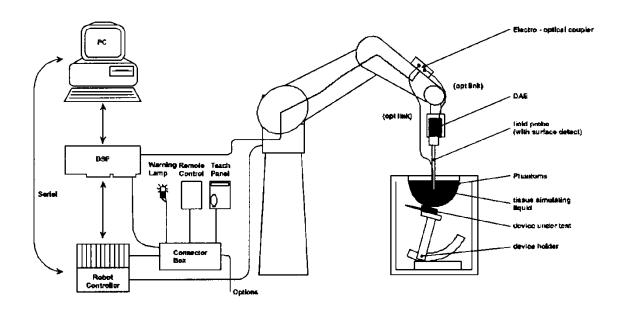
1.6 Applicant and Manufacturer

Company Name	HUAWEI TECHNOLOGIES CO., LTD			
Address	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,			
Address	Bantian, Longgang District, Shenzhen, 518129, P.R.C			

1.7 Application details

Start Date of test	2013-12-31
End Date of test	2014-01-02

1.8 Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2014-01-09 Page 8 of 51

2 SAR Measurement System

2.1 SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows XP.
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

2014-01-09 Page 9 of 51

2.2 Test environment

The DASY5 measurement system is placed at the head end of a room with dimensions:

5 x 2.5 x 3 m³, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.3 Data Acquisition Electronics description

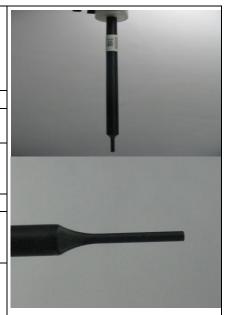
The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm	School & Santon Engineering AG
The Inputs	symmetrical and floating	TYPE: DAE 4 PART Nc: 80 000 Dot 8J SERIAL Nc: 851
Common mode rejection	above 80 dB	DATE: 03/08

2014-01-09 Page 10 of 51



2.4 Probe description

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements

Isotropic E-Fleid Probe ES3DV3 for Dosimetric Measurements						
	Symmetrical design with triangular core					
	Interleaved sensors					
Construction	Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic					
	solvents, e.g., DGBE)					
Calibration	ISO/IEC 17025 calibration service available.					
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4					
riequency	GHz)					
	± 0.2 dB in HSL (rotation around probe axis)					
Directivity	± 0.3 dB in tissue material (rotation normal to					
	probe axis)					
Dynamic range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB					
	Overall length: 337 mm (Tip: 20 mm)					
Dimensions	Tip diameter: 3.9 mm (Body: 12 mm)					
	Distance from probe tip to dipole centers: 2.0 mm					
	General dosimetry up to 4 GHz					
Application	Dosimetry in strong gradient fields					
	Compliance tests of mobile phones					

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB(noise:typically<1μW/g)
Dimensions	Overall length: 337 mm (Tip:20 mm) Tip diameter:2.5 mm (Body:12 mm) Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure scenario(e.g.,very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%

2014-01-09 Page 11 of 51

2.5 Phantom description

SAM Twin Phantom

Shell Thickness	2mm +/- 0.2 mm; The ear region: 6mm	
Filling Volume	Approximately 30 liters	
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet	
Measurement Areas	Left hand Right hand Flat phantom	

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

ELI4 Phantom

Shell Thickness	2mm +/- 0.2 mm
Filling Volume	Approximately 30 liters
Dimensions	Length:1000mm; Width:500mm; Height: adjustable feet
Measurement Areas	Flat phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

2.6 Device holder description

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2014-01-09 Page 12 of 51

2.7 Test Equipment List

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described are marked ⊠

	Manufacturer	Device	Туре	Serial number	Date of last calibration)*	Valid period
	SPEAG	Dosimetric E-Field Probe	EX3DV4	3736	2013-05-10	One year
	SPEAG	Dosimetric E-Field Probe	EX3DV4	3744	2013-07-26	One year
\boxtimes	SPEAG	Dosimetric E-Field Probe	ES3DV3	3168	2013-09-30	One year
\boxtimes	SPEAG	835 MHz Dipole	D835V2	4d059	2013-05-02	Three years
	SPEAG	1800 MHz Dipole	D1800V2	2d184	2011-03-08	Three years
	SPEAG	1900 MHz Dipole	D1900V2	5d143	2011-09-26	Three years
	SPEAG	2000 MHz Dipole	D2000V2	1052	2011-03-10	Three years
	SPEAG	2300 MHz Dipole	D2300V2	1016	2011-11-22	Three years
\boxtimes	SPEAG	2450 MHz Dipole	D2450V2	860	2013-11-26	Three years
	SPEAG	2600 MHz Dipole	D2600V2	1021	2011-11-22	Three years
	SPEAG	Data acquisition electronics	DAE4	851	2013-07-31	One year
\boxtimes	SPEAG	Data acquisition electronics	DAE4	852	2013-11-27	One year
\boxtimes	SPEAG	Software	DASY 5	N/A	N/A	N/A
	SPEAG	Twin Phantom	SAM1	TP-1475	N/A	N/A
\boxtimes	SPEAG	Twin Phantom	SAM2	TP-1474	N/A	N/A
	SPEAG	Twin Phantom	SAM3	TP-1597	N/A	N/A
	SPEAG	Twin Phantom	SAM4	TP-1620	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1038	N/A	N/A
	SPEAG	Flat Phantom	ELI 4.0	TP-1111	N/A	N/A
\boxtimes	R&S	Universal Radio Communication Tester	CMU 200	113989	2013-06-08	One year
	R&S	WideBand Radio Communication Tester	CMW 500	126855	2013-08-10	Two years
\boxtimes	Agilent)*	Network Analyser	E5071B	MY42404956	2013-02-27	One year
	Agilent	Dielectric Probe Kit	85070E	2484	N/A	N/A
	Agilent	Signal Generator	N5181A	MY47420989	2013-02-27	One year
	MINI-CIRCUITS	Amplifier	ZHL-42W	QA0746001	N/A	N/A
\boxtimes	AR	Directional Coupler	DC7144M1	311190	2013-05-13	One year
\boxtimes	R&S	Power Meter	NRP	MY44420359	2013-08-28	One year
	R&S	Power Meter Sensor	NRP-Z11	100740	2013-08-28	One year
\boxtimes	Agilent	Power Meter	E4417A	MY45101339	2013-02-26	One year
\boxtimes	Agilent	Power Meter Sensor	E9321A	MY44420359	2013-02-26	One year

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles.

- 1) Per KDB865664 requirements for dipole calibration, Huawei SAR lab has adopted three years calibration interval. But each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2014-01-09 Page 13 of 51

3 SAR Measurement Procedure

3.1 Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y- dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in Appendix B.
- A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δ x_{zoom}, Δ y_{zoom} \leq 2GHZ \leq 8 mm, 2-4GHz \leq 5 mm and 4-6 GHz- \leq 4 mm; Δ z_{zoom} \leq 3GHz \leq 5 mm, 3-4 GHz- \leq 4 mm and 4-6GHz- \leq 2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.)are shown in table form form in chapter 7.2.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in Appendix B.

2014-01-09 Page 14 of 51

3.2 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of $5 \times 5 \times 7$ points(with 8mm horizontal resolution) or $7 \times 7 \times 7$ points(with 5mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum
 the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline
 interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the
 boundary of the measurement area) the evaluation will be started on the corners of the bottom plane
 of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2014-01-09 Page 15 of 51

3.3 Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	$Norm_i$, a_{i0} , a_{i1} , a_{i2}
•	- Conversion factor	ConvFi
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	0

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

From the compensated input signals the primary field data for each channel can be evaluated:

2014-01-09 Page 16 of 51

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^{2} \circ \sigma) / (\rho \circ 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

2014-01-09 Page 17 of 51

4 System Verification Procedure

4.1 Tissue Verification

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within \pm 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Ingredients (% of weight)	Body Tissue							
Frequency Band (MHz)	450	835	1800	1900	2450	2600		
Water	51.16	52.4	69.91	69.91	73.2	64.493		
Salt (NaCl)	1.49	1.40	0.13	0.13	0.04	0.024		
Sugar	46.78	45.0	0.0	0.0	0.0	0.0		
HEC	0.52	1.0	0.0	0.0	0.0	0.0		
Bactericide	0.05	0.1	0.0	0.0	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0		
DGBE	0.0	0.0	29.96	29.96	26.7	32.252		

Table 4: Tissue Dielectric Properties

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Tissue	Measured	Target	Tissue	Measure	ed Tissue	Liquid	
Type	Frequency (MHz)	εr (+/-5%)	σ (S/m) (+/-5%)	εr	σ (S/m)	Temp.	Test Date
	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	54.74	0.960		
835B	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	54.52	0.956	20.8°C	2013-12-31
	850	55.20 (52.44~57.96)	0.99 (0.94~1.04)	54.51	0.978		
	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.85	1.433		
4000D	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.74	1.466	21.2°C	2013-12-31
1900B	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.72	1.482	21.2 0	2013-12-31
	1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.64	1.487		
	2410	52.80 (50.16~55.44)	1.91 (1.81~2.00)	50.89	1.945		
0.450D	2435	52.70 (50.07~55.34)	1.94 (1.84~2.04)	50.88	1.976	20.700	2014 04 02
2450B	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	50.87	1.995	20.7°C	2014-01-02
	2460	52.70 (50.07~55.34)	1.96 (1.86~2.06)	50.81	1.997		
		ε _r = Relat	ive permittivity, σ=	Conductiv	rity		

Table 5:Measured Tissue Parameter

Note: 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

2014-01-09 Page 18 of 51

- 2) KDB865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

2014-01-09 Page 19 of 51

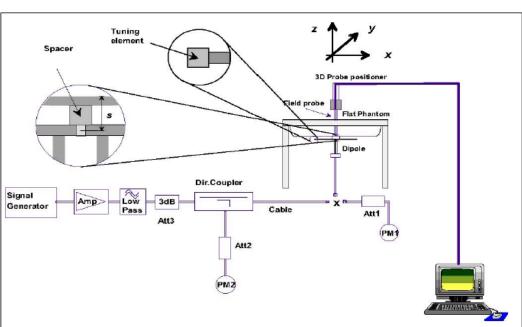
4.2 System Check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests (Graphic Plot(s) see Appendix A).

System		AR (1W) 0%)		red SAR zed to 1W)	Liquid	Test Date
Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	rest Date
D835V2 Body	9.54 (8.59~10.49)	6.29 (5.66~6.92)	9.44	6.20	20.8°C	2013-12-31
D1900V2 Body	41.40 (37.26~45.54)	21.80 (19.62~23.98)	38.40	19.96	21.2°C	2013-12-31
D2450V2 Body	49.0 (44.10~53.90)	22.8 (20.52~25.08)	53.60	24.68	20.7°C	2014-01-02

Table 6:System Check Results

2014-01-09 Page 20 of 51



4.3 System check Procedure

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW(below 5GHz) or 100mW(above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2014-01-09 Page 21 of 51

5 Measurement Uncertainty Evaluation

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Uncertainty component	Clause	Tol. (± %)	Prob. Dist.	Divi- sor	c _i (1- g)	c _i (10- g)	1 g ui (± %)	10 g ui (± %)	v _i ² or v _{eff}
Measurement System									
Probe calibration	E.2.1	6.0%	N	1	1	1	6.00%	6.00%	∞
Axial isotropy	E.2.2	4.7%	R	√3	0.7	0.7	1.9%	1.9%	∞
Hemispherical isotropy	E.2.2	9.6%	R	√3	0.7	0.7	3.9%	3.9%	∞
Boundary effects	E.2.3	1.0%	R	√3	1	1	0.6%	0.6%	∞
Probe linearity	E.2.4	4.7%	R	√3	1	1	2.7%	2.7%	∞
System Detection limits	E.2.5	1.0%	R	√3	1	1	0.6%	0.6%	∞
Readout Electronics	E.2.6	0.3%	N	1	1	1	0.3%	0.3%	∞
Response time	E.2.7	0.8%	R	√3	1	1	0.5%	0.5%	∞
Integration time	E.2.8	2.6%	R	√3	1	1	1.5%	1.5%	∞
RF ambient conditions— noise	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	8
RF ambient conditions— reflections	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	∞
Probe positioned	E.6.2	0.4%	R	√3	1	1	0.2%	0.2%	∞
Probe positioning	E.6.3	2.9%	Ν	√3	1	1	1.7%	1.7%	∞
Max. SAR evaluation	E.5.2	1.0%	Ν	√3	1	1	0.6%	0.6%	∞
Test Sample Related									
Device positioning	E.4.2	1.9%	Ν	1	1	1	1.9%	1.9%	71
Device holder	E.4.1	3.6%	Ν	1	1	1	3.6%	3.6%	∞
Power drift	6.6.2	5.0%	R	√3	1	1	2.9%	2.9%	∞
Phantom and Set-up									
Phantom uncertainty	E.3.1	4.0%	R	√3	1	1	2.3%	2.3%	∞
Liquid conductivity (target)	E.3.2	5.0%	R	√3	0.64	0.43	1.8%	1.2%	∞
Liquid conductivity (meas.)	E.3.3	4.2%	N	1	0.64	0.43	2.7%	1.8%	9
Liquid permittivity (target)	E.3.2	5.0%	R	√3	0.6	0.49	1.7%	1.4%	∞
Liquid permittivity (meas.)	E.3.3	4.2%	N	1	0.6	0.49	2.5%	2.1%	9
Combined Uncertainty							11.2%	10.8%	/
Expanded Std. Uncertainty (K=2)							22.3%	21.5%	1

Table 7:Measurement uncertainties applicable for frequencies less than 3GHz

2014-01-09 Page 22 of 51

Uncertainty component	Clause	Tol. (± %)	Prob. Dist.	Divi- sor	c _i (1- g)	c _i (10- g)	1 g ui (± %)	10 g ui (± %)	v _i ² or V _{eff}
Measurement System						<u> </u>		, ,	
Probe calibration	E.2.1	6.55%	N	1	1	1	6.55%	6.55%	8
Axial isotropy	E.2.2	4.7%	R	√3	0.7	0.7	1.9%	1.9%	8
Hemispherical isotropy	E.2.2	9.6%	R	√3	0.7	0.7	3.9%	3.9%	8
Boundary effects	E.2.3	2.0%	R	√3	1	1	1.2%	1.2%	8
Probe linearity	E.2.4	4.7%	R	√3	1	1	2.7%	2.7%	8
System Detection limits	E.2.5	1.0%	R	√3	1	1	0.6%	0.6%	8
Readout Electronics	E.2.6	0.3%	Ν	1	1	1	0.3%	0.3%	8
Response time	E.2.7	0.8%	R	√3	1	1	0.5%	0.5%	∞
Integration time	E.2.8	2.6%	R	√3	1	1	1.5%	1.5%	8
RF ambient conditions— noise	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	8
RF ambient conditions— reflections	E.6.1	3.0%	R	√3	1	1	1.7%	1.7%	∞
Probe positioned	E.6.2	0.8%	R	√3	1	1	0.5%	0.5%	∞
Probe positioning	E.6.3	6.7%	N	√3	1	1	3.9%	3.9%	∞
Max. SAR evaluation	E.5.2	4.0%	Ν	√3	1	1	2.3%	2.3%	∞
Test Sample Related									
Device positioning	E.4.2	1.9%	N	1	1	1	1.9%	1.9%	71
Device holder	E.4.1	3.6%	N	1	1	1	3.6%	3.6%	∞
Power drift	6.6.2	5.0%	R	√3	1	1	2.9%	2.9%	∞
Phantom and Set-up									
Phantom uncertainty	E.3.1	4.0%	R	√3	1	1	2.3%	2.3%	∞
Liquid conductivity (target)	E.3.2	5.0%	R	√3	0.64	0.43	1.8%	1.2%	∞
Liquid conductivity (meas.)	E.3.3	4.2%	N	1	0.64	0.43	2.7%	1.8%	9
Liquid permittivity (target)	E.3.2	5.0%	R	√3	0.6	0.49	1.7%	1.4%	∞
Liquid permittivity (meas.)	E.3.3	4.2%	N	1	0.6	0.49	2.5%	2.1%	9
Combined Uncertainty							12.2%	11.9%	/
Expanded Std. Uncertainty (K=2)							24.5%	23.7%	1

Table 8:Measurement uncertainties applicable for frequencies up to 6GHz

2014-01-09 Page 23 of 51

6 SAR Test Configuration

6.1 **GSM Test Configuration**

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

Number of time assignr	•	Reduction of maximum output power (dB)						
Band	Time Slots	GPRS (GMSK)	GPRS (GMSK) EGPRS (GMSK)					
	1 TX slot	0	0	0				
GSM850	2 TX slots	2	2	2				
GSIVIOSU	3 TX slots	4	4	4				
	4 TX slots	6	6	6				
	1 TX slot	0	0	0				
GSM1900	2 TX slots	2	2	2				
	3 TX slots	4	4	4				
	4 TX slots	6	6	6				

Table 9: The allowed power reduction in the multi-slot configuration of GSM

6.2 UMTS Test Configuration

1) RMC

As the SAR body tests for UMTS Band V/II, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to 'all 1'.
- 2) Test loop Mode 1.

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
DPDCH₁	60	60	64	16	40
DFDCH ₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320

2014-01-09 Page 24 of 51

	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCHn, when supported by the EUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCHn configuration, are less than ¼ dB higher than those measured in 12.2 kbps RMC.

2) HSDPA

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HAPRQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the below table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ ACK, Δ NACK, Δ CQI = 8. The variation of the β_c / β_d ratio causes a power reduction at sub-tests 2 - 4.

Sub-test₽	βe₽	β _d ₽	β _d (SF)₽	β _c /β _d ↔	β _{hs} (1)₽	CM(dB)(2)₽	MPR (dB)₽
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0€
2₽	12/15(3)₽	15/15(3)₽	64₽	12/15(3)₽	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c \leftrightarrow \beta_{hs} = 30/15$

Note 2: CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Table 10: Sub-tests for UMTS Release 5 HSDPA

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 11:settings of required H-Set 1 QPSK acc. to 3GPP 34.121

2014-01-09 Page 25 of 51

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum HS-DSCH Transport Block Bits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 12:HSDPA UE category

3) HSUPA

Body SAR is also measured for HSDPA when the maximum average outputs of each RF channel with HSDPA active is at ¼ dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-set 1 and QPSK for FRC and 12.2kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSDPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSDPA should be configured according to the values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Device' sections of 3G device.

2014-01-09 Page 26 of 51

Sub -test₽	βee	βd€	β _d (SF)	β₀∕β⋴ℴ	β _{hs} (1	β _{ec}	β _{ed} ₊∍	βe c↔ (SF)↔	βed↔ (code)↔	CM(2)+ (dB)+	MP R _e (dB) _e	AG ⁽⁴)+ Inde X+	E- TFC I _e
1₽	11/15(3)	15/15(3)	64₽	11/15(3)(3)	22/15₽	209/22 5₽	1039/225₽	4₽	1₽	1.0₽	0.0₽	20₽	75₽
240	6/15₽	15/15₽	64₽	6/15₽	12/15₽	12/15	94/75₽	4₽	1₽	3.0₽	2.0₽	12₽	67₽
3₽	15/15₽	9/154	64₽	15/94	30/154	30/15	β _{ed1} :47/1 5 ₄ β _{ed2:47/1} 5 ₄	4₽	2₽	2.0₽	1.0₽	15₽	924
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15 ⁽⁴⁾	15/15(4)	64₽	15/15 ⁽⁴⁾	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	21₽	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_{cd}$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 13:Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
2	2	8	2	4	2798	1 4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
4	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	10	2SF2&2SF	11484	5.76	
(No DPDCH)	4	4	2	4	20000	2.00	
7	4	8	2	2SF2&2SF	22996	?	
(No DPDCH)	4	4	10	4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 14:HSUPA UE category

2014-01-09 Page 27 of 51

4) DC-HSDPA

In DC-HSDPA implementation of this device, the uplink parameters are the same as HSDPA. No additional channels and modulations (16 QAM, and 64 QAM) are supported in uplink. The difference is only in the downlink parameters, where two carriers are supported. HSDPA settings were used on uplink.

For Rel. 8 DC-HSDPA apply the four subtests from HSDPA Release 5 except use fixed reference channel H-Set 12 for DC-HSDPA. And we can apply the same SAR test exclusion criteria used for Rel. 6 HSPA for Rel. 7 HSPA+ and Rel. 8 DC-HSDPA. That is, if the HSPA, HSPA+, or the DC-HSDPA maximum output is not more than 0.25 dB higher than WCDMA, SAR measurement for those modes is not required.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 15:settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

- 1.The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2.Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

2014-01-09 Page 28 of 51

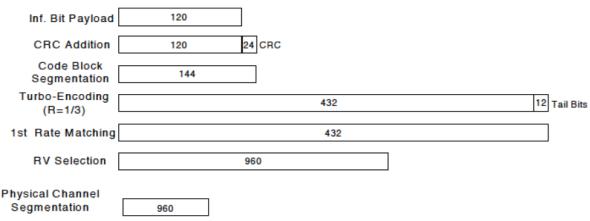


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	βe₽	$\beta_{d^{e}}$	β _d ·(SF)₀	$\beta_c \cdot / \beta_{d^{e^2}}$	β _{hs} (1)₽	CM(dB)(2)	MPR (dB)
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)	15/15(3)	64₽	12/15(3)	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH,DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c =11/15 and β_d =15/15.

Up commands are set continuously to set the UE to Max power.

Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.
- 5.The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

2014-01-09 Page 29 of 51

6.3 WiFi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1 ,6 and 11 respectively in the case of 2450 MHz.During the test,at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Pand	GHz	Channel	"Default Test Channels"		
ivioue	Band	GHZ	Chame	802.11b	802.11g	
	2.4 GHz	2.412	1#	√	Δ	
802.11b/g		2.437	6	√	Δ	
· ·		2.462	11#	√	Δ	

Notes:

802.11 Test Channels per FCC Requirements

2014-01-09 Page 30 of 51

^{√ = &}quot;default test channels"

 $[\]triangle$ = possible 802.11g channels with maximum average output ½ dB the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

7 SAR Measurement Results

7.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. SAR drift measured at the same position in liquid before and after each SAR test as below 7.2 chapter.

Note: CMU200 measures GSM peak and average output power for active timeslots.For SAR the timebased average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.1	1:2.77	1:2.08
timebased avg. power compared to slotted avg. power	-9.19dB	-6.13dB	-4.42dB	-3.18dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EDGE	MCS1 to MCS4	GMSK
EDGE	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

2014-01-09 Page 31 of 51

7.1.1 Conducted power measurements GSM850

GSM850		Burst-Averaged output Power (dBm)			Division	Frame-Averaged output Power (dBm)		
		128CH	190CH	251CH	Factors	128CH	190CH	251CH
	1 Tx Slot	33.20	33.12	33.04	-9.19	24.01	23.93	23.85
GPRS/ EGPRS	2 Tx Slots	30.93	30.79	30.57	-6.13	24.80	24.66	24.44
(GMSK)	3 Tx Slots	28.91	28.71	28.52	-4.42	24.49	24.29	24.10
	4 Tx Slots	26.68	26.50	26.27	-3.18	23.50	23.32	23.09
	1 Tx Slot	26.97	27.03	27.02	-9.19	17.78	17.84	17.83
EDGE	2 Tx Slots	24.55	24.48	24.46	-6.13	18.42	18.35	18.33
(8PSK)	3 Tx Slots	22.79	22.77	22.77	-4.42	18.37	18.35	18.35
	4 Tx Slots	20.85	20.88	20.78	-3.18	17.67	17.70	17.60

Table 16:Test results conducted power measurement GSM850

Note: 1) The conducted power of GSM850 is measured with RMS detector.

- 2) Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.
- 3) Per KDB 941225 D03v01,the bolded GPRS 2Tx slots mode was selected for SAR testing according to the highest frame –averaged output power table.

2014-01-09 Page 32 of 51

7.1.2 Conducted power measurements GSM1900

GSM1900		Burst-Averaged output Power (dBm)			Division	Frame-Averaged output Power (dBm)		
		512CH	661CH	810CH	Factors	512CH	661CH	810CH
	1 Tx Slot	29.96	29.58	29.41	-9.19	20.77	20.39	20.22
GPRS/ EGPRS	2 Tx Slots	28.17	27.94	27.70	-6.13	22.04	21.81	21.57
(GMSK)	3 Tx Slots	26.29	26.04	25.84	-4.42	21.87	21.62	21.42
	4 Tx Slots	24.15	23.97	23.80	-3.18	20.97	20.79	20.62
	1 Tx Slot	25.67	25.68	25.63	-9.19	16.48	16.49	16.44
EDGE	2 Tx Slots	23.74	23.71	23.76	-6.13	17.61	17.58	17.63
(8PSK)	3 Tx Slots	21.59	21.66	21.64	-4.42	17.17	17.24	17.22
	4 Tx Slots	19.55	19.56	19.55	-3.18	16.37	16.38	16.37

Table 17:Test results conducted power measurement GSM1900

Note: 1) The conducted power of GSM1900 is measured with RMS detector.

- 2) Frame-averaged output power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timesolts.
- 3) Per KDB 941225 D03v01,the bolded GPRS 2Tx slots mode was selected for SAR testing according to the highest frame –averaged output power table.

2014-01-09 Page 33 of 51

7.1.3 Conducted power measurements UMTS Band V

UMTS Band V		Conducted Power (dBm)			
		4132CH	4182CH	4233CH	
	12.2kbps RMC	23.49	23.60	23.74	
WCDMA	64kbps RMC	23.50	23.67	23.75	
VVCDIVIA	144kbps RMC	23.54	23.70	23.65	
	384kbps RMC	23.53	23.73	23.64	
	Subtest 1	23.56	23.68	23.77	
HSDPA	Subtest 2	23.27	23.41	23.40	
HSDFA	Subtest 3	22.56	22.78	22.68	
	Subtest 4	22.56	22.79	22.68	
	Subtest 1	20.49	21.43	21.43	
	Subtest 2	19.20	19.34	19.51	
HSUPA	Subtest 3	20.69	20.57	20.76	
	Subtest 4	19.64	20.13	19.99	
	Subtest 5	20.90	21.23	21.02	
	Subtest 1	23.00	22.92	23.19	
DC-HSDPA	Subtest 2	22.61	22.61	22.67	
DO-USDAA	Subtest 3	22.34	22.30	22.28	
	Subtest 4	22.07	22.27	21.86	

Table 18:Test results conducted power measurement UMTS Band V Note:

- 1) The conducted power of UMTS Band V is measured with RMS detector.
- 2) Per KDB941225 D01v02, when maximum output of each RF channel with HSDPA/HSUPA active is ≤ ¼ dB higher than without HSDPA/HSUPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75% of SAR limit, SAR evaluation for HSDPA/HSUPA is not required.
- 3) Per KDB941225 D02v02r02, when the maximum average output power of each RF channel with (uplink) HSPA+/DC-HSDPA active is \leq ½ dB higher than that measured without HSPA+/DC-HSDPA using 12.2 kbps RMC, or the maximum reported SAR for 12.2 kbps RMC without HSPA+/DC-HSDPA is \leq 75% of the SAR limit, SAR evaluation for HSPA+/DC-HSDPA is not required.

2014-01-09 Page 34 of 51

7.1.4 Conducted power measurements UMTS Band II

UMTS Band II		Conducted Power (dBm)			
		9262CH	9400CH	9538CH	
	12.2kbps RMC	23.36	23.43	23.32	
MACONAA	64kbps RMC	23.37	23.42	23.30	
WCDMA	144kbps RMC	23.39	23.45	23.32	
	384kbps RMC	23.39	23.45	23.33	
	Subtest 1	23.34	23.38	23.31	
LICDDA	Subtest 2	23.02	23.08	23.01	
HSDPA	Subtest 3	22.47	22.52	22.46	
	Subtest 4	22.51	22.53	22.47	
	Subtest 1	21.11	20.81	20.58	
	Subtest 2	19.06	19.35	19.28	
HSUPA	Subtest 3	20.32	20.34	20.80	
	Subtest 4	19.73	19.63	19.72	
	Subtest 5	20.84	20.71	20.96	
	Subtest 1	23.00	23.04	22.98	
DC-HSDPA	Subtest 2	22.63	22.60	22.63	
DC-HODPA	Subtest 3	22.32	22.33	22.36	
	Subtest 4	21.95	21.96	21.82	

Table 19:Test results conducted power measurement UMTS Band II Note:

- 1) The conducted power of UMTS Band II is measured with RMS detector.
- 2) Per KDB941225 D01v02, when maximum output of each RF channel with HSDPA/HSUPA active is ≤ ¼ dB higher than without HSDPA/HSUPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is ≤ 75% of SAR limit, SAR evaluation for HSDPA/HSUPA is not required.
- 3) Per KDB941225 D02v02r02, when the maximum average output power of each RF channel with (uplink) HSPA+/DC-HSDPA active is $\leq \frac{1}{4}$ dB higher than that measured without HSPA+/DC-HSDPA using 12.2 kbps RMC, or the maximum reported SAR for 12.2 kbps RMC without HSPA+/DC-HSDPA is \leq 75% of the SAR limit, SAR evaluation for HSPA+/DC-HSDPA is not required.

2014-01-09 Page 35 of 51

7.1.5 Conducted power measurements WiFi &BT

The output power of WiFi antenna is as following:

The output power of vvii Funterina to de following.									
Wi-Fi Channel		Average Power (dBm) for Data Rates (Mbps)							
2450	Charmer	1	2	5.5	11	/	/	/	/
	1	13.96	13.60	13.40	13.68	/	/	/	/
802.11b	6	14.00	13.60	13.50	13.66	/	/	/	/
	11	14.16	13.93	13.91	13.83	/	/	/	/
	Channel	6	9	12	18	24	36	48	54
802.11g	1	12.82	11.06	11.02	10.98	11.12	11.06	11.01	11.11
802.119	6	12.88	11.47	11.36	11.42	11.56	11.45	11.63	11.58
	11	12.97	12.25	12.31	12.19	12.15	12.12	12.24	12.27
	Channel	6.5	13	19.5	26	39	52	58.5	65
802.11n	1	12.80	10.98	10.87	11.02	11.07	11.12	10.97	11.08
HT20	6	12.78	11.45	11.56	11.59	11.48	11.51	11.56	11.59
	11	12.97	12.43	12.39	12.44	12.28	12.17	12.26	12.35

Table 20:Test results conducted power measurement WiFi.

Note:

- 1. The Average conducted power of WiFi is measured with RMS detector.
- 2. Per KDB248227, for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.

The output power of BT antenna is as following:

BT 2450	Average Conducted Power (dBm)					
D1 2450	0CH	39CH	78CH			
DH5	-2.85	0.96	-1.61			
2DH5	-5.02	-1.22	-3.89			
3DH5	-5.01	-1.32	-3.85			

	BT 2450	Average Conducted Power (dBm)				
		0CH	19CH	39CH		
	4.0	-4.46	-0.91	-0.85		

Table 21:Test results conducted power measurement BT.

Note: The conducted power of BT is measured with RMS detector.

2014-01-09 Page 36 of 51

7.2 SAR measurement Result

- 1) Per KDB447498 D01v05,testing of other required channels within the operating mode of a frequency band is not required when the reported(Scaled) SAR for the middle channel or highest output power channels is \leq 0.8W/kg. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 2) Per KDB865664 D01v01,for each frequency band,repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 3) All measurement SAR result is scaled-up to account for tune-up tolerance is compliant

7.2.1 SAR measurement Result of GSM850

Test Position of	Position of Channel		Test (W/kg)		Power Drift	Conducted Power	Tune- up	Scaled SAR _{1-q}	Liquid	
Body With 0mm	/Freq.(MHz)	Mode	1-g 10-g		(dB)	(dBm)	Limit (dBm)	(W/kg)	Temp.	
Back Side	251/848.8	GPRS 2TS	0.616	0.336	0.100	30.57	32.00	0.856	20.8°C	
Back Side	190/836.6	GPRS 2TS	0.666	0.366	0.100	30.79	32.00	0.880	20.8°C	
Back Side	128/824.2	GPRS 2TS	0.661	0.363	0.170	30.93	32.00	0.846	20.8°C	
Right Side	190/836.6	GPRS 2TS	0.094	0.058	0.080	30.79	32.00	0.124	20.8°C	
Top Side	190/836.6	GPRS 2TS	0.233	0.112	0.060	30.79	32.00	0.308	20.8°C	

Table 22:Test results Body SAR GSM850.

2014-01-09 Page 37 of 51

7.2.2 SAR measurement Result of GSM1900

Test Position of Body With		Test		Value /kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid	
0mm	/Freq.(MHz)	Mode	1-g 10-		(dB)	(dBm)	Limit (W/kg)		Temp.	
Back Side	661/1880	GPRS 2TS	0.484	0.245	-0.010	27.94	29.00	0.618	21.2°C	
Right Side	661/1880	GPRS 2TS	0.068	0.035	0.060	27.94	29.00	0.087	21.2°C	
Top Side	661/1880	GPRS 2TS	0.435	0.181	0.180	27.94	29.00	0.555	21.2°C	

Table 23:Test results Body SAR GSM1900.

2014-01-09 Page 38 of 51

7.2.3 SAR measurement Result of UMTS Band V

Test Position Channel of Body With		Test		Value /kg)	Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid
0mm	/Freq.(MHz)	Mode	1-g 10-g	10-g	(dB)	(dBm)	Limit (dBm)	(W/kg)	Temp.
Back Side	4182/836.4	RMC	0.729	0.398	0.120	23.67	24.00	0.787	20.8°C
Right Side	4182/836.4	RMC	0.091	0.056	0.090	23.67	24.00	0.098	20.8°C
Top Side	4182/836.4	RMC	0.278	0.134	0.150	23.67	24.00	0.300	20.8°C

Table 24:Test results Body SAR UMTS Band V.

2014-01-09 Page 39 of 51

7.2.4 SAR measurement Result of UMTS Band II

Test Position of Body With	Channel	Test	SAR Value (W/kg)		Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid
0mm	/Freq.(MHz)	Mode	1-g	10-g	(dB)	(dBm)	Limit (dBm)	(W/kg)	Temp.
Back Side	9400/1880	RMC	0.700	0.354	0.020	23.43	24.00	0.798	21.2°C
Right Side	9400/1880	RMC	0.109	0.056	0.120	23.43	24.00	0.124	21.2°C
Top Side	9400/1880	RMC	0.671	0.279	0.050	23.43	24.00	0.765	21.2°C

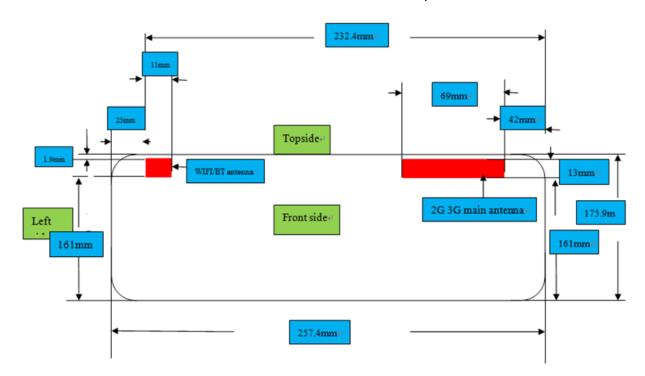
Table 25:Test results Body SAR UMTS Band II.

2014-01-09 Page 40 of 51

7.2.5 SAR measurement Result of WiFi

	Channel	Test	SAR Value (W/kg)		Power Drift	Conducted Power	Tune- up	Scaled SAR1-g	Liquid	
Body With 0mm	/Freq.(MHz)	Mode	1-g	10-g	(dB) (dBm)		Limit (dBm)	(W/kg)	Temp.	
Back Side	11/2462	802.11 b	0.708	0.286	0.030	14.24	15.50	0.946	20.7°C	
Back Side	6/2437	802.11 b	0.790	0.313	0.160	14.07	15.50	1.098	20.7°C	
Back Side	1/2412	802.11 b	0.694	0.281	0.170	14.04	15.50	0.971	20.7°C	
Left Side	11/2462	802.11 b	0.154	0.070	0.120	14.24	15.50	0.206	20.7°C	
Top Side	11/2462	802.11 b	0.401	0.169	0.140	14.24	15.50	0.536	20.7°C	

Table 26: Test results Body SAR WiFi 2450MHz


2014-01-09 Page 41 of 51

7.3 Multiple Transmitter Evaluation

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to FCC KDB 447498D01 General RF Exposure Guidance v05.

The location of the antennas inside data card is shown as below picture:

<Front view>

The SAR measurement positions of each band are as below:

Mode	Front Side	Back Side	Left Side	Right Side	Top Side	Bottom Side
2G/3G Antenna	No	Yes	NO	Yes	Yes	NO
WiFi 2.4G/BT	No	Yes	Yes	NO	Yes	NO

Table 27: SAR measurement positions

Note: Per FCC KDB 616217,the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

2014-01-09 Page 42 of 51

7.3.1 Stand-alone SAR test exclusion

The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. Power of channel, including tune-up tolerance, mW)/(min. Test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Body position

Mode	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	Exclusion threshold	SAR test exclusion
GSM850	33.50	2238.72	5	0.850	412.80	3.00	No
GSM1900	30.50	1122.02	5	1.900	309.32	3.00	No
UMTS Band V	24.00	251.19	5	0.850	46.32	3.00	No
UMTS Band II	24.00	251.19	5	1.900	69.25	3.00	No
WiFi	15.50	35.48	5	2.450	11.11	3.00	No
BT	2.00	1.58	5	2.450	0.50	3.00	Yes

Table 28: Standalone SAR test exclusion in Body position

Note: * - maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm,where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Mode	Position	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	х	Estimated SAR (W/Kg)*
BT	Body	2.00	1.58	5	2.450	7.5	0.066

Table 29: Estimated SAR calculation for BT

Note: * - maximum possible output power declared by manufacturer

2014-01-09 Page 43 of 51

7.3.2 Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities are as below:

Simultaneous Transmission Possibilities							
Simultaneous Tx Combination	Configuration	Body					
1	GPRS/EGPRS/UMTS + WiFi	Yes					
2	2 GPRS/EGPRS/UMTS + BT Yes						

Table 30: Simultaneous Transmission Possibilities

Note:

The device does not support simultaneous BT and WiFi, because they share the same antenna, use the technique of Time Division Multiplexer and cannot transmit simultaneously.

2014-01-09 Page 44 of 51

7.3.3 SAR Summation Scenario

Test Position		Scaled	I SAR _{Max}	Σ1-g SAR	SPLSR	Remark
		GSM850	WiFi	ZI-y SAK	SPLSK	Remark
	Back Side	0.880	1.098	See Note 7.3.4	0.017	NA
D L - O A D	Left Side	0.000	0.206	0.206	NA	NA
Body SAR	Right Side	0.124	0.000	0.124	NA	NA
	Top Side	0.308	0.536	0.844	NA	NA

Table 31: Simultaneous Tx Combination of GSM850 and WiFi

Test Position		Scaled	I SAR _{Max}	Σ1-g SAR	SPLSR	Remark
		GSM1900	WiFi	ZI-g SAK	SPLSK	Remark
	Back Side	0.618	1.098	See Note 7.3.4	0.013	NA
Pody CAD	Left Side	0.000	0.206	0.206	NA	NA
Body SAR	Right Side	0.087	0.000	0.087	NA	NA
	Top Side	0.555	0.536	1.091	NA	NA

Table 32: Simultaneous Tx Combination of GSM1900 and WiFi

Test Position		Scaled	I SAR _{Max}			
		UMTS Band V	WiFi	Σ1-g SAR	SPLSR	Remark
	Back Side	0.787	1.098	See Note 7.3.4	0.016	NA
Pody SAP	Left Side	0.000	0.206	0.206	NA	NA
Body SAR	Right Side	0.098	0.000	0.098	NA	NA
	Top Side	0.300	0.536	0.836	NA	NA

Table 33: Simultaneous Tx Combination of UMTS Band V and WiFi

Test Position		Scaled	I SAR _{Max}			
		UMTS Band II	WiFi	Σ1-g SAR	SPLSR	Remark
Body SAR	Back Side	0.798	1.098	See Note 7.3.4	0.015	NA
	Left Side	0.000	0.206	0.206	NA	NA
	Right Side	0.124	0.000	0.124	NA	NA
	Top Side	0.765	0.536	1.301	NA	NA

Table 34: Simultaneous Tx Combination of UMTS Band II and WiFi

2014-01-09 Page 45 of 51

Test Position		Scaled 9	SAR _{Max}	71 a 8AB	SPLSR	Domark	
		GSM850	BT	Σ1-g SAR	SPLSK	Remark	
Body SAR	Back Side	0.880	0.066	0.946	NA	NA	
	Left Side	0.000	0.066	0.066	NA	NA	
	Right Side	0.124	0.066	0.190	NA	NA	
	Top Side	0.308	0.066	0.374	NA	NA	

Table 35: Simultaneous Tx Combination of GSM850 and BT

Test Position		Scaled SAR _{Max}		Σ1-g SAR	SPLSR	Remark	
		GSM1900	BT	ZI-g SAK	SPLSK	Remark	
	Back Side	0.618	0.066	0.684	NA	NA	
Body SAR	Left Side	0.000	0.066	0.066	NA	NA	
	Right Side	0.087	0.066	0.153	NA	NA	
	Top Side	0.555	0.066	0.621	NA	NA	

Table 36: Simultaneous Tx Combination of GSM1900 and BT

Test Position		Scaled S	SAR _{Max}	Σ1-g SAR	SPLSR	Domark
		UMTS Band V	BT	ZI-y SAK	SPLSK	Remark
	Back Side	0.787	0.066	0.853	NA	NA
Body SAR	Left Side	0.000	0.066	0.066	NA	NA
	Right Side	0.098	0.066	0.164	NA	NA
	Top Side	0.300	0.066	0.366	NA	NA

Table 37: Simultaneous Tx Combination of UMTS Band V and BT

Test Position		Scaled S	SAR _{Max}	Σ1-g SAR	SPLSR	Remark
		UMTS Band II	BT	ZI-g SAK	SPLSK	Remark
	Back Side	0.798	0.066	0.864	NA	NA
Body SAR	Left Side	0.000	0.066	0.066	NA	NA
	Right Side	0.124	0.066	0.190	NA	NA
	Top Side	0.765	0.066	0.831	NA	NA

Table 38: Simultaneous Tx Combination of UMTS Band II and BT

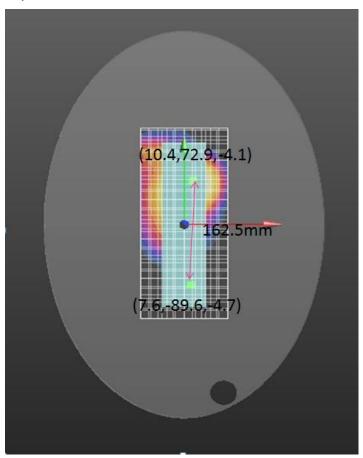
Note:

- 1) No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SAR to peak location separation ratio(SPLSR) between the antenna pairs was below 0.04 per FCC KDB447498 D01v05r01.See Section 7.3.4 for detailed SPLSR analysis.
- 2) When SAR to peak location separation ratio is applied to determine simultaneous transmission SAR test exclusion, the highest of the reported stand-alone SAR and estimated SAR is used per KDB690783D01.

2014-01-09 Page 46 of 51

7.3.4 SPLSR Evaluation Analysis

According to KDB447498 D01v05, When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio(SPLSR). When the SAR to peak location ratio for each pair of antennas is ≤0.04, simultaneous SAR evaluation is not required.


When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following fomula:

Distance_{Tx1-Tx2} =
$$R_i = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

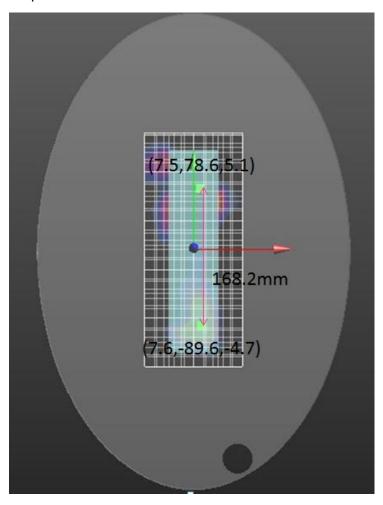
SPLS Ratio = $(SAR_1 + SAR_2)^{1.5}/R_i$

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna.

1) The sum of aggregate 1g SAR was above 1.6W/Kg for Back side configuration with GSM850 and 2.4G WiFi.

The Peak SAR location plot is as below:

The SAR to peak location ratio calculation is as below:

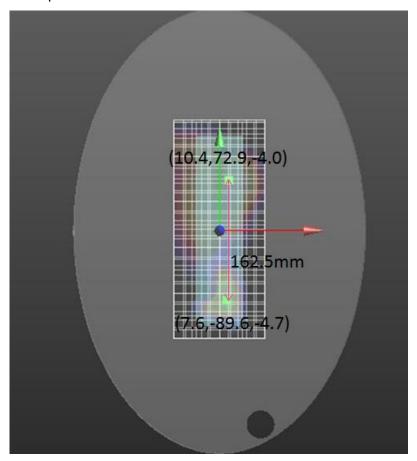

Test Position	GSM850 (W/kg)	WiFi 2.4G (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Back Side	0.880	1.098	162.5	0.017	0.04	Not required

2014-01-09 Page 47 of 51

2) The sum of aggregate 1g SAR was above 1.6W/Kg for Back side configuration with GSM1900 and 2.4G WiFi.

The Peak SAR location plot is as below:

The SAR to peak location ratio calculation is as below:

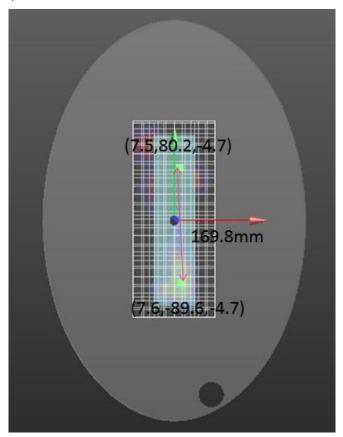

Test Position	GSM1900 (W/kg)	WiFi 2.4G (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Back Side	0.618	1.098	168.2	0.013	0.04	Not required

2014-01-09 Page 48 of 51

3) The sum of aggregate 1g SAR was above 1.6W/Kg for Back side configuration with UMTS Band V and 2.4G WiFi.

The Peak SAR location plot is as below:

The SAR to peak location ratio calculation is as below:


Test Position	UMTS Band V (W/kg)	WiFi 2.4G (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Back Side	0.787	1.098	162.5	0.016	0.04	Not required

2014-01-09 Page 49 of 51

4) The sum of aggregate 1g SAR was above 1.6W/Kg for Back side configuration with UMTS Band II and 2.4G WiFi.

The Peak SAR location plot is as below:

The SAR to peak location ratio calculation is as below:

Test Position	UMTS Band V (W/kg)	WiFi 2.4G (W/kg)	Ri(mm)	SPLSR	Ratio Limit	Simultaneous SAR
Back Side	0.798	1.098	169.8	0.015	0.04	Not required

Conclusion:

The above numeral summed SAR results and SPLSR analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore simultaneous transmission SAR with Volume Scans is not required per KDB 447498 D01v05r01.

2014-01-09 Page 50 of 51

Appendix A. System Check Plots (Pls See Appendix A.)

Appendix B. SAR Measurement Plots (Pls See Appendix B.)

Appendix C. Calibration Certificate (Pls See Appendix C.)

Appendix D. Photo documentation (Pls See Appendix D.)

End

2014-01-09 Page 51 of 51